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ABSTRACT

Despite recent advances, sampling-based inference for Bayesian Neural Networks
(BNNs) remains a significant challenge in probabilistic deep learning. While
sampling-based approaches do not require a variational distribution assumption,
current state-of-the-art samplers still struggle to navigate the complex and highly
multimodal posteriors of BNNs. As a consequence, sampling still requires con-
siderably longer inference times than non-Bayesian methods even for small neu-
ral networks, despite recent advances in making software implementations more
efficient. Besides the difficulty of finding high-probability regions, the time un-
til samplers provide sufficient exploration of these areas remains unpredictable.
To tackle these challenges, we introduce an ensembling approach that leverages
strategies from optimization and a recently proposed sampler called Microcanon-
ical Langevin Monte Carlo (MCLMC) for efficient, robust and predictable sam-
pling performance. Compared to approaches based on the state-of-the-art No-
U-Turn Sampler, our approach delivers substantial speedups up to an order of
magnitude, while maintaining or improving predictive performance and uncer-
tainty quantification across diverse tasks and data modalities. The suggested Mi-
crocanonical Langevin Ensembles and modifications to MCLMC additionally en-
hance the method’s predictability in resource requirements, facilitating easier par-
allelization. All in all, the proposed method offers a promising direction for prac-
tical, scalable inference for BNNs.

1 INTRODUCTION AND RELATED LITERATURE

Sampling-based inference for Bayesian Neural Networks (BNNs) has garnered significant interest
as a principled approach to addressing the analytically intractable challenge of probabilistic deep
learning (Izmailov et al., 2021; Wiese et al., 2023; Papamarkou et al., 2024). New methods, such as
subspace inference (Izmailov et al., 2020; Dold et al., 2024), are being explored alongside emerg-
ing applications in diverse domains where effective uncertainty quantification is crucial, including
healthcare (Peng et al., 2020) and physics (Cranmer et al., 2021).Papamarkou et al. (2022); Sommer
et al. (2024) highlight several shortcomings in current sampling-based approaches, particularly the
need for proper initialization of sampling procedures and the challenge of capturing multimodality.

Samplers and problem setup Hamiltonian Monte Carlo (HMC; Duane et al., 1987) and Under-
damped Langevin Monte Carlo (Leimkuhler & Reich, 2009) are the gold standard algorithms for
high-dimensional sampling problems. However, their performance is known to be sensitive to their
hyperparameters, such as the step size, preconditioning, and the momentum decoherence rate (Neal,
2011). They are therefore combined with an automatic hyperparameter adaptation algorithm. Sev-
eral ensemble-based schemes have been developed in recent years (Sountsov & Hoffman, 2022;
Hoffman & Sountsov, 2022; Riou-Durand et al., 2023), but all of these schemes critically depend
on the ensemble variance of the parameters to tune the critical momentum decoherence rate hyper-
parameter and in some cases also the (preconditioned) step size. As such, they are not applicable to
the highly multimodal posteriors of BNNs.

In the context of gradient-free sampling, a variety of ensembled algorithms have been developed,
for example, Preconditioned Monte Carlo (pocoMC; Karamanis et al., 2022a;b) , Nested Sampling
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(Skilling, 2004) and Elliptical Slice Sampling (Murray et al., 2010). These algorithms address the
multimodality problem; however, they scale poorly to high-dimensional settings. For example, Elip-
tical Slice Sampling is frequently used for BNNs (Izmailov et al., 2020; Dold et al., 2024) for sam-
pling in a small subspace (e.g., 2- or 3-dimensional) of the parameter space, but cannot be scaled to
much larger dimensions. While alternative methods for multimodal sampling exist, they are also not
well-suited for the high-dimensional and highly multimodal BNN setting. For instance, stochastic
localization methods, like those proposed by Grenioux et al. (2024), can handle moderate multi-
modality but are sensitive to hyperparameters (like the integration initialization t0 for stochastic
localization) and lack scalability. Similarly, the Liouville Flow Importance Sampler (Tian et al.,
2024) offers unbiased sampling but requires the training of a neural flow model, which needs to
become increasingly complex as the dimensionality and complexity of the problem grows, limiting
its scalability. The same applies to the learned vector field in the path-guided particle-based method
of Fan et al. (2024), with an empirical comparison provided in Appendix A.1.3.

HMC and NUTS It is therefore not surprising that a sequential HMC variant, the No U-turn
Sampler (NUTS; Hoffman & Gelman, 2014), is still viewed as “[t]he only MCMC algorithm that
theoretically scales to high dimensions across a broad class of models” (Štrumbelj et al., 2024).
While the scalability of HMC allows the application to the full parameter space of moderately-sized
neural networks and its NUTS variant provides an (almost) tuning-free approach of HMC, it can-
not sufficiently explore the many modes present in BNN posteriors(Wiese et al., 2023). The recent
HMC variant Symmetric Split HMC (Cobb & Jalaian, 2021) improves HMC’s memory scalability
but comes with other drawbacks, including sensitive hyperparameters. We provide an empirical
comparison and further discussion in Appendix A.1.3. Standard priors, like isotropic Gaussians,
can further lead to initialization issues, where samplers start in low-probability regions, resulting
in slow convergence or samplers getting stuck. To address these issues, Sommer et al. (2024) pro-
pose a Bayesian Deep Ensemble (BDE), an ensemble of many short warmstarted Markov chain
Monte Carlo (MCMC) chains. With this, the authors increase the exploration capability and are
able to achieve state-of-the-art predictive and uncertainty quantification (UQ) performance on com-
mon benchmark tasks. Although much faster than previously employed methods by leveraging
parallelization and efficient implementations, Sommer et al. (2024) rely on NUTS. This imposes a
significant computational burden and results in a method where the sampling phase still dominates
the computational costs by far.

Our contributions In an effort to improve the scaling and efficiency of sampling-based inference
for BNNs, we identified Microcanonical Langevin Monte Carlo (MCLMC; Robnik et al., 2023) as
a possible alternative MCMC-based solution. In recent experiments, the authors were able to show
that MCLMC can be computationally superior to NUTS while providing the same quality of samples
in downstream metrics. While MCLMC demonstrates computational advantages over NUTS in uni-
modal and sequential sampling tasks, it cannot address the multimodality, numerical instability, and
scalability challenges of BNNs without significant modifications (e.g. see Appendix A.1.2). We em-
bed adapted MCLMC as the key ingredient in our approach, including deep ensemble initialization
for enhanced exploration, adjustments to ensure numerical stability in high-dimensional settings,
and optimizations targeting critical bottlenecks. The resulting method, Microcanonical Langevin
Ensemble (MILE), comes with automated tuning and works reliably out of the box. Extensive ex-
periments highlight that MILE achieves state-of-the-art performance while being up to an order of
magnitude faster than previous sampling-based approaches.

