
Learning Linear Attention in Polynomial Time

Morris Yau
MIT CSAIL

morrisy@mit.edu

Ekin Akyürek
MIT CSAIL

akyurek@mit.edu

Jiayuan Mao
MIT CSAIL

jiayuanm@mit.edu

Joshua B. Tenenbaum
MIT Brain and Cognitive Sciences

jbt@mit.edu

Stefanie Jegelka
TUM Munich, MCML, MIT CSAIL

stefje@mit.edu

Jacob Andreas
MIT CSAIL
jda@mit.edu

Abstract

Previous research has explored the expressivity of Transformer models in simu-
lating Boolean circuits or Turing machines. However, the efficient learnability of
Transformers from data has remained an open question. Our study addresses this
gap by providing the first polynomial-time learnability results (specifically strong,
agnostic PAC learning) for single-layer Transformers with linear attention. We
show that learning the optimal multi head linear attention can be recast as finding
the optimal kernel predictor in a suitably defined RKHS. Moving to generalization,
we construct an algorithm that, given a dataset, checks in polynomial time whether
the set of best fit multi head linear attention networks on this data all perform an
identical computation–a powerful notion for out of distribution generalization. We
empirically validate our theoretical findings on several canonical tasks: learning
random linear attention networks, key–value associations, and learning to execute
finite automata. Our findings bridge a critical gap between theoretical expressivity
and learnability of Transformer models.

1 Introduction

Transformers are the dominant neural architecture used in language modeling. A growing body of
work seeks to explain the behavior of trained Transformers and characterize their learnability [Pérez
et al., 2019, Edelman et al., 2022b, Hahn, 2020, Merrill and Sabharwal, 2023, Merrill et al., 2022,
2021, Liu et al., 2022, Feng et al., 2023, Edelman et al., 2022a, Wei et al., 2021, Zhang et al., 2024,
Trauger and Tewari, 2023, Chen and Li, 2024]. While a large body of work shows that Transformers
are expressive enough to implement important models of computation, it remains an open question
whether these constructions may be efficiently learned. Even verifying that a trained model has
successfully learned a computational procedure (uniform circuit family) has remained challenging.

Existing work shows positive results on how Transformer-like architectures can express diverse
computations, including simulating universal Turing machines [Li et al., 2024], evaluating sentences
of first-order logic [Barceló et al., 2020], and recognizing various formal languages [Strobl et al.,
2024]. On the other hand, results on learnability in polynomial time and samples with provable
guarantees tend to rely on strong data-generating assumptions, e.g., Gaussian data, etc. [Zhang et al.,
2023, Jelassi et al., 2022, Tian et al., 2023, Oymak et al., 2023, Fu et al., 2023, Tarzanagh et al., 2024,
Deora et al., 2023]. This brings us to our first motivating question.

Is there an efficient algorithm in time and samples that learns the optimal parameters of a class of
Transformer models for any dataset?

In this paper, we establish the strong, agnostic PAC-learnability of linear attention. Linear attention
variants (kernel, gated, flash, etc.) Yang et al. [2025, 2024], mLSTM in xLSTM Beck et al. [2024],

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



Retnet Sun et al. [2023], Mamba2 Dao and Gu [2024], DeltaNet Schlag et al. [2021]) have recently
matched or outperformed softmax attention in language and vision benchmarks, underscoring the
practical value of their theory; Ahn et al., 2024, Katharopoulos et al., 2020). Despite its name, linear
attention is not linear and its loss landscape is nonconvex. We focus our analysis on multi-head
linear attention networks, or MHLAs for regression tasks. An MHLA is parameterized by two
matrices (Vh, Qh) for each of H heads as such Θ = {(Vh, Qh)}h∈[H]. A one layer MHLA computes
Y =

∑
h∈[H] VhZ(Z

TQhZ). Here key and query matrices are fused into one, as they multiply one
another directly.

We first show that the computation performed by MHLAs can be reformulated as an elementwise
product between two larger matrices ⟨W,X (Z)⟩, where W =

∑
h∈[H] flatten(Vh)flatten(Qh)T and

X (Z) is a fixed cubic polynomial function of Z. Consequently, optimizing over the class of H-head
MHLA models is equivalent to optimizing over the class of rank-H matrices W . Furthermore, in
the full-rank space of d2 × d2 matrices, optimization of W can be performed via linear regression
with time polynomial in the inverse target error and size of the dataset. Finally, decomposing an
optimal W via SVD recovers an MHLA model with no more than d2 heads that is then guaranteed to
compete against the best MHLA parameters—establishing our agnostic learning result (the learned
model competes against the best choice of parameters in the hypothesis class).

Next, achieving zero training and validation loss does not by itself certify that a model has learned a
target computation well enough to generalize out of distribution. Imagine learning arithmetic from
input output pairs alone. Many distinct parameter settings can fit the same data, and fail for larger
length inputs. We therefore ask:

Is there a data-dependent, efficiently checkable condition that forces every empirical-risk minimiser
to realise the same function?

For MHLAs the answer is yes. Define the second-moment matrix of the cubic feature map X as

ΛD = E(Z,y)∈D
[
X (Z)X (Z)⊤

]
.

If ΛD is full rank—our certifiable identifiability criterion—then all empirical-risk minimisers of
MHLA coincide on every input. The test runs in polynomial time and is unaffected by parameter
redundancies such as rescaling V and Q.

Combining this certificate with our expressivity result yields a polynomial-time procedure that (i)
learns any circuit family implementable by MHLA whenever the training data satisfy the criterion, and
(ii) provably recovers, for example, a bounded-history universal Turing machine from its input–output
traces (Appendix C). Once learned, the MHLA simulates any such Turing machine on any input
within the prescribed size budget.

In the experimental section, we validate our theoretical findings. In Section 4.1, we train multiple
models using stochastic gradient descent on a dataset generated by a single linear attention network’s
output. Our results demonstrate that multi-head linear attention outperforms both single-layer linear
attention and multi-layer linear attention, achieving comparable results to our Algorithm 1. In
Section 4.2, we show that our proposed certificate directly correlates with generalization error even
for models trained using stochastic gradient descent. In summary:

• We provide a polynomial time algorithm that, given any dataset, finds the best fit parameters
for multi head linear attention and generalizes with polynomial data, i.e., strong agnostic
PAC learning (Section 2.1).

• We find an efficiently checkable condition (certifiable identifiability) on the training dataset
that certifies every empirical risk minimizer of a MHLA is functionally equivalent, and
therefore has the same behavior out of distribution (Appendix A see Lemma A.3).

• We study empirically the value of overparameterization with multiple heads vs. multiple
layers in Section 4.1. We verify our certificates empirically on the associative memory task
in Section 4.2.

2



Algorithm 1 MHLA Learning via Regression

1: Input: Data D := {(Zi, yi)}i∈[N ] for Zi ∈ Rd×ni and y ∈ Rd

2: {Xi}i∈[N ] := ExtractFeature(D), generates

Xi :=


⟨z1:, z1:⟩z1ni ⟨z1:, z2:⟩z1ni · · · ⟨z1:, zd:⟩zdni
⟨z2:, z1:⟩z1ni ⟨z2:, z2:⟩z1ni · · · ⟨z2:, zd:⟩zdni

...
...

. . .
...

⟨zd:, z1:⟩z1ni ⟨zd:, z2:⟩z1ni · · · ⟨zd:, zd:⟩zdni

 . (1)

3: Create dataset {Xi,a}i∈[N ],a∈[d]. Let Xi,a ∈ Rd2×d2 be a matrix that is comprised of Xi in the a′th block
of d rows and 0 everywhere else:

4:
Xi,a =

[
0 . . . X T

i . . . 0
]T (2)

5: Let Ŵ ∈ Rd2×d2 be regressor:

Ŵ := argmin
W∈Rd2×d2

∑
i∈[N ]

∑
a∈[d]

(⟨W,Xi,a⟩ − yi,a)
2 (3)

where yi,a is the a’th coordinate of yi.
6: Take the SVD of Ŵ = ABT =

∑
i∈[Ĥ] AiB

T
i where Ĥ is the rank of Ŵ .

7: Vh = Fold(Ah) and Qh = Fold(Bh) where Fold : Rd2 → Rd×d takes a vector p := [pij for i ∈
[d] and j ∈ [d]] and reshapes into a matrix P ∈ Rd×d such that Pij = pij .

8: Return: {Vh, Qh}h∈[Ĥ]

2 Technical Overview

We start with basic definitions of a multi-head linear attention (MHLA) module, an attention module
without the softmax activation.
Definition 2.1 (Multi-Head Linear Attention). Let Z ∈ Rd×n be a matrix of input data. Let
Θ = {(Vh, Qh)}h∈[H] be a set of parameters where each Vh, Qh ∈ Rd×d denotes value and key-
query matrices for all heads h ∈ [H]. We say Θ ∈ ΩH where ΩH is the space of sets of H
ordered tuples of d× d matrices. We define multi-head linear attention (MHLA) to be the function
MHLAΘ : Rd×n → Rd×n,

Ŷ = MHLAΘ(Z) =
∑

h∈[H]
VhZ(Z

TQhZ) , (4)

where Ŷ ∈ Rd×n is the output of the one layer linear attention. We will primarily be interested in the
rightmost column vector output by MHLAΘ (e.g., as in auto-regressive language models), which is:

ŷ = MHLAΘ(Z) =
∑

h∈[H]
VhZ(Z

TQhZ[:, n]) , (5)

where Z[:, n] is the n’th column of Z.

2.1 Polynomial-time learnability

Our main result is that MHLA is learnable in polynomial time. Colloquially, Algorithm 1 re-
turns an MHLA that attains the global minimum of the training loss and requires as few as
poly(d, ϵ−1, log(δ−1)) samples to achieve ϵ generalization error with probability 1 − δ. Our al-
gorithmic guarantees do not require the data to be “realizable” (that is, the data need not be generated
by an underlying MHLA).
Theorem 2.2 (Learnability of Linear Attention). Let D be a dataset D = {Zi, yi}i∈[N ] drawn i.i.d.
from a distribution D where each Zi ∈ Rd×ni , yi ∈ Rd. The embedding dimension d is fixed across
the dataset, whereas ni can be different for each datapoint. Let nmax = maxi∈[N ] ni be the maximum
sequence length, and let ΩH be the space ofH pairs of value and key-query matrices {(Vh, Qh)}h∈[H]

for any H ∈ [1,∞). Then there is an algorithm (Algorithm 1) that runs in time O(Nd4nmaxϵ
−1)

and that, given input–output pairs {(Zi, yi)}i∈[N ], returns Θ̂ = {(V̂h, Q̂h)}h∈[Ĥ] ∈ ΩĤ for Ĥ ≤ d2

3



such that with probability 1− δ,

E(Z,y)∈D
[
∥MHLAΘ̂(Z)− y∥2

]
−minΘ∈ΩH E(Z,y)∈D

[
∥MHLAΘ(Z)− y∥2

]
≤ ϵ (6)

with sample complexity N = O
(
1
ϵ

(
d4 + log(δ−1)

))
.

Below we describe the high-level ideas behind the algorithm; a formal proof is given in Appendix D.
Note that if we are purely concerned with guaranteeing that we can find a global minimum of the
training loss, we may remove the i.i.d. assumption: Algorithm 1 is always within error ϵ of the
optimal training loss. This is also detailed in Appendix D. Specific issues related to generalization
over autoregressive sequences rather than i.i.d. data are handled in the UTM learning result with a
standard union bound on the sample complexity; see Section F.2.

The main idea behind Algorithm 1 is to construct a feature mapping X : Rd×n → Rd×d2 from
the data covariates Z with entries zij for the entry in the i’th row and j’th column and rows
z1:, z2:, ..., zd: ∈ Rn to a feature space of dimension d× d2. The map X (Z) is defined as:

X (Z) := 
⟨z1:, z1:⟩z1n ⟨z1:, z2:⟩z1n · · · ⟨z1:, zd:⟩zdn
⟨z2:, z1:⟩z1n ⟨z2:, z2:⟩z1n · · · ⟨z2:, zd:⟩zdn

...
...

. . .
...

