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ABSTRACT

Weather forecasting is of paramount importance for a myriad of societal and sci-
entific applications. Traditionally, numerical weather prediction (NWP) methods
based on physical principles are computationally intensive and can struggle with
the inherent complexity of atmospheric dynamics. Recently, deep learning tech-
niques have shown promise in weather prediction, but the long-term generalization
and physical consistency of pure data-driven approaches remain challenging. In
this paper, we introduce a novel physics-guided approach for numerical weather
prediction that combines the strengths of both physical mechanism and deep learn-
ing, namely PhyDL-NWP. Our method can capture the nonlinear dynamics of me-
teorology and align deep learning models with the underlying physical mechanism
to improve generalization. Extensive experiments on real-world weather datasets
show that our model can significantly improve the performance of deep learning
methods in a wide range of tasks from forecasting to downscaling.

1 INTRODUCTION

Weather forecasting remains one of modern science’s most complex and vital challenges, with far-
reaching implications for agriculture, renewable energy, disaster management, transportation, etc.
The first-principle approach to weather forecasting, i.e., numerical weather prediction (NWP), relies
on mathematical models of atmospheric and oceanic phenomena. NWP is often computationally
intensive and can struggle with the inherent complexity of atmospheric dynamics, which arises from
the nonlinear interactions between various meteorological variables, the vast spatial and temporal
scales involved, and the chaotic nature of weather systems (Holton, 1973). For example, while the
fundamental equations like the Navier-Stokes equations are well understood, it remains challenging
to model turbulence accurately due to certain assumptions made to simplify the system and make
them solvable within reasonable time (Stull, 1988). The inevitable simplifications and approxima-
tions can introduce inaccuracies, some of which involve linearizing nonlinear or parametric terms,
making assumptions about the symmetry of flow, or ignoring small-scale interactions. For instance,
the hydrostatic approximation (Phillips, 1966) used in NWP assumes a balance between vertical
pressure forces and gravity, ignoring vertical acceleration, which can break down for small-scale
phenomena (White & Bromley, 1995). The Boussinesq approximation (Spiegel & Veronis, 1960)
assumes negligible density variations except in buoyancy terms, which can be an oversimplification
in atmospheric modeling where density variations might play a significant role.

In the context of machine learning and particularly deep learning, there has been a growing interest
in weather prediction as well. Deep learning models, with the ability to capture complex nonlinear
relationships, have shown promises in tasks such as weather forecasting (Pathak et al., 2022; Bi
et al., 2023; Wu et al., 2023) and downscaling (Vandal et al., 2017). However, the application of deep
learning to weather prediction is not without challenges. One of the key issues is the generalization
ability of pure data-driven approaches. While deep learning models can excel at fitting complex
patterns in training data, they lack the ability to generalize well to unseen scenarios by capturing
noise or specificities of the training data. Moreover, these models often do not consider the physical
mechanisms that govern weather systems, leading to predictions that may be statistically accurate
for the training dataset but physically inconsistent.
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Numerical Weather Prediction (NWP) and deep learning represent two distinct paradigms in weather
forecasting, each with its unique strengths and challenges. By combining the strengths of both sides,
a physics-guided deep learning model could offer a more holistic solution. In the literature, Physics-
Informed Neural Networks (PINN) (Raissi et al., 2019) have been widely used as an alternative for
numerical simulation. However, weather prediction is highly complicated, with many weather fac-
tors and physical processes in the play, easily influenced by local variations like change of boundary
conditions, small-scale phenomena like microclimates and external forces like heat from the sun.
Many of these vital factors, which have huge impacts in the first-principle equations, are missing
in the data due to difficulties to measure and quantify. Without a complete equation, PINN will be
hard to train. In light of this problem, we propose a novel framework called PhyDL-NWP. Inspired
by (Rudy et al., 2017), We create a library of partial differential terms relevant to the existing physi-
cal equations for related weather factors, which allows us to obtain a complete equation that reflects
the physical mechanism of meteorology in the data, while aligning the deep learning model with
the physical mechanism. Moreover, we propose a latent force model as a parametrization term to
supplement the forces that cannot be represented by the selected explicit PDE terms, following the
parametrization strategy (Warner, 2010) widely adopted in the literature of meteorology.

This paradigm first trains a neural network to predict weather conditions given the spatio-temporal
coordinates and then uses the auto-differentiation of this network to obtain the partial differential
equation (PDE) terms. Using this paradigm of PhyDL-NWP, we prove to achieve state-of-the-art
performances in weather downscaling, with additional advantages of unlimited granularity and phys-
ical understanding. Based on that, with PDEs to reflect the physical mechanism as an amendment to
the physics theory for understanding the data, we are able to constrain the optimization of deep learn-
ing models and improve its generalization across different environments. In extensive experiments
on 13 baselines and three datasets, we find that this knowledge discovery process is effective and
many resultant physics-guided deep learning models are more accurate than their vanilla models.

In short, our contributions are summarized as follows:

• We propose a physics-guided learning framework PhyDL-NWP that incorporates physical
knowledge to improve our understanding of the physical mechanism of meteorology and
the generalization ability of deep learning models for weather prediction.

• The proposed method can be used as a plug-and-play module to align deep learning mod-
els with physical consistency for a variety of tasks, ranging from medium-range weather
forecasting with continuous spacetime to weather downscaling with unlimited granularity.
PhyDL-NWP is very efficient to train and, with only up to 60 thousand parameters.

• Extensive experiments on real-world datasets and baselines show that our method can pro-
vide significant performance improvement for state-of-the-art models and provide insights
to understand the underlying physical mechanism.

