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Background The less is more hypothesis posits that greater processing restrictions privilege children over

adults as language learners [1]. Historically, this hypothesis has been both supported by simulating language

learners as limited-capacity neural networks via staged input and memory interference [2], and challenged by

conflicting results from replication attempts [3]. Decades later, the resources available for conducting such

experiments have improved dramatically: an abundance of naturalistic data, and neural network architectures

better suited to natural language tasks (e.g., LSTMs) than those of the past (i.e., SRNs). Mechanistic studies

have also found the presence of specific neurons in LSTMs which appear to track grammatical functions,

and error patterns that partially mimic human behavior [4], further motivating LSTMs as a reasonable model

to test hypotheses about human language learning. This study thus revisits the less is more controversy with

modern techniques. Experiment I extends foundational work showing LSTM ability to correctly classify English

subject-verb number agreement over a variety of distances (as number of words between subject and verb) [5],

which reported increasing error almost monotonically with distance, with no effect on overall error rate. Short

distances were overrepresented in the data, so I replicated with (Fig. 1) and without (Fig. 2) controlling for

equal distribution of distances (1-10; 19,200 training sentences in total), and found that the error curve was

much flatter when distribution was controlled. The effect of learning from specific distances was then isolated

by training on four contiguous subsets of three distances: short (1-3), med1 (4-6), med2 (7-9), and long (10-

12). 1,600 examples per distance were included in training (4,800 total). 200 examples per distance included in

training were used for validation (600 total), and 200 examples per distance from the full range (2,400 total) were

used for testing. Sentences containing agreement attractors were excluded. If short strings play a distinguished

role in learning, then generalization from short to long should be better than long to short. But the error rates of

the models (Fig. 3) suggest that less is notmore for LSTMs. Experiment II addresses why generalization from

short to long distances was worse than from long to short distances. [6] showed that finite-precision LSTMs can

learn to effectively implement counter automata, using the formal languages anbn and anbncn, but not infinitely,

because LSTMs implement an inherently imprecise counter. To evaluate counting imprecision in a context that

better resembles our number classification task, I implemented an LSTM with five hidden units, and generated

a dataset of 10,000/1,000/10,000 strings (t/v/t) of the language anbm for the objective: “does the string contain

equal a’s and b’s?” The dataset was evenly split between positive (n = m) and negative (n orm is greater by 2)

examples. One model was trained only on short strings (2-30 char.), the other only on long (32-60 char.). Both

achieved 100% accuracy on classifying strings of the same type they were trained on, but the model trained

on short strings was worse at classifying long strings (79% accuracy) than vice versa (99%). Fig. 4-7 display

visualizations of the cell state of the LSTM. Unit 3 appears to be the counter unit for train-short, analogous

to Unit 2 in train-long. Counting precision of train-short on the a100b100 strings is notably worse than that

of train-long on the a10b10 strings. Conclusion LSTMs do not seem to show a benefit from learning from just

“simple” data. Inclusion of short data in training may still be necessary, but not sufficient, for learning. This may

be a fundamental limitation of the LSTM architecture posing a challenge for comparison with human learning.
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Figure 1: Replication with random sampling Figure 2: Replication with equal distribution of distances
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