⟨zd:, z1:⟩z1n ⟨zd:, z2:⟩z1n · · · ⟨zd:, zd:⟩zdn

 . (7)

Here, we index the rows of X (Z) by j ∈ [d] and the columns by all tuples (k, ℓ) ∈ [d]2 such that
X (Z)j,(k,ℓ) = ⟨zj:, zk:⟩zℓn. At a high level, Algorithm 1 is a kernel method defined by the feature
mapping X . The learned kernel predictor (a regressor) can be mapped back onto a set of parameters
{V̂h, Q̂h}h∈Ĥ for an MHLA with no more than d2 heads via SVD. Hence, the relaxation translates
into more heads. Interestingly, in our experiments in Section 4.1, d2 heads also benefit learning with
SGD.

Proof Idea: Much of the notation in this section is defined in Algorithm 1. First we write down
the loss, and observe that a one-layer attention network is a quadratic polynomial in {Vh, Qh}h∈[H]

with input features Xi,a:

LΘ({(Zi, yi)}i∈[N ]) =
1

N

∑
i∈[N ]

∑
a∈[d]

(⟨TΘ, Xi,a⟩ − yi,a)
2 (8)

with

TΘ :=
∑
h∈[H]

flatten(Vh)flatten(Qh)T

=
∑
h∈[H]


Vh,00Qh,00 Vh,00Qh,01 . . . Vh,00Qh,dd
Vh,01Qh,00 Vh,01Qh,01 . . . Vh,01Qh,dd

...
...

...
Vh,ddQh,00 Vh,ddQh,01 . . . Vh,ddQh,dd


Now we relax this objective by replacing TΘ with an unconstrained matrix W ∈ Rd2×d2 . While
TΘ is a rank-H matrix, we allow W to be a general matrix, so this relaxation is guaranteed to have
a smaller loss. Furthermore, the loss can be optimized via ordinary least squares. Finally, if we
apply SVD to W we obtain a set of d2 left and right singular vectors scaled by the square root the
magnitude of the singular value. Here the scaled left singular vectors correspond to V̂h and the scaled
right singular vectors correspond to Q̂h for h ∈ [Ĥ]. Since the rank of W is no greater than d2 the
resulting MHLA satisfies Ĥ ≤ d2. The sample complexity follows from classical results in VC
theory [Kearns and Vazirani, 1994]. For a full proof see Appendix D.

4



2.2 Identifiability

A direct implication of our algorithmic result is the construction of an efficiently checkable condition
on the data that guarantees every empirical risk minimizer in a family of MHLAs computes the
same function. Let ΛD be the second moment of a specific mapping H(Z) of the data, defined in
Lemma A.3.

ΛD = E[H(Z)H(Z)T ] =
1

N

∑
Z∈D

[H(Z)H(Z)T ]. (9)

Then if ΛD is full rank or equivalently its minimum eigenvalue is greater than zero, then it is
guaranteed that MHLA is identifiable with respect to the data.
Lemma 2.3 (Certificate of Identifiability—Informal). Let dataset D = {(Zi, yi)}i∈[N ] be realizable
(see Definition A.2) by an H-head MHLA for any H ≥ 1. Let H be the uniform family of polynomials
Hn : Rd×n → Rψ for ψ :=

(
d
2

)
d + d2 defined as in Algorithm 2. For convenience we drop the

subscript of n and write H(Z) to mean Hn(Z) for Z ∈ Rd×n. Finally, define ΛD ∈ Rψ×ψ to be the
second moment of the data features:

ΛD := ED
[
H(Z)H(Z)T

]
. (10)

Then if the eigenvalue λmin (ΛD) > 0, we say that MHLAΘ is certifiably identifiable with respect to
D. That is, for every pair of empirical risk minimizers Θ,Θ′ ∈ ΩH

MHLAΘ = MHLAΘ′ (11)

i.e., the two models have the same outputs on all inputs.
Corollary 2.4. There is a polynomial p : ΩH → Rψ such that for any pair of parameters Θ,Θ′ ∈ ΩH
we have MHLAΘ = MHLAΘ′ if and only if p(Θ) = p(Θ′).

The polynomial p defines the equivalence class of parameters that compute the same function. For a
formal statement of Lemma 2.3 see Lemma A.3. For handling of errors for approximate empirical
risk minimization see Lemma A.7. Moreover, the certificate given by Algorithm 2 is not the only
choice of feature mapping H that would certify identifiability; Lemma E.1 gives a general certificate
for identifiability. One way to interpret Corollary 2.4 is that two MHLA models parameterized by Θ
and Θ′ compute the same function if and only if they are the same linear function in a specific feature
space (akin to matching coefficients in polynomial regression), which in turn is true if p(Θ) = p(Θ′)
for the polynomial p given in Corollary A.4. Comparing distance between the coefficients in the range
of p is essentially the only meaningful metric of distance that is agnostic to the choice of dataset.

Finally, we answer a few natural questions related to identifiability which we briefly summarize
here. Firstly, perfectly noisy input data is identifiable under weak assumptions on the moments of
the noise (see Lemma A.5). Secondly, the model class of MHLA with at least d2 heads is certifiably
identifiable from the second moment condition alone, and does not require realizability of the data
(see Lemma A.6). Finally, we empirically verify the min eigenvalue of ΛD predicts the generalization
behavior of SGD for MHLA for the problem of learning key–value memories (see Figure 2).

3 Application to learning Universal Turing Machines.

In Appendix B, we demonstrate that MHLAs can (autoregressively) express universal Turing machines
with polynomially bounded computation histories. In this context, our identifiability results imply
that, given a certifiably identifiable dataset of Turing machines and their computation histories on
input words, empirical risk minimization and in particular Algorithm 1 will learn the universal Turing
machine in a strong sense (Lemma C.5 for learning, Lemma A.8 with identifiability). That means at
test time the learned MHLA will simulate any Turing Machine on any input word up to a given size
for a bounded number of steps. For more detail see C
Lemma 3.1 (Learning UTM from Certifiably Identifiable Data). Let D = {(Zi, yi)}i∈[N ] be a
dataset satisfying yi = MHLAΘ for Θ ∈ ΩH being the expressibility parameters of Lemma B.1 for
the set of TM’s/words (M,x) ∈ ∆(Q̂, Σ̂, n̂, Φ̂). If D is certifiably identifiable with λmin(ΛD) > η,
then there is a poly(d,N, Q̂, Σ̂, n̂, Φ̂, η−1) time algorithm that outputs a set of parameters Θ̂ ∈ Ωd2

such that for all TM’s M and input words x in ∆(Q̂, Σ̂, n̂, Φ̂), we have

CHΘ̂(M,x)c(t)[: −kt] = xt . (12)

5



The c(t) step of the autoregressive computation history of Θ̂ is equal to the t’th step of the computation
history of M on x.

4 Experiments

In our experiments, we validate our theoretical predictions in settings where Transformers are
trained using stochastic gradient descent (SGD), as follows: Firstly, Theorem 2.2 exploits that
adding a sufficient number of heads to an MHLA leads to a convex optimization problem after
reparameterization. This suggests that over-parameterizing by adding heads may provide optimization
benefits. We investigate the role of over-parameterization in multi-head and multi-layer linear attention
networks. For random data generated from linear attention networks, we observe that adding more
heads achieves faster convergence of training loss than adding more layers. This suggests that while
depth is important for expressiveness, the number of heads is important for optimization (Figure 3).

Secondly, we empirically verify the certificate of identifiability provided by Lemma A.3 on datasets for
associative memory [Bietti et al., 2023, Cabannes et al., 2024] with different choices of embeddings,
demonstrating convergence to the equivalence class of the true parameters when λmin(ΛD) > 0 and
converging to spurious solutions when λmin(ΛD) = 0 (Figure 2).

4.1 Do extra heads help optimization with SGD?

To probe whether more heads facilitate learning in general, we train our convex relaxation and
different types of over-parameterized models with SGD on data generated from a single-layer linear
attention network. For the data, we initialize a single-layer linear attention network with parameters
V ∈ R1×d and Q ∈ Rd×d, sampled from a Gaussian distribution N (0, I√

d
). Input sequences

Zi ∈ RT×d are sampled from N (0, I√
T
), where i = 1, . . . , N , T = 100 is the maximum number

of time steps, and N is the dataset size. We generate outputs by running the ground-truth network
auto-regressively: yit = V Zi1:t(Z

i[:, : t]QZi[:, t]), creating our dataset D = {(Zi, yi)}Ni=1.

In addition to learning with Algorithm 1, we train three types of models on this data using SGD: (1)
multi-head linear attention as in Equation (4); (2) multi-layer linear attention with a single head; (3) an
ordinary Transformer network [Vaswani et al., 2017] with softmax attention, multi-layer perceptron
blocks, and layer normalization.

Figure 1 illustrates the results. For same experiment with d = 4 and N = 2048 see Figure 3a in the
appendix. Detailed hyperparameters and optimization procedures are described in Appendix G.1.

We observe that multi-head attention scales effectively with an increasing number of heads, resulting
in improved performance. Notably, for d = 2 or 4 input dimensions, using d2 heads yields the
best performance and is empirically comparable to Algorithm 1, approaching floating-point error
precision. Theoretically, d2 is the maximum rank in the relaxation in Algorithm 1. In contrast,
multi-layer attention models show diminishing returns and perform worse than single-layer attention.
Interestingly, adding more layers can sometimes degrade performance. The full transformer model,
which incorporates softmax attention, MLP layers and layer normalization, does not significantly
outperform the single-layer linear attention model on this task.

These findings suggest that the type of over-parameterization matters significantly in learning linear
attention networks. Interestingly, multi-head architectures appear to be particularly effective—aligned
with the structure of Algorithm 1, where the relaxation corresponds to adding more heads.

4.2 Does certifiable identifiability predict generalization?

In Lemma A.3, we developed a certificate that provides a sufficient condition for identifiability. To
assess the practical relevance of this certificate, we conducted an empirical analysis of convergence
in cases where the condition is not satisfied. The results of this analysis are presented in Figure 2.

Associative Memory Associative Memory [Bietti et al., 2023, Cabannes et al., 2024] is a task of
looking up a value in a table with a query. Via a single head one-layer linear attention model it can be

6



0 100 200 300 400 500
epochs

10 16

10 13

10 10

10 7

10 4

10 1

M
SE

(y
,y

)

m=1, n=1, linear
m=2, n=1, linear
m=4, n=1, linear
m=8, n=1, linear
m=16, n=1, linear
m=1, n=2, linear
m=1, n=4, linear
m=1, n=1, full
m=2, n=1, full
m=1, n=2, full
Convex Algorithm

(a) N = 512, d = 2

0 100 200 300 400 500
epochs

10 16

10 13

10 10

10 7

10 4

10 1

M
SE

(y
,y

)

(b) N = 2048, d = 4

Figure 1: Performance comparison of multi-head, multi-layer linear attention models and the
original Transformer model (denoted as full). We trained using SGD on synthetic data generated
from a single-layer linear attention model for varying training set sizes (N ) and input dimensions
(d), number of heads m, and number of layers n. Results demonstrate that multi-head architectures
converge faster on different input dimensions and match the performance of our algorithm 1 (convex
algorithm). Increasing the number of layers or incorporating multilayer perceptrons (MLPs) and
layer normalization did not yield consistent improvements. Shading indicates the standard error over
three different runs.

represented with ground truth parameters Θ = {V,Q} where V,Q ∈ R2d×2d:

V =

[
0 0
0 Id×d

]
Q =

[
Id×d 0
0 0

]
.