2 RELATED WORKS

2.1 WEATHER PREDICTION

In the area of weather prediction (Alley et al., 2019), Numerical Weather Prediction (NWP) (Lorenc,
1986; Bauer et al., 2015) is the current mainstream method. It uses mathematical models of the
atmosphere and oceans, such as partial differential equations (PDE), to predict future weather based
on current weather conditions. Some notable NWP models include European Centre for Medium-
Range Weather Forecasts (ECMWF) 1, Global Forecast System (GFS) 2, etc. NWP can forecast
weather in the medium range (beyond a few days ahead) but usually involves extensive computation.
For example, ECMWF operates one of the largest supercomputer complexes in Europe 3.

In the recent few years, deep learning has emerged as another promising solution to weather fore-
casting (Hu et al., 2021) and downscaling (Vandal et al., 2017) tasks, owing to its incredible ability to
model complex nonlinear relationships. These deep learning models (Wang et al., 2019; Han et al.,

1https://www.ecmwf.int/
2https://www.ncei.noaa.gov/products/weather-climate-models/global-forecast
3https://www.ecmwf.int/en/about/who-we-are
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2022) mainly rely on different neural architectures such as LSTM (Li et al., 2022), CNN (Weyn et al.,
2020), GNN (Lin et al., 2022; Keisler, 2022) and Transformer (Wu et al., 2023) to capture the evolv-
ing dynamics and correlation across space and time. Many large models emerge in recent years. For
example, ClimaX (Nguyen et al., 2023a), GraphCastNet (Lam et al., 2022), ClimateLearn (Nguyen
et al., 2023b), FengWu (Chen et al., 2023), Pangu-Weather (Bi et al., 2023) all use backbones such
as the Vision Transformer (ViT) (Dosovitskiy et al., 2020), UNet (Ronneberger et al., 2015) and
autoencoders, for training a large model for weather forecasting. WeatherBench (Rasp et al., 2020;
2023) benchmarks the use of pre-training techniques for weather forecasting. In addition, Fourcast-
Net (Pathak et al., 2022) leverages the adaptive Fourier neural operator (AFNO) (Li et al., 2020;
Guibas et al., 2021) to treat weather as a latent PDE system. However, these studies rarely con-
sider the underlying physical mechanisms in weather prediction that are globally consistent across
environments.

2.2 SPATIO-TEMPORAL MODELING

Spatio-temporal modeling based on deep learning (Yu et al., 2021a) has thrived in recent years,
showing promising results in various applications such as video recognition (Cai et al., 2021), traffic
flow forecasting (Luo et al., 2019), disease spread modeling (Arenas et al., 2020), etc. Weather
prediction shares striking similarities with these applications. Thus, many previous works (Moosavi
et al., 2019; Castro et al., 2021; Han et al., 2021) also approach the weather prediction task from
the perspective of spatio-temporal modeling. Many models such as recurrent neural networks (Liu
et al., 2016; Wang et al., 2022), convolutional neural networks (Tran et al., 2015; Xu et al., 2019),
graph networks (Yu et al., 2018; Geng et al., 2019), transformers (Law & Lucas, 2022) and hybrid
models (Yan et al., 2021) are extensively applied to capture the correlations of variables across space
and time.

2.3 DYNAMICAL SYSTEM MODELING

Dynamical systems modeling (Morton et al., 2018; Long et al., 2018; Li et al., 2019) involves the
mathematical formulation of systems whose states evolve over time, which often takes the form
of differential equations for continuous systems. Given the governing equations, physics-informed
approaches (Raissi et al., 2019; Karniadakis et al., 2021) use the physics mechanism to enhance
the dynamical systems. In the absence of governing equations, the discovery of physical equa-
tions (Brunton et al., 2016; Seo et al., 2019) are proposed to explain the observation data and provide
theoretical insights with respect to laws of physics (Wu & Tegmark, 2019; Iten et al., 2020). The
scientific discovery of partial differential equations (PDEs) based on symbolic learning (Schmidt &
Lipson, 2009; Chen et al., 2021b) and sparse regression (Rudy et al., 2017; Rao et al., 2021a) has
been extensively studied in recent years. Some works also incorporate the physics-informed con-
cept to guide the knowledge discovery (Rao et al., 2021b; Chen et al., 2021a). In addition, studies
on neural differential equations (Chen et al., 2018) and operators (Lu et al., 2021; Kovachki et al.,
2021) that use neural networks to approximate the function of differential equations and operators
also shed light on dynamical system modeling as a latent mathematical model.

3 METHODOLOGY

3.1 PRELIMINARY

The weather dataset u = [u1(x, y, t), ..., uh(x, y, t)] can be viewed as h weather factor fields (e.g.,
temperature, pressure), each with respect to some input coordinates (x, y, t), where x ∈ [1, ..., n] and
y ∈ [1, ...,m] are the spatial coordinates and t ∈ [1, ..., T ] is the temporal coordinate. Alternatively,
it can also be represented as a sequence X = [X1, ..., XT ], where Xi ∈ Rn×m×h. Based on
the weather data, we can consider two tasks: 1) The objective of weather forecasting is to predict
weather factors in the future r hours [X]i+r

i+1 = [Xi+1, ..., Xi+r] based on the past s+1 hours [X]ii−s =
[Xi−s, ..., Xi] for every time i; 2) The objective of weather downscaling is to predict finer-granular
data Y = [Y1, ..., YT ], where Yi ∈ Rn′×m′×h, based on the original coarse-granular X, where
n′ > n and m′ > m.
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Figure 1: Schematic diagram of PhyDL-NWP for downscaling. First, given a continuous input
coordinate (x, y, t), the surrogate model fθ approximates the weather data. Then, based on Py-
Torch’s auto-differentiation and the existing meteorology theory, we calculate the derivatives for the
construction of physical mechanisms driven by PDE. Last, based on sparse regression on the collo-
cation points, we discover the PDE that fits the weather data well to provide physical guidance.