2 BACKGROUND

In this work, we denote neural networks with f : X → Y , X ⊆ Rp,Y ⊆ Rm. We parameterize
the network with θ ∈ Θ ⊆ Rd, denoting the vector of all flattened and concatenated weights and
biases. To express the epistemic uncertainty about θ, we treat θ as a random variable with prior
density p(θ) and denote its posterior density as p(θ|D) = p(D|θ)p(θ)/p(D), with observed data
D ∈ (X × Y)n. We will assume a standard isotropic unit variance Gaussian prior N (0, I) if not
specified otherwise. A more detailed analysis of the prior influence is beyond the scope of this work.
The posterior predictive density (PPD) quantifies the uncertainty of predicting unseen labels y∗ ∈ Y
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given features x∗ ∈ X by integrating over the posterior distribution of the parameters θ:

p(y∗|x∗,D) =

∫
Θ

p(y∗|x∗,θ)p(θ|D) dθ. (1)

2.1 MONTE CARLO SAMPLING

In the setting of sampling-based inference, we estimate the analytically intractable integral in Eq. (1)
using samples from the posterior distribution with density p(θ|D). These are obtained by Markov
chain Monte Carlo (MCMC) methods, which construct a Markov chain whose stationary distribution
is the posterior distribution or close to it. In practice, we gather these samples from K independent
chains, each with S samples, yielding the set {θ(k,s)|k ∈ [K], s ∈ [S]} based on which we can
perform prediction and uncertainty quantification (Andrieu et al., 2003; Gelman et al., 2013). The
approximation of Eq. (1) then has the form

p(y∗|x∗,D) ≈ 1

K · S

K∑
k=1

S∑
s=1

p
(
y∗|x∗,θ(k,s)

)
. (2)

Error analysis and Metropolis-Hastings adjustment The error of this approximation is com-
posed of three terms: initialization error, discretization error, and Monte Carlo error. The initializa-
tion error is a transient effect caused by the chains’ ensemble distribution having not yet reached the
stationary distribution (burn-in phase). The Monte Carlo error is the variance caused by the finite
number of samples S and chains K. The discretization error is caused by the finite step size used to
numerically simulate the sampler’s dynamics. This causes p(θ|D) to no longer be the stationary dis-
tribution. The Metropolis-Hastings (MH) scheme is typically employed to completely eliminate the
discretization error, but this comes at an expense of shorter step size. This is because the acceptance
rate depends exponentially on the squared energy error, which grows linearly with dimensionality.
Therefore, the step size needs to be decreased as the number of parameters increases in order to
maintain a fixed acceptance rate, causing the sampler to move more slowly in higher dimensions.
The MH algorithm is further prone to degeneration of the acceptance rate if the chains are initialized
from a distribution, which is not already very close to the stationary distribution, causing slow con-
vergence and large initialization error (Durmus & Eberle, 2023). Without the Metropolis adjustment
on the other hand, the discretization error depends strongly on the step size. Hence, slightly reducing
the step size causes the discretization error to become negligible compared to the initialization and
Monte Carlo error. Given these arguments, we choose to omit the MH adjustment in our method,
relying instead on careful initialization and step size tuning to manage the error terms.

2.2 MICROCANONICAL LANGEVIN MONTE CARLO

A recently proposed sampling method outside the BNN research field is Microcanonical Langevin
Monte Carlo (MCLMC). The time evolution of the MCLMC sampler (Robnik & Seljak, 2024) is
governed by the stochastic differential equation

dθ = u dt, du =
(
1− uu⊤)((d− 1)−1∇ log p(θ|D) dt+ η dW

)
, (3)

where W is the Wiener process and η is a free parameter equivalent to the typical length traveled in
the parameter space before momentum decoherence, often denoted with L. Robnik & Seljak (2024)
use the drift-diffusion discretization to numerically solve Eq. (3). The drift part (Eq. (3) without
the last, stochastic term) is solved by the minimal norm integrator (Takaishi & de Forcrand, 2006;
Omelyan & Kovalenko, 2013). In the limit of small step size ϵ, the resulting Markov chain has
p(θ|D) as a stationary distribution (Robnik & Seljak, 2024). Smaller step size results in a smaller
discretization error but increases the Monte Carlo and initialization errors because the sampler is
moving more slowly. We therefore wish to reduce the step size to the point where the discretization
error becomes smaller than the other two sources of error, but not much further. Robnik et al.
(2023) propose the energy error variance per dimension (EEVPD) as a measure of the discretization
error and show that one can control the discretization error by controlling EEVPD. Analogously to
adapting the step size to match some targeted acceptance rate in Metropolis-adjusted algorithms, one
can adapt the step size to match some desired EEVPD in the unadjusted algorithms. This inexact
but highly efficient approach with bias control is the one we will also take in our work.
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MCLMC Warmup & Tuning MCLMC SamplingOptimization
Phase I

Phase II

Phase III
 tuning with a desired energy variance scheduler.

 tuning via parameter
variances. 

Refine estimate of 
using autocorrelations. 
Thinning+Subsampling
to bound FFT cost.

Thinning controls
memory and inference
time requirements

Vanilla regularized
Maximum Likelihood
Training

Loss: Neg. Log-Likelihood
Optimizer: ADAMW

until early stopping 40k steps 5k steps 5k steps 10k steps

Deep Ensemble Microcanonical Langevin Ensemble

Figure 1: Flowchart illustrating our proposed procedure for obtaining a Microcanonical Langevin Ensemble
(MILE) for BNNs. The process involves three main stages: optimization, MCLMC warmup and tuning, and
MCLMC sampling. These steps are parallelized to generate an ensemble of K members. The number of
MCLMC steps for each tuning phase and the final sampling phase are annotated, and carryovers between
stages are highlighted in circles.

Note that the stationary distribution is independent of the free parameter η and in particular also
holds for the deterministic dynamics, η = 0. This is not the case in HMC, where momentum
resampling is essential to maintain the desired stationary distribution. Being more deterministic
allows MCLMC to converge faster during the exploitation phase.

The parameter η is still important, as it controls the rate of the momentum decoherence and forces
the dynamics to move to the unexplored parts of the parameter space. Robnik et al. (2023) found
that a good performance is achieved when L/ϵ is on the order of the chain’s autocorrelation time.
As the autocorrelation time is quite expensive to evaluate, they also propose to set L to the size of
the posterior modes, by computing the variance of the parameters.

Based on these considerations, they propose a three-stage tuning scheme, which we now refer to as
the three phases:

1. Phase I: Adapt the step size to match the desired EEVPD and complete the burn-in.
2. Phase II: Estimate parameter variance to obtain an initial estimate for L.
3. Phase III: Estimate autocorrelation time to refine the estimate of L.

3 MICROCANONICAL LANGEVIN ENSEMBLES

In order to embed MCLMC in a robust sampling pipeline (cf. Fig. 1) that works effectively for BNNs
and exploits the idea of ensembling, we will discuss the combination of optimization techniques and
sampling as well as various aspects of required MCLMC modification in the following. Without
these modifications, MCLMC struggles with exploration and exhibits high failure rates, particularly
in high-dimensional settings (see Appendix A.1.2).