The data Z is drawn as follows: let k1, k2, ..., kd ∈ Rd be random variables corresponding to keys in
a lookup table, let v1, v2, ..., vd ∈ Rd be random variables corresponding to values in a lookup table,
let q ∈ Rd be a random variable corresponding to a query to the lookup table, and ζ ∼ N (0, I) be
random noise, such that Z and the output vector y are defined as:

Z =

[
k1 k2 . . . kd q
v1 v2 . . . vd ζ

]
(13)

y = MHLAΘ(Z) =

[
0∑

j∈[d]⟨q, kj⟩vj

]
. (14)

Mixture of distributions: We generate two datasets, one that has identifiable λmin(ΛD) > 0 and
one that is nonidentifiable with λmin(ΛD) = 0. The identifiable dataset is generated with {kj}j∈[d]

and {vj}j∈[d] drawn i.i.d N (0, I). The query q is chosen to be one of the {kj}j∈[d] uniformly at
random. The non-identifiable dataset is drawn such that {kj}j∈[d] forms a random unitary matrix,

7



2 13 2 12 2 11 2 10 2 9 2 8 2 7

Eigenvalue

0

1

2

3

4

di
st

an
ce

(p
(

), 
p(

))

(a) Certificate of identifiability in form of
the minimum Eigenvalue λmin(ΛD) vs. Eu-
clidean distance in p feature space of param-
eters learned by Algorithm 1.

Co
nv

ex
1-

he
ad

2-
he

ad

4-
he

ad

8-
he

ad

10 6

10 4

10 2

100

di
st

an
ce

(p
(

),
p(

))

Certificate
Full Rank
Low Rank

(b) Distance to ground truth parameters in p feature
space for certifiably identifiable data (min eigenvalue
= 0.06) vs. nonidentifiable data (min eigenvalue = 0).
Here the parameters of MHLA are learned via SGD.
Error bars are standard error on three different runs.

Figure 2: Impact of data distribution on the associative lookup task performance: We generated
training data for an associative lookup task [Bietti et al., 2023, Cabannes et al., 2024] using mixtures
of two distributions: (1) Gaussian key and value vectors, and (2) random unitary key and value vectors.
By adjusting the mixture probability, we can manipulate the certificate value (minimum eigenvalue
of the data covariance matrix), as unitary key–value vectors give rank-deficient “certificates”. (a)
Algorithm 1: as the minimum eigenvalue increases, Algorithm 1 converges more closely to the true
parameters. (b) SGD: SGD learns parameters that are equivalent to the ground truth parameters in p
feature space for certifiably identifiable data, but for unidentifiable data, they are far apart in p feature
space and therefore compute different functions.

i.e., ∥kj∥ = 1 for all j ∈ [d] and ⟨kj , kj′⟩ = 0 for all j ̸= j′. Similarly, {vj}j∈[d] is also drawn
from a randomly generated unitary matrix. We draw new random unitary matrices for each datapoint,
where q is again chosen to be one of the {kj}j∈[d] uniformly at random. We set d = 4 dimensions
for both datasets, and draw N = 214 samples for each dataset. We mix the two datasets together with
a mixing probability ranging from 95% unidentifiable to 100% unidentifiable. In this manner we
generate a spread of datasets with different values for λmin(ΛD) that tend to zero.

Certifiable Identifiability for Algorithm 1: For each dataset, we run Algorithm 1 which returns
Θ̂. We compare Θ̂ to the ground truth Θ in p feature space via the distance

d(Θ, Θ̂) := ∥p(Θ)− p(Θ̂)∥F . (15)

Here, p is the polynomial given in Lemma A.3. Recall from Corollary A.4 that p defines the
equivalence class of parameters that compute the same function, i.e., MHLAΘ = MHLAΘ̂ if and
only if p(Θ) = p(Θ̂). On each dataset, we measure the certificate value λmin(ΛD) on the x-axis vs.
d(Θ, Θ̂) on the y-axis. In Figure 2a, we see that as the certificate value increases, d(Θ, Θ̂) decreases,
indicating that MHLAΘ and MHLAΘ̂ compute the same function.

Certifiable Identifiability for MHLA: Our notion of certifiable identifiability in Lemma A.3
applies to any empirical risk minimizer. Therefore, it applies to popular optimizers like SGD and
Adam if they achieve the minimum of the loss, which is in our synthetic case equal to zero. In
Figure 2b, we train MHLA models via SGD with 1, 2, 4, and 8 heads. For identifiable data with
minimum eigenvalue 0.06, we see that the learned parameters and ground truth parameters are the
same in p feature space. However, for unidentifiable data with minimum eigenvalue 0, learned
parameters and ground truth parameters are far apart in p feature space and therefore compute
different functions.

8



5 Related Work

5.1 Formal Expressivity of Transformers

A large body of work has been trying to tackle the problem of quantifying what algorithmic tasks can a
Transformer do, in terms of various kinds of circuit families [Pérez et al., 2019, Edelman et al., 2022b,
Hahn, 2020, Merrill and Sabharwal, 2023, Merrill et al., 2022, 2021, Liu et al., 2022, Feng et al., 2023].
In particular, researchers have studied how Transformers can realize specific DSLs [Weiss et al.,
2021], logic expressions [Dong et al., 2019, Barceló et al., 2020, 2024], Turing machines [Dehghani
et al., 2018, Giannou et al., 2023, Pérez et al., 2021], formal language recognition [Hao et al., 2022,
Chiang et al., 2023], as well as automata and universal Turing machines [Liu et al., 2022, Li et al.,
2024]. However, while these works primarily focus on determining the types of problems whose
solutions a Transformer can express, they often overlook the crucial question of how these solutions
can be learned from data. Moreover, there is limited discussion on the sufficiency of the dataset
itself—whether the data available can identify the underlying “true” function or algorithm that we
aim to capture.

5.2 Learning Transformers

We break down the literature on learning transformers. First, there is the literature on statistical
learnability, where the focus is on the amount of data required to learn without considering whether
there is a tractable algorithm for learning [Edelman et al., 2022a, Wei et al., 2021, Zhang et al., 2024,
Trauger and Tewari, 2023].

Second, there are learnability results for single head transformers for data distributions under a variety
of assumptions. In particular, Zhang et al. [2023] provide learnability results for in-context linear
regression; Jelassi et al. [2022] show that data with spatial structure can be learned; the work of Tian
et al. [2023] analyzes SGD training dynamics for a toy model for data; and Oymak et al. [2023] study
the prompt attention model.

Third, the literature on provable guarantees for learning multi head attention is rather sparse. Fu et al.
[2023] give learnability results in a regime where attention matrices are fixed and only the projection
matrices are trained. Tarzanagh et al. [2024] show connections between single layer attention
optimization and SVM learning. Under a good gradient initialization condition, overparameterization
condition, and a condition on the scores of optimal tokens the global convergence of gradient descent
to a particular SVM problem can be established. Deora et al. [2023] analyze a setting of learning
multi head attention with gradient descent under their Assumption 2. In the words of the authors
"these conditions are related to the realizability condition, which guarantees obtaining small training
error near initialization", which they instantiate with the separability of the data in an NTK space
and a proximity of initialization to realizable parameters. Interestingly, they find that multi head
attention has benign optimization properties. Finally, Chen and Li [2024] study learning for multi
head attention for well structured data that is drawn independent Bernoulli or Gaussian. They provide
an extensive discussion of lower bounds for learning multi head attention.

6 Conclusion and Limitations

In this work we tackle the fundamental problem of finding an efficient algorithm that provably learns
the weights of a linear Transformer. Our key theoretical ingredient is to consider a model class
that’s sufficiently "wide" (scaling number of heads), and to find that the loss is convex under this
scaling, with generalization guaranteed by the classical VC theory. This reinforces the empirical
observation that scaling model size enables efficient optimization and can still result in successful
generalization. Our theory extends trivially when arbitrary feature maps ϕ(·) are applied to keys and
queries providing a natural avenue for extending our theory to models that can approximate softmax
transformers with custom key-query kernels. Of course the model class we consider is far simpler
than modern LLM’s, but we consider our work an important step towards designing algorithms with
provable guarantees for training neural sequence models.

9



Acknowledgments

We gratefully acknowledge support from NSF grants IIS-2214177, IIS-2238240, CCF-2112665 and
DMS-2134108; from AFOSR grant FA9550-22-1-0249; from ONR MURI grant N00014-22-1-2740;
and from ARO grant W911NF-23-1-0034; from the OpenPhilanthropy Foundation; from MIT Quest
for Intelligence; from the MIT-IBM Watson AI Lab; from ONR Science of AI; from Simons Center
for the Social Brain; and from an Alexander von Humboldt professorship. Any opinions, findings
and conclusions or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of our sponsors.

References
Kwangjun Ahn, Xiang Cheng, Minhak Song, Chulhee Yun, Ali Jadbabaie, and Suvrit Sra. Linear

attention is (maybe) all you need (to understand transformer optimization), 2024. URL https:
//arxiv.org/abs/2310.01082.

Ekin Akyürek, Bailin Wang, Yoon Kim, and Jacob Andreas. In-context language learning: Architec-
tures and algorithms, 2024. URL https://arxiv.org/abs/2401.12973.

Pablo Barceló, Egor V Kostylev, Mikael Monet, Jorge Pérez, Juan Reutter, and Juan-Pablo Silva. The
logical expressiveness of graph neural networks. In ICLR, 2020.

Pablo Barceló, Alexander Kozachinskiy, Anthony Widjaja Lin, and Vladimir Podolskii. Logical
languages accepted by transformer encoders with hard attention. 2024.

Maximilian Beck, Korbinian Pöppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova,
Michael Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xLSTM: Extended
long short-term memory. Vancouver, Canada, December 2024.

Alberto Bietti, Vivien Cabannes, Diane Bouchacourt, Herve Jegou, and Leon Bottou. Birth of a
transformer: A memory viewpoint, 2023. URL https://arxiv.org/abs/2306.00802.

Vivien Cabannes, Berfin Simsek, and Alberto Bietti. Learning associative memories with gradient
descent, 2024. URL https://arxiv.org/abs/2402.18724.

Sitan Chen and Yuanzhi Li. Provably learning a multi-head attention layer, 2024. URL https:
//arxiv.org/abs/2402.04084.

David Chiang, Peter Cholak, and Anand Pillay. Tighter bounds on the expressivity of transformer
encoders. arXiv preprint arXiv:2301.10743, 2023.

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality, 2024. URL https://arxiv.org/abs/2405.21060.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Łukasz Kaiser. Universal
transformers. arXiv preprint arXiv:1807.03819, 2018.

Puneesh Deora, Rouzbeh Ghaderi, Hossein Taheri, and Christos Thrampoulidis. On the optimization
and generalization of multi-head attention, 2023. URL https://arxiv.org/abs/2310.12680.

Honghua Dong, Jiayuan Mao, Tian Lin, Chong Wang, Lihong Li, and Denny Zhou. Neural logic
machines. In ICLR, 2019.

Benjamin L. Edelman, Surbhi Goel, Sham Kakade, and Cyril Zhang. Inductive biases and variable
creation in self-attention mechanisms, 2022a. URL https://arxiv.org/abs/2110.10090.

Benjamin L Edelman, Surbhi Goel, Sham Kakade, and Cyril Zhang. Inductive biases and variable
creation in self-attention mechanisms. In International Conference on Machine Learning, pages
5793–5831. PMLR, 2022b.

Guhao Feng, Yuntian Gu, Bohang Zhang, Haotian Ye, Di He, and Liwei Wang. Towards revealing
the mystery behind chain of thought: a theoretical perspective. arXiv preprint arXiv:2305.15408,
2023.

10

https://arxiv.org/abs/2310.01082
https://arxiv.org/abs/2310.01082
https://arxiv.org/abs/2401.12973
https://arxiv.org/abs/2306.00802
https://arxiv.org/abs/2402.18724
https://arxiv.org/abs/2402.04084
https://arxiv.org/abs/2402.04084
https://arxiv.org/abs/2405.21060
https://arxiv.org/abs/2310.12680
https://arxiv.org/abs/2110.10090


Hengyu Fu, Tianyu Guo, Yu Bai, and Song Mei. What can a single attention layer learn? a study
through the random features lens, 2023. URL https://arxiv.org/abs/2307.11353.

Angeliki Giannou, Shashank Rajput, Jy-yong Sohn, Kangwook Lee, Jason D Lee, and Dimitris Pa-
pailiopoulos. Looped transformers as programmable computers. arXiv preprint arXiv:2301.13196,
2023.

Michael Hahn. Theoretical limitations of self-attention in neural sequence models. Transactions of
the Association for Computational Linguistics, 8:156–171, 2020.

