
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MICROCANONICAL LANGEVIN ENSEMBLES:
ADVANCING THE SAMPLING OF BAYESIAN
NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite recent advances, sampling-based inference for Bayesian Neural Networks
(BNNs) remains a significant challenge in probabilistic deep learning. While
sampling-based approaches do not require a variational distribution assumption,
current state-of-the-art samplers still struggle to navigate the complex and highly
multimodal posteriors of BNNs. As a consequence, sampling still requires con-
siderably longer inference times than non-Bayesian methods even for small neu-
ral networks, despite recent advances in making software implementations more
efficient. Besides the difficulty of finding high-probability regions, the time un-
til samplers provide sufficient exploration of these areas remains unpredictable.
To tackle these challenges, we introduce an ensembling approach that leverages
strategies from optimization and a recently proposed sampler called Microcanon-
ical Langevin Monte Carlo (MCLMC) for efficient, robust and predictable sam-
pling performance. Compared to approaches based on the state-of-the-art No-
U-Turn Sampler, our approach delivers substantial speedups up to an order of
magnitude, while maintaining or improving predictive performance and uncer-
tainty quantification across diverse tasks and data modalities. The suggested Mi-
crocanonical Langevin Ensembles and modifications to MCLMC additionally en-
hance the method’s predictability in resource requirements, facilitating easier par-
allelization. All in all, the proposed method offers a promising direction for prac-
tical, scalable inference for BNNs.

1 INTRODUCTION AND RELATED LITERATURE

Sampling-based inference for Bayesian Neural Networks (BNNs) has garnered significant interest
as a principled approach to addressing the analytically intractable challenge of probabilistic deep
learning (Izmailov et al., 2021; Wiese et al., 2023; Papamarkou et al., 2024). New methods, such as
subspace inference (Izmailov et al., 2020; Dold et al., 2024), are being explored alongside emerg-
ing applications in diverse domains where effective uncertainty quantification is crucial, including
healthcare (Peng et al., 2020) and physics (Cranmer et al., 2021).Papamarkou et al. (2022); Sommer
et al. (2024) highlight several shortcomings in current sampling-based approaches, particularly the
need for proper initialization of sampling procedures and the challenge of capturing multimodality.

Samplers and problem setup Hamiltonian Monte Carlo (HMC; Duane et al., 1987) and Under-
damped Langevin Monte Carlo (Leimkuhler & Reich, 2009) are the gold standard algorithms for
high-dimensional sampling problems. However, their performance is known to be sensitive to their
hyperparameters, such as the step size, preconditioning, and the momentum decoherence rate (Neal,
2011). They are therefore combined with an automatic hyperparameter adaptation algorithm. Sev-
eral ensemble-based schemes have been developed in recent years (Sountsov & Hoffman, 2022;
Hoffman & Sountsov, 2022; Riou-Durand et al., 2023), but all of these schemes critically depend
on the ensemble variance of the parameters to tune the critical momentum decoherence rate hyper-
parameter and in some cases also the (preconditioned) step size. As such, they are not applicable to
the highly multimodal posteriors of BNNs.

In the context of gradient-free sampling, a variety of ensembled algorithms have been developed,
for example, Preconditioned Monte Carlo (pocoMC; Karamanis et al., 2022a;b) , Nested Sampling

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(Skilling, 2004) and Elliptical Slice Sampling (Murray et al., 2010). These algorithms address the
multimodality problem; however, they scale poorly to high-dimensional settings. For example, Elip-
tical Slice Sampling is frequently used for BNNs (Izmailov et al., 2020; Dold et al., 2024) for sam-
pling in a small subspace (e.g., 2- or 3-dimensional) of the parameter space, but cannot be scaled to
much larger dimensions. While alternative methods for multimodal sampling exist, they are also not
well-suited for the high-dimensional and highly multimodal BNN setting. For instance, stochastic
localization methods, like those proposed by Grenioux et al. (2024), can handle moderate multi-
modality but are sensitive to hyperparameters (like the integration initialization t0 for stochastic
localization) and lack scalability. Similarly, the Liouville Flow Importance Sampler (Tian et al.,
2024) offers unbiased sampling but requires the training of a neural flow model, which needs to
become increasingly complex as the dimensionality and complexity of the problem grows, limiting
its scalability. The same applies to the learned vector field in the path-guided particle-based method
of Fan et al. (2024), with an empirical comparison provided in Appendix A.1.3.

HMC and NUTS It is therefore not surprising that a sequential HMC variant, the No U-turn
Sampler (NUTS; Hoffman & Gelman, 2014), is still viewed as “[t]he only MCMC algorithm that
theoretically scales to high dimensions across a broad class of models” (Štrumbelj et al., 2024).
While the scalability of HMC allows the application to the full parameter space of moderately-sized
neural networks and its NUTS variant provides an (almost) tuning-free approach of HMC, it can-
not sufficiently explore the many modes present in BNN posteriors(Wiese et al., 2023). The recent
HMC variant Symmetric Split HMC (Cobb & Jalaian, 2021) improves HMC’s memory scalability
but comes with other drawbacks, including sensitive hyperparameters. We provide an empirical
comparison and further discussion in Appendix A.1.3. Standard priors, like isotropic Gaussians,
can further lead to initialization issues, where samplers start in low-probability regions, resulting
in slow convergence or samplers getting stuck. To address these issues, Sommer et al. (2024) pro-
pose a Bayesian Deep Ensemble (BDE), an ensemble of many short warmstarted Markov chain
Monte Carlo (MCMC) chains. With this, the authors increase the exploration capability and are
able to achieve state-of-the-art predictive and uncertainty quantification (UQ) performance on com-
mon benchmark tasks. Although much faster than previously employed methods by leveraging
parallelization and efficient implementations, Sommer et al. (2024) rely on NUTS. This imposes a
significant computational burden and results in a method where the sampling phase still dominates
the computational costs by far.

Our contributions In an effort to improve the scaling and efficiency of sampling-based inference
for BNNs, we identified Microcanonical Langevin Monte Carlo (MCLMC; Robnik et al., 2023) as
a possible alternative MCMC-based solution. In recent experiments, the authors were able to show
that MCLMC can be computationally superior to NUTS while providing the same quality of samples
in downstream metrics. While MCLMC demonstrates computational advantages over NUTS in uni-
modal and sequential sampling tasks, it cannot address the multimodality, numerical instability, and
scalability challenges of BNNs without significant modifications (e.g. see Appendix A.1.2). We em-
bed adapted MCLMC as the key ingredient in our approach, including deep ensemble initialization
for enhanced exploration, adjustments to ensure numerical stability in high-dimensional settings,
and optimizations targeting critical bottlenecks. The resulting method, Microcanonical Langevin
Ensemble (MILE), comes with automated tuning and works reliably out of the box. Extensive ex-
periments highlight that MILE achieves state-of-the-art performance while being up to an order of
magnitude faster than previous sampling-based approaches.

2 BACKGROUND

In this work, we denote neural networks with f : X → Y , X ⊆ Rp,Y ⊆ Rm. We parameterize
the network with θ ∈ Θ ⊆ Rd, denoting the vector of all flattened and concatenated weights and
biases. To express the epistemic uncertainty about θ, we treat θ as a random variable with prior
density p(θ) and denote its posterior density as p(θ|D) = p(D|θ)p(θ)/p(D), with observed data
D ∈ (X × Y)n. We will assume a standard isotropic unit variance Gaussian prior N (0, I) if not
specified otherwise. A more detailed analysis of the prior influence is beyond the scope of this work.
The posterior predictive density (PPD) quantifies the uncertainty of predicting unseen labels y∗ ∈ Y

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

given features x∗ ∈ X by integrating over the posterior distribution of the parameters θ:

p(y∗|x∗,D) =

∫
Θ

p(y∗|x∗,θ)p(θ|D) dθ. (1)

2.1 MONTE CARLO SAMPLING

In the setting of sampling-based inference, we estimate the analytically intractable integral in Eq. (1)
using samples from the posterior distribution with density p(θ|D). These are obtained by Markov
chain Monte Carlo (MCMC) methods, which construct a Markov chain whose stationary distribution
is the posterior distribution or close to it. In practice, we gather these samples from K independent
chains, each with S samples, yielding the set {θ(k,s)|k ∈ [K], s ∈ [S]} based on which we can
perform prediction and uncertainty quantification (Andrieu et al., 2003; Gelman et al., 2013). The
approximation of Eq. (1) then has the form

p(y∗|x∗,D) ≈ 1

K · S

K∑
k=1

S∑
s=1

p
(
y∗|x∗,θ(k,s)

)
. (2)

Error analysis and Metropolis-Hastings adjustment The error of this approximation is com-
posed of three terms: initialization error, discretization error, and Monte Carlo error. The initializa-
tion error is a transient effect caused by the chains’ ensemble distribution having not yet reached the
stationary distribution (burn-in phase). The Monte Carlo error is the variance caused by the finite
number of samples S and chains K. The discretization error is caused by the finite step size used to
numerically simulate the sampler’s dynamics. This causes p(θ|D) to no longer be the stationary dis-
tribution. The Metropolis-Hastings (MH) scheme is typically employed to completely eliminate the
discretization error, but this comes at an expense of shorter step size. This is because the acceptance
rate depends exponentially on the squared energy error, which grows linearly with dimensionality.
Therefore, the step size needs to be decreased as the number of parameters increases in order to
maintain a fixed acceptance rate, causing the sampler to move more slowly in higher dimensions.
The MH algorithm is further prone to degeneration of the acceptance rate if the chains are initialized
from a distribution, which is not already very close to the stationary distribution, causing slow con-
vergence and large initialization error (Durmus & Eberle, 2023). Without the Metropolis adjustment
on the other hand, the discretization error depends strongly on the step size. Hence, slightly reducing
the step size causes the discretization error to become negligible compared to the initialization and
Monte Carlo error. Given these arguments, we choose to omit the MH adjustment in our method,
relying instead on careful initialization and step size tuning to manage the error terms.