3.2 METEOROLOGY DYNAMICS AND WEATHER DOWNSCALING

In this paper, we aim to discover the physical mechanism that suits the weather data and correct the
existing NWP. NWP is based on the numerical simulation of governing equations of meteorology.
A typical partial differential equation (PDE) with parametrization has the following form:

∂u
∂t

= Qπ(x, y, t) + Φ(u)Ξ = Qπ(x, y, t) +

p∑
i=1

ϕ(u)iξi, (1)

where

ϕ(u)i ∈ [1, u,
∂u
∂x

,
∂u
∂y

,
∂2u
∂x2

, ..., u
∂u
∂x

, ...], (2)

and p denotes the number of partial derivative candidate terms considered in the task, ϕ(u)i repre-
sents the various equation terms in the meteorology literature, with the set of ξi as the coefficients.
Qπ(x, y, t) denotes the latent force modeled by a neural network that cannot be represented by Φ(u),
as a supplement to missing variables and parameterization terms in the equation, such as friction.

Here, we develop a multitask deep learning model fθ(x, y, t) as the surrogate model to the h weather
factor fields, which takes the spatio-temporal coordinates as input and outputs the weather factor
values. The schematic diagram of the proposed surrogate model is shown in Fig. 1.

Suppose that the deep learning model is accurate enough, we will be able to approximate each ϕ(u)i
accurately based on the auto-differentiation powered by deep learning frameworks such as PyTorch
and eventually obtain the corrected PDE to explain the weather factors. Simultaneously, the updated
physical mechanism provides insights to guide the optimization of the deep learning model as well,
which ensures that the learned physics is consistent with the prediction of deep learning. Therefore,
the overall loss function can be written as the combination of data loss and physics loss:

LDownscale(θ,Ξ, π) = Ldata(θ) + αLphysics(θ,Ξ, π) + Lreg(θ,Ξ, π), (3)

where

Ldata(θ) =
1

nmT

∑
x,y,t

∥fθ − u∥22 , (4)

Lphysics(θ,Ξ, π) =
1

n′m′T′

∑
x′,y′,t′

∥∥∥∥∂f∂t − Φ(f)Ξ−Qπ(x
′, y′, t′)

∥∥∥∥2
2

, (5)

Lreg(θ,Ξ, π) = σ1 ∥θ∥2 + σ2 ∥Ξ∥0 + σ3 ∥Qπ∥2 . (6)

Here, the data loss measures whether fθ approximates u well on the weather data, and the physical
loss measures whether the discovered equation fits the weather data. The regularization loss consists
of three components: 1) L2 loss to prevent the overfitting of fθ; 2) L0 loss for promoting the sparsity
of PDE terms to ensure equation conciseness; and 3) L2 loss for balancing the latent force so that
the differential terms Φ(u) can maintain sufficient expression ability. To calculate the physical loss,
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Figure 2: Schematic diagram of PhyDL-NWP for forecasting. Given the historical data, we use a
state-of-the-art (SOTA) model to predict future data. Based on the spatio-temporal coordinates of
the predicted data, we add a physics loss to recover the previously learned PDE.

inspired by previous studies (Babuška et al., 2007; Chen et al., 2021b), we combine the coordinates
of weather data x, y, t with randomly sampled coordinates to create more collocation points x′, y′, t′

to improve generalization, where x′ ∈ [1, ..., n′], y′ ∈ [1, ...,m′] and t′ ∈ [1, ..., T ′].

With the trained fθ, we can easily obtain the weather factors at any given input coordinates (x, y, t),
which can be continuous over the spacetime. This property of modeling the meteorology dynamics
is naturally suitable for weather downscaling: unlike the previous methods powered by the discrete
encoding and decoding of neural networks on finer-grained data as labels, the fθ in PhyDL-NWP
can perform weather downscaling with unlimited granularity without labels given a continuous co-
ordinate, as described by Fig. 1. Therefore, as long as we obtain the dynamics of meteorology and
the solver of weather factors through updating Ξ and θ, the downscaling task is solved automatically.

3.3 WEATHER FORECASTING

On the other hand, for weather forecasting, although fθ(x, y, t) can also take in the future data points
and produce extrapolation, it only consists of dense layers that lack the advantages of state-of-the-
arts models, such as the long-term memory mechanism of LSTM and the self-attention mechanism
of Transformers. In particular, fθ is only trained on historical coordinates, while anywhere outside
the bounds of where the model was trained is completely unknown to fθ. To combine the advantages
of both physics and deep learning, instead of using fθ, we propose to leverage the learned physical
mechanism represented by Ξ to improve another state-of-the-art forecasting model gω , which takes
historical spatio-temporal data and outputs future, based on the predicted data û(x, y, t) for i+ r ≥
t > i. The overall computational loss function is:

LForecast(ω, θ,Ξ, π) = LDownscale(θ,Ξ, π) + βLdata(ω) + γLphysics(ω), (7)

where

Ldata(ω) =
1

r · (T-r-s-1)

T−r∑
i=s+1

∥∥gω([X]ii−s)− [X]i+r
i+1

∥∥2
2
, (8)

Lphysics(ω) =
1

r · (T-r-s-1)

T−r∑
i=s+1

∥∥∥∥∂gω([X]ii−s)

∂t
− Φ(gω([X]ii−s))Ξ

∥∥∥∥2
2

. (9)

Note that θ, Ξ and π are already learned during the downscaling beforehand and remain fixed when
we optimize Lphysics(ω) and Ldata(ω). Therefore, the optimization of ω does not affect θ, Ξ and
π. Here, α, γ, β, σ1, σ2, σ3 are all hyperparameters to balance the different loss terms. The overall
framework of weather forecasting is depicted in Fig. 2. To calculate differential terms efficiently,
we use the Central Finite Difference Approximations instead of training a surrogate model for every
gω([X]ii−s). If we verify that the downscaling is accurate, the discovered physics can thus provide
a globally consistent constraint to help improve the generalization of gω . In addition, as shown
in Fig. 7 in Appendix A.3, the number of parameters of PhyDL-NWP are much less than other
state-of-the-art models.
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Table 1: The RMSE comparison for weather downscaling of different models for Huadong dataset.
Bold fonts mark the best performances and underlines mark the second-best performances.