Yiding Hao, Dana Angluin, and Robert Frank. Formal language recognition by hard attention trans-
formers: Perspectives from circuit complexity. Transactions of the Association for Computational
Linguistics, 10:800–810, 2022.

Samy Jelassi, Michael E. Sander, and Yuanzhi Li. Vision transformers provably learn spatial structure,
2022. URL https://arxiv.org/abs/2210.09221.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention, 2020. URL https://arxiv.org/
abs/2006.16236.

Michael J. Kearns and Umesh Vazirani. An Introduction to Computational Learning Theory. The
MIT Press, 08 1994. ISBN 9780262276863. doi: 10.7551/mitpress/3897.001.0001. URL
https://doi.org/10.7551/mitpress/3897.001.0001.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transformers to
solve inherently serial problems. arXiv preprint arXiv:2402.12875, 2024.

Bingbin Liu, Jordan T Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
learn shortcuts to automata. arXiv preprint arXiv:2210.10749, 2022.

Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in adam, 2018. URL https:
//openreview.net/forum?id=rk6qdGgCZ.

William Merrill and Ashish Sabharwal. The parallelism tradeoff: Limitations of log-precision
transformers. Transactions of the Association for Computational Linguistics, 11:531–545, 2023.

William Merrill, Yoav Goldberg, and Noah A Smith. On the power of saturated transformers: A view
from circuit complexity. arXiv preprint arXiv:2106.16213, 2021.

William Merrill, Ashish Sabharwal, and Noah A Smith. Saturated transformers are constant-depth
threshold circuits. Transactions of the Association for Computational Linguistics, 10:843–856,
2022.

Samet Oymak, Ankit Singh Rawat, Mahdi Soltanolkotabi, and Christos Thrampoulidis. On the role
of attention in prompt-tuning, 2023. URL https://arxiv.org/abs/2306.03435.

Jorge Pérez, Javier Marinković, and Pablo Barceló. On the turing completeness of modern neural
network architectures. In ICLR, 2019.

Jorge Pérez, Pablo Barceló, and Javier Marinkovic. Attention is turing complete. The Journal of
Machine Learning Research, 22(1):3463–3497, 2021.

Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear Transformers are secretly fast weight
programmers. Virtual only, July 2021.

Lena Strobl, William Merrill, Gail Weiss, David Chiang, and Dana Angluin. What formal languages
can transformers express? a survey. Transactions of the Association for Computational Linguistics,
12:543–561, 2024.

11

https://arxiv.org/abs/2307.11353
https://arxiv.org/abs/2210.09221
https://arxiv.org/abs/2006.16236
https://arxiv.org/abs/2006.16236
https://doi.org/10.7551/mitpress/3897.001.0001
https://openreview.net/forum?id=rk6qdGgCZ
https://openreview.net/forum?id=rk6qdGgCZ
https://arxiv.org/abs/2306.03435


Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and
Furu Wei. Retentive network: A successor to transformer for large language models. Preprint
arXiv:2307.08621, 2023.

Davoud Ataee Tarzanagh, Yingcong Li, Christos Thrampoulidis, and Samet Oymak. Transformers as
support vector machines, 2024. URL https://arxiv.org/abs/2308.16898.

Yuandong Tian, Yiping Wang, Beidi Chen, and Simon Du. Scan and snap: Understanding training
dynamics and token composition in 1-layer transformer, 2023. URL https://arxiv.org/abs/
2305.16380.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Jacob Trauger and Ambuj Tewari. Sequence length independent norm-based generalization bounds
for transformers, 2023. URL https://arxiv.org/abs/2310.13088.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Colin Wei, Yining Chen, and Tengyu Ma. Statistically meaningful approximation: a case study on
approximating turing machines with transformers. CoRR, abs/2107.13163, 2021. URL https:
//arxiv.org/abs/2107.13163.

Gail Weiss, Yoav Goldberg, and Eran Yahav. Thinking like transformers. In International Conference
on Machine Learning, pages 11080–11090. PMLR, 2021.

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention
transformers with hardware-efficient training. Vienna, Austria, July 2024.

Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear transformers
with the delta rule over sequence length, 2025. URL https://arxiv.org/abs/2406.06484.

Ruiqi Zhang, Spencer Frei, and Peter L. Bartlett. Trained transformers learn linear models in-context,
2023. URL https://arxiv.org/abs/2306.09927.

Yufeng Zhang, Boyi Liu, Qi Cai, Lingxiao Wang, and Zhaoran Wang. An analysis of attention via
the lens of exchangeability and latent variable models, 2024. URL https://arxiv.org/abs/
2212.14852.

12

https://arxiv.org/abs/2308.16898
https://arxiv.org/abs/2305.16380
https://arxiv.org/abs/2305.16380
https://arxiv.org/abs/2310.13088
https://arxiv.org/abs/2107.13163
https://arxiv.org/abs/2107.13163
https://arxiv.org/abs/2406.06484
https://arxiv.org/abs/2306.09927
https://arxiv.org/abs/2212.14852
https://arxiv.org/abs/2212.14852


A Certificate for identifiability of linear attention

We begin by defining identifiability of a model class with respect to a dataset.

Definition A.1 (Identifiability). Let D = {(Zi, yi)}i∈[N ]. Let UΘ denote a model class which is a
uniform circuit family parameterized by parameters Θ ∈ Ω. Let L be a loss function and ΩERM be
the set of empirical risk minimizers:

ΩΘ = {Θ̂ ∈ Ω | Θ̂ = argminΘ∈Ω L(UΘ, D)}. (16)

We say model class UΘ is identifiable with respect to the dataset D if for all Z ∈ Rd×n′
, and for all

pairs of empirical risk minimizers Θ,Θ′ ∈ ΩERM we have UΘ and UΘ′ compute the same function,
i.e., they agree on all inputs (are the same uniform circuit family):

UΘ(Z) = UΘ′(Z). (17)

In establishing conditions for identifiability, it will be useful to refer to another condition relating
models to datasets.

Definition A.2 (Realizability). Let Θ ∈ ΩH be an MHLA parameterization. We say a dataset
D = {(Zi, yi)}i∈[N ] is realizable by a parameterization Θ if yi = MHLAΘ(Zi).

The definition of realizability can be modified to include independent noise at the expense of adding
some terms to our analyses. See Lemma A.7 for details.

Next, we prove that for the model class MHLA there is an efficiently checkable condition (certificate)
of the data D that guarantees the model class is identifiable with respect to D. Our results follow by
reinterpreting the results of Theorem 2.2 with a focus on data conditions that uniquely determine
the optimal regressor. In this section we denote the mapping from data to feature space to be H
and the mapping from parameters to feature space to be p which are analogous to the X and TΘ of
Equation (8). We instantiate the feature mapping H and parameter mapping polynomial p as follows.

Lemma A.3 (Certificate of Identifiability). Let dataset D = {(Zi, yi)}i∈[N ] be a realizable dataset.
Let H = {Hn}∞n=1 be a family of polynomials Hn : Rd×n → Rψ for ψ =

(
d
2

)
d + d2 defined as

follows. We index the entries of H by taking the Kronecker product between all sets of pairs {j, k}
(for all j, k ∈ [d]) with with all ℓ ∈ [d]. We define H(Z){j,k}ℓ as in Algorithm 2 to be

H(Z){j,k}ℓ := ⟨zj:, zk:⟩zℓni . (18)

Then if λmin
(
ED

[
H(Z)H(Z)T

])
> 0, we have that MHLAΘ is identifiable with respect to D.

Next we construct a mapping p : Ω → Rd×ψ that partitions the parameter space into equivalence
classes of parameters that compute the same function. This is akin to matching coefficients in
polynomial regression. This mapping defines a meaningful notion of “distance” between different
attention parameters by constructing a feature space in which equivalent models have the same
representation. We denote the a’th row of p to be pa : Ω → Rψ and define it as follows.

Corollary A.4. Let {pa}a∈[d] be a collection of polynomials such that pa(Θ) : ΩH → Rψ is defined
as follows. Each pa(Θ) is indexed by pairs {j, k} for j, k ∈ [d] and ℓ ∈ [d] defined to be

pa(Θ){j,k}ℓ =
∑
h∈[H]

(Vh,ajQkℓ + Vh,akQjℓ) . (19)

Let the polynomial p : Ω → Rd×ψ be p := (p1, p2, ..., pd). Then for any pair of parameters
Θ,Θ′ ∈ ΩH we have MHLAΘ = MHLAΘ′ if and only if p(Θ) = p(Θ′).

We give an overview of a few results building on our certifiable identifiability machinery:

First, data drawn from independent noise is certifiably identifiable. If the data matrices {Zi}i∈[N ] are
drawn with each entry being standard normal noise, then MHLAΘ for Θ ∈ ΩH is identifiable with
respect to the data. The statement holds beyond standard normals to distributions satisfying weak
moment conditions. The result is stated with population risk instead of empirical risk to simplify the
statement.

13



Algorithm 2 Constructing Features for Certificates of Identifiability

1: Input: Data D := {Zi}i∈[N ] for Zi ∈ Rd×ni

2: Output: feature vectors H(Zi) for i ∈ [N ]
3: for Zi ∈ D do
4: Let z1:, z2:, ...zd: be the rows of Zi and let zab be the (a, b) entry of Zi

5: for sets {j, k} in Distinct Pairs of Indices in [d]2 do
6: for ℓ ∈ [d] do
7: H(Zi) = H(Zi) ◦ [⟨zj:, zk:⟩zℓni ]
8: end for
9: end for

10: for j ∈ [d] do
11: for ℓ ∈ [d] do
12: H(Zi) = H(Zi) ◦

[
∥zj∥2zℓni

]
13: end for
14: end for
15: end for
16: Return: {H(Zi)}i∈[N ]

Lemma A.5 (Independent input noise yields identifiability). Let (Z, y) ∼ D be a realizable dataset.
Let Z be drawn from a distribution Z where the (a, b)-th entry of Z denoted by Zab is drawn i.i.d.
from a distribution ν over R for all a ∈ [d] and b ∈ [n]. Let the second and fourth moment of ν
be denoted m2 and m4 respectively. Let m2 > 0 and m4 > m2

2. Then MHLAΘ for Θ ∈ ΩH is
identifiable with respect to D. That is to say, for any population risk minimizers Θ,Θ′ ∈ ΩPRM:

MHLAΘ = MHLAΘ′ . (20)

Second, when specialized to the case of Multi Head Linear Attention MHLAΘ with more than d2
heads we can avoid the realizability assumption entirely. This is because the class of MHLA with an
arbitrary number of heads is linear in the feature space H given in Lemma A.3.
Lemma A.6 (Identifiability without realizability for MHLA with arbitrarily many heads). Let dataset
D = {(Zi, yi)}i∈[N ] be any dataset drawn i.i.d from a distribution D. Let H be defined as in
Lemma A.3. Then if λmin

(
ED[H(Z)H(Z)T ]

)
> 0 then MHLAΘ for Θ ∈ ΩH for any H ∈ [d2,∞)

is identifiable with respect to the data D. That is,

MHLAΘ = MHLAΘ′ (21)

for all pairs of empirical risk minimizers Θ,Θ′ ∈ ΩERM.

We also add a quantitative version of identifiability with precise treatment of issues related to error.
(For a corresponding statement of realizability with noise see Lemma E.2.)
Lemma A.7 (Identifiability with Error). Let Ωϵ−ERM be the set of ϵ-approximate empirical risk
minimizers,

Ωϵ−ERM = {
Θ ∈ ΩH

∣∣ E(Zi,yi)∈D

[
(MHLAΘ(Zi)− yi)

2
]
≤ ϵ

}
.

Then we have for any Θ,Θ′ ∈ Ωϵ−ERM that for all inputs Z ∈ Rd×n

∥MHLAΘ(Z)− MHLAΘ′(Z)∥ ≤ ϵ

λmin (ΛD)
∥Z∥6F . (22)

We prove all the above statements in Appendix E.