3.1 ENSEMBLING FOR REDUCED INITIALIZATION ERROR

As discussed in Section 2.1, the error in the approximation of the predictive posterior can be de-
composed into three parts. While the initialization error is described in Section 2.1 as a “transient
effect”, this error should not be mistakenly classified as unimportant, and treating it with special
care is particularly important in the application of BNNs. Similar to most other samplers, it is not
unlikely for MCLMC to get stuck in low-probability regions of the high-dimensional and highly
complex posterior surfaces of BNNs. Our proposed solution is therefore to combine sampling with
an optimization step (Fig. 1, blue part). To prevent chains in the sampling step from being initialized
in these unfavorable regions, we run K optimization steps to obtain starting values θ∗(k), k ∈ [K]
for each of the K chains. As a byproduct, we obtain a deep ensemble (DE; Lakshminarayanan et al.,
2017) with K members.1 Similar to Sommer et al. (2024), we found that using optimized neural
networks as starting values can reduce this error notably and prevents the sampler from getting stuck.

1Note that the optimization of these K models actually has negligible costs compared to the costs of current
state-of-the-art sampling approaches.
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3.2 TUNING PHASE ADAPTIONS

In the previous subsection, we proposed to optimize starting values when using MCLMC by running
an ensemble of MCLMC chains. Optimizing the starting values of each chain is, however, not
sufficient to make MCLMC work numerically stable and efficiently for BNNs (see Appendix A.1.2).
We therefore discuss three components of MCLMC’s tuning phase requiring further adaptions in
applications to BNNs, and propose scaling related modifications to phase III of MCLMC.

3.2.1 STEP SIZE

Robnik et al. (2023) suggest to initialize the step size ϵ with
√
d. While this default works well for

their applications, this would result in too large values even for rather small neural networks. Too
large step sizes, in turn, will result in significant changes of the energy and thereby introduce serious
numerical problems. As MILE initializes chains already in a region of high probability, it is reason-
able to reduce ϵ notably. In practice, this means we can set the step size to the optimizer’s learning
rate used in the optimization step of MILE. Besides reducing the initial discretization error, this also
ensures a more localized exploration early in the burn-in phase and close to the optimized solution
while allowing for larger steps as tuning progresses (which can also be confirmed empirically).

3.2.2 ENERGY VARIANCE SCHEDULER

Another tuning parameter in phase I of MILE is the energy variance scheduler allowing control of
the trade-off between exploitation and exploration. Having already optimized K starting values,
MILE does not require an excessive amount of exploitation but each MCLMC ideally focuses more
on exploitation. In contrast to the tuning scheme proposed in Robnik et al. (2023), we do not employ
a fixed desired energy variance level but use a linear scheduler starting with a higher desired energy
variance and gradually decreasing it. By doing this we foster noisier exploration at the beginning of
the warmup phase and increase the exploitation towards the end of it. Doing this in parallel across
an ensemble of chains, our idea resembles the popular strategy of using cyclical learning rates in
SG-MCMC sampling (Zhang et al., 2020). But rather than going through various exploration and
exploitation phases we do one exploration-exploitation cycle per chain and thus parallelize this idea.2

3.2.3 EFFECTIVE SAMPLE SIZE

MCLMC further requires setting a desired effective sample size (ESS) level within the EEVPD
estimation phase. While this level is generally a choice of the practitioner and the available compu-
tational resources, one option is to set the ESS to 10% of the total number of posterior samples. As
previous approaches working with NUTS also report an ESS of around 10% of the total number of
samples, this value ensures a sample quality that is as good as the one of NUTS.

3.2.4 PHASE III BOTTLENECK

When scaling the MCLMC tuning algorithm to higher dimensions, a computational bottleneck of
phase III is to estimate the empirical ESS, which is done with a Fast Fourier Transform (FFT,
Bracewell & Bracewell, 1986). The FFT is computed for each parameter across all samples. Al-
though fast implementations scale with O(S logS), this can severely impact the runtime for in-
creased dimensions and amount of samples. We therefore propose to subsample parameters if the
dimensionality is d > 2000, which linearly decreases the runtime. We also suggest applying thin-
ning to the samples such that the number of samples used for the FFT is bounded by 10e3.

3.3 EFFECTIVE COMPUTATIONAL BUDGET ALLOCATION

The third error caused by the finite number of samples and chains is the Monte Carlo error. Un-
like NUTS, which varies the number of leapfrog steps for each proposal and requires one gradient
evaluation per leapfrog step, MCLMC employs a deterministic approach that requires two gradient

2We empirically found that the linear schedule from 0.5 to 0.1 worked well in a variety of settings. We
also explored exponentially decaying schedulers starting with high desired energy variance, but these proved
to be empirically inferior to the aforementioned linear schedule. This is in line with the intuition that excessive
exploration is not necessary due to the DE initialization.

5
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evaluations per sample due to the use of a minimal norm integrator. This structure makes MCLMC’s
computational requirements much more predictable, offering a significant practical advantage. In
contrast, the number of steps taken by NUTS can exhibit substantial variance both within and across
tasks, leading practitioners to set an upper limit on leapfrog steps. With better foreseeable computa-
tional requirements, we can optimize the balance between the number of chains and the number of
samples in MILE in order to minimize the Monte Carlo error for a given computational budget. As
recent literature suggests that MCLMC can be much more efficient than NUTS in obtaining effec-
tive samples in simple problems, we propose to collect a relatively small number of samples from
each chain and thereby limit computational resources spent on exploring individual local modes by
MCLMC but relying on DE for exploration.

Warmup stage It is not advisable to directly start chains from the DE optimized points, as these
modes do not coincide with the so-called typical sets (Betancourt, 2018), we suggest allocating
40k steps, i.e., 80k gradient evaluations for MILE’s warmup phase. Compared to NUTS, which
often requires more than 90k leapfrog steps/gradient evaluations for warmup in BNN tasks, this is a
conservative lower bound. This is followed by the two shorter phases, II and III, where we allocate
5k steps each to ensure robust estimations of the momentum decoherence scale L.

Sampling stage As MCLMC samples exhibit significant autocorrelation, we can further reduce
memory costs by applying thinning without notable reduction in sample quality while also not in-
creasing inference time as long as the costs of thinning remain negligible compared to the overall
sampling time. In our setup, after 50k warmup steps, we propose using 10k steps for the sampling
phase. The choice of thinning interval is then based on the memory and inference time constraints,
i.e., the posterior sample budget.

In this work, we explore two scenarios: one with a budget of 1k samples per chain and another with
100 samples, corresponding to thinning intervals of 10 and 100, respectively. Overall, we propose a
fixed budget of 60k steps per chain, providing a predictable sampling process. By adjusting thinning
appropriately, one can further effectively manage memory and inference time requirements.

4 EXPERIMENTS

In this section, we evaluate the feasibility of applying MILE to sampling-based inference for BNNs.

• Datasets and models: We replicate the benchmark by Sommer et al. (2024) but also extend
it to other datasets (Ionosphere, Income, IMDB, MNIST, F-MNIST) and models (convolu-
tional and attention-based neural networks).

• Methods: As in Sommer et al. (2024), we investigate the improvement of our proposed
approach over a DE, but also compare against the current state-of-the-art BDE approach
based on the NUTS sampler.