2.2 MICROCANONICAL LANGEVIN MONTE CARLO

A recently proposed sampling method outside the BNN research field is Microcanonical Langevin
Monte Carlo (MCLMC). The time evolution of the MCLMC sampler (Robnik & Seljak, 2024) is
governed by the stochastic differential equation

dθ = u dt, du =
(
1− uu⊤)((d− 1)−1∇ log p(θ|D) dt+ η dW

)
, (3)

where W is the Wiener process and η is a free parameter equivalent to the typical length traveled in
the parameter space before momentum decoherence, often denoted with L. Robnik & Seljak (2024)
use the drift-diffusion discretization to numerically solve Eq. (3). The drift part (Eq. (3) without
the last, stochastic term) is solved by the minimal norm integrator (Takaishi & de Forcrand, 2006;
Omelyan & Kovalenko, 2013). In the limit of small step size ϵ, the resulting Markov chain has
p(θ|D) as a stationary distribution (Robnik & Seljak, 2024). Smaller step size results in a smaller
discretization error but increases the Monte Carlo and initialization errors because the sampler is
moving more slowly. We therefore wish to reduce the step size to the point where the discretization
error becomes smaller than the other two sources of error, but not much further. Robnik et al.
(2023) propose the energy error variance per dimension (EEVPD) as a measure of the discretization
error and show that one can control the discretization error by controlling EEVPD. Analogously to
adapting the step size to match some targeted acceptance rate in Metropolis-adjusted algorithms, one
can adapt the step size to match some desired EEVPD in the unadjusted algorithms. This inexact
but highly efficient approach with bias control is the one we will also take in our work.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

MCLMC Warmup & Tuning MCLMC SamplingOptimization
Phase I

Phase II

Phase III
 tuning with a desired energy variance scheduler.

 tuning via parameter
variances.

Refine estimate of
using autocorrelations.
Thinning+Subsampling
to bound FFT cost.

Thinning controls
memory and inference
time requirements

Vanilla regularized
Maximum Likelihood
Training

Loss: Neg. Log-Likelihood
Optimizer: ADAMW

until early stopping 40k steps 5k steps 5k steps 10k steps

Deep Ensemble Microcanonical Langevin Ensemble

Figure 1: Flowchart illustrating our proposed procedure for obtaining a Microcanonical Langevin Ensemble
(MILE) for BNNs. The process involves three main stages: optimization, MCLMC warmup and tuning, and
MCLMC sampling. These steps are parallelized to generate an ensemble of K members. The number of
MCLMC steps for each tuning phase and the final sampling phase are annotated, and carryovers between
stages are highlighted in circles.

Note that the stationary distribution is independent of the free parameter η and in particular also
holds for the deterministic dynamics, η = 0. This is not the case in HMC, where momentum
resampling is essential to maintain the desired stationary distribution. Being more deterministic
allows MCLMC to converge faster during the exploitation phase.

The parameter η is still important, as it controls the rate of the momentum decoherence and forces
the dynamics to move to the unexplored parts of the parameter space. Robnik et al. (2023) found
that a good performance is achieved when L/ϵ is on the order of the chain’s autocorrelation time.
As the autocorrelation time is quite expensive to evaluate, they also propose to set L to the size of
the posterior modes, by computing the variance of the parameters.

Based on these considerations, they propose a three-stage tuning scheme, which we now refer to as
the three phases:

1. Phase I: Adapt the step size to match the desired EEVPD and complete the burn-in.
2. Phase II: Estimate parameter variance to obtain an initial estimate for L.
3. Phase III: Estimate autocorrelation time to refine the estimate of L.

3 MICROCANONICAL LANGEVIN ENSEMBLES

In order to embed MCLMC in a robust sampling pipeline (cf. Fig. 1) that works effectively for BNNs
and exploits the idea of ensembling, we will discuss the combination of optimization techniques and
sampling as well as various aspects of required MCLMC modification in the following. Without
these modifications, MCLMC struggles with exploration and exhibits high failure rates, particularly
in high-dimensional settings (see Appendix A.1.2).

3.1 ENSEMBLING FOR REDUCED INITIALIZATION ERROR

As discussed in Section 2.1, the error in the approximation of the predictive posterior can be de-
composed into three parts. While the initialization error is described in Section 2.1 as a “transient
effect”, this error should not be mistakenly classified as unimportant, and treating it with special
care is particularly important in the application of BNNs. Similar to most other samplers, it is not
unlikely for MCLMC to get stuck in low-probability regions of the high-dimensional and highly
complex posterior surfaces of BNNs. Our proposed solution is therefore to combine sampling with
an optimization step (Fig. 1, blue part). To prevent chains in the sampling step from being initialized
in these unfavorable regions, we run K optimization steps to obtain starting values θ∗(k), k ∈ [K]
for each of the K chains. As a byproduct, we obtain a deep ensemble (DE; Lakshminarayanan et al.,
2017) with K members.1 Similar to Sommer et al. (2024), we found that using optimized neural
networks as starting values can reduce this error notably and prevents the sampler from getting stuck.

1Note that the optimization of these K models actually has negligible costs compared to the costs of current
state-of-the-art sampling approaches.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.2 TUNING PHASE ADAPTIONS

In the previous subsection, we proposed to optimize starting values when using MCLMC by running
an ensemble of MCLMC chains. Optimizing the starting values of each chain is, however, not
sufficient to make MCLMC work numerically stable and efficiently for BNNs (see Appendix A.1.2).
We therefore discuss three components of MCLMC’s tuning phase requiring further adaptions in
applications to BNNs, and propose scaling related modifications to phase III of MCLMC.

3.2.1 STEP SIZE

Robnik et al. (2023) suggest to initialize the step size ϵ with
√
d. While this default works well for

their applications, this would result in too large values even for rather small neural networks. Too
large step sizes, in turn, will result in significant changes of the energy and thereby introduce serious
numerical problems. As MILE initializes chains already in a region of high probability, it is reason-
able to reduce ϵ notably. In practice, this means we can set the step size to the optimizer’s learning
rate used in the optimization step of MILE. Besides reducing the initial discretization error, this also
ensures a more localized exploration early in the burn-in phase and close to the optimized solution
while allowing for larger steps as tuning progresses (which can also be confirmed empirically).

3.2.2 ENERGY VARIANCE SCHEDULER

Another tuning parameter in phase I of MILE is the energy variance scheduler allowing control of
the trade-off between exploitation and exploration. Having already optimized K starting values,
MILE does not require an excessive amount of exploitation but each MCLMC ideally focuses more
on exploitation. In contrast to the tuning scheme proposed in Robnik et al. (2023), we do not employ
a fixed desired energy variance level but use a linear scheduler starting with a higher desired energy
variance and gradually decreasing it. By doing this we foster noisier exploration at the beginning of
the warmup phase and increase the exploitation towards the end of it. Doing this in parallel across
an ensemble of chains, our idea resembles the popular strategy of using cyclical learning rates in
SG-MCMC sampling (Zhang et al., 2020). But rather than going through various exploration and
exploitation phases we do one exploration-exploitation cycle per chain and thus parallelize this idea.2

3.2.3 EFFECTIVE SAMPLE SIZE

MCLMC further requires setting a desired effective sample size (ESS) level within the EEVPD
estimation phase. While this level is generally a choice of the practitioner and the available compu-
tational resources, one option is to set the ESS to 10% of the total number of posterior samples. As
previous approaches working with NUTS also report an ESS of around 10% of the total number of
samples, this value ensures a sample quality that is as good as the one of NUTS.

3.2.4 PHASE III BOTTLENECK

When scaling the MCLMC tuning algorithm to higher dimensions, a computational bottleneck of
phase III is to estimate the empirical ESS, which is done with a Fast Fourier Transform (FFT,
Bracewell & Bracewell, 1986). The FFT is computed for each parameter across all samples. Al-
though fast implementations scale with O(S logS), this can severely impact the runtime for in-
creased dimensions and amount of samples. We therefore propose to subsample parameters if the
dimensionality is d > 2000, which linearly decreases the runtime. We also suggest applying thin-
ning to the samples such that the number of samples used for the FFT is bounded by 10e3.