Application to learning Universal Turing Machines. In Appendix B, we demonstrate that MHLAs
can (autoregressively) express universal Turing machines with polynomially bounded computation
histories. In this context, our identifiability results imply that, given a certifiably identifiable dataset
of Turing machines and their computation histories on input words, empirical risk minimization and
in particular Algorithm 1 will learn the universal Turing machine in a strong sense (Lemma C.5 for
learning, Lemma A.8 with identifiability). That means at test time the learned MHLA will simulate
any Turing Machine on any input word up to a given size for a bounded number of steps. For more
detail see C

14



Lemma A.8 (Learning UTM from Certifiably Identifiable Data). Let D = {(Zi, yi)}i∈[N ] be a
dataset satisfying yi = MHLAΘ for Θ ∈ ΩH being the expressibility parameters of Lemma B.1 for
the set of TM’s/words (M,x) ∈ ∆(Q̂, Σ̂, n̂, Φ̂). If D is certifiably identifiable with λmin(ΛD) > η,
then there is a poly(d,N, Q̂, Σ̂, n̂, Φ̂, η−1) time algorithm that outputs a set of parameters Θ̂ ∈ Ωd2

such that for all TM’s M and input words x in ∆(Q̂, Σ̂, n̂, Φ̂), we have

CHΘ̂(M,x)c(t)[: −kt] = xt . (23)

The c(t) step of the autoregressive computation history of Θ̂ is equal to the t’th step of the computation
history of M on x.

B Realizability of Universal Automata in MHLA

We also include an application of our theory on learnability and identifiability to the problem of
learning a universal Turing machine (UTMs) with polynomially bounded computation length. We
prove such a UTM is expressible via MHLA in Lemma B.1, and show that for certifiably identifiable
data the learned MHLA generalizes to any TM M and input word x in Lemma A.8.

Lemma B.1 (UTM Expressibility). Let ∆(Q̂, Σ̂, n̂, Φ̂) be the set of Turing machines M =
{δ,Σ,Q, qstart, qaccept, qreject} and words x ∈ Σ∗ with number of states, size of alphabet, size
of input, and number of steps in computation history bounded by Q̂, Σ̂, n̂, Φ̂ respectively. For
any (M,x) ∈ ∆, let {xt}t∈[Φ] be the computation history of the UTM on (M,x). Let the
autoregressive computation history (see Definition C.2) of MHLAΘ on input (M,x) be denoted
CHΘ(M,x) = {Z1, Z2, ..., ZΦ}. Then there exists a set of parameters Θ ∈ ΩH for H = O(n̂Φ̂Σ̂)

and embedding dimension d = O(n̂Φ̂Σ̂max(Σ̂, Q̂)), such that for all (M,x) ∈ ∆, the TM computa-
tion history at time step t is equivalent to the autoregressive computation history at time step c(t)
where c(t) ≤ O((n+ t)t) i.e Zc(t)[: −length(xt))] = xt. Furthermore, this can be achieved with 2
bits of precision.

Our construction bears similarities to [Pérez et al., 2019, Hahn, 2020, Merrill and Sabharwal, 2023,
Merrill et al., 2022, 2021, Liu et al., 2022, Feng et al., 2023]; the high-level idea is write down every
letter in the computation history of M on x. If we use orthogonal vectors to encode every letter, state,
and positional embedding we arrive at a natural construction involving a few basic primitives copy,
lookup, and if-then-else. For details see discussion section F and Proof F.1

C Application to Learning Universal Turing Machines

We apply our algorithmic and identifiability machinery to show that an important computational
procedure is representable and learnable as an MHLA: namely, a restricted class of universal Turing
machines (UTMs) with bounded computation history. We must first generalize our previous MHLA
definition to enable multi-step computation:
Definition C.1 (Autoregressive MHLA). Let Z0 be an input matrix in dimension Rd×n. We define
the iterative process of Φ-step autoregressive MHLA as follows: starting from t = 0, let the next
token yt+1 ∈ Rd be:

yt+1 = MHLAΘ(Z
t) , (24)

and, for all t ∈ [Φ], let Zt+1 ∈ Rd×(n+1) be the concatenation:

Zt+1 = Zt ◦ yt . (25)

Next we define the computation history of an autoregressive model analogously to the computation
history of a Turing machine.
Definition C.2 (Autoregressive Computation History). We refer to CHΘ(Z) = {Zt}t∈[Φ] as the
computation history of the Φ-step autoregressive MHLA. We denote the t-th step of the computation
history as CHtΘ(Z) = Zt.

We will often use the notation Zt[: −k] to denote the last k ∈ Z+ tokens of Zt. Often, Z will be
the embeddings corresponding to a word x in a language L, in which case we will use the notation

15



CHΘ(x) and CHΘ(Z) interchangeably. For pedagogical discussion on how to map embeddings to
letters in an alphabet, see Section G

Although the theory derived in this paper applies to all functions expressible by MHLAs, we are
particularly interested in the task of learning universal Turing machines (UTMs). Let Σ be an
alphabet. Let Q be a set of states that includes {qstart, qaccept, qreject} a start, accept, and reject
state respectively. Let δ : Q× Σ → Q× Σ× {L/R} be a transition function that takes an alphabet
and state symbol and maps to a state transition, an output symbol, and a head movement left or right.
Typically there is also a tape alphabet Γ for which the input alphabet Σ is a subset.
Definition C.3 (Accept TM). Let M = {δ,Σ,Γ,Q, qstart, qaccept, qreject} be a TM. Let x ∈ Σ∗ be
all strings in the alphabet Σ. Then let ATM be the language ATM = {(M,x) |M accepts x}.

The UTM constructed in Turing’s 1936 paper recognizes ATM. In practice, we are most often
interested in the behavior of TMs that run in polynomial time, and focus below on implementing a
universal simulator for this restricted class:
Definition C.4. (Polynomially Bounded Universal Turing Machine) In general, a UTM is a recognizer
for the language ATM. That is if x is in ATM, the UTM accepts, else, the UTM rejects or does not halt.
Let ATM ∩P be the language of input pairs (M,x) for TM M and word x ∈ Σ∗ such that M decides
x in polynomial time. Here, we consider UTM to be the polynomial time decider for ATM ∩ P .

To define what it means for an autoregressive MHLA to perform the same computation as a TM,
our main idea is to construct parameters for MHLA such that it executes the computation history
of TM M on input x. Let the UTM computation history at step t include the contents x0, . . . , xkt
on the tape after t transition steps of the Turing machine M , the current state qt, and the current
head position ht. Here kt is the number of tokens at timestep t. Then, there is a single-layer MHLA
capable of simulating a UTM:

Lemma B.1 (UTM Expressibility). Let ∆(Q̂, Σ̂, n̂, Φ̂) be the set of Turing machines M =
{δ,Σ,Q, qstart, qaccept, qreject} and words x ∈ Σ∗ with number of states, size of alphabet, size
of input, and number of steps in computation history bounded by Q̂, Σ̂, n̂, Φ̂ respectively. For
any (M,x) ∈ ∆, let {xt}t∈[Φ] be the computation history of the UTM on (M,x). Let the
autoregressive computation history (see Definition C.2) of MHLAΘ on input (M,x) be denoted
CHΘ(M,x) = {Z1, Z2, ..., ZΦ}. Then there exists a set of parameters Θ ∈ ΩH for H = O(n̂Φ̂Σ̂)

and embedding dimension d = O(n̂Φ̂Σ̂max(Σ̂, Q̂)), such that for all (M,x) ∈ ∆, the TM computa-
tion history at time step t is equivalent to the autoregressive computation history at time step c(t)
where c(t) ≤ O((n+ t)t) i.e Zc(t)[: −length(xt))] = xt. Furthermore, this can be achieved with 2
bits of precision.

We include the full proof for the existence of Θ in the appendix. For simplicity, we adopt a naive
embedding scheme that represents different letters in an alphabet as orthogonal unit vectors. This
makes it easy to contrive embedding schemes that incorporate arbitrary polynomial-sized circuits
which could compute whether x ∈ L(M). Moreover, we adopt positional encodings that are simply
orthogonal unit vectors. Thus, in order to give each of T tokens a unique ID, we would require O(T )
dimensional positional embeddings.

This can be combined with the learnability results above to yield a specialized result for UTMs:
Lemma C.5 (Learning a UTM). Let Θ ∈ ΩH in dimension d be the MHLA parameters in
Lemma B.1. Let {Mi, xi}i∈[N ] be pairs of TM’s M and words x of maximum length n drawn
i.i.d. from a distribution D. Let Zi = Embed(Mi, xi). For each TM/word pair (Mi, xi) let
CHΘ(Zi) = {Z1

i , Z
2
i , ..., Z

Φ
i } be the Φ-step autoregressive computation history of MHLAΘ on

Zi. Let D be the dataset D := {(CHΘ(Zi)
t, yt+1

i }i∈[N ],t∈[T ] where yt+1
i = MHLAΘ(Z

t
i ). Then

Algorithm 1 applied to input D returns Θ̂ ∈ ΩH for H ≤ d2 such that with probability 1− δ

E(Z,y)∈D

[(
MHLAΘ̂(Z)− y

)2] ≤ ϵ (26)

for sample complexity N = poly(d, ϵ−1, log(δ−1)). Then with probability 1− δ over the randomness
in the data, the probability over D that the Φ-step autoregressive computation history CHΘ̂(M,x)
and CHΘ(M,x) differ is upper bounded by

Pr(M,x)∼D[CHΘ̂(M,x) ̸= CHΘ(M,x)] ≤ O(ϵΦ). (27)

16



Finally, if the dataset D is certifiably identifiable, then generalization holds out-of-distribution. For
proof see Appendix F.2.

Lemma A.8 (Learning UTM from Certifiably Identifiable Data). Let D = {(Zi, yi)}i∈[N ] be a
dataset satisfying yi = MHLAΘ for Θ ∈ ΩH being the expressibility parameters of Lemma B.1 for
the set of TM’s/words (M,x) ∈ ∆(Q̂, Σ̂, n̂, Φ̂). If D is certifiably identifiable with λmin(ΛD) > η,
then there is a poly(d,N, Q̂, Σ̂, n̂, Φ̂, η−1) time algorithm that outputs a set of parameters Θ̂ ∈ Ωd2

such that for all TM’s M and input words x in ∆(Q̂, Σ̂, n̂, Φ̂), we have

CHΘ̂(M,x)c(t)[: −kt] = xt . (23)

The c(t) step of the autoregressive computation history of Θ̂ is equal to the t’th step of the computation
history of M on x.

D Proof of the Main Theorem

Theorem 2.2 (Learnability of Linear Attention). Let D be a dataset D = {Zi, yi}i∈[N ] drawn i.i.d.
from a distribution D where each Zi ∈ Rd×ni , yi ∈ Rd. The embedding dimension d is fixed across
the dataset, whereas ni can be different for each datapoint. Let nmax = maxi∈[N ] ni be the maximum
sequence length, and let ΩH be the space ofH pairs of value and key-query matrices {(Vh, Qh)}h∈[H]

for any H ∈ [1,∞). Then there is an algorithm (Algorithm 1) that runs in time O(Nd4nmaxϵ
−1)

and that, given input–output pairs {(Zi, yi)}i∈[N ], returns Θ̂ = {(V̂h, Q̂h)}h∈[Ĥ] ∈ ΩĤ for Ĥ ≤ d2

such that with probability 1− δ,

E(Z,y)∈D
[
∥MHLAΘ̂(Z)− y∥2

]
−minΘ∈ΩH E(Z,y)∈D

[
∥MHLAΘ(Z)− y∥2

]
≤ ϵ (6)

with sample complexity N = O
(
1
ϵ

(
d4 + log(δ−1)

))
.

Proof. First we write down the loss:

LΘ({(Zi, yi)}i∈[N ]) :=
1

N

∑
i∈[N ]

∥∥∥∥∥∥
∑
h∈[H]

VhZi(Z
T
i QhZ[:, ni])− yi

∥∥∥∥∥∥
2

F

(28)

=
1

N

∑
i∈[N ]

∑
a∈[d]

 ∑
h∈[H]

eTa VhZi(Z
T
i QhZ[:, ni])− yi,a

2

(29)

Observe that the one layer attention network is a quadratic polynomial in {Vh, Qh}h∈[H].