• Runtime comparisons: Following this, we conduct a series of ablation studies, carefully
examining how MILE scales compared to BDE.

• Tuning and hyperparameters: We finally validate the robustness of MILE’s hyperparam-
eters, supporting our claim that MILE is an auto-tuned off-the-shelf procedure like NUTS.

Details on the experimental setting and the implementation can be found in Appendix A.2. The
diagnostics and evaluation metrics employed are detailed in Appendices A.3 and A.4.

4.1 BENCHMARKS

The goal of this section is to demonstrate 1) the feasibility of MILE in BNN settings, 2) highlight its
superior predictive performance measured using the root mean squared error (RMSE) or Accuracy,
its improved UQ measured using the LPPD, and 3) its improvements in runtime.

4.1.1 UCI BENCHMARKS

Using the six UCI datasets previously analyzed in the context of sampling-based inference in Som-
mer et al. (2024) we replicate their benchmark using a ReLU network with two hidden layers and

6
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Table 1: Average hold-out LPPD and RMSE performance as well as wallclock runtime of the DE baseline,
BDEs and MILE, respectively, for the six datasets (in different rows) over 3 data splits. A table including
standard deviations can be found in Appendix A.1. The wallclock times of the samplers represent the additional
sampling time on top of the DE fit which is also reported.

LPPD (↑) RMSE (↓) Time (min)
DE BDE MILE DE BDE MILE DE BDE MILE

A 0.024 0.558 0.612 0.309 0.214 0.206 0.62 2.25 0.84
B 0.390 0.625 0.645 0.251 0.242 0.236 5.67 48.29 5.40
C −0.072 0.301 0.336 0.304 0.273 0.250 0.33 1.56 0.77
E 1.227 2.072 2.300 0.120 0.045 0.034 0.39 1.11 0.75
P −1.024 −0.760 −0.750 0.742 0.703 0.702 12.37 152.85 19.50
Y 1.623 2.674 2.859 0.081 0.083 0.033 0.16 0.58 0.64

16 neurons each (see Appendix A.2 for further details). We compare the predictive accuracy, UQ,
and runtime of state-of-the-art BDE and the DE baselines against MILE, configured as described in
Section 3.

Performance results Table 1 shows the results, indicating that MILE consistently matches or out-
performs the other methods in predictive performance and UQ while significantly reducing the com-
putational cost. This is especially evident in larger datasets like bikesharing (B) and protein
(P), where MILE achieves sampling speeds nearly ten times faster than BDE. In most cases, the
additional MCLMC sampling after DE optimization is as fast as the DE fitting phase itself. It is
noteworthy that this is a big step for sampling-based inference, yielding a time complexity compa-
rable to DE (≈ 2×runtime), while providing better and more principled uncertainty measures.

yacht

protein

energy

concrete

bikesharing

airfoil

0e+00 3e+05 6e+05 9e+05
Gradient Evaluations per Chain for 1k Posterior Samples

BDE MILE

Figure 2: Average gradient evaluations per chain for 1000 pos-
terior samples for the experiments reported in Table 1.

Resource predictability As elabo-
rated before, MILE’s efficiency is
driven by its much fewer gradient eval-
uations and predictable runtime. Un-
like BDE, where runtime is highly vari-
able in the leapfrog steps taken by
NUTS, MILE’s fixed number of steps
allows easy runtime forecasts once the
cost of a single gradient evaluation is
known. This is especially crucial for
expensive sampling task such as the
posterior sampling of BNNs. Fig. 2
illustrates the significant variability in
BDE’s computational cost for generat-
ing 1000 posterior samples, both within
and across tasks. This variability often
exceeds the entire budget for sampling
in MILE. Moreover, in parallel settings,
the BDE’s performance is bottlenecked by the most expensive chain, while MILE’s deterministic na-
ture ensures perfect load balancing for concurrent sampling (see Section 3.3).

Diagnostics For diagnostic purposes and to evaluate the quality of samples drawn by MILE and
BDE, we evaluate the effective sample size (ESS, Vehtari et al., 2021) and the chainwise 4-split ĉR
(Sommer et al., 2024). As can be seen in Figures 6a and 6b, MILE also outperforms BDE in the
sampling and local mixing quality, revealing higher average ESS and smaller ĉR values.

4.1.2 EXTENDED BENCHMARKS

In addition to existing sampling-based inference benchmarks, we extend our analysis to more com-
plex and larger models, showcasing the successful application of MILE to convolutional neural
networks (CNNs), classification tasks, and sequential models across different data modalities (see

7
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Appendix A.2 for further details). The main reason we are able to advance existing benchmarks
is the feasibility of sampling such tasks using MILE. As it would have taken weeks to obtain the
inference using NUTS, we compare MILE mainly to the DE baseline but provide results for NUTS
for smaller models in the Appendix. Additionally, we report the average performance of a single DE
member and individual MCMC chain, which highlights the additional benefits of ensembling.

Results The results, presented in Table 2, not only confirm the accuracy and UQ improvements
over the DE baseline but also demonstrate performance gains in much larger models and new prob-
lem domains, confirming the positive effect of the additional exploration step taken by MILE.

Table 2: Hold-out test performance of MILE and baselines on various classification tasks using fully-connected
(FCN), convolutional (CNN) and attention-based (ATT) networks. ATT (v2, v3) employ pretrained embed-
dings.

Dataset Model # Params Accuracy (↑) LPPD (↑)
Avg. Single Ensemble Avg. Single Ensemble

DNN Chain DE MILE DNN Chain DE MILE
Ionosphere FCN (v1) 850 0.930 0.958 0.958 0.958 -0.404 -0.168 -0.309 -0.167
Income FCN (v2) 2386 0.843 0.851 0.846 0.851 -0.334 -0.315 -0.318 -0.313
IMDB ATT (v1) 68448 0.715 0.714 0.718 0.717 -0.550 -0.546 -0.544 -0.544
IMDB ATT (v2) 55778 0.779 0.754 0.781 0.782 -0.591 -0.583 -0.562 -0.481
IMDB ATT (v3) 106190 0.786 0.790 0.786 0.788 -0.509 -0.493 -0.507 -0.491
MNIST CNN (v1) 7452 0.916 0.939 0.956 0.970 -0.299 -0.209 -0.179 -0.129
F-MNIST CNN (v1) 7452 0.742 0.767 0.863 0.885 -0.725 -0.684 -0.486 -0.430
F-MNIST CNN (v2) 61706 0.890 0.919 0.918 0.925 -0.361 -0.225 -0.227 -0.216

4.2 ABLATION MODEL COMPLEXITY & RUNTIME

The UCI benchmarks have clearly showed the runtime advantage of MILE over BDE. To further in-
vestigate the impact of model complexity (number of parameters) and dataset size on these runtimes,
we conduct two ablation studies.