Model 100m Wind (U) 10m Wind (U) Temperature Surface Pressure Average Factor
2x 4x 2x 4x 2x 4x 2x 4x 2x 4x

Bicubic 1.687 1.765 1.215 1.272 1.714 1.848 0.818 1.220 1.515 1.654
EDSR 1.145 1.176 1.020 1.113 1.217 1.275 0.460 0.552 1.068 1.156

ResDeepD 1.092 1.111 1.003 1.079 1.182 1.204 0.301 0.317 1.010 1.043
RCAN 1.169 1.199 0.808 1.038 1.219 1.259 0.572 0.609 1.092 1.144

FSRCNN 1.197 1.202 1.090 1.126 1.198 1.233 0.430 0.560 1.093 1.149
YNet 1.116 1.125 0.947 1.103 1.192 1.226 0.467 0.575 1.062 1.125

DeepSD 1.205 1.216 1.020 1.117 1.218 1.265 0.454 0.591 1.087 1.149
PhyDL-NWP 0.973 0.970 0.696 0.693 0.905 0.904 0.211 0.216 0.794 0.789

Improv 10.9% 12.7% 13.9% 33.2% 23.4% 24.9% 29.9% 31.9% 20.2% 24.6%

4 EXPERIMENTS

We conduct both the forecasting and downscaling performance comparison. All the experiments are
carried out on four NVIDIA A100 PCIe 80 GB graphical cards. Only the performances on the test
sets at the optimal performance on the validation sets are reported. The maximum training epochs
are 50. Every result is the average of three independent training under different random seeds. Each
time, we select four representative factors and the average of all factors in the tables for visualization.
Average Factor is most vital for it measures the overall performance. We use two frequently used
metrics (Bi et al., 2023) for evaluation: Root Mean Square Error (RMSE) and Anomaly Correlation
Coefficient (ACC).

4.1 DOWNSCALING PERFORMANCE COMPARISON

We evaluate the effectiveness of PhyDL-NWP and other baseline models for weather downscaling
on a real-world dataset Huadong, which is derived from the European Centre for Medium-Range
Weather Forecasts (ECMWF) operational forecast (HRES) and reanalysis (ERA5) archive. It com-
prises a grid of 64 × 44 cells, with each cell having a grid size of 0.25 degrees in both latitude and
longitude. More data details can be found in Appendix A.1. Since most previous studies on weather
downscaling can only handle the downscaling of the two spatial dimensions, for the sake of compar-
ison, we also only report the performance of PhyDL-NWP on spatial downscaling in Table. 1. We
perform 2x and 4x downscaling tasks with 0.5 and 1 degrees resolutions, respectively. To facilitate
this, the 0.25-degree HRES data undergoes linear interpolation to generate the requisite 0.5-degree
and 1-degree input data. We compare our model against the Bicubic interpolation (Keys, 1981), FS-
RCNN (Passarella et al., 2022), ResDeepD (Sharma & Mitra, 2022), EDSR (Jiang & Chen, 2022),
RCAN (Yu et al., 2021b), YNet Liu et al. (2020) and DeepSD Vandal et al. (2017). For the deep
learning baselines, channel-wise normalization is performed for training efficiency. Details about
baselines can be found in Appendix A.2.

From Table 1, we can conclude that PhyDL-NWP provides a significant improvement up to 20.2% to
24.6% on average over RMSE against the baselines models. Well-recognized deep learning models
like FSRCNN seem not good at weather downscaling, probably because each convolutional block
only has a local receptive field for the spatial dimensions and not for the temporal dimension. The
weather data has multiple variables and the spatio-temporal dependencies are not completely local,
making it difficult to recover all the ground-truth information without advanced physical modeling.
Furthermore, we find that the RMSE for 2x and 4x resolutions are close. Since PhyDL-NWP can
provide infinite resolution results given continuous coordinates, we believe that it will be accurate for
higher resolution downscaling, based on this evidence. Moreover, PhyDL-NWP can easily perform
downscaling in the temporal dimension.

4.2 FORECASTING PERFORMANCE COMPARISON

We evaluate the effectiveness of PhyDL-NWP for weather forecasting on two real-world datasets
collected by ECMWF4: Ningbo and Ningxia, which cover two different terrain types in China. On

4https://www.ecmwf.int/en/forecasts/datasets
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Table 2: Model comparison for 7-day weather forecasting for Ningbo dataset.

Model 100m wind 10m wind Humidity Temperature Average Factor
RMSE↓ ACC↑ RMSE↓ ACC↑ RMSE↓ ACC↑ RMSE↓ ACC↑ RMSE↓ ACC↑

NWP 0.892 0.606 0.875 0.581 0.932 0.699 0.422 0.910 0.868 0.587
PINN 0.622 0.520 0.605 0.489 0.835 0.443 0.657 0.727 0.652 0.427

Bi-LSTM-T 0.666 0.588 0.704 0.562 0.576 0.597 0.472 0.876 0.601 0.443
Bi-LSTM-T+ 0.635 0.649 0.664 0.621 0.550 0.672 0.442 0.903 0.571 0.485

Improv 4.65% 10.4% 5.68% 10.5% 4.51% 12.6% 6.36% 3.08% 5.00% 9.48%
Hybrid-CBA 0.674 0.568 0.717 0.550 0.590 0.595 0.460 0.865 0.617 0.431

Hybrid-CBA+ 0.641 0.637 0.680 0.609 0.572 0.657 0.411 0.906 0.586 0.474
Improv 4.90% 12.1% 5.16% 10.7% 3.05% 10.4% 10.7% 4.74% 5.02% 9.98%

ConvLSTM 0.701 0.524 0.732 0.535 0.572 0.602 0.489 0.858 0.636 0.418
ConvLSTM+ 0.658 0.587 0.699 0.607 0.550 0.671 0.454 0.891 0.596 0.463