3.3 EFFECTIVE COMPUTATIONAL BUDGET ALLOCATION

The third error caused by the finite number of samples and chains is the Monte Carlo error. Un-
like NUTS, which varies the number of leapfrog steps for each proposal and requires one gradient
evaluation per leapfrog step, MCLMC employs a deterministic approach that requires two gradient

2We empirically found that the linear schedule from 0.5 to 0.1 worked well in a variety of settings. We
also explored exponentially decaying schedulers starting with high desired energy variance, but these proved
to be empirically inferior to the aforementioned linear schedule. This is in line with the intuition that excessive
exploration is not necessary due to the DE initialization.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

evaluations per sample due to the use of a minimal norm integrator. This structure makes MCLMC’s
computational requirements much more predictable, offering a significant practical advantage. In
contrast, the number of steps taken by NUTS can exhibit substantial variance both within and across
tasks, leading practitioners to set an upper limit on leapfrog steps. With better foreseeable computa-
tional requirements, we can optimize the balance between the number of chains and the number of
samples in MILE in order to minimize the Monte Carlo error for a given computational budget. As
recent literature suggests that MCLMC can be much more efficient than NUTS in obtaining effec-
tive samples in simple problems, we propose to collect a relatively small number of samples from
each chain and thereby limit computational resources spent on exploring individual local modes by
MCLMC but relying on DE for exploration.

Warmup stage It is not advisable to directly start chains from the DE optimized points, as these
modes do not coincide with the so-called typical sets (Betancourt, 2018), we suggest allocating
40k steps, i.e., 80k gradient evaluations for MILE’s warmup phase. Compared to NUTS, which
often requires more than 90k leapfrog steps/gradient evaluations for warmup in BNN tasks, this is a
conservative lower bound. This is followed by the two shorter phases, II and III, where we allocate
5k steps each to ensure robust estimations of the momentum decoherence scale L.

Sampling stage As MCLMC samples exhibit significant autocorrelation, we can further reduce
memory costs by applying thinning without notable reduction in sample quality while also not in-
creasing inference time as long as the costs of thinning remain negligible compared to the overall
sampling time. In our setup, after 50k warmup steps, we propose using 10k steps for the sampling
phase. The choice of thinning interval is then based on the memory and inference time constraints,
i.e., the posterior sample budget.

In this work, we explore two scenarios: one with a budget of 1k samples per chain and another with
100 samples, corresponding to thinning intervals of 10 and 100, respectively. Overall, we propose a
fixed budget of 60k steps per chain, providing a predictable sampling process. By adjusting thinning
appropriately, one can further effectively manage memory and inference time requirements.

4 EXPERIMENTS

In this section, we evaluate the feasibility of applying MILE to sampling-based inference for BNNs.

• Datasets and models: We replicate the benchmark by Sommer et al. (2024) but also extend
it to other datasets (Ionosphere, Income, IMDB, MNIST, F-MNIST) and models (convolu-
tional and attention-based neural networks).

• Methods: As in Sommer et al. (2024), we investigate the improvement of our proposed
approach over a DE, but also compare against the current state-of-the-art BDE approach
based on the NUTS sampler.

• Runtime comparisons: Following this, we conduct a series of ablation studies, carefully
examining how MILE scales compared to BDE.

• Tuning and hyperparameters: We finally validate the robustness of MILE’s hyperparam-
eters, supporting our claim that MILE is an auto-tuned off-the-shelf procedure like NUTS.

Details on the experimental setting and the implementation can be found in Appendix A.2. The
diagnostics and evaluation metrics employed are detailed in Appendices A.3 and A.4.

4.1 BENCHMARKS

The goal of this section is to demonstrate 1) the feasibility of MILE in BNN settings, 2) highlight its
superior predictive performance measured using the root mean squared error (RMSE) or Accuracy,
its improved UQ measured using the LPPD, and 3) its improvements in runtime.

4.1.1 UCI BENCHMARKS

Using the six UCI datasets previously analyzed in the context of sampling-based inference in Som-
mer et al. (2024) we replicate their benchmark using a ReLU network with two hidden layers and

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Average hold-out LPPD and RMSE performance as well as wallclock runtime of the DE baseline,
BDEs and MILE, respectively, for the six datasets (in different rows) over 3 data splits. A table including
standard deviations can be found in Appendix A.1. The wallclock times of the samplers represent the additional
sampling time on top of the DE fit which is also reported.

LPPD (↑) RMSE (↓) Time (min)
DE BDE MILE DE BDE MILE DE BDE MILE

A 0.024 0.558 0.612 0.309 0.214 0.206 0.62 2.25 0.84
B 0.390 0.625 0.645 0.251 0.242 0.236 5.67 48.29 5.40
C −0.072 0.301 0.336 0.304 0.273 0.250 0.33 1.56 0.77
E 1.227 2.072 2.300 0.120 0.045 0.034 0.39 1.11 0.75
P −1.024 −0.760 −0.750 0.742 0.703 0.702 12.37 152.85 19.50
Y 1.623 2.674 2.859 0.081 0.083 0.033 0.16 0.58 0.64

16 neurons each (see Appendix A.2 for further details). We compare the predictive accuracy, UQ,
and runtime of state-of-the-art BDE and the DE baselines against MILE, configured as described in
Section 3.

Performance results Table 1 shows the results, indicating that MILE consistently matches or out-
performs the other methods in predictive performance and UQ while significantly reducing the com-
putational cost. This is especially evident in larger datasets like bikesharing (B) and protein
(P), where MILE achieves sampling speeds nearly ten times faster than BDE. In most cases, the
additional MCLMC sampling after DE optimization is as fast as the DE fitting phase itself. It is
noteworthy that this is a big step for sampling-based inference, yielding a time complexity compa-
rable to DE (≈ 2×runtime), while providing better and more principled uncertainty measures.

yacht

protein

energy

concrete

bikesharing

airfoil

0e+00 3e+05 6e+05 9e+05
Gradient Evaluations per Chain for 1k Posterior Samples

BDE MILE

Figure 2: Average gradient evaluations per chain for 1000 pos-
terior samples for the experiments reported in Table 1.

Resource predictability As elabo-
rated before, MILE’s efficiency is
driven by its much fewer gradient eval-
uations and predictable runtime. Un-
like BDE, where runtime is highly vari-
able in the leapfrog steps taken by
NUTS, MILE’s fixed number of steps
allows easy runtime forecasts once the
cost of a single gradient evaluation is
known. This is especially crucial for
expensive sampling task such as the
posterior sampling of BNNs. Fig. 2
illustrates the significant variability in
BDE’s computational cost for generat-
ing 1000 posterior samples, both within
and across tasks. This variability often
exceeds the entire budget for sampling
in MILE. Moreover, in parallel settings,
the BDE’s performance is bottlenecked by the most expensive chain, while MILE’s deterministic na-
ture ensures perfect load balancing for concurrent sampling (see Section 3.3).

Diagnostics For diagnostic purposes and to evaluate the quality of samples drawn by MILE and
BDE, we evaluate the effective sample size (ESS, Vehtari et al., 2021) and the chainwise 4-split ĉR
(Sommer et al., 2024). As can be seen in Figures 6a and 6b, MILE also outperforms BDE in the
sampling and local mixing quality, revealing higher average ESS and smaller ĉR values.

4.1.2 EXTENDED BENCHMARKS

In addition to existing sampling-based inference benchmarks, we extend our analysis to more com-
plex and larger models, showcasing the successful application of MILE to convolutional neural
networks (CNNs), classification tasks, and sequential models across different data modalities (see

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Appendix A.2 for further details). The main reason we are able to advance existing benchmarks
is the feasibility of sampling such tasks using MILE. As it would have taken weeks to obtain the
inference using NUTS, we compare MILE mainly to the DE baseline but provide results for NUTS
for smaller models in the Appendix. Additionally, we report the average performance of a single DE
member and individual MCMC chain, which highlights the additional benefits of ensembling.

Results The results, presented in Table 2, not only confirm the accuracy and UQ improvements
over the DE baseline but also demonstrate performance gains in much larger models and new prob-
lem domains, confirming the positive effect of the additional exploration step taken by MILE.

Table 2: Hold-out test performance of MILE and baselines on various classification tasks using fully-connected
(FCN), convolutional (CNN) and attention-based (ATT) networks. ATT (v2, v3) employ pretrained embed-
dings.

Dataset Model # Params Accuracy (↑) LPPD (↑)
Avg. Single Ensemble Avg. Single Ensemble

DNN Chain DE MILE DNN Chain DE MILE
Ionosphere FCN (v1) 850 0.930 0.958 0.958 0.958 -0.404 -0.168 -0.309 -0.167
Income FCN (v2) 2386 0.843 0.851 0.846 0.851 -0.334 -0.315 -0.318 -0.313
IMDB ATT (v1) 68448 0.715 0.714 0.718 0.717 -0.550 -0.546 -0.544 -0.544
IMDB ATT (v2) 55778 0.779 0.754 0.781 0.782 -0.591 -0.583 -0.562 -0.481
IMDB ATT (v3) 106190 0.786 0.790 0.786 0.788 -0.509 -0.493 -0.507 -0.491
MNIST CNN (v1) 7452 0.916 0.939 0.956 0.970 -0.299 -0.209 -0.179 -0.129
F-MNIST CNN (v1) 7452 0.742 0.767 0.863 0.885 -0.725 -0.684 -0.486 -0.430
F-MNIST CNN (v2) 61706 0.890 0.919 0.918 0.925 -0.361 -0.225 -0.227 -0.216

4.2 ABLATION MODEL COMPLEXITY & RUNTIME

The UCI benchmarks have clearly showed the runtime advantage of MILE over BDE. To further in-
vestigate the impact of model complexity (number of parameters) and dataset size on these runtimes,
we conduct two ablation studies.