Scaling in model complexity Fig. 3 shows the evolution of the required sampling time and perfor-
mance metrics for increased model complexity. For the 5,426-dimensional case, MILE completes
sampling in under 30 minutes, while BDE takes several hours. More strikingly, MILE not only
remains faster but its performance gap to BDE increases with higher model complexity, indicating
both significant efficiency gains and superior performance in higher dimensions. To quantify the
time complexity, we fit a linearized power-law model to obtain the expected sampling time with
growing d: E[log(tSampler)] = β0 + β1 log(d). Both fits explain almost all the variance in the data
with R2 statistics of 0.98 for MILE and 0.96 for BDE, confirming the robustness of the speed ad-
vantage. The model fits are illustrated as dashed lines in Fig. 3.

Scaling in dataset size We analyze the impact of increasing dataset size. Fig. 3 (top right) illus-
trates how sampling time evolves for a fixed task and neural network across different data subsets.
Using the linear model E[tSampler] = β0 + β1n

2, we obtain fits that again almost perfectly resemble
the given data points, with R2 values of 0.99 for MILE and 0.96 for BDE. The ratio of the β1 coeffi-
cients, 6.6, again highlights MILE’s superior scaling in n2. Notably, visual inspection suggests that
BDE may scale worse than quadratically, but for consistency with MILE, we apply a conservative
quadratic fit. The scaling behavior again closely resembles a power-law and the observed quadratic
trend in n likely stems from memory-related hardware slowdowns as dataset sizes increase.

4.3 ABLATION HYPERPARAMETER ROBUSTNESS

To substantiate the claim that our proposed MCLMC configuration in MILE is, in fact, a robust and
auto-tuned off-the-shelf method, we conducted a series of ablation studies by changing the default
hyperparameters of MILE as suggested in Section 3 and examine the impact of these changes on per-
formance. For each ablation, we systematically evaluate the robustness of the approach by changing
a single hyperparameter on an appropriate grid. We report both the impact of hyperparameter varia-
tions on hold-out test performance metrics and the corresponding tuned values of the sampler’s key
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Figure 3: Average sampling wallclock times (minutes, y-axis) of BDE (blue) and MILE (orange) for the
bikesharing dataset across 4 NN architectures with increasing parameter count (x-axis) on the upper
left. Average sampling wallclock times (hours, y-axis) for the protein dataset across varying training
data sizes (x-axis) on the upper right. Dashed lines indicate power-law and quadratic model fits respec-
tively. In both cases the sampling time ratio between BDE and MILE is around 7-9, independently of the
number of parameters and observations. This is a result of NUTS always being close to its maximum number
of iterations per sample, which we set to the default value of 1024 gradient calls. It therefore uses around
1024 × (1000 + 100) ≈ 11 × 105 gradient calls, as displayed also in Figure 2. MILE on the other hand
always uses 2 × 60000 = 12 × 104 calls, which gives a ratio of 9.2. The bottom row shows hold-out metric
performances across 4 network architectures. DE performance for the LPPD and RMSE metrics is indicated as
a grey reference. All charts come with standard errors over 3 data splits.

parameters—the momentum decorrelation scale (L) and step size (ϵ). While the effect on the latter
ones is interesting the primary focus is to attain estimates of the two parameters that yield robust and
good performance. For comparison, we also present the performance of BDE and the DE baseline.

Results The results are summarized in Fig. 4. Across all cases, MILE consistently shows robust
performance, with minimal sensitivity to changes in the hyperparameters. The changes in the major
parameters L and ϵ are generally small and with such marginal changes -especially to the important
ϵ- do not significantly affect the overall performance. An exception is the warmup budget, where
slightly improved performance can be observed with a significantly extended warmup phase. How-
ever, the improvements are marginal and come at a linear increase in runtime, making the additional
computational cost unjustifiable.

In conclusion, these results support the claim that MILE is effectively tuning-free, as in the con-
sidered cases, the method’s performance does not change drastically with different hyperparameters
and is close to optimal under the default settings. This robustness ensures that practitioners can
confidently apply the method without extensive tuning, further enhancing its practical utility.
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Figure 4: Results of the ablation studies conducted on the bikesharing dataset for the robustness of the
MILE algorithm to its tuning parameters (x-axes, proposed defaults bold). Both the average hold-out RMSE
and LPPD are reported with their standard error for 3 data splits. The same holds for the major parameters
of the sampling kernel L and the step size that were tuned by the proposed tuning. “#Effective samples to
estimate EEVPD“ and “Trust in the estimate“ are minor parameters of the step size adaptation algorithm which
determine the sample weighting during the EEVPD computation.

5 DISCUSSION

In this work, we proposed and evaluated Microcanonical Langevin Ensembles (MILE) for sampling-
based inference of Bayesian neural network posteriors. By adapting the recently proposed MCLMC
sampler and combining it with starting values obtained via Deep Ensembles, our comparative analy-
sis reveals substantial advancements in performance, sample quality, UQ, and runtime compared to
a NUTS-based alternative. Furthermore, the method enhances the predictability of resource require-
ments due to its deterministic number of gradient evaluations, which also simplifies parallelization.
In conclusion, our proposed method can be considered a reliable and efficient off-the-shelf method
and thus a big step forward toward making sampling-based inference feasible for generic BNNs.

Scope of this work and limitations While also yielding significant runtime savings for increased
dataset dimensions, the goal of this work was to overcome the most prevalent bottlenecks of NUTS-
based ensembling—its unfavorable scaling with respect to the number of parameters and unfore-
seeable resource allocation due its variable and high number of gradient evaluations. As MCLMC
and our modifications seem to have solved these problems, a next step for future work that we did
not compare in this study is the transition to Stochastic Gradient sampler variants. This transition is
typically not straightforward but would overcome another remaining limitation of sampling-based
inference, namely the scaling for large-scale datasets. Another possible enhancement of MILE we
did not investigate in this work is the use of alternative priors, e.g., discussed in Fortuin et al. (2022).
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A APPENDIX

A.1 FURTHER RESULTS

A.1.1 BENCHMARKS

UCI benchmark The results for the UCI benchmark including standard deviations are given in
Table 3.

Table 3: Average hold-out and standard error of LPPD and RMSE performance as well as wallclock time of the
DE baseline, BDEs and MILE for the six datasets used in Sommer et al. (2024) over 3 data splits. The wallclock
times of the samplers represent the additional sampling time on top of the DE fit which is also reported.

LPPD (↑) RMSE (↓) Time (min)
DE BDE MILE DE BDE MILE DE (∀Methods) BDE MILE

A 0.024± 0.024 0.558± 0.034 0.612± 0.011 0.309± 0.005 0.214± 0.013 0.206± 0.018 0.62± 0.15 2.25± 0.01 0.84± 0.06
B 0.390± 0.010 0.625± 0.004 0.645± 0.10 0.251± 0.004 0.242± 0.005 0.236± 0.004 5.67± 0.98 48.29± 0.51 5.40± 0.02
C −0.072± 0.018 0.301± 0.088 0.336± 0.054 0.304± 0.007 0.273± 0.012 0.250± 0.014 0.33± 0.03 1.56± 0.05 0.77± 0.06
E 1.227± 0.037 2.072± 0.036 2.300± 0.066 0.120± 0.022 0.045± 0.003 0.034± 0.007 0.39± 0.05 1.11± 0.00 0.75± 0.03
P −1.024± 0.029 −0.760± 0.010 −0.750± 0.018 0.742± 0.011 0.703± 0.003 0.702± 0.008 12.37± 1.00 152.85± 7.80 19.50± 0.01
Y 1.623± 0.101 2.674± 0.216 2.859± 0.199 0.081± 0.038 0.083± 0.011 0.033± 0.011 0.16± 0.01 0.58± 0.01 0.64± 0.02

Chain variances Our analyses of between- and within-chain variances (Fig. 6) show a distinctive
pattern of an increasing within-chain variance in layers further away from the input and output layer.
Contrasting this with the work by Sommer et al. (2024), this suggests that MILE also exhibits most
disconnected modes in the first and last layers. This analysis can help to assess whether sampling the
multimodal posterior surface of BNNs is an infeasible problem due to the combinatorial explosion
of modes with an increased depth of the network (which is not the case).