Improv 6.13% 12.0% 4.51% 13.5% 3.85% 11.5% 7.16% 3.85% 5.97% 10.8%
AFNO 0.659 0.592 0.710 0.546 0.528 0.584 0.429 0.894 0.599 0.465

AFNO+ 0.625 0.648 0.669 0.630 0.500 0.695 0.397 0.929 0.556 0.530
Improv 5.16% 9.46% 5.78% 15.4% 5.30% 19.0% 7.46% 3.91% 7.18% 14.0%

MTGNN 0.685 0.566 0.720 0.538 0.521 0.589 0.434 0.887 0.597 0.457
MTGNN+ 0.657 0.629 0.672 0.613 0.489 0.679 0.388 0.918 0.555 0.514

Improv 4.09% 11.1% 6.67% 13.9% 6.14% 15.3% 10.6% 3.49% 7.04% 12.5%
MegaCRN 0.698 0.520 0.734 0.535 0.544 0.595 0.492 0.866 0.621 0.426

MegaCRN+ 0.667 0.591 0.684 0.600 0.521 0.666 0.458 0.907 0.590 0.477
Improv 4.44% 13.7% 6.81% 12.1% 4.23% 11.9% 6.91% 4.73% 5.00% 12.0%

Table 3: Model comparison for 7-day weather forecasting for Ningxia dataset.

Model 100m wind(U) 10m wind(U) Temperature Surface pressure Average Factor
RMSE↓ ACC↑ RMSE↓ ACC↑ RMSE↓ ACC↑ RMSE↓ ACC↑ RMSE↓ ACC↑

NWP 0.968 0.521 0.933 0.514 0.319 0.844 0.325 0.961 0.901 0.526
PINN 0.697 0.470 0.681 0.437 0.635 0.654 0.494 0.904 0.666 0.387

Bi-LSTM-T 0.822 0.502 0.804 0.485 0.583 0.525 0.160 0.961 0.638 0.411
Bi-LSTM-T+ 0.798 0.545 0.777 0.520 0.560 0.584 0.156 0.965 0.616 0.445

Improv 2.92% 8.57% 3.36% 7.22% 4.28% 11.2% 2.50% 0.42% 3.45% 8.27%
Hybrid-CBA 0.842 0.456 0.819 0.445 0.652 0.430 0.150 0.964 0.657 0.338

Hybrid-CBA+ 0.801 0.536 0.790 0.509 0.563 0.589 0.149 0.966 0.621 0.416
Improv 4.87% 17.5% 3.54% 14.4% 13.7% 37.0% 0.67% 0.21% 5.48% 18.8%

ConvLSTM 0.865 0.429 0.848 0.408 0.592 0.499 0.175 0.959 0.656 0.364
ConvLSTM+ 0.826 0.477 0.814 0.472 0.520 0.619 0.170 0.955 0.622 0.419

Improv 4.51% 11.2% 4.01% 15.7% 12.2% 24.0% 2.86% -0.42% 5.18% 15.1%
AFNO 0.856 0.436 0.838 0.421 0.501 0.571 0.153 0.962 0.619 0.395

AFNO+ 0.823 0.505 0.808 0.498 0.466 0.693 0.153 0.956 0.596 0.456
Improv 3.86% 15.8% 3.58% 18.3% 6.99% 17.9% 0.00% -0.31% 3.72% 15.4%

MTGNN 0.835 0.484 0.820 0.465 0.502 0.526 0.162 0.958 0.617 0.395
MTGNN+ 0.810 0.525 0.792 0.521 0.469 0.677 0.160 0.959 0.595 0.455

Improv 2.99% 8.47% 3.41% 12.0% 6.57% 28.7% 1.96% 0.10% 3.57% 15.2%
MegaCRN 0.840 0.455 0.824 0.432 0.646 0.487 0.188 0.958 0.661 0.370

MegaCRN+ 0.809 0.510 0.793 0.485 0.598 0.600 0.183 0.954 0.629 0.432
Improv 4.64% 12.1% 3.76% 12.3% 7.43% 23.2% 2.66% -0.42% 4.84% 16.8%

each grid in both datasets, we select the few most important observational weather information
for evaluation. All the weather factors are normalized during the preprocessing. More details of
datasets are given in Appendix A.1. There are three categories of baseline models in comparison,
including: (1) Meteorological models: Bi-LSTM-T (Yang et al., 2022), Hybrid-CBA (Han et al.,
2022); (2) Vision models: ConvLSTM (Shi et al., 2015), AFNO (Guibas et al., 2021; Pathak et al.,
2022); (3) Spatio-temporal graph models: MTGNN (Wu et al., 2020), MegaCRN (Jiang et al.,
2023). Some of these baseline models are slightly modified to adapt to the multistep prediction
setting, with details described in the Appendix A.2. Besides deep learning models, we also compare
these models with the Numerical Weather Prediction (NWP) results provided by ECMWF and the
Physical-Informed Neural Network (PINN) (Raissi et al., 2019) based on the PDEs discovered by
PhyDL-NWP. We denote the baseline models as BaseModels and incorporate them with PhyDL-
NWP as BaseModels+. We divide each dataset into train, validation, and test sets using an 8:1:1 ratio
in chronological order. We perform multiple experiments based on the length of future prediction,
ranging from one hour to seven days. Due to the GPU memory limitation, we use the eight weather
factors of only ten hours in the past to predict all the eight weather factors in the future.