Scaling in model complexity Fig. 3 shows the evolution of the required sampling time and perfor-
mance metrics for increased model complexity. For the 5,426-dimensional case, MILE completes
sampling in under 30 minutes, while BDE takes several hours. More strikingly, MILE not only
remains faster but its performance gap to BDE increases with higher model complexity, indicating
both significant efficiency gains and superior performance in higher dimensions. To quantify the
time complexity, we fit a linearized power-law model to obtain the expected sampling time with
growing d: E[log(tSampler)] = β0 + β1 log(d). Both fits explain almost all the variance in the data
with R2 statistics of 0.98 for MILE and 0.96 for BDE, confirming the robustness of the speed ad-
vantage. The model fits are illustrated as dashed lines in Fig. 3.

Scaling in dataset size We analyze the impact of increasing dataset size. Fig. 3 (top right) illus-
trates how sampling time evolves for a fixed task and neural network across different data subsets.
Using the linear model E[tSampler] = β0 + β1n

2, we obtain fits that again almost perfectly resemble
the given data points, with R2 values of 0.99 for MILE and 0.96 for BDE. The ratio of the β1 coeffi-
cients, 6.6, again highlights MILE’s superior scaling in n2. Notably, visual inspection suggests that
BDE may scale worse than quadratically, but for consistency with MILE, we apply a conservative
quadratic fit. The scaling behavior again closely resembles a power-law and the observed quadratic
trend in n likely stems from memory-related hardware slowdowns as dataset sizes increase.

4.3 ABLATION HYPERPARAMETER ROBUSTNESS

To substantiate the claim that our proposed MCLMC configuration in MILE is, in fact, a robust and
auto-tuned off-the-shelf method, we conducted a series of ablation studies by changing the default
hyperparameters of MILE as suggested in Section 3 and examine the impact of these changes on per-
formance. For each ablation, we systematically evaluate the robustness of the approach by changing
a single hyperparameter on an appropriate grid. We report both the impact of hyperparameter varia-
tions on hold-out test performance metrics and the corresponding tuned values of the sampler’s key

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0

50

100

150

200

266 786 2594 5426
Number of Parameters

S
am

pl
in

g
T

im
e

(m
in

)

Sampling Time Scaling in Parameters

0

5

10

10000 20000 30000 40000
Number of Observations

S
am

pl
in

g
T

im
e

(h
)

Sampling Time Scaling in Observations

0.200

0.225

0.250

0.275

LPPD RMSE

3x8 (266) 3x16 (786) 3x32 (2594) 3x48 (5426) 3x8 (266) 3x16 (786) 3x32 (2594) 3x48 (5426)

0.4

0.6

0.8

Hidden Layers x Neurons (Parameters)

MILE BDE DE

Figure 3: Average sampling wallclock times (minutes, y-axis) of BDE (blue) and MILE (orange) for the
bikesharing dataset across 4 NN architectures with increasing parameter count (x-axis) on the upper
left. Average sampling wallclock times (hours, y-axis) for the protein dataset across varying training
data sizes (x-axis) on the upper right. Dashed lines indicate power-law and quadratic model fits respec-
tively. In both cases the sampling time ratio between BDE and MILE is around 7-9, independently of the
number of parameters and observations. This is a result of NUTS always being close to its maximum number
of iterations per sample, which we set to the default value of 1024 gradient calls. It therefore uses around
1024 × (1000 + 100) ≈ 11 × 105 gradient calls, as displayed also in Figure 2. MILE on the other hand
always uses 2 × 60000 = 12 × 104 calls, which gives a ratio of 9.2. The bottom row shows hold-out metric
performances across 4 network architectures. DE performance for the LPPD and RMSE metrics is indicated as
a grey reference. All charts come with standard errors over 3 data splits.

parameters—the momentum decorrelation scale (L) and step size (ϵ). While the effect on the latter
ones is interesting the primary focus is to attain estimates of the two parameters that yield robust and
good performance. For comparison, we also present the performance of BDE and the DE baseline.

Results The results are summarized in Fig. 4. Across all cases, MILE consistently shows robust
performance, with minimal sensitivity to changes in the hyperparameters. The changes in the major
parameters L and ϵ are generally small and with such marginal changes -especially to the important
ϵ- do not significantly affect the overall performance. An exception is the warmup budget, where
slightly improved performance can be observed with a significantly extended warmup phase. How-
ever, the improvements are marginal and come at a linear increase in runtime, making the additional
computational cost unjustifiable.

In conclusion, these results support the claim that MILE is effectively tuning-free, as in the con-
sidered cases, the method’s performance does not change drastically with different hyperparameters
and is close to optimal under the default settings. This robustness ensures that practitioners can
confidently apply the method without extensive tuning, further enhancing its practical utility.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

R
M

S
E

S
te

p
S

iz
e

LP
P

D
L

10
k

50
k

10
0k

15
0k

20
0k 10

k
50

k
10

0k
15

0k
20

0k

0.21

0.22

0.23

0.006

0.007

0.008

0.5

0.6

0.7

0.8

2.5

5.0

7.5

Warmup Steps/Budget
avg. DE (dotted)

avg. BDE (dashed)

(a) #Tuning steps/budget for the warmup.

R
M

S
E

S
te

p
S

iz
e

LP
P

D
L

0.
1

−
0.

05

0.
1

−
0.

1

0.
5

−
0.

05

0.5
−

0.1

1
−

0.
05

1
−

0.
1

10
−

0.
05

10
−

0.
1

10
0

−
0.

05

10
0

−
0.

1

0.
1

−
0.

05

0.
1

−
0.

1

0.
5

−
0.

05

0.5
−

0.1

1
−

0.
05

1
−

0.
1

10
−

0.
05

10
−

0.
1

10
0

−
0.

05

10
0

−
0.

1

0.21

0.22

0.23

0.004

0.008

0.012

0.016

0.5

0.6

0.7

2

3

4

5

Energy Variance Schedule (From − To)
avg. DE (dotted)

avg. BDE (dashed)

(b) Energy variance scheduler ranges.

R
M

S
E

S
te

p
S

iz
e

LP
P

D
L

10 50 100 150 200 10 50 100 150 200

0.21

0.22

0.23

0.005

0.006

0.007

0.008

0.009

0.5

0.6

0.7

2.0

2.5

3.0

Effective Samples
avg. DE (dotted)

avg. BDE (dashed)

(c) #Effective samples to estimate EEVPD

R
M

S
E

S
te

p
S

iz
e

LP
P

D
L

0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5

0.21

0.22

0.23

0.006

0.007

0.008

0.5

0.6

0.7

2.25

2.50

2.75

Trust in Estimate
avg. DE (dotted)

avg. BDE (dashed)

(d) Trust in the estimate parameter.

Figure 4: Results of the ablation studies conducted on the bikesharing dataset for the robustness of the
MILE algorithm to its tuning parameters (x-axes, proposed defaults bold). Both the average hold-out RMSE
and LPPD are reported with their standard error for 3 data splits. The same holds for the major parameters
of the sampling kernel L and the step size that were tuned by the proposed tuning. “#Effective samples to
estimate EEVPD“ and “Trust in the estimate“ are minor parameters of the step size adaptation algorithm which
determine the sample weighting during the EEVPD computation.

5 DISCUSSION

In this work, we proposed and evaluated Microcanonical Langevin Ensembles (MILE) for sampling-
based inference of Bayesian neural network posteriors. By adapting the recently proposed MCLMC
sampler and combining it with starting values obtained via Deep Ensembles, our comparative analy-
sis reveals substantial advancements in performance, sample quality, UQ, and runtime compared to
a NUTS-based alternative. Furthermore, the method enhances the predictability of resource require-
ments due to its deterministic number of gradient evaluations, which also simplifies parallelization.
In conclusion, our proposed method can be considered a reliable and efficient off-the-shelf method
and thus a big step forward toward making sampling-based inference feasible for generic BNNs.

Scope of this work and limitations While also yielding significant runtime savings for increased
dataset dimensions, the goal of this work was to overcome the most prevalent bottlenecks of NUTS-
based ensembling—its unfavorable scaling with respect to the number of parameters and unfore-
seeable resource allocation due its variable and high number of gradient evaluations. As MCLMC
and our modifications seem to have solved these problems, a next step for future work that we did
not compare in this study is the transition to Stochastic Gradient sampler variants. This transition is
typically not straightforward but would overcome another remaining limitation of sampling-based
inference, namely the scaling for large-scale datasets. Another possible enhancement of MILE we
did not investigate in this work is the use of alternative priors, e.g., discussed in Fortuin et al. (2022).

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Christophe Andrieu, Nando de Freitas, Arnaud Doucet, and Michael I. Jordan. An Introduction to
MCMC for Machine Learning. Machine Learning, 50:5–43, 2003.

Michael Betancourt. A Conceptual Introduction to Hamiltonian Monte Carlo, 2018.

Ronald Newbold Bracewell and Ronald N Bracewell. The Fourier transform and its applications,
volume 31999. McGraw-Hill New York, 1986.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/google/jax.

Alberto Cabezas, Adrien Corenflos, Junpeng Lao, and Rémi Louf. Blackjax: Composable Bayesian
inference in JAX, 2024.