=
1

N

∑
i∈[N ]

∑
a∈[d]

(⟨TΘ, Xi,a⟩ − yi,a)
2 (30)

Here

TΘ :=
∑
h∈[H]

flatten(Vh)flatten(Qh)T =
∑
h∈[H]


Vh,00Qh,00 Vh,00Qh,01 . . . Vh,00Qh,dd
Vh,01Qh,00 Vh,01Qh,01 . . . Vh,01Qh,dd

...
...

...
Vh,ddQh,00 Vh,ddQh,01 . . . Vh,ddQh,dd


(31)

Now we relax the objective where we replace TΘ with an unconstrained matrixW ∈ Rd2×d2 . Another
way to put it is that TΘ is rank-H but W can be a general matrix. Because the space of general rank
matrices is larger, we have written down a relaxation guaranteed to have a smaller loss. Furthermore
the loss can be optimized via ordinary least squares.

17



min
W∈Rd2×d2

LW ({(Zi, yi)}i∈[N ]) :=
1

N

∑
i∈[N ]

∑
a∈[d]

(⟨W,Xi,a⟩ − yi,a)
2

≤ min
Θ∈ΩH

LΘ({(Zi, yi)}i∈[N ]) + ϵ (32)

Thus the optimum of the regression with respect to the data achieves optimum of the loss to error
ϵ in time O( 1ϵd

4N). The sample complexity to achieve error ϵ is then O( 1ϵ (d
4 + log(δ−1))) with

probability 1− δ over the data distribution. Furthermore, if we take the SVD of W =
∑
i∈[Ĥ]AiB

T
i

where we absorb the singular values into the left and right singular vectors we have for Θ̂ =

{Fold(Ah),Fold(Bh)}i∈[Ĥ]. Let V̂h = Fold(Ah) and Q̂h = Fold(Bh)

LΘ̂({(Zi, yi)}i∈[N ]) :=
1

N

∑
i∈[N ]

∥∥∥∥∥∥
∑
h∈[Ĥ]

V̂hZi(Z
T
i Q̂hZi[:, ni])− yi

∥∥∥∥∥∥
2

F

=
1

N

∑
i∈[N ]

∑
a∈[d]

 ∑
h∈[Ĥ]

V̂hZi(Z
T
i Q̂hZi[:, ni])− yi,a

2

≤ ϵ (33)

as desired.

E Proofs from Identifiability Section

First, we start with a general lemma (Lemma E.1) which states a sufficient condition for identifiability
of any model class that can be written as an inner product of a polynomial of parameters Θ with a poly-
nomial feature mapping H. If the data is realizable by the model class and ΛD = ED

[
H(Z)H(Z)T

]
is full rank then the model class is identifiable with respect to D.

The following is the certificate of identifiability written in an abstract form involving polynomials to
map parameters to feature space and polynomials to map data to feature space. The proof does not
require the model to be an MHLA, but we state it in MHLA terms for the sake of concreteness.
Lemma E.1 (General Certificate of Identifiability). Let dataset D = {(Zi, yi)}i∈[N ] be a dataset
realizable by Θ ∈ ΩH . Let p := {pa}a∈[d] be a collection of polynomials pa : Ω → Rψ mapping the
parameters Θ ∈ Ω to a feature space of fixed dimension ψ ∈ Z+. Let H = {Hn}∞n=1 be a uniform
family of polynomials such that Hn : Rd×n → Rψ . Let p and H satisfy

MHLAΘ(Z)[a] = ⟨pa(Θ),Hn(Z)⟩ (34)

for all Z ∈ Rd×n for all n ∈ [1,∞). Then if λmin

(
ED

[
H(Z)H(Z)T

])
> 0 , we have

MHLAΘ = MHLAΘ′ (35)

for all empirical risk minimizers Θ,Θ′ ∈ ΩERM. That is, all empirical risk minimizers compute the
same function.

Proof. We construct a map p : Ω → Rψ such that MHLAΘ = MHLAΘ′ if and only if p(Θ) = p(Θ′).
Then we show that any empirical risk minimizer ΘERM and the ground truth Θ̄ satisfy p(ΘERM) =
p(Θ̄).

In more detail, we construct some polynomials {pa}a∈[d] and family of polynomials H such that

MHLAΘ(Z)|a = ⟨pa(Θ),H(Z)⟩ (36)

We construct a linear model class R that takes as parameters v ∈ Rψ and data H(Z) ∈ Rψ . such that

Rv(H(Z)) = ⟨v,H(Z)⟩ (37)

18



Let ΘERM be defined as

ΘERM := {Θ′ ∈ Ω|Θ′ = argmin
Θ∈Ω

Ei∈[N ] [L(MHLAΘ(Zi), yi)}] (38)

Let vERM be defined as
vERM := {v′ ∈ Rψ|v′ = argmin

v∈Rψ
Ei∈[N ] [L(Rv(H(Zi)), yi)]} (39)

Observe that for all Θ ∈ ΘERM, we have p(Θ) ⊆ vERM. Here we use the fact that y is realizable by
the ground truth Θ̄. Therefore if we show that vERM is unique, i.e comprised of a single element
then pERM := {p(Θ)|Θ ∈ ΘERM} is also unique. Therefore, MHLAΘ is the same function for any
Θ ∈ ΘERM

To show vERM is unique, all we need is that the second moment of the features ΛD =
ED

[
H(Z)H(Z)T

]
is positive definite (the covariance has a minimum eigenvalue bounded away

from zero).

Next we prove the main certifiable identifiability lemma by instantiating the polynomials H and p
from Lemma E.1.
Lemma A.3 (Certificate of Identifiability). Let dataset D = {(Zi, yi)}i∈[N ] be a realizable dataset.
Let H = {Hn}∞n=1 be a family of polynomials Hn : Rd×n → Rψ for ψ =

(
d
2

)
d + d2 defined as

follows. We index the entries of H by taking the Kronecker product between all sets of pairs {j, k}
(for all j, k ∈ [d]) with with all ℓ ∈ [d]. We define H(Z){j,k}ℓ as in Algorithm 2 to be

H(Z){j,k}ℓ := ⟨zj:, zk:⟩zℓni . (18)

Then if λmin
(
ED

[
H(Z)H(Z)T

])
> 0, we have that MHLAΘ is identifiable with respect to D.

Proof. First we construct a polynomial p : Ω → Rψ and H : Rd×n → Rψ for ψ =
(
d
2

)
d+ d2 such

that
MHLAΘ(Z)[a] = ⟨pa(Θ),H(Z)⟩ (40)

We begin by rewriting MHLAΘ(Z)[a]. We index the first
(
d
2

)
d entries of pa(Θ) by all pairs {j, k}

for j, k ∈ [d] and all ℓ ∈ [d].

pa(Θ){j,k},{ℓ} :=
∑
h∈[H]

(Vh,ajQh,kℓ + Vh,akQh,jℓ) (41)

We define the entries of pa(Θ) from [
(
d
2

)
d,
(
d
2

)
d+ d2] as follows.

pa(Θ){j2}{ℓ} :=
∑
h∈[H]

Vh,ajQh,jℓ (42)

Similarly, we define H(Z) be be the following
(
d
2

)
d+ d2 features. H(Z){j,k}{ℓ} and H(Z){ℓ}.

H(Z){j,k}{ℓ} := ⟨zj:, zk:⟩zℓn (43)
and

H(Z){j2}{ℓ} := ∥zj:∥2zℓn (44)

Thus we rewrite MHLAΘ(Z)[a] as

MHLAΘ(Z)[a] =
∑

{j,k}∈Sd2

∑
ℓ∈[d]

pa(Θ){j,k},{ℓ}H(Z){j,k}{ℓ} +
∑
j,ℓ∈[d]

pa(Θ){j2}{ℓ}H(Z){j2}{ℓ}

= ⟨pa(Θ),H(Z)⟩ (45)

Here we introduce the notation Sd2 to denote the set of all pairs {j, k} for j, k ∈ [d]. We have
constructed a polynomial pa(Θ) such that for any Θ,Θ′ ∈ Ω in the same equivalence class
pa(Θ) = pa(Θ

′), we have MHLAΘ = MHLAΘ′ . Furthermore, if there exists b ∈ [n] such that
λmin

(
ED

[
H(Z)H(Z)T

])
> 0 then OLS returns a unique solution for pa(Θ). Since the data is

realizable, we conclude pa(Θ) = pa(Θ̄) for all Θ ∈ ΩERM.

19



Next we present the proof that realizability is not necessary to identify the function learned by MHLA
with more than d2 heads.
Lemma A.6 (Identifiability without realizability for MHLA with arbitrarily many heads). Let dataset
D = {(Zi, yi)}i∈[N ] be any dataset drawn i.i.d from a distribution D. Let H be defined as in
Lemma A.3. Then if λmin

(
ED[H(Z)H(Z)T ]

)
> 0 then MHLAΘ for Θ ∈ ΩH for any H ∈ [d2,∞)

is identifiable with respect to the data D. That is,
MHLAΘ = MHLAΘ′ (21)

for all pairs of empirical risk minimizers Θ,Θ′ ∈ ΩERM.

Proof. We know from [lemma main algorithm] there exists a surjective map pa(Θ) that takes Θ ∈ Ω
into v ∈ Rψ. This implies that for all v ∈ Rψ there exists a right inverse function pr(v) = Θ
satisfying p(Θ) = v given by SVD. Therefore, p(ΘERM) ∈ vERM i.e optimizing over v ∈ Rψ does no
better than optimizing over Θ ∈ Ω. To prove this consider the contrary that there exists v′ ∈ vERM
and there is no Θ ∈ Ω that achieves the same empirical risk as v′. However, pr(v) ∈ Ω is such a
Θ, and we have a contradiction. The key point is that we avoid the assumption of realizability and
replace it with surjectivity of the polynomials pa.

Finally we prove that data drawn from independent noise is certifiably identifiable. A subtlety in
the proof is that we use a somewhat different set of polynomials than Lemma A.3 as we center and
normalize our features, which still satisfies the assumptions of the general certificate Lemma E.1
Lemma A.5 (Independent input noise yields identifiability). Let (Z, y) ∼ D be a realizable dataset.
Let Z be drawn from a distribution Z where the (a, b)-th entry of Z denoted by Zab is drawn i.i.d.
from a distribution ν over R for all a ∈ [d] and b ∈ [n]. Let the second and fourth moment of ν
be denoted m2 and m4 respectively. Let m2 > 0 and m4 > m2

2. Then MHLAΘ for Θ ∈ ΩH is
identifiable with respect to D. That is to say, for any population risk minimizers Θ,Θ′ ∈ ΩPRM:

MHLAΘ = MHLAΘ′ . (20)

Proof. We give the entries of Λ(Z) the following naming convention. Let the terms {j, k}{ℓ} and
pairs {j′, k′}{ℓ′}. Terms that involve {j2}{ℓ} and {j′2}{ℓ′} are referred to as ’singles’.

E
[
Hb(Z){j,k}{ℓ}Hb(Z){j′,k′}{ℓ′}

]
=

1

n
E [⟨zj:, zk:⟩⟨zj′:, zk′:⟩zℓbzℓ′b] (46)

We give entries of the following form the name "singles to singles"

E
[
Hb(Z){j2}{ℓ}Hb(Z){j′2}{ℓ′}

]
=

1

n
E[(∥zj:∥2 − nm2)(∥zj′:∥2 − nm2)z

2
ℓb] (47)

For the case of Z drawn with each entry i.i.d ν we can proceed via case work.