Calibration We also compute calibration errors (see Definition 2) and analyze coverage for cred-
ible intervals across various nominal coverage levels for the UCI benchmarks. Table 10 and Fig. 7
show that MILE achieves calibration quality comparable to the one of BDE, confirming its effec-
tiveness in uncertainty quantification.

Classification benchmark For a comparison with BDE, we ran the smaller tabular classification
tasks both using BDE and MILE. For the larger experiments (both considerably larger in dataset
and model complexity), BDE would require weeks to run and is thus omitted. The results of the
comparative study are given in Table 4 and suggest on-par performance of MILE with BDE and
clearly superior performance to the DE baseline.

Table 4: Hold-out test performance of BDE, MILE and baselines on the two tabular classification tasks.

Dataset Accuracy (↑) LPPD (↑)
Avg. Single Ensemble Avg. Single Ensemble

DNN Chain (BDE) Chain (MILE) DE BDE MILE DNN Chain (BDE) Chain (MILE) DE BDE MILE
Ionosphere 0.930 0.955 0.958 0.958 0.958 0.958 -0.404 -0.172 -0.168 -0.309 -0.172 -0.167
Income 0.843 0.850 0.851 0.846 0.851 0.851 -0.334 -0.315 -0.315 -0.318 -0.311 -0.313

A.1.2 ROBUSTNESS AND NUMERICAL STABILITY IN HIGH DIMENSIONS

Without our adjustments, MCLMC struggles with exploration and often fails to produce meaningful
samples, especially in high-dimensional settings. To highlight this, we conduct an ablation study,
assessing failure rates when applying MCLMC to BNNs without our proposed adjustments. Specifi-
cally, we use the same models as in Table 1 and run 100 chains each of MILE and näive MCLMC on
various datasets with differing parameter dimensions and with the same DE initialization, recording
the percentage of chains that resulted in numerical issues (e.g., NaN values rendering all samples
unusable). The results, given in Table 5, demonstrate the critical importance of our adjustments:
MCLMC exhibits failure rates between 78% and 86%, while MILE consistently shows 0% failures
across all datasets.
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Table 5: Failure rates (NaN chains) for naive MCLMC and MILE across different datasets.

Dataset MCLMC (% NaN Chains) MILE (% NaN Chains)
Airfoil 86% 0%
Concrete 80% 0%
Energy 78% 0%
Yacht 85% 0%

A.1.3 FURTHER COMPARISONS

Comparison with Path-Guided Particle-based Sampling We conduct an empirical comparison
with the recently proposed Path-Guided Particle-based Sampling (PGPS, Fan et al., 2024). Follow-
ing the experimental setup of Section 5.2.1 of Fan et al. (2024), we conduct BNN inference on 7 UCI
classification datasets (Dua & Graff, 2017) and report the average negative log-likelihood (NLL) and
accuracy. Table 6 contains the results that showcase a clear pattern. MILE performs at least as good
in terms of accuracy as PGPS and is clearly superior in the NLL in most cases. Notably, running
MILE for all experiments and replications takes less than 5 minutes on a consumer CPU, with many
in under 1 minute. We compared PGPS and MILE in terms of runtime on the same hardware for
the Sonar dataset across five independent runs as an example. While MILE achieved a runtime of
0.94±0.06 minutes PGPS required 24.34±0.64 minutes. The major factor for the runtime gap is the
nested computation detailed in PGPS (Algorithm 3). For example, the authors chose 100k overall
steps each with 100 optimization steps and 300 Langevin adjustments for the UCI benchmark. This
incurs high computational costs, even without considering the additional overhead of the tuning of
the PGPS hyperparameters α and β.

Table 6: Hold-out test performance of Path-Guided Particle-based Sampling and MILE on the UCI classifica-
tion tasks of Table 1 and 4 of Fan et al. (2024) over five independent runs.

Dataset # Classes # Rows NLL (↓) Accuracy (↑)
PGPS MILE PGPS MILE

SONAR 2 207 0.536± 0.014 0.979± 0.094 0.798± 0.023 0.779± 0.047
WINEWHITE 7 4898 1.979± 0.009 1.110± 0.014 0.452± 0.010 0.565± 0.008
WINERED 6 1599 1.964± 0.012 1.060± 0.037 0.594± 0.018 0.604± 0.019
AUSTRALIAN 2 689 0.5042± 0.013 0.486± 0.087 0.862± 0.009 0.852± 0.015
HEART 5 302 0.943± 0.030 1.440± 0.078 0.256± 0.142 0.591± 0.033
GLASS 6 213 1.685± 0.030 1.160± 0.083 0.585± 0.080 0.643± 0.063
COVERTYPE 7 8000 1.602± 0.014 0.717± 0.024 0.590± 0.095 0.746± 0.006

Comparison with Symmetric Split HMC We also conduct an empirical comparison with Sym-
metric Split HMC (Sym-Split-HMC, Cobb & Jalaian, 2021). Symmetric Split HMC advances HMC
but inherits the same hyperparameter sensitivity (e.g., depends on trajectory length and step size).
These hyperparameters can limit the application in Bayesian neural network inference. In Cobb &
Jalaian (2021), the authors use Bayesian Optimization (BO) to derive hyperparameters which intro-
duces further complexity and a significant computational burden. Unlike MILE, Symmetric Split
HMC employs an MH correction step, which further increases the computational costs. Another
downside of Cobb & Jalaian (2021) is that with an increased number of batches, the computational
requirements increase notably. Both approaches have merit, but their main goal and contribution
differ considerably. Symmetric Split HMC focuses on memory scalability, while MILE optimizes
speed and performance. Nevertheless, an empirical comparison is interesting.

We replicate the multi-class classification task for the Fashion-MNIST dataset from Table 2 with the
CNN (v2) model using Sym-Split-HMC. We use the optimized hyperparameters reported in Cobb &
Jalaian (2021), Section 5.3, for the same dataset and task. We conduct all experiments on the same
hardware to ensure comparability of runtimes and report the results in Table 7. For a fixed amount
of posterior samples, the performance of Symmetric Split HMC benefits from smaller batch sizes.
However, as noted above and confirmed empirically, runtime increases notably for smaller batch
sizes. We choose a batch size of 64 and run Symmetric Split HMC for 200 samples, requiring 15.5
hours. The intended goal of sampling 1000 samples (as with MILE) would take more than 3 days
with this setting. For larger batches of 1024 images, we generate up to 3000 posterior samples for
Symmetric Split HMC, but without a notable gain in performance. Regardless of the specification, it
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becomes clear that MILE achieves considerably better performance in a fraction of the required time
for Symmetric Split HMC (without considering the cost of running BO for hyperparameter tuning).