Adam D. Cobb and Brian Jalaian. Scaling Hamiltonian Monte Carlo Inference for Bayesian Neural
Networks with Symmetric Splitting. In Proceedings of the Thirty-Seventh Conference on Uncer-
tainty in Artificial Intelligence, 2021.

Miles Cranmer, Daniel Tamayo, Hanno Rein, Peter Battaglia, Samuel Hadden, Philip J. Armitage,
Shirley Ho, and David N. Spergel. A bayesian neural network predicts the dissolution of compact
planetary systems. Proceedings of the National Academy of Sciences, 118(40):e2026053118,
2021.

Daniel Dold, David Rügamer, Beate Sick, and Oliver Dürr. Semi-structured subspace inference. In
Proceedings of the 27th International Conference on Artificial Intelligence and Statistics, Pro-
ceedings of Machine Learning Research. PMLR, 2024.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.
ics.uci.edu/ml.

Simon Duane, Anthony D Kennedy, Brian J Pendleton, and Duncan Roweth. Hybrid monte carlo.
Physics letters B, 195(2):216–222, 1987.

Alain Oliviero Durmus and Andreas Eberle. Asymptotic bias of inexact Markov Chain Monte Carlo
methods in high dimension, April 2023. arXiv:2108.00682 [cs, math, stat].

Mingzhou Fan, Ruida Zhou, Chao Tian, and Xiaoning Qian. Path-guided particle-based sampling.
In Proceedings of the 41st International Conference on Machine Learning, volume 235 of Pro-
ceedings of Machine Learning Research, pp. 12916–12934. PMLR, 21–27 Jul 2024.

Hadi Fanaee-T. Bike Sharing Dataset. UCI Machine Learning Repository, 2013.

Vincent Fortuin, Adrià Garriga-Alonso, Sebastian W. Ober, Florian Wenzel, Gunnar Ratsch,
Richard E Turner, Mark van der Wilk, and Laurence Aitchison. Bayesian neural network pri-
ors revisited. In International Conference on Learning Representations, 2022.

Philip Gage. A new algorithm for data compression. C Users J., 12(2):23–38, feb 1994.

A. Gelman, J. Hwang, and A. Vehtari. Understanding predictive information criteria for Bayesian
models. Statistics and Computing, 24(6):997–1016, 2014.

Andrew Gelman, John B Carlin, Hal S Stern, David B Dunson, Aki Vehtari, and Donald B Rubin.
Bayesian Data Analysis Third Edition (with Errors Fixed as of 15 February 2021). Published
online, 2013.

Louis Grenioux, Maxence Noble, Marylou Gabrié, and Alain Oliviero Durmus. Stochastic local-
ization via iterative posterior sampling. In Proceedings of the 41st International Conference on
Machine Learning, volume 235 of Proceedings of Machine Learning Research, pp. 16337–16376.
PMLR, 21–27 Jul 2024.

11

http://github.com/google/jax
http://github.com/google/jax
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Matthew D Hoffman and Andrew Gelman. The No-U-Turn Sampler: Adaptively Setting Path
Lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15:1351–1381,
2014.

Matthew D Hoffman and Pavel Sountsov. Tuning-free generalized hamiltonian monte carlo. In
International conference on artificial intelligence and statistics, pp. 7799–7813. PMLR, 2022.

Pavel Izmailov, Wesley J. Maddox, Polina Kirichenko, Timur Garipov, Dmitry Vetrov, and An-
drew Gordon Wilson. Subspace Inference for Bayesian Deep Learning. In Proceedings of the
Conference on Uncertainty in Artificial Intelligence, pp. 1169–1179, 2020.

Pavel Izmailov, Sharad Vikram, Matthew D. Hoffman, and Andrew Gordon Wilson. What Are
Bayesian Neural Network Posteriors Really Like? In Proceedings of the 38th International
Conference on Machine Learning, PMLR 139,, 2021.

Minas Karamanis, Florian Beutler, John A. Peacock, David Nabergoj, and Uros Seljak. pocoMC:
Preconditioned Monte Carlo method for accelerated Bayesian inference. Astrophysics Source
Code Library, pp. ascl:2207.018, July 2022a. ADS Bibcode: 2022ascl.soft07018K.

Minas Karamanis, Florian Beutler, John A Peacock, David Nabergoj, and Uroš Seljak. Accelerating
astronomical and cosmological inference with preconditioned Monte Carlo. Monthly Notices of
the Royal Astronomical Society, 516(2):1644–1653, September 2022b.

Ron Kohavi. Scaling up the accuracy of naive-bayes classifiers: a decision-tree hybrid. In Proceed-
ings of the Second International Conference on Knowledge Discovery and Data Mining, KDD’96,
pp. 202–207. AAAI Press, 1996.

Volodymyr Kuleshov, Nathan Fenner, and Stefano Ermon. Accurate uncertainties for deep learning
using calibrated regression. In ICML, volume 80 of Proceedings of Machine Learning Research,
pp. 2801–2809. PMLR, 2018.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and Scalable Predictive
Uncertainty Estimation using Deep Ensembles. In Proceedings of the 31st Conference on Neural
Information Processing Systems, 2017.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010. URL http://yann.
lecun.com/exdb/mnist/.

Benedict Leimkuhler and Sebastian Reich. A Metropolis adjusted Nosé-Hoover thermostat. ESAIM:
Mathematical Modelling and Numerical Analysis, 43(4):743–755, July 2009.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies, pp. 142–150,
Portland, Oregon, USA, June 2011. Association for Computational Linguistics.

Iain Murray, Ryan Adams, and David MacKay. Elliptical slice sampling. In Proceedings of the Thir-
teenth International Conference on Artificial Intelligence and Statistics, volume 9 of Proceedings
of Machine Learning Research, pp. 541–548, Chia Laguna Resort, Sardinia, Italy, 13–15 May
2010. PMLR.

Radford M. Neal. MCMC Using Hamiltonian Dynamics. Chapman & Hall / CRC Press,, 2011.

Igor Omelyan and Andriy Kovalenko. Generalised canonical–isokinetic ensemble: speeding up
multiscale molecular dynamics and coupling with 3D molecular theory of solvation. Molecular
Simulation, 39(1):25–48, January 2013.

12

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

I Ortigosa, R Lopez, and J Garcia. A neural networks approach to residuary resistance of sail-
ing yachts prediction. In Proceedings of the International Conference on Marine Engineering
(MARINE), volume 2007, pp. 250, 2007.

Theodore Papamarkou, Jacob Hinkle, M. Todd Young, and David Womble. Challenges in Markov
Chain Monte Carlo for Bayesian Neural Networks. Statistical Science, 37(3), 2022.

Theodore Papamarkou, Maria Skoularidou, Konstantina Palla, Laurence Aitchison, Julyan Arbel,
David Dunson, Maurizio Filippone, Vincent Fortuin, Philipp Hennig, José Miguel Hernández-
Lobato, Aliaksandr Hubin, Alexander Immer, Theofanis Karaletsos, Mohammad Emtiyaz Khan,
Agustinus Kristiadi, Yingzhen Li, Stephan Mandt, Christopher Nemeth, Michael A Osborne, Tim
G. J. Rudner, David Rügamer, Yee Whye Teh, Max Welling, Andrew Gordon Wilson, and Ruqi
Zhang. Position: Bayesian deep learning is needed in the age of large-scale AI. In Proceedings of
the 41st International Conference on Machine Learning, volume 235 of Proceedings of Machine
Learning Research, pp. 39556–39586. PMLR, 21–27 Jul 2024.

Weiwen Peng, Zhi-Sheng Ye, and Nan Chen. Bayesian deep-learning-based health prognostics
toward prognostics uncertainty. IEEE Transactions on Industrial Electronics, 67(3):2283–2293,
2020. doi: 10.1109/TIE.2019.2907440.

Lionel Riou-Durand, Pavel Sountsov, Jure Vogrinc, and Charles C Margossian. Adaptive Tuning for
Metropolis Adjusted Langevin Trajectories. In Proceedings of the 26th International Conference
on Artificial Intelligence and Statistics (AISTATS), 2023.

Jakob Robnik and Uros Seljak. Fluctuation without dissipation: Microcanonical langevin monte
carlo. In Symposium on Advances in Approximate Bayesian Inference, pp. 111–126. PMLR,
2024.

Jakob Robnik, G Bruno De Luca, Eva Silverstein, and Uroš Seljak. Microcanonical hamiltonian
monte carlo. The Journal of Machine Learning Research, 24(1):14696–14729, 2023.

Jakob Robnik, G. Bruno De Luca, Eva Silverstein, and Uroš Seljak. Microcanonical Hamiltonian
Monte Carlo. The Journal of Machine Learning Research, 24(1):311:14696–311:14729, March
2024. ISSN 1532-4435.

Vincent Sigillito, Scott Wing, Lisa Hutton, and K. Baker. Ionosphere. UCI Machine Learning
Repository, 1989. URL https://doi.org/10.24432/C5W01B.

John Skilling. Nested sampling. Bayesian inference and maximum entropy methods in science and
engineering, 735:395–405, 2004.

Emanuel Sommer, Lisa Wimmer, Theodore Papamarkou, Ludwig Bothmann, Bernd Bischl, and
David Rügamer. Connecting the dots: Is mode-connectedness the key to feasible sample-based
inference in bayesian neural networks? In Proceedings of the 41st International Conference on
Machine Learning. PMLR, 2024.