Case 1: Pairs to Pairs, j ̸= k and j′ ̸= k′

1. Subcase 1: {j, k} ≠ {j′, k′} and ℓ = ℓ′:
1

n
E[⟨zj:, zk:⟩⟨zj′:, zk′:⟩zℓbzℓ′b] = 0 (48)

2. Subcase 2: {j, k} = {j′, k′} and ℓ = ℓ′:
1

n
E[⟨zj:, zk:⟩2z2ℓb] = m3

2 (49)

Case 2: Singles to Singles, j = k and j′ = k′

1. Subcase 1: j ̸= j′ and ℓ = ℓ′:
1

n
E
[(
∥zj:∥2 − nm2

) (
∥zj′:∥2 − nm2

)
z2ℓb

]
= 0 (50)

2. Subcase 2: j = j′ and ℓ = ℓ′:
1

n
E
[(
∥zj:∥2 − nm2

)2
z2ℓb

]
=

1

n

(
(n2 − n)m2

2 + nm4 − n2m2
2

)
m2 = (m4 −m2

2)m2

(51)

20



Case 3: Singles to Pairs, j = k and j′ ̸= k′

1. Subcase 1: ℓ = ℓ′:
1

n
E
[(
∥zj:∥2 − nm2

)
⟨zj′:, zk′:⟩z2ℓb

]
= 0 (52)

Finally for the feature H(Z)ℓb = m2zℓb we have on the main diagonal E[m2
2z

2
ℓb] = m2

2 and 0
everywhere else.

Therefore we’ve concluded that Λ(Z) is a block diagonal matrix because the ℓ ̸= ℓ′ blocks are near
zero. All that remains is to verify that the diagonal blocks are full rank.

1. Pairs to Pairs: m3
2I is full rank with min eigenvalue m3

2

2. Singles to Singles: (m4 −m2
2)m2I is full rank with min eigenvalue (m4 −m2

2)m2.

Finally we provide a simple error bound for approximate empirical risk minimizers to demonstrate
the robustness of the conclusions in Lemma A.3.

Lemma A.7 (Identifiability with Error). Let Ωϵ−ERM be the set of ϵ-approximate empirical risk
minimizers,

Ωϵ−ERM = {
Θ ∈ ΩH

∣∣ E(Zi,yi)∈D

[
(MHLAΘ(Zi)− yi)

2
]
≤ ϵ

}
.

Then we have for any Θ,Θ′ ∈ Ωϵ−ERM that for all inputs Z ∈ Rd×n

∥MHLAΘ(Z)− MHLAΘ′(Z)∥ ≤ ϵ

λmin (ΛD)
∥Z∥6F . (22)

Proof.

∥MHLAΘ(Z)− MHLAΘ′(Z)∥2 =
∑
a∈[d]

(⟨pa(Θ)− pa(Θ
′),H(Z)⟩)2

≤
∑
a∈[d]

∥pa(Θ)− pa(Θ
′)∥2∥H(Z)∥2

≤

∑
a∈[d]

∥pa(Θ)− pa(Θ
′)∥2

 ∥Z∥6F

≤ ϵ

λmin (ΛD)
∥Z∥6F

(53)

Here the first equality follows from the linearization exhibited in Lemma E.1. The first inequality
is cauchy schwarz. In the second inequality we apply a crude upper bound that no more than 6’th
degree polynomials that are products of three squares of entries in Z are involved in ∥H(Z)∥2.

∥H(Z)∥2 ≤
∑

a,a′,a′′∈[d], b,b′,b′′∈[n]

Z2
abZ

2
a′b′Z

2
a′′b′′ ≤ ∥Z∥6F (54)

The last inequality comes from the fact that Θ,Θ′ are ϵ approximate empirical risk minimizers.
Therefore we know

λmin(ΛD)
∑
a∈[d]

∥pa(Θ)− pa(Θ
′)∥2 ≤

∑
a∈[d]

(⟨pa(Θ)− pa(Θ
′),H(Z)⟩)2 ≤ ϵ (55)

21



which implies ∑
a∈[d]

∥pa(Θ)− pa(Θ
′)∥2 ≤ ϵ

λmin(ΛD)
(56)

which concludes the proof.

Lemma E.2 (Identifiability with Error and Noise in Realizability). Let D = {(Zi, yi)}i∈[N ] be
a dataset such that yi = MHLA(Zi) + ζi for ζi i.i.d and bounded. Let Ωϵ−ERM be the set of
ϵ-approximate empirical risk minimizers.

Ωϵ−ERM =
{
Θ ∈ ΩH

∣∣ E(Zi,yi)∈D

[
(MHLAΘ(Zi)− yi)

2
]
≤ ϵ

}
. (57)

Let maxi∈[N ] ∥Zi∥F ≤ B . Then we have for any Θ,Θ′ ∈ Ωϵ−ERM that for all inputs Z ∈ Rd×n

∥MHLAΘ(Z)− MHLAΘ′(Z)∥ ≤
ϵ− 1

N

∑
i∈[N ] ζ

2
i +

B2

N log(δ−1)

λmin (ΛD)
∥Z∥6F . (58)

Proof. The proof follows directly from Lemma A.7 but we incorporate the ζi terms as is standard in
analyses of linear regression.

22



F Programs Expressible as Fixed Depth Linear Transformer

In this section we build out examples of programs that can be expressed as fixed depth linear
transformers. Expressibility results can be carried out in a variety of equivalent ways. The main
takeaway, is that the computation history of TM M on word x, when written down "step by step"
can be captured by next token prediction of linear attention. This is because the key-query-value
naturally implements a table lookup sometimes referred to as "associative memory" or "in context
linear regression" in the linear case.

The notion of an Autoregressive MHLA Program is useful for condensing the proofs of expressibility.
We write such programs in an object oriented syntax with each token representing an object with
multiple attributes. Attributes can be updated and looked up from other objects using a generalized
lookup akin to associative memory.

Algorithm 3 Autoregressive MHLA Program

1: Instantiate N instances OBJ = {obj(i)}i∈[N ] of Class with set of Attributes {Attr1,Attr2, ...,Attrk}
2: Each Attribute takes on values in an alphabet ΣAttribute
3: for iter ∈ [T] do
4: Let obj[r] be the rightmost token
5: Let obj[r + 1] be a new token initialized with positional embedding obj[r + 1].pos = r + 1
6: for each {AttrSource, AttrDest} in {Pairs of Attributes in Class} do
7: #AttrKey and AttrValue can be any pair of Attributes (and can be distinct from VarSource/VarDest)
8: LookupDict = {{obj.AttrKey: obj.AttrValue} for obj in OBJ}
9: # if multiple objects have same obj.AttrKey then returns sum of obj.AttrValues which we aim to avoid

10: Let BQ be any function from ΣAttrSource to ΣAttrKey
11: Let BV be any function from ΣAttrValue to ΣAttrDest
12: Let query = BQ(obj[r].AttrSource)
13: if query in LookupDict.Keys then
14: obj[r+1].AttrDest = BV (LookupDict(query))
15: end if
16: end for
17: Append next token OBJ = {obj[i]}i∈[r] ∪ {obj[r + 1]}
18: r = r + 1
19: end for

Lemma F.1. For any program P written in the form of algorithm 6, there exists corresponding
MHLA parameters Θ ∈ ΩH such that MHLAΘ(Z) = P(Z).

Proof. We set some matrices to implement lookup tables. For any function of f : A → B for
sets A and B there is a canonical representation of the input domain as orthogonal unit vector
v1, v2, ..., v|A| ∈ RA and output domain as another set of orthogonal unit vectors u1, u2, ..., u|B| ∈
RB . Therefore, there is a matrix Gf that maps input vectors to output vectors satisfying Gfvi = uj
for j = f(i) for all i ∈ [A] and j ∈ [B].

For functions f : ΣAttrSource → ΣAttrKey and f ′ : ΣAttrValue → ΣAttrDest we associate matrices
BQ ∈ R|ΣAttrSource|×|ΣAttrKey| and BV ∈ R|ΣAttrValue|×|ΣAttrDest| respectively.

Then we form {Vh, Qh}h∈[H] as follows. Let V be the matrix that is all zeros with BV in the rows
associated with ΣAttrSource and the columns associated with ΣAttrKey. Let Q be the matrix that is all
zeros with BV in the rows associated with ΣAttrValue and the columns associated with ΣAttrDest.

In each layer we have multiple heads, each one performs the lookup operation for each pair of
attributes in the class.

F.1 Construction of UTM

Now we proceed with our construction of an Autoregressive MHLA-Program for UTM. The UTM
requires a small number of operations captured by an Autoregressive MHLA-Program.

We define an embedding function that takes as input a TM M and word x such that

23



Definition F.2 (Embedding). Let M be a TM over state space Q, alphabet A, transition function δ.
Then

Embedding(M) =


q0 q1 · · · qk #
a0 a0 · · · a0 #

δ(q0, a0) δ(q1, a0) · · · δ(qk, a0) #
a1 a1 · · · a1 #

δ(q0, a1) δ(q1, a1) · · · δ(qk, a1) #

 (59)

Let p1, p2, ..., pδ be "positional encodings" that assign unique id’s for every letter in the word x.

Embedding(x) =

[
p1 p2 · · · pi pi+1 · · · pδ #
x1 x2 · · · xi xi+1 · · · xδ #
0 0 · · · q 0 · · · 0 #

]
(60)

Then we define Embedding(M,x) to be

Embedding(M,x) =
[

Embedding(M) 0
0 Embedding(x)

]
(61)

Henceforth we will write the construction in the syntax of an Autoregressive MHLA-Program instead
of matrices with blocks of zeros and token embeddings to save space.

Lemma B.1 (UTM Expressibility). Let ∆(Q̂, Σ̂, n̂, Φ̂) be the set of Turing machines M =
{δ,Σ,Q, qstart, qaccept, qreject} and words x ∈ Σ∗ with number of states, size of alphabet, size
of input, and number of steps in computation history bounded by Q̂, Σ̂, n̂, Φ̂ respectively. For
any (M,x) ∈ ∆, let {xt}t∈[Φ] be the computation history of the UTM on (M,x). Let the
autoregressive computation history (see Definition C.2) of MHLAΘ on input (M,x) be denoted
CHΘ(M,x) = {Z1, Z2, ..., ZΦ}. Then there exists a set of parameters Θ ∈ ΩH for H = O(n̂Φ̂Σ̂)

and embedding dimension d = O(n̂Φ̂Σ̂max(Σ̂, Q̂)), such that for all (M,x) ∈ ∆, the TM computa-
tion history at time step t is equivalent to the autoregressive computation history at time step c(t)
where c(t) ≤ O((n+ t)t) i.e Zc(t)[: −length(xt))] = xt. Furthermore, this can be achieved with 2
bits of precision.

The construction is given in the language of Autoregressive MHLA-Programs in algorithm 6 which
provides the instruction set for writing the next letter in the computation history onto the output tape.

Proof. Proof Idea: A few elementary operations can be captured by a MHLA-program which can
be composed to output the computation history of M on x. We begin by introducing some notation
for the "Lookup" operation which we build into copy, move, and if-then which are all the operations
required to construct the UTM.

General Lookup: For each lookup there are three objects that are involved. Let Token=
obj[r] be the "source" which is always the rightmost token. An attribute from the source ob-
ject known as AttrSource is linearly transformed to form a "query". Lookup involves a table
T = {obj[i].AttrKey: obj[i].AttrValue}i∈[r] which is used to match an AttrKey to look up an Attr-
Value from an object obj[p] that we denote the "target". Note, that if the obj[i] has an AttrKey that is
zero, it is the same as not being in the table. In the pseudocode algorithm 6 these zero attributes are
denoted as "None".

Given a query, we copy the associated AttrValue from the lookup table T and update AttrDest in an
object NextToken= obj[r + 1] which we denote the "destination". Multiple lookup operations can be
performed in parallel by many heads with each head responsible for a single lookup.

To output each letter of the computation history, we increase the number of tokens r by a constant
c. We refer to the set of contiguous tokens [0, c], [c, 2c], etc. involved in the computation of a single
letter as a "block". Here block[i] = {obj[j]}j∈[ic,(i+1)c]. We construct a different set of heads to
act on each token and enforce that the nonzero rows that each block of tokens occupy are disjoint.
Furthermore, within a block, the states of each token occupies a disjoint set of rows except when they
are used to construct a table. Tables are the only case where we want tokens to occupy the same rows.
In this manner the following abstraction can be made.

At the beginning of each block starting with obj[r], we can lookup attributes from anywhere in OBJ
that we want to load into different attributes in obj[r]. Then we can apply any sequence of if-then

24



statements involving the attributes of obj[r] to update the attributes (or create new attributes). To run
the UTM we need a few simple primitives denoted Lookup and If-Then.