Table 7: Comparison of off-the-shelf MILE with Symmetric Split HMC on the Fashion-MNIST task using the
CNNv2 model. Total Time does not consider the necessary BO step of Symmetric Split HMC.

Method Accuracy (↑) LPPD (↑) Post. Samples Total Time
MILE 0.925 −0.216 1000 1h 21min
Sym-Split-HMC (Batch size: 64) 0.818 −0.548 200 (+50 burn-in) 15h 29min
Sym-Split-HMC (Batch size: 1024) 0.820 −0.525 1000 (+200 burn-in) 7h 6min
Sym-Split-HMC (Batch size: 1024) 0.813 −0.513 3000 (+300 burn-in) 18h 47min

A.2 EXPERIMENTAL SETUP AND FURTHER DETAILS

Software Our software is implemented in Python and mainly relies on the jax (Bradbury et al.,
2018) and BlackJAX (Cabezas et al., 2024) libraries. We further use Docker for a reproducible
experimental setup. Our code is available at https://anonymous.4open.science/r/
MILE-1CC1/.

Compute environment The experiments were run on two NVIDIA RTX A6000 GPUs and an
AMD Ryzen™ Threadripper™ PRO 5000WX/3000WX CPU with 64 cores. Sampling 12 chains
for most experiments allowed to parallelize the sampling on CPU such that multiple experiments
can be run at the same time.

Benchmark data Table 8 gives an overview of the data, and associated tasks and provides all
references.

Table 8: Overview of the used datasets with task description and references.

ABBREV. DATA SET TASK # OBS. FEAT. REFERENCE
A AIRFOIL REGRESSION 1503 5 DUA & GRAFF (2017)
B BIKESHARING REGRESSION 17379 13 FANAEE-T (2013)
C CONCRETE REGRESSION 1030 8 YEH (1998)
E ENERGY REGRESSION 768 8 TSANAS & XIFARA (2012)
P PROTEIN REGRESSION 45730 9 DUA & GRAFF (2017)
Y YACHT REGRESSION 308 6 ORTIGOSA ET AL. (2007); DUA & GRAFF (2017)
- IONOSPHERE BINARY-CLASS. 351 34 SIGILLITO ET AL. (1989)
- INCOME BINARY-CLASS. 48842 14 KOHAVI (1996)
- IMDB BINARY-CLASS. 50000 TEXT MAAS ET AL. (2011)
- MNIST MULTI-CLASS. 60000 28X28 LECUN & CORTES (2010)
- F(ASHION)-MNIST MULTI-CLASS. 60000 28X28 XIAO ET AL. (2017)

Optimization & sampling For all DE optimizations, we use ADAM with decoupled weight decay
(Loshchilov & Hutter, 2019) and use the negative log-likelihood loss as objective. We employ early
stopping on a validation set and use a 70% train, 10% validation and 20% test split if there is no
predefined test set as for the MNIST and Fashion MNIST dataset. If not specified otherwise we use
12 DE members and 12 chains. For all NUTS-based experiments, we use a burn-in of 100 samples
and collect 1000 posterior samples with a target acceptance rate of 0.8. Also, we employ an isotropic
standard Gaussian prior if not specified otherwise.

We do not adjust the effective number of samples in the MCLMC tuning even if we apply a consid-
erable amount of thinning, i.e., for 10000 samples with a thinning interval of 10, resulting in 1000
final samples, we still use an ESS of 100. However, for less than 1000 final samples, we hold ESS
fixed at 100 as a lower bound. We validated the robustness of this choice by various experiments
and ablation studies discussed in Section 4.

Regression tasks We train distributional regression models for all regression tasks just as Izmailov
et al. (2021); Sommer et al. (2024). That means, we parameterize the Gaussian likelihood with by
the output neurons as location and log-scale. For the experiments aggregated in Table 3, Table 10
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and Fig. 2, we use configurations as in Sommer et al. (2024), in particular, use a fully-connected
neural network that has two hidden layers with 16 neurons each.

Ablation studies For the ablation studies, we use the larger UCI benchmark datasets
bikesharing and protein. If not specified otherwise, we use slightly larger networks than
before by considering three hidden layers of 16 neurons each. In order to analyze the behavior of
the samplers, we further implement a slim and deeper network with 6 hidden layers of just 8 neurons
each. The corresponding experimental results are reported in Fig. 6.

Classification tasks For the classification tasks, we follow the classical way of directly parame-
terizing the categorical distribution with as many output neurons as we have classes. For the tabular
datasets ionosphere and income, we use a simple feed-forward neural networks with 2 (v1)
and 4 (v2) hidden layers with 16 neurons each. We also consider new data modalities for the BDE,
namely images and text. The corresponding architectures are described in Table 9. Moreover, we
use 10 chains for CNNs, 8 chains for the sequential models v1-2, and 4 chains for the sequential
model v3 for these larger networks. We save only 100 samples per chain to be more memory ef-
ficient and are thus able to showcase improvement even for a smaller overall amount of posterior
samples. This is realized via thinning in both BDE and MILE.

Convolutional neural networks As convolutional neural network (CNN) architectures we choose
a LeNet-5 (Lecun et al., 1998) architecture (CNNv2) and also consider a slightly smaller yet similar
architecture (CNNv1). The architectures are described in detail in Table 9.

Table 9: CNN architectures.

CNNv2 CNNv1
Conv 6 filters, 5x5 kernel, padding 2, ReLU 1 filter, 3x3 kernel, padding 2, ReLU
Pooling 2x2 Avg Pooling, stride 2 -
Conv 16 filters, 5x5 kernel, no padding, ReLU -
Pooling 2x2 Avg Pooling, stride 2 -
FC 120 units, ReLU 8 units, ReLU
FC 84 units, ReLU 8 units, ReLU
FC Output units 8 units, ReLU
FC - Output units

Sequential networks Fig. 5 provides a schematic overview of the attention-based sequential
model architecture. We explore two main configurations: one where all model parameters, including
token and positional embeddings, are sampled (v1), and another using a fixed, pretrained embed-
ding (v2,v3). Both models use a context length of 70 tokens, with padding or truncation for shorter
or longer sequences. We trained a custom tokenizer with Byte-Pair Encoding (BPE, Gage, 1994),
targeting vocabulary sizes of 1k and 10k tokens for v1 and v2-3, respectively. To balance model
complexity, token embeddings were set to 48 dimensions for the fully sampled model v1 and 192
for the pretrained versions v2-3. Positional encodings are added before passing through an 8-head
attention mechanism, with 64-dimensional query, key, and value vectors (Vaswani et al., 2017) for
v1-2. For v3, we use a 10-head attention mechanism with 100-dimensional query, key and value
vectors. After average pooling, a feed-forward network with one hidden layer (64 neurons for the
full model v1, 32 for the pretrained version v2) or two hidden layers for v3 with 128 and 32 neurons
output the logits.