Pavel Sountsov and Matt D. Hoffman. Focusing on Difficult Directions for Learning HMC Trajec-
tory Lengths, May 2022. arXiv:2110.11576 [stat].

Tetsuya Takaishi and Philippe de Forcrand. Testing and tuning symplectic integrators for Hybrid
Monte Carlo algorithm in lattice QCD. Physical Review E, 73(3):036706, March 2006.

Yifeng Tian, Nishant Panda, and Yen Ting Lin. Liouville flow importance sampler. In Proceedings of
the 41st International Conference on Machine Learning, volume 235 of Proceedings of Machine
Learning Research, pp. 48186–48210. PMLR, 21–27 Jul 2024.

Athanasios Tsanas and Angeliki Xifara. Accurate quantitative estimation of energy performance of
residential buildings using statistical machine learning tools. Energy and Buildings, 49:560–567,
2012.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of the 31st Inter-
national Conference on Neural Information Processing Systems, NIPS’17, pp. 6000–6010, Red
Hook, NY, USA, 2017. Curran Associates Inc.

13

https://doi.org/10.24432/C5W01B

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Aki Vehtari, Andrew Gelman, Daniel Simpson, Bob Carpenter, and Paul-Christian Bürkner. Rank-
normalization, folding, and localization: an improved r for assessing convergence of mcmc (with
discussion). Bayesian Analysis, 16(2):667–718, 2021.

Jonas Gregor Wiese, Lisa Wimmer, Theodore Papamarkou, Bernd Bischl, Stephan Günnemann,
and David Rügamer. Towards efficient mcmc sampling in bayesian neural networks by exploiting
symmetry. In Joint European Conference on Machine Learning and Knowledge Discovery in
Databases, pp. 459–474. Springer, 2023.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a Novel Image Dataset for Bench-
marking Machine Learning Algorithms, 2017.

I-C Yeh. Modeling of strength of high-performance concrete using artificial neural networks. Ce-
ment and Concrete research, 28(12):1797–1808, 1998.

Ruqi Zhang, Chunyuan Li, Jianyi Zhang, Changyou Chen, and Andrew Gordon Wilson. Cyclical
Stochastic Gradient MCMC for Bayesian Deep Learning. In Proceedings of the Eighth Interna-
tional Conference on Learning Representations, 2020.

Erik Štrumbelj, Alexandre Bouchard-Côté, Jukka Corander, Andrew Gelman, Håvard Rue,
Lawrence Murray, Henri Pesonen, Martyn Plummer, and Aki Vehtari. Past, Present and Future of
Software for Bayesian Inference. Statistical Science, 39(1):46 – 61, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 FURTHER RESULTS

A.1.1 BENCHMARKS

UCI benchmark The results for the UCI benchmark including standard deviations are given in
Table 3.

Table 3: Average hold-out and standard error of LPPD and RMSE performance as well as wallclock time of the
DE baseline, BDEs and MILE for the six datasets used in Sommer et al. (2024) over 3 data splits. The wallclock
times of the samplers represent the additional sampling time on top of the DE fit which is also reported.

LPPD (↑) RMSE (↓) Time (min)
DE BDE MILE DE BDE MILE DE (∀Methods) BDE MILE

A 0.024± 0.024 0.558± 0.034 0.612± 0.011 0.309± 0.005 0.214± 0.013 0.206± 0.018 0.62± 0.15 2.25± 0.01 0.84± 0.06
B 0.390± 0.010 0.625± 0.004 0.645± 0.10 0.251± 0.004 0.242± 0.005 0.236± 0.004 5.67± 0.98 48.29± 0.51 5.40± 0.02
C −0.072± 0.018 0.301± 0.088 0.336± 0.054 0.304± 0.007 0.273± 0.012 0.250± 0.014 0.33± 0.03 1.56± 0.05 0.77± 0.06
E 1.227± 0.037 2.072± 0.036 2.300± 0.066 0.120± 0.022 0.045± 0.003 0.034± 0.007 0.39± 0.05 1.11± 0.00 0.75± 0.03
P −1.024± 0.029 −0.760± 0.010 −0.750± 0.018 0.742± 0.011 0.703± 0.003 0.702± 0.008 12.37± 1.00 152.85± 7.80 19.50± 0.01
Y 1.623± 0.101 2.674± 0.216 2.859± 0.199 0.081± 0.038 0.083± 0.011 0.033± 0.011 0.16± 0.01 0.58± 0.01 0.64± 0.02

Chain variances Our analyses of between- and within-chain variances (Fig. 6) show a distinctive
pattern of an increasing within-chain variance in layers further away from the input and output layer.
Contrasting this with the work by Sommer et al. (2024), this suggests that MILE also exhibits most
disconnected modes in the first and last layers. This analysis can help to assess whether sampling the
multimodal posterior surface of BNNs is an infeasible problem due to the combinatorial explosion
of modes with an increased depth of the network (which is not the case).

Calibration We also compute calibration errors (see Definition 2) and analyze coverage for cred-
ible intervals across various nominal coverage levels for the UCI benchmarks. Table 10 and Fig. 7
show that MILE achieves calibration quality comparable to the one of BDE, confirming its effec-
tiveness in uncertainty quantification.

Classification benchmark For a comparison with BDE, we ran the smaller tabular classification
tasks both using BDE and MILE. For the larger experiments (both considerably larger in dataset
and model complexity), BDE would require weeks to run and is thus omitted. The results of the
comparative study are given in Table 4 and suggest on-par performance of MILE with BDE and
clearly superior performance to the DE baseline.

Table 4: Hold-out test performance of BDE, MILE and baselines on the two tabular classification tasks.

Dataset Accuracy (↑) LPPD (↑)
Avg. Single Ensemble Avg. Single Ensemble

DNN Chain (BDE) Chain (MILE) DE BDE MILE DNN Chain (BDE) Chain (MILE) DE BDE MILE
Ionosphere 0.930 0.955 0.958 0.958 0.958 0.958 -0.404 -0.172 -0.168 -0.309 -0.172 -0.167
Income 0.843 0.850 0.851 0.846 0.851 0.851 -0.334 -0.315 -0.315 -0.318 -0.311 -0.313

A.1.2 ROBUSTNESS AND NUMERICAL STABILITY IN HIGH DIMENSIONS

Without our adjustments, MCLMC struggles with exploration and often fails to produce meaningful
samples, especially in high-dimensional settings. To highlight this, we conduct an ablation study,
assessing failure rates when applying MCLMC to BNNs without our proposed adjustments. Specifi-
cally, we use the same models as in Table 1 and run 100 chains each of MILE and näive MCLMC on
various datasets with differing parameter dimensions and with the same DE initialization, recording
the percentage of chains that resulted in numerical issues (e.g., NaN values rendering all samples
unusable). The results, given in Table 5, demonstrate the critical importance of our adjustments:
MCLMC exhibits failure rates between 78% and 86%, while MILE consistently shows 0% failures
across all datasets.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 5: Failure rates (NaN chains) for naive MCLMC and MILE across different datasets.

Dataset MCLMC (% NaN Chains) MILE (% NaN Chains)
Airfoil 86% 0%
Concrete 80% 0%
Energy 78% 0%
Yacht 85% 0%

A.1.3 FURTHER COMPARISONS

Comparison with Path-Guided Particle-based Sampling We conduct an empirical comparison
with the recently proposed Path-Guided Particle-based Sampling (PGPS, Fan et al., 2024). Follow-
ing the experimental setup of Section 5.2.1 of Fan et al. (2024), we conduct BNN inference on 7 UCI
classification datasets (Dua & Graff, 2017) and report the average negative log-likelihood (NLL) and
accuracy. Table 6 contains the results that showcase a clear pattern. MILE performs at least as good
in terms of accuracy as PGPS and is clearly superior in the NLL in most cases. Notably, running
MILE for all experiments and replications takes less than 5 minutes on a consumer CPU, with many
in under 1 minute. We compared PGPS and MILE in terms of runtime on the same hardware for
the Sonar dataset across five independent runs as an example. While MILE achieved a runtime of
0.94±0.06 minutes PGPS required 24.34±0.64 minutes. The major factor for the runtime gap is the
nested computation detailed in PGPS (Algorithm 3). For example, the authors chose 100k overall
steps each with 100 optimization steps and 300 Langevin adjustments for the UCI benchmark. This
incurs high computational costs, even without considering the additional overhead of the tuning of
the PGPS hyperparameters α and β.

Table 6: Hold-out test performance of Path-Guided Particle-based Sampling and MILE on the UCI classifica-
tion tasks of Table 1 and 4 of Fan et al. (2024) over five independent runs.