In particular, the result details with seven days are reported in Tables 2-3, as it represents the model’s
capability of long-term medium-range weather prediction, which is considered one of the biggest

7



Under review as a conference paper at ICLR 2024

24 72 120 168
Forecasting hours

0.1

0.4

0.7
RM

SE
Bi-LSTM-T

24 72 120 168
Forecasting hours

0.1

0.4

0.7

RM
SE

Hybrid-CBA

24 72 120 168
Forecasting hours

0.1

0.4

0.7

RM
SE

AFNO

24 72 120 168
Forecasting hours

0.1

0.4

0.7

RM
SE

MTGNN

24 72 120 168
Forecasting hours

0.1

0.4

0.7

RM
SE

MegaCRN

24 72 120 168
Forecasting hours

0.4

0.6

0.8

AC
C

Bi-LSTM-T

24 72 120 168
Forecasting hours

0.4

0.6

0.8

AC
C

Hybrid-CBA

24 72 120 168
Forecasting hours

0.4

0.6

0.8

AC
C

AFNO

24 72 120 168
Forecasting hours

0.4

0.6

0.8

AC
C

MTGNN

24 72 120 168
Forecasting hours

0.4

0.6

0.8

AC
C

MegaCRN

Model Model + Physics Guided

Figure 3: Model comparison in Ningxia dataset before and after physics guidance (+) for forecasting
ranges from 1 hour to 7 days on the Average Factor.
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Figure 4: Example of comparison of 7-day weather forecast results with AFNO and AFNO+. The
results of AFNO+ (guided by our PhyDL-NWP framework) are closer to the ground truth.

challenges in the field. The vanilla PINN does not seem to be effective, while the improvement
provided by PhyDL-NWP is consistently significant. For Ningbo dataset, the overall improvement
on Average Factor is 5.00% to 7.18% over RMSE and 9.48% to 14.0% over ACC; for Ningxia
dataset, the overall improvement on that is 3.45% to 5.48% over RMSE and 8.27% to 18.8% over
ACC. Moreover, it makes sense that the effectiveness on surface pressure seems trivial – surface
pressure usually relates to the altitude, which is not included in our data. Furthermore, we find that
the result of NWP is good in ACC which reflects the overall correlation and consistency of prediction
provided by physical equations, while being the worst in RMSE which reflects the accuracy. Deep
learning models, on the other hand, greatly outperform NWP in RMSE, showing great advantage in
modeling capacity.

To understand the holistic properties of PhyDL-NWP, we conduct detailed analyses on the Ningxia
dataset. First, the comparison of different models for different forecasting ranges on the Average
Factor is visualized in Fig. 3. The comparison on the 100m wind component (U) is shown in Fig.
5. The comparisons on more weather factors are shown in Figs. 6-8 in Appendix A.4. Based on
all the curves, BaseModels+ always excels BaseModels and NWP at all time steps, which demon-
strates that the PhyDL-NWP framework is consistently effective. As the forecasting range increases,
the deep learning performance decreases significantly due to the generalization challenge. The im-
provement provided by PhyDL-NWP, however, is increasing in the forecasting range, which high-
lights its unique advantages of guiding models for long-term medium-range forecasting. In addition,
based on one state-of-the-art model AFNO, we visualize the forecasting results of its vanilla version
(AFNO) and the version guided by our PhyDL-NWP framework (AFNO+) in Fig. 4. It can be seen
that PhyDL-NWP can improve the performance of the existing deep model, making the forecasting
results closer to the ground truth.
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4.3 PHYSICAL DISCOVERY

We fuse a priori terms in the NWP physical equations into our physical discovery. Upon the discov-
ered PDEs from the three datasets, we find many cases that verify the effectiveness of PhyDL-NWP
in not only representing but also improving the physical mechanisms for the weather data, which is
generally consistent with the meteorology theory. For example, one equation that describes temper-
ature evolution in the atmospheric boundary layer has the form:

∂T

∂t
= −U

∂T

∂x
− V

∂T

∂y
− ω

∂T

∂z
+ k

∂2T

∂z2
+H, (10)

where T denotes the temperature, t denotes time, x and y denote space, U and V denote the hori-
zontal wind components in the x and y directions, z denotes the vertical height, k denotes the eddy
diffusivity for heat, and H denotes various heating sources such as radiation. In contrast, PhyDL-
NWP reflects physical mechanisms containing key terms above if possible. For Ningxia dataset,

∂T

∂t
= −1.68U10

∂T

∂x
− 1.59V10

∂T

∂y
− 0.73U100

∂T

∂x
− 0.68U100

∂T

∂y
+ ...+Q(x, y, t), (11)

where ... contains other six terms that are less relevant in the PDE and Q denotes the latent
force. Since the vertical axis and the heat source are not included in the dataset, we assume that
Q(x, y, t) can capture these terms. Although Q(x, y, t) is hard to interpret, from the performance
of BaseModels+, we believe that the PDE does provide globally consistent guidance to help im-
prove generalization. The less related terms might represent a way of correction to the major terms,
since the key terms may be noisy in the dataset and not always informative. Moreover, the discov-
ered physical mechanism is also consistent throughout different datasets. For Ningbo and Huadong
datasets, we get similarly

∂T

∂t
= −2.26U10

∂T

∂x
− 2.03V10

∂T

∂y
− 1.57U100

∂T

∂x
− 1.26U100

∂T

∂y
+ ...+Q(x, y, t), (12)

and
∂T

∂t
= −1.65U10

∂T

∂x
− 1.52V10

∂T

∂y
− 0.79U100

∂T

∂x
− 0.79U100

∂T

∂y
+ ...+Q(x, y, t). (13)

Furthermore, the discovered mechanism for other weather factors also always captures the main
terms in the theoretical PDEs. For example, the wind component has the following form:

∂U

∂t
= −U

∂U

∂x
− V

∂U

∂y
−W

∂U

∂z
+ ν(

∂2U

∂x2
+

∂2V

∂x2
+

∂2W

∂x2
) + Ffx (14)

where ν means the kinematic viscosity and Ffx represents the effect of friction (e.g., the difference
between wind speeds at different heights, the roughness of the surface). These terms, not included
in this case, usually need model parametrization. We can also discover similar forms of

∂U10

∂t
= −U10

∂U10

∂x
− V10

∂U10

∂y
− U100

∂U10

∂x
− V100

∂U10

∂y
+ ...+Q(x, y, t), (15)

where ... contains ∇Psea and U10∇Psea, which describe how ∂U10

∂t varies through advection and
pressure gradient forces, since wind acceleration can be due to the pressure gradient force. There-
fore, the less relevant terms in “. . . ” may also convey some physical insights.