Prior induced regularization As the prior acts as a regularizer during the sampling phase, we
might exhibit performance degradation for larger classification models if the prior variance is cho-
sen inappropriately small. For the larger CNN and ATT models, we therefore choose the standard
isotropic Gaussians N (0, 0.1I) (CNNv2), N (0, 0.2I) (ATTv1,v2) and N (0, 0.4I) (ATTv3). While
a dedicated study on the influence of priors within this framework is out of scope for this work, we
think further tuning the prior variance or changing the prior distribution could be promising.
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Figure 5: Schematic overview of the sequential attention-based model architecture (ATT) that is applied to the
IMDB Dataset.

A.3 DIAGNOSTICS

We report the BNN-specific diagnostics proposed in Sommer et al. (2024) in Fig. 6. The displayed
chain variances are discussed in Appendix A.1.1.

Effective sample size We observe very similar effective sample size (ESS) values for BDE as
reported in Izmailov et al. (2021); Sommer et al. (2024). In most cases, MILE is on a same or
slightly higher level of ESS. However, especially for weights that are close to the input and output,
we observe a much higher ESS than for BDE. For the airfoil dataset, this ESS increase also
given for deeper layers.

Convergence of MILE and chainwise mixing Based on the results of Robnik et al. (2024), we
know that MILE will provide the same convergence guarantees as long as the initialization is done
randomly or its effect becomes negligible as S → ∞ and the discretization error is MH-adjusted.
As our work’s focus is on empirical efficiency rather than guaranteed convergence, we a) do not use
MH-adjustment but control discretization error using the EEVPD b) do not run chains for a large
number of steps, and c) start chains using deep ensemble initializations. This is a compromise that
will induce a bias in the sampling distribution but ensures a more stable behavior during sampling,
and, in turn, increases the ESS.

To measure chainwise mixing, we proxy local chainwise convergence using the chainwise split
metric ĉR with a split factor of 4. Our results demonstrate that MILE clearly improves chainwise
mixing. However, all values remain notably higher than the conventional cutoff thresholds of 1.1
and 1.01 (Vehtari et al., 2021).

A.4 EVALUATION

Predictive performance Following Gelman et al. (2014); Wiese et al. (2023) and Sommer et al.
(2024), we choose the log posterior predictive density (LPPD) over a test set D∗, defined as

LPPD =
1

ntest

∑
(y∗,x∗)∈Dtest

log

(
1

K · S

K∑
k=1

S∑
s=1

p
(
y∗|θ(k,s)(x∗)

))
(4)

in order to quantify the quality of the PPD approximation and UQ in general. Intuitively, the LPPD
measures the average extent to which the predictive distribution accurately covers the observed
labels.

Additionally, we use the root mean squared error (RMSE) for regression tasks and accuracy (ACC)
for classification tasks to assess point predictions. While LPPD evaluates the overall fit of the pre-
dictive distribution, RMSE and ACC provide specific metrics for the accuracy of point predictions
in their respective domains.
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Figure 6: Different sampling diagnostics of a seven-layer BNN for three UCI benchmark datasets (in different
rows) separated by layer (x-axis) over three data splits.

Calibration Following Kuleshov et al. (2018), we define calibration and the empirical (squared)
calibration error in the regression setting. Intuitively one expects samples from the true PPD to be
contained in the Credibility Intervals (CIs) with the coverage probability of the CI. The following
definition formalizes this.

Definition 1 (Calibration) For some realized labeled dataset D = {(xi, yi)}ni=1 ∈ X × R of
random variables X,Y , we define a credible interval C1−α(x∗,D) to be calibrated at level 1−α ∈
(0, 1) iff for y∗ ∼ p(· | x∗,D) it holds that

P
(
y∗ ∈ C1−α(x∗,D)

)
= 1− α. (5)

If y∗ ∈ C1−α(x∗,D), we say that the CI C1−α(x∗,D) covers y∗. Thus calibrated models have
correct coverage probabilities.

This straightforwardly leads to the definition of the calibration error.

Definition 2 (Calibration error) We define the empirical weighted calibration error (CalE) over
the hold-out validation data set D∗ as the root mean squared difference of nominal 1 − αl and
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Table 10: Mean Calibration Error for the DE baseline, BDE and MILE for six datasets. The nominal coverage
levels used are 0.5, 0.75, 0.9 and 0.95. The experimental setup is identical to the one in Table 1.

Calibration Error (↓)
Dataset DE BDE MILE

Airfoil 0.077± 0.012 0.083± 0.009 0.086± 0.018
Bikesharing 0.125± 0.005 0.080± 0.003 0.081± 0.002
Concrete 0.066± 0.002 0.050± 0.003 0.068± 0.017
Energy 0.215± 0.015 0.032± 0.003 0.061± 0.014
Protein 0.054± 0.011 0.056± 0.002 0.057± 0.003
Yacht 0.253± 0.037 0.188± 0.032 0.133± 0.059

empirical 1− α̂l CI coverages over a range of L relevant coverage levels α1, . . . , αL:

CalE(D∗) =

( L∑
l=1

wl · (α̂l − αl)
2

) 1
2

(6)

with 1− α̂l =
1

|D∗|
∑

(x∗,y∗)∈D∗

I{y∗ ∈ C1−α̂l
(x∗,D)}, (7)

where wl are normalized weights of the coverage levels which are commonly considered to be con-
stant, i.e., wl = 1 ∀l ∈ [L].

We report this calibration error in Table 10 for DEs, BDE and MILE for multiple datasets in the
distributional regression setting. We consider the coverage levels 0.5, 0.75, 0.9, and 0.95. For
most cases, we observe that the calibration error of MILE is on the same level as BDE and both
methods often outperform the simple DE. For smaller datasets, however, estimating the empirical
quantiles for small α is less robust due to limited test data size. Since the calibration error does not
indicate whether the model is over- or underconfident, we also examine the coverage levels directly
in Figure 7. The plots show a high variation in coverage quality of DE-based confidence intervals by
exhibiting both strong structural under- and overconfidence, whereas the sampling-based methods
are generally better calibrated. The larger datasets, bikesharing and protein, which more
likely provide enough data for reliable empirical coverage estimates, are a good example of this: for
bikesharing, DE is more underconfident, while for protein, it is overconfident in contrast
to the sampling-based alternatives. A visual inspection reveals that both BDE and MILE tend to
be slightly underconfident, which is however often preferred by the practitioners over structural
overconfidence, as seen for example with DE in the protein dataset. All in all, a more careful
analysis of calibration of MILE would be a great direction for future work.
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Figure 7: Mean and standard error of empirical coverage (y-axes) for the DE baseline, BDE and MILE for six
datasets (facets). The nominal coverage levels used are 0.5, 0.75, 0.9 and 0.95 (x-axes). The experimental setup
is identical to the one in Table 1.
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