Dataset # Classes # Rows NLL (↓) Accuracy (↑)
PGPS MILE PGPS MILE

SONAR 2 207 0.536± 0.014 0.979± 0.094 0.798± 0.023 0.779± 0.047
WINEWHITE 7 4898 1.979± 0.009 1.110± 0.014 0.452± 0.010 0.565± 0.008
WINERED 6 1599 1.964± 0.012 1.060± 0.037 0.594± 0.018 0.604± 0.019
AUSTRALIAN 2 689 0.5042± 0.013 0.486± 0.087 0.862± 0.009 0.852± 0.015
HEART 5 302 0.943± 0.030 1.440± 0.078 0.256± 0.142 0.591± 0.033
GLASS 6 213 1.685± 0.030 1.160± 0.083 0.585± 0.080 0.643± 0.063
COVERTYPE 7 8000 1.602± 0.014 0.717± 0.024 0.590± 0.095 0.746± 0.006

Comparison with Symmetric Split HMC We also conduct an empirical comparison with Sym-
metric Split HMC (Sym-Split-HMC, Cobb & Jalaian, 2021). Symmetric Split HMC advances HMC
but inherits the same hyperparameter sensitivity (e.g., depends on trajectory length and step size).
These hyperparameters can limit the application in Bayesian neural network inference. In Cobb &
Jalaian (2021), the authors use Bayesian Optimization (BO) to derive hyperparameters which intro-
duces further complexity and a significant computational burden. Unlike MILE, Symmetric Split
HMC employs an MH correction step, which further increases the computational costs. Another
downside of Cobb & Jalaian (2021) is that with an increased number of batches, the computational
requirements increase notably. Both approaches have merit, but their main goal and contribution
differ considerably. Symmetric Split HMC focuses on memory scalability, while MILE optimizes
speed and performance. Nevertheless, an empirical comparison is interesting.

We replicate the multi-class classification task for the Fashion-MNIST dataset from Table 2 with the
CNN (v2) model using Sym-Split-HMC. We use the optimized hyperparameters reported in Cobb &
Jalaian (2021), Section 5.3, for the same dataset and task. We conduct all experiments on the same
hardware to ensure comparability of runtimes and report the results in Table 7. For a fixed amount
of posterior samples, the performance of Symmetric Split HMC benefits from smaller batch sizes.
However, as noted above and confirmed empirically, runtime increases notably for smaller batch
sizes. We choose a batch size of 64 and run Symmetric Split HMC for 200 samples, requiring 15.5
hours. The intended goal of sampling 1000 samples (as with MILE) would take more than 3 days
with this setting. For larger batches of 1024 images, we generate up to 3000 posterior samples for
Symmetric Split HMC, but without a notable gain in performance. Regardless of the specification, it

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

becomes clear that MILE achieves considerably better performance in a fraction of the required time
for Symmetric Split HMC (without considering the cost of running BO for hyperparameter tuning).

Table 7: Comparison of off-the-shelf MILE with Symmetric Split HMC on the Fashion-MNIST task using the
CNNv2 model. Total Time does not consider the necessary BO step of Symmetric Split HMC.

Method Accuracy (↑) LPPD (↑) Post. Samples Total Time
MILE 0.925 −0.216 1000 1h 21min
Sym-Split-HMC (Batch size: 64) 0.818 −0.548 200 (+50 burn-in) 15h 29min
Sym-Split-HMC (Batch size: 1024) 0.820 −0.525 1000 (+200 burn-in) 7h 6min
Sym-Split-HMC (Batch size: 1024) 0.813 −0.513 3000 (+300 burn-in) 18h 47min

A.2 EXPERIMENTAL SETUP AND FURTHER DETAILS

Software Our software is implemented in Python and mainly relies on the jax (Bradbury et al.,
2018) and BlackJAX (Cabezas et al., 2024) libraries. We further use Docker for a reproducible
experimental setup. Our code is available at https://anonymous.4open.science/r/
MILE-1CC1/.

Compute environment The experiments were run on two NVIDIA RTX A6000 GPUs and an
AMD Ryzen™ Threadripper™ PRO 5000WX/3000WX CPU with 64 cores. Sampling 12 chains
for most experiments allowed to parallelize the sampling on CPU such that multiple experiments
can be run at the same time.

Benchmark data Table 8 gives an overview of the data, and associated tasks and provides all
references.

Table 8: Overview of the used datasets with task description and references.

ABBREV. DATA SET TASK # OBS. FEAT. REFERENCE
A AIRFOIL REGRESSION 1503 5 DUA & GRAFF (2017)
B BIKESHARING REGRESSION 17379 13 FANAEE-T (2013)
C CONCRETE REGRESSION 1030 8 YEH (1998)
E ENERGY REGRESSION 768 8 TSANAS & XIFARA (2012)
P PROTEIN REGRESSION 45730 9 DUA & GRAFF (2017)
Y YACHT REGRESSION 308 6 ORTIGOSA ET AL. (2007); DUA & GRAFF (2017)
- IONOSPHERE BINARY-CLASS. 351 34 SIGILLITO ET AL. (1989)
- INCOME BINARY-CLASS. 48842 14 KOHAVI (1996)
- IMDB BINARY-CLASS. 50000 TEXT MAAS ET AL. (2011)
- MNIST MULTI-CLASS. 60000 28X28 LECUN & CORTES (2010)
- F(ASHION)-MNIST MULTI-CLASS. 60000 28X28 XIAO ET AL. (2017)

Optimization & sampling For all DE optimizations, we use ADAM with decoupled weight decay
(Loshchilov & Hutter, 2019) and use the negative log-likelihood loss as objective. We employ early
stopping on a validation set and use a 70% train, 10% validation and 20% test split if there is no
predefined test set as for the MNIST and Fashion MNIST dataset. If not specified otherwise we use
12 DE members and 12 chains. For all NUTS-based experiments, we use a burn-in of 100 samples
and collect 1000 posterior samples with a target acceptance rate of 0.8. Also, we employ an isotropic
standard Gaussian prior if not specified otherwise.

We do not adjust the effective number of samples in the MCLMC tuning even if we apply a consid-
erable amount of thinning, i.e., for 10000 samples with a thinning interval of 10, resulting in 1000
final samples, we still use an ESS of 100. However, for less than 1000 final samples, we hold ESS
fixed at 100 as a lower bound. We validated the robustness of this choice by various experiments
and ablation studies discussed in Section 4.

Regression tasks We train distributional regression models for all regression tasks just as Izmailov
et al. (2021); Sommer et al. (2024). That means, we parameterize the Gaussian likelihood with by
the output neurons as location and log-scale. For the experiments aggregated in Table 3, Table 10

17

https://anonymous.4open.science/r/MILE-1CC1/
https://anonymous.4open.science/r/MILE-1CC1/

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

and Fig. 2, we use configurations as in Sommer et al. (2024), in particular, use a fully-connected
neural network that has two hidden layers with 16 neurons each.

Ablation studies For the ablation studies, we use the larger UCI benchmark datasets
bikesharing and protein. If not specified otherwise, we use slightly larger networks than
before by considering three hidden layers of 16 neurons each. In order to analyze the behavior of
the samplers, we further implement a slim and deeper network with 6 hidden layers of just 8 neurons
each. The corresponding experimental results are reported in Fig. 6.

Classification tasks For the classification tasks, we follow the classical way of directly parame-
terizing the categorical distribution with as many output neurons as we have classes. For the tabular
datasets ionosphere and income, we use a simple feed-forward neural networks with 2 (v1)
and 4 (v2) hidden layers with 16 neurons each. We also consider new data modalities for the BDE,
namely images and text. The corresponding architectures are described in Table 9. Moreover, we
use 10 chains for CNNs, 8 chains for the sequential models v1-2, and 4 chains for the sequential
model v3 for these larger networks. We save only 100 samples per chain to be more memory ef-
ficient and are thus able to showcase improvement even for a smaller overall amount of posterior
samples. This is realized via thinning in both BDE and MILE.

Convolutional neural networks As convolutional neural network (CNN) architectures we choose
a LeNet-5 (Lecun et al., 1998) architecture (CNNv2) and also consider a slightly smaller yet similar
architecture (CNNv1). The architectures are described in detail in Table 9.

Table 9: CNN architectures.

CNNv2 CNNv1
Conv 6 filters, 5x5 kernel, padding 2, ReLU 1 filter, 3x3 kernel, padding 2, ReLU
Pooling 2x2 Avg Pooling, stride 2 -
Conv 16 filters, 5x5 kernel, no padding, ReLU -
Pooling 2x2 Avg Pooling, stride 2 -
FC 120 units, ReLU 8 units, ReLU
FC 84 units, ReLU 8 units, ReLU
FC Output units 8 units, ReLU
FC - Output units

Sequential networks Fig. 5 provides a schematic overview of the attention-based sequential
model architecture. We explore two main configurations: one where all model parameters, including
token and positional embeddings, are sampled (v1), and another using a fixed, pretrained embed-
ding (v2,v3). Both models use a context length of 70 tokens, with padding or truncation for shorter
or longer sequences. We trained a custom tokenizer with Byte-Pair Encoding (BPE, Gage, 1994),
targeting vocabulary sizes of 1k and 10k tokens for v1 and v2-3, respectively. To balance model
complexity, token embeddings were set to 48 dimensions for the fully sampled model v1 and 192
for the pretrained versions v2-3. Positional encodings are added before passing through an 8-head
attention mechanism, with 64-dimensional query, key, and value vectors (Vaswani et al., 2017) for
v1-2. For v3, we use a 10-head attention mechanism with 100-dimensional query, key and value
vectors. After average pooling, a feed-forward network with one hidden layer (64 neurons for the
full model v1, 32 for the pretrained version v2) or two hidden layers for v3 with 128 and 32 neurons
output the logits.