5 CONCLUSION

In this paper, we introduce a novel physics-guided approach for numerical weather forecasting
named PhyDL-NWP. This approach combines the strengths of physics and deep learning to cap-
ture the nonlinear dynamics of meteorology, improving generalization in weather prediction tasks.
PhyDL-NWP serves as a plug-and-play module aligning deep learning models with physical consis-
tency for both medium-range weather forecasting and weather downscaling with unlimited granular-
ity. The approach is validated through extensive experiments on three real-world datasets, showing
significant performance improvement for state-of-the-art models under various circumstances. It
also provides insights into understanding the underlying physical mechanisms of meteorology.
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A APPENDIX

A.1 DATASET DESCRIPTION

For weather downscaling, the Huadong dataset consists of HRES and ERAs datasets. HRES repre-
sents a 10-day atmospheric model forecast, while ERA5 serves as a global atmospheric reanalysis,
incorporating climate and weather observations. For regional downscaling, we construct a real-
world dataset called ”Huadong”, covering the east China land and sea areas. In this dataset, HRES
data is employed as the predictive data, while ERA5 reanalysis data serves as the ground truth.

Huadong dataset: The Huadong dataset encompasses a latitude range from 26.8◦N to 42.9◦N and
a longitude range from 112.6◦E to 123.7◦E. It comprises a grid of 64 × 44 cells, with each cell
having a grid size of 0.25 degrees in both latitude and longitude. Notably, the Huadong dataset also
incorporates Digital Elevation Model (DEM) data to represent terrain information. Since the terrain
information usually refers to the boundary layers in the meteorology model instead of an individual
weather factor in the PDE, for simplicity, we do not use this information in the paper. The HRES
and ERA5 data cover the period from January 3, 2020, to April 1, 2022. The detailed weather factor
descriptions of Huadong datasets are in Table 4. The scores of the average factors reported in Table
1 are computed based on all eight factors. Due to space limits, we only report the specific scores for
four factors.

For weather forecasting, both Ningbo and Ningxia datasets consist of two main components: geo-
graphic data and meteorological data. The geographic data includes latitude, longitude, and DEM
(Digital Elevation Model) information. The DEM information is commonly used in geographic in-
formation systems to represent the terrain of the area. On the other hand, the meteorological data in
these datasets consist of various weather factors. These factors typically include wind speed, tem-
perature, and pressure. These data provide information about the atmospheric conditions at different
locations within the study area. To organize and represent the data, a grid format is used. In this
format, the study area is divided into grids, and each grid cell represents a specific location. Within
each grid cell, both the geographic and meteorological data for that location are stored.

Ningbo dataset: The Ningbo dataset represents a coastal area spanning from latitude 28.85◦N to
30.56◦N and longitude 120.91◦E to 122.29◦E. It is divided into a grid system comprising 58 grids
in the latitude direction and 47 in the longitude direction. Each grid has a size of 0.03 degrees in
both latitude and longitude. The DEM data are collected from ETOPO15. The meteorological data
are collected from Ningbo Meteorological Bureau6, including 10 weather factors from 1/Jan/2021
to 1/Apr/2021 with 1-hour sample rate.

Ningxia dataset: The Ningxia dataset represents a mountainous area spanning from latitude 34.5◦N
to 42◦N and longitude 106◦E to 116◦E. There are 30×40 grids with a grid size of 0.25 degrees in
both latitude and longitude. The DEM data are collected from ETOPO1. The meteorological data
are collected from ECMWF’s ERA57, including 8 weather factors from 1/Jan/2021 to 1/Dec/2021
with 1-hour sample rate.

The statistics and weather factor descriptions of Ningbo and Ningxia datasets are in Table 5 and
Table 6, respectively. In the forecasting experiments, we divide each dataset into train, validation,
and test sets using an 8:1:1 ratio in chronological order. The scores of the average factors reported
in Table 3 are computed based on all eight factors. Due to space limits, we only report the specific
scores for four factors.

A.2 BASELINES

A.2.1 FORECASTING BASELINES

• Bi-LSTM-T Yang et al. (2022): a deep model that uses Bi-LSTM for weather prediction.

• Hybrid-CBA Han et al. (2022): a hybrid deep learning model that combines CNN, LSTM,
and attention models for weather forecasting and correction.

5ETOPO1
6Ningbo Meteorological Bureau
7ECMWF’s ERA5
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Table 4: The statistics and weather factor descriptions of the Huadong dataset
Statistics

Time range 2020.1.3 00:00-2022.4.1 24:00
Temporal resolution 1-hour

Number of time steps 19368
Latitude and longitude range 26.8◦N-42.9◦N, 112.6◦E-123.7◦E

Spatial resolution Origin: 0.25◦, 2× : 0.5◦, 4× : 1.0◦

Number of grids Origin: 64× 44, 2× : 32× 22, 4× : 16× 11,
Weather Factors

100m U wind component the horizontal speed of air moving towards the east,
at a height of 100 meters above the surface of the Earth

100m V wind component the horizontal speed of air moving towards the north,
at a height of 100 meters above the surface of the Earth

10m U wind component the horizontal speed of air moving towards the east,
at a height of 10 meters above the surface of the Earth

10m V wind component the horizontal speed of air moving towards the north,
at a height of 10 meters above the surface of the Earth

2m temperature the temperature of air at 2m above the surface of land, sea, or inland waters

Mean sea level pressure the pressure of the atmosphere at the surface of the Earth,
adjusted to the height of mean sea level

Surface pressure the pressure of the atmosphere
at the surface of land, sea, and inland water