Prior induced regularization As the prior acts as a regularizer during the sampling phase, we
might exhibit performance degradation for larger classification models if the prior variance is cho-
sen inappropriately small. For the larger CNN and ATT models, we therefore choose the standard
isotropic Gaussians N (0, 0.1I) (CNNv2), N (0, 0.2I) (ATTv1,v2) and N (0, 0.4I) (ATTv3). While
a dedicated study on the influence of priors within this framework is out of scope for this work, we
think further tuning the prior variance or changing the prior distribution could be promising.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Text Input

BPE Tokenization

Embedding +

Positional Encoding

Multi-Head Attention Fully Connected

Logits

Figure 5: Schematic overview of the sequential attention-based model architecture (ATT) that is applied to the
IMDB Dataset.

A.3 DIAGNOSTICS

We report the BNN-specific diagnostics proposed in Sommer et al. (2024) in Fig. 6. The displayed
chain variances are discussed in Appendix A.1.1.

Effective sample size We observe very similar effective sample size (ESS) values for BDE as
reported in Izmailov et al. (2021); Sommer et al. (2024). In most cases, MILE is on a same or
slightly higher level of ESS. However, especially for weights that are close to the input and output,
we observe a much higher ESS than for BDE. For the airfoil dataset, this ESS increase also
given for deeper layers.

Convergence of MILE and chainwise mixing Based on the results of Robnik et al. (2024), we
know that MILE will provide the same convergence guarantees as long as the initialization is done
randomly or its effect becomes negligible as S → ∞ and the discretization error is MH-adjusted.
As our work’s focus is on empirical efficiency rather than guaranteed convergence, we a) do not use
MH-adjustment but control discretization error using the EEVPD b) do not run chains for a large
number of steps, and c) start chains using deep ensemble initializations. This is a compromise that
will induce a bias in the sampling distribution but ensures a more stable behavior during sampling,
and, in turn, increases the ESS.

To measure chainwise mixing, we proxy local chainwise convergence using the chainwise split
metric ĉR with a split factor of 4. Our results demonstrate that MILE clearly improves chainwise
mixing. However, all values remain notably higher than the conventional cutoff thresholds of 1.1
and 1.01 (Vehtari et al., 2021).

A.4 EVALUATION

Predictive performance Following Gelman et al. (2014); Wiese et al. (2023) and Sommer et al.
(2024), we choose the log posterior predictive density (LPPD) over a test set D∗, defined as

LPPD =
1

ntest

∑
(y∗,x∗)∈Dtest

log

(
1

K · S

K∑
k=1

S∑
s=1

p
(
y∗|θ(k,s)(x∗)

))
(4)

in order to quantify the quality of the PPD approximation and UQ in general. Intuitively, the LPPD
measures the average extent to which the predictive distribution accurately covers the observed
labels.

Additionally, we use the root mean squared error (RMSE) for regression tasks and accuracy (ACC)
for classification tasks to assess point predictions. While LPPD evaluates the overall fit of the pre-
dictive distribution, RMSE and ACC provide specific metrics for the accuracy of point predictions
in their respective domains.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

energy

bikesharing

airfoil

1 2 3 4 5 6 7

8
12
16
20

10
20
30
40
50

0
20
40

Hidden Layer

E
ffe

ct
iv

e
S

am
pl

e
S

iz
e

biases weights BDE MILE

(a) Effective Sample Size.

energy

bikesharing

airfoil

1 2 3 4 5 6 7

1.2
1.3
1.4
1.5

1.2

1.4

1.6

1.3
1.4
1.5
1.6
1.7

Hidden Layer

ch
ai

nw
is

e
R̂

biases weights BDE MILE

(b) Chainwise mixing measured by ĉR

energy

bikesharing

airfoil

1 2 3 4 5 6 7

0.5
1.0
1.5

0.5
1.0
1.5
2.0

0.0
0.5
1.0
1.5

Hidden Layer

B
et

w
ee

n
C

ha
in

 V
ar

ia
nc

e

biases weights BDE MILE

(c) Between Chain Variances.

energy

bikesharing

airfoil

1 2 3 4 5 6 7

0.0
0.1
0.2
0.3
0.4
0.5

0.00
0.05
0.10
0.15
0.20

0.1
0.2
0.3
0.4

Hidden Layer

W
ith

in
 C

ha
in

 V
ar

ia
nc

e

biases weights BDE MILE

(d) Within Chain Variances.

Figure 6: Different sampling diagnostics of a seven-layer BNN for three UCI benchmark datasets (in different
rows) separated by layer (x-axis) over three data splits.

Calibration Following Kuleshov et al. (2018), we define calibration and the empirical (squared)
calibration error in the regression setting. Intuitively one expects samples from the true PPD to be
contained in the Credibility Intervals (CIs) with the coverage probability of the CI. The following
definition formalizes this.

Definition 1 (Calibration) For some realized labeled dataset D = {(xi, yi)}ni=1 ∈ X × R of
random variables X,Y , we define a credible interval C1−α(x∗,D) to be calibrated at level 1−α ∈
(0, 1) iff for y∗ ∼ p(· | x∗,D) it holds that

P
(
y∗ ∈ C1−α(x∗,D)

)
= 1− α. (5)

If y∗ ∈ C1−α(x∗,D), we say that the CI C1−α(x∗,D) covers y∗. Thus calibrated models have
correct coverage probabilities.

This straightforwardly leads to the definition of the calibration error.

Definition 2 (Calibration error) We define the empirical weighted calibration error (CalE) over
the hold-out validation data set D∗ as the root mean squared difference of nominal 1 − αl and

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 10: Mean Calibration Error for the DE baseline, BDE and MILE for six datasets. The nominal coverage
levels used are 0.5, 0.75, 0.9 and 0.95. The experimental setup is identical to the one in Table 1.

Calibration Error (↓)
Dataset DE BDE MILE

Airfoil 0.077± 0.012 0.083± 0.009 0.086± 0.018
Bikesharing 0.125± 0.005 0.080± 0.003 0.081± 0.002
Concrete 0.066± 0.002 0.050± 0.003 0.068± 0.017
Energy 0.215± 0.015 0.032± 0.003 0.061± 0.014
Protein 0.054± 0.011 0.056± 0.002 0.057± 0.003
Yacht 0.253± 0.037 0.188± 0.032 0.133± 0.059

empirical 1− α̂l CI coverages over a range of L relevant coverage levels α1, . . . , αL:

CalE(D∗) =

(L∑
l=1

wl · (α̂l − αl)
2

) 1
2

(6)

with 1− α̂l =
1

|D∗|
∑

(x∗,y∗)∈D∗

I{y∗ ∈ C1−α̂l
(x∗,D)}, (7)

where wl are normalized weights of the coverage levels which are commonly considered to be con-
stant, i.e., wl = 1 ∀l ∈ [L].

We report this calibration error in Table 10 for DEs, BDE and MILE for multiple datasets in the
distributional regression setting. We consider the coverage levels 0.5, 0.75, 0.9, and 0.95. For
most cases, we observe that the calibration error of MILE is on the same level as BDE and both
methods often outperform the simple DE. For smaller datasets, however, estimating the empirical
quantiles for small α is less robust due to limited test data size. Since the calibration error does not
indicate whether the model is over- or underconfident, we also examine the coverage levels directly
in Figure 7. The plots show a high variation in coverage quality of DE-based confidence intervals by
exhibiting both strong structural under- and overconfidence, whereas the sampling-based methods
are generally better calibrated. The larger datasets, bikesharing and protein, which more
likely provide enough data for reliable empirical coverage estimates, are a good example of this: for
bikesharing, DE is more underconfident, while for protein, it is overconfident in contrast
to the sampling-based alternatives. A visual inspection reveals that both BDE and MILE tend to
be slightly underconfident, which is however often preferred by the practitioners over structural
overconfidence, as seen for example with DE in the protein dataset. All in all, a more careful
analysis of calibration of MILE would be a great direction for future work.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

energy protein yacht

airfoil bikesharing concrete

0.
50

0.
75

0.
90

0.
95

0.
50

0.
75

0.
90

0.
95

0.
50

0.
75

0.
90

0.
95

0.50

0.75

0.90
0.95

0.50

0.75

0.90
0.95

Nominal Coverage

E
m

pi
ric

al
 C

ov
er

ag
e

DE
BDE
MILE

Figure 7: Mean and standard error of empirical coverage (y-axes) for the DE baseline, BDE and MILE for six
datasets (facets). The nominal coverage levels used are 0.5, 0.75, 0.9 and 0.95 (x-axes). The experimental setup
is identical to the one in Table 1.

22

	Introduction and related literature
	Background
	Monte Carlo sampling
	Microcanonical Langevin Monte Carlo

	Microcanonical Langevin Ensembles
	Ensembling for reduced initialization error
	Tuning phase adaptions
	Step size
	Energy variance scheduler
	Effective sample size
	Phase III bottleneck

	Effective computational budget allocation

	Experiments
	Benchmarks
	UCI benchmarks
	Extended benchmarks

	Ablation model complexity & runtime
	Ablation hyperparameter robustness

	Discussion
	Appendix
	Further results
	Benchmarks
	Robustness and numerical stability in high dimensions
	Further comparisons

	Experimental setup and further details
	Diagnostics
	Evaluation