Total precipitation the accumulated liquid and frozen water,
comprising rain and snow, that falls to the Earth’s surface

Table 5: The statistics and weather factor descriptions of the Ningbo dataset
Statistics

Time range 2021.1.1 20:00-2021.4.1 20:00
Temporal resolution 1-hour

Number of time steps 2880
Latitude and longitude range 28.85◦N-30.56◦N, 120.91◦E-122.29◦E

Spatial resolution 0.03 degree
Number of grids 2726
Weather factors
2m temperature the temperature of air at 2 meters above the surface of land, sea, or inland waters

Total precipitation the accumulated liquid and frozen water,
comprising rain and snow, that falls to the Earth’s surface

2m relative humidity

the measure of the amount of moisture or water vapor present
in the air compared to the maximum amount of moisture that

the air could hold at a specific temperature,
at 2 meters above the surface of land, sea, or inland waters

Pressure the pressure of the atmosphere
at the surface of land, sea, and inland water

10m relative vorticity the rotation of the air at a height of 10 meters above the Earth’s surface,
relative to the Earth’s rotation

10m divergence the measure of the expansion or spreading out of air
at a height of 10 meters above the Earth’s surface

10m wind speed the speed at which the wind is blowing
at a height of 10 meters above the Earth’s surface

10m wind direction the direction from which the wind is coming
at a height of 10 meters above the Earth’s surface

100m wind speed the speed at which the wind is blowing
at a height of 100 meters above the Earth’s surface

100m wind direction the direction from which the wind is coming
at a height of 10 meters above the Earth’s surface

• ConvLSTM Shi et al. (2015): a hybrid deep learning model that extends LSTM with con-
volutional gates.

• AFNO Guibas et al. (2021); Pathak et al. (2022): a deep learning model that adapts Fourier
neural operator for spatio-temporal modeling.

• MTGNN Wu et al. (2020): a deep learning model that learns multivariate time series with
graph neural networks.
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Table 6: The statistics and weather factor descriptions of the Ningxia dataset
Time range 2021.1.1 0:00-2022.1.1 0:00

Temporal resolution 1-hour
Number of time steps 8760

Latitude and longitude range 34.5◦N-42◦N, 106◦E-116◦E
Spatial resolution 0.25 degree
Number of grids 1271
Weather factors

100m U wind component the horizontal speed of air moving towards the east,
at a height of 100 meters above the surface of the Earth

100m V wind component the horizontal speed of air moving towards the north,
at a height of 100 meters above the surface of the Earth

10m U wind component the horizontal speed of air moving towards the east,
at a height of 10 meters above the surface of the Earth

10m V wind component the horizontal speed of air moving towards the north,
at a height of 10 meters above the surface of the Earth

2m temperature the temperature of air at 2m above the surface of land, sea, or inland waters

Mean sea level pressure the pressure of the atmosphere at the surface of the Earth,
adjusted to the height of mean sea level

Surface pressure the pressure of the atmosphere
at the surface of land, sea, and inland water

Total precipitation the accumulated liquid and frozen water,
comprising rain and snow, that falls to the Earth’s surface

• MegaCRN Jiang et al. (2023): a deep learning model that learns heterogeneous spatial
relationships with adaptive graphs.

Since most forecasting baselines are designed for single-step future prediction by default, we modify
their neural architecture by multiplying the output dimension of the second-last layer (usually at the
end of an LSTM or Conv block, before passing through the feed-forward network at the end) by the
number of prediction steps.

A.2.2 DOWNSCALING BASELINES

• Bicubic interpolation Keys (1981): a two-dimensional interpolation technique that uses
the values and gradients of the function at surrounding grid points to obtain a smooth and
continuous interpolated result.

• FSRCNN Passarella et al. (2022): a widely recognized method in computer vision, lever-
aged for both downscaling and single-image super-resolution, which conducts feature map-
ping using multi-layer CNNs and executes upsampling via deconvolution layers.

• ResDeepD Sharma & Mitra (2022): a deep model that begins with an upsampling of the
input to increase dimensions before proceeding to feature mapping via ResNet.

• EDSR Jiang & Chen (2022): a deep model that first conducts feature mapping using ResNet
and then performs upsampling.

• RCAN Yu et al. (2021b): a deep model based on ResNet that incorporates a global pooling
layer for channel attention.

• YNet Liu et al. (2020): a novel deep convolutional neural network (CNN) with skip con-
nections and fusion capabilities to perform downscaling for climate variables.

• DeepSD Vandal et al. (2017): a generalized stacked super resolution convolutional neural
network (SRCNN) framework for statistical downscaling of climate variables.

A.3 MODEL PARAMETERS

The size of the parameters of different models is summarized in Table 7.
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Table 7: The comparison of model parameters for 7-day weather forecasting.
Model PhyDL-NWP BiLSTM Hybrid-CBA ConvLSTM AFNO MTGNN MegaCRN

#Parameters 54984 171M 198M 678272 520512 1660960 580176

A.4 MORE MODEL COMPARISON

Here we plot more results on model comparison before and after physics guidance for forecasting
ranges from 1 hour to 7 days on different circumstances in Table 6 (on the 10m wind (U)), Table 7(on
the temperature), and Table 8(on the surface pressure). Overall, the proposed physics guidance
brings performance improvement in all cases.
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Figure 5: Model comparison in Ningxia dataset before and after physics guidance (+) for forecasting
ranges from 1 hour to 7 days on the 100m wind (U).
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Figure 6: Model comparison in Ningxia dataset before and after physics guidance (+) for forecasting
ranges from 1 hour to 7 days on the 10m wind (U).
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Figure 7: Model comparison in Ningxia dataset before and after physics guidance (+) for forecasting
ranges from 1 hour to 7 days on the temperature.
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Figure 8: Model comparison in Ningxia dataset before and after physics guidance (+) for forecasting
ranges from 1 hour to 7 days on the surface pressure.
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