Construction of Primitives: We write down the construction by constructing a sufficient set of
primitives Lookup and If-Then. We also include Copy which is a special case of Lookup that is used
frequently.

Lookup: When the transforms BQ and BV are the identity we denote the lookup operation for
table T where we query an attribute s′ of obj[r] to update the attribute s of obj[r+1] as obj[r+1].s =
Lookup(T,obj[r].s’)

Copy: A special case of lookup is copy, where we need to copy attributes from tokens that are at
an offset −k for k ∈ [r]. This can be done by setting BQ to permute the positional encoding by −k
positions. Then the query matches the key that is the positional encoding of the target object. Let
s, s′ be target and destination attributes. We denote the copy operation of the attribute s′ of the obj at
offset −k from r into the attribute s of the destination object to be obj[r+1].s = Copy(obj[r-k].s’).

If-Then: We write down an If-Then Program algorithm 4 and a corresponding Autoregressive
MHLA-Program algorithm 5 to implement If-Then. An If-Then program looks up whether an attribute
x is equal to any of attributes a1, a2, ..., ak then we set attribute x′ to b1, b2, ..., bk respectively. This
is achieved by copying the attributes ai and bi into dummy attributes s0 and s1 for all i in k for a
series of k consecutive tokens. This creates a table with key s0 and value s1. Then we use attribute x
as the query, which looks up the corresponding value s1 which we use to update an attribute x′.

Algorithm 4 If-Then Program

1: # If attribute x is equal to any of a1, a2, ..., ak then set attribute x′ to b1, b2, ..., bk respectively
2: if Token.x == Token.a1: then
3: NextToken.x’ = Token.b1
4: end if
5: if Token.x == Token.a2: then
6: NextToken.x’ = Token.b2
7: end if
8: . . .
9: if Token.x == Token.ak: then

10: NextToken.x’ = Token.bk
11: end if

Algorithm 5 MHLA If-Then Program

1: # If attribute x is equal to any of a1, a2, ..., ak then set attribute x′ to b1, b2, ..., bk respectively
2: token[r+1].s0 = token[r].a1

3: token[r+1].s1 = token[r].b1
4: NEXT TOKEN r = r + 1
5: token[r+1].s0 = token[r].a2

6: token[r+1].s1 = token[r].b2
7: . . .
8: NEXT TOKEN r = r + 1
9: token[r+1].s0 = token[r].ak

10: token[r+1].s1 = token[r].bk
11: NEXT TOKEN r = r + 1
12: Table T = {obj[i].s0 : obj[i].s1}i∈[r,r−k+1]

13: token[r+1].x’ = Lookup(T,token[r].x)

F.2 Proofs For Learning UTM

Lemma C.5 (Learning a UTM). Let Θ ∈ ΩH in dimension d be the MHLA parameters in
Lemma B.1. Let {Mi, xi}i∈[N ] be pairs of TM’s M and words x of maximum length n drawn

25



Algorithm 6 Simplified Instruction Set MHLA Program for UTM for a single block
1: # Initialize Lookup Tables for TM M and tape T1

2: # δ(q, a) = [next-state, next-letter, next-move]
3: M = {q : [a0, δ(q, a0), a1, δ(q, a1)]}q∈Q

4: T1 = {token[i].PosEncoding: token[i].Letter}i∈[r]

5: # Begin Loading Information from M and previous tokens on tape
6: # First copy letter/state from token -N-1 positions away
7: # Attribute s(-1) = {letter, state} where state can be equal to None
8: NextToken.s(-1) = Copy(Token[-N-1].s0)
9: # Second copy letter/state from token -N positions away

10: # Attribute s0 = {letter, state} where state can be equal to None
11: NextToken.s0 = Copy(Token[-N].s0)
12: # Third copy letter/state from token -N+1 positions away
13: # Attribute s1 = {letter, state} where state can be equal to None
14: NextToken.s1 = Copy(Token[-N+1].s0)
15: NEXT TOKEN r = r + 1
16: #Split into three branches to handle left, head, and right positions relative to head
17: RUN BRANCH 1 (Token is Left of Head Position) See algorithm 7
18: RUN BRANCH 2 (Token is at Head Position) See algorithm 7
19: RUN BRANCH 3 (Token is Right of Head Position) See algorithm 7

i.i.d. from a distribution D. Let Zi = Embed(Mi, xi). For each TM/word pair (Mi, xi) let
CHΘ(Zi) = {Z1

i , Z
2
i , ..., Z

Φ
i } be the Φ-step autoregressive computation history of MHLAΘ on

Zi. Let D be the dataset D := {(CHΘ(Zi)
t, yt+1

i }i∈[N ],t∈[T ] where yt+1
i = MHLAΘ(Z

t
i ). Then

Algorithm 1 applied to input D returns Θ̂ ∈ ΩH for H ≤ d2 such that with probability 1− δ

E(Z,y)∈D

[(
MHLAΘ̂(Z)− y

)2] ≤ ϵ (26)

for sample complexity N = poly(d, ϵ−1, log(δ−1)). Then with probability 1− δ over the randomness
in the data, the probability over D that the Φ-step autoregressive computation history CHΘ̂(M,x)
and CHΘ(M,x) differ is upper bounded by

Pr(M,x)∼D[CHΘ̂(M,x) ̸= CHΘ(M,x)] ≤ O(ϵΦ). (27)

Corollary F.3. In particular, for sample complexity N = poly(d, ϵ−1, log(δ−1), n, t), by Lemma B.1,
we have with probability 1− δ over the randomness in the data that the probability that the c(t) step
of the computation history of MHLAΘ̂ is equal to xt is

Pr(M,x)∼D

[
CHΘ̂(M,x)c(t)[: −kt] = xt

]
≥ 1− ϵ, (62)

where c(t) ≤ O((n+ t)t). That is, the computation history of the MHLA returned by algorithm 1 is
equal to the computation history of M on x.

Proof. We have from Theorem 2.2 that algorithm 1 returns Θ̂ such that

E(Z,y)∈D

[(
MHLAΘ̂(Z)− y

)2]− min
Θ∈ΩH

E(Z,y)∈D

[
(MHLAΘ(Z)− y)

2
]
≤ ϵ (63)

Then to obtain an error bound on the Φ step computation history, which involves O(nΦ) tokens, we
just observe that by union bound each step rounds to an incorrect set of tokens with probability less
than ϵ. Therefore, over O(Φ) steps the error probability is upper bounded by ϵΦ. Equivalently

Pr
(M,x)∼D

[CHΘ̂(M,x) ̸= CHΘ(M,x)] ≤ O(ϵΦ). (64)

Then proving Corollary F.3 is a simple exercise. For a larger sample complexity N =
poly(d, ϵ−1, log(δ−1), n, t), by Lemma B.1, we have that the probability that every token of the
autoregressive computation history of MHLAΘ̂ is equal to xt is

Pr
(M,x)∼D

[
CHΘ̂(M,x)c(t)[: −kt] = xt

]
≥ 1− ϵ (65)

26



Algorithm 7 Branches to handle cases Left of Head, Head, and Right of Head
1: #Split into three branches to handle left, head, and right positions relative to head
2: BRANCH 1 (Token is Left of Head Position)
3: # we have loaded a state q into s1 (if left of head) and next we load [a0, δ(q, a0), a1, δ(q, a1)] into s2
4: NextToken.s2 = Lookup(M,Token.s1.state)
5: NEXT TOKEN r = r + 3
6: if Token.s2.letter == a0 then
7: NextToken.s3 = δ(q, a0) = [q’,w’,L/R]
8: end if
9: if Token.s2.letter == a1 then

10: NextToken.s3 = δ(q, a1) = [q’,w’,L/R]
11: end if
12: NEXT TOKEN r = r+3
13: if Token.s3.move == L then
14: NextToken.return-letter = Token.s0.letter
15: NextToken.return-state = q’
16: end if
17: if Token.s3.move == L then
18: NextToken.return-letter = Token.s0.letter
19: NextToken.return-state = None
20: end if
21: BRANCH 2 (Token is at Head Position)
22: # we have loaded a state q into s0 and next we load [a0, δ(q, a0), a1, δ(q, a1)] into s2
23: NextToken.s2 = Lookup(M,Token.s0.state)
24: NEXT TOKEN r = r+3
25: if Token.s2.letter == a0 then
26: NextToken.s3 = δ(q, a0) = [q’,w’,L/R]
27: end if
28: if Token.s2.letter == a1 then
29: NextToken.s3 = δ(q, a1) = [q’,w’,L/R]
30: end if
31: NEXT TOKEN r = r+3
32: if Token.s3.next-letter is not None then
33: NextToken.return-letter = Token.s3.next-letter
34: NextToken.return-state = None
35: end if
36: BRANCH 3 (Token is Right of Head Position)
37: # we have loaded a state q into s(-1) and next we load [a0, δ(q, a0), a1, δ(q, a1)] into s2
38: NextToken.s2 = Lookup(M,Token.s(-1).state)
39: NEXT TOKEN r = r+3
40: if Token.s2.letter == a0 then
41: NextToken.s3 = δ(q, a0) = [q’,w’,L/R]
42: end if
43: if Token.s2.letter == a1 then
44: NextToken.s3 = δ(q, a1) = [q’,w’,L/R]
45: end if
46: NEXT TOKEN r = r+3
47: if Token.s3.move == L then
48: NextToken.return-letter = Token.s0.letter
49: NextToken.return-state = None
50: end if
51: if Token.s3.move == R then
52: NextToken.return-letter = Token.s0.letter
53: NextToken.return-state = Token.s3.next-state
54: end if

27



Lemma A.8 (Learning UTM from Certifiably Identifiable Data). Let D = {(Zi, yi)}i∈[N ] be a
dataset satisfying yi = MHLAΘ for Θ ∈ ΩH being the expressibility parameters of Lemma B.1 for
the set of TM’s/words (M,x) ∈ ∆(Q̂, Σ̂, n̂, Φ̂). If D is certifiably identifiable with λmin(ΛD) > η,
then there is a poly(d,N, Q̂, Σ̂, n̂, Φ̂, η−1) time algorithm that outputs a set of parameters Θ̂ ∈ Ωd2

such that for all TM’s M and input words x in ∆(Q̂, Σ̂, n̂, Φ̂), we have

CHΘ̂(M,x)c(t)[: −kt] = xt . (23)

The c(t) step of the autoregressive computation history of Θ̂ is equal to the t’th step of the computation
history of M on x.

Proof. The proof follows from the quantitative version of Lemma A.7. Using the given that
λmin(ΛD) > η, we conclude that for any Θ̂ ∈ Ωϵ−ERM that for all inputs Z ∈ Rd×n

∥MHLAΘ̂(Z)− MHLAΘ(Z)∥ ≤ ϵ

η
∥Z∥6F . (66)

If we select a sufficiently small ϵ = 1/poly(d,N, |Q|, |Σ|, n, t, η−1) then we can ensure

Pr
(M,x)∼D

[
CHΘ̂(M,x)c(t)[: −kt] = xt

]
≥ 1− ϵ (67)

.

The runtime then scales with poly(d,N, |Q|, |Σ|, n, t, η−1) as desired.

28



G Additional Definitions

Definition G.1 (Orthogonal Embeddings). Let Embed be a function Embed : Σ → R|Σ|. Let Σ be
an alphabet and let e1, e2, ..., e|Σ| ∈ R|Σ| be a basis of orthogonal unit vectors. Then for each letter a
in an alphabet Σ, we define Embed(a) = ea where we associate a different unit vector to each letter.

We adopt a naive "rounding" scheme for converting vectors into tokens. This can be done in a variety
of ways, and we choose to simply round the entries of the vector embeddings to the nearest token
embedding.

Definition G.2 (Rounding). For any vector v = (v1, v2, ..., vd) ∈ Rd, let Round(v) = ej for
j = argmaxi∈[d]⟨v, ei⟩. Since we use orthogonal unit vectors for token embeddings we will refer to
Round(v) as a token. We will often refer to a matrix Z ∈ Rd×n as being equivalent to a series of n
tokens a1, a2, ..., an to mean Round(Z[:, i]) = ai for all i ∈ [n].

Algorithm 8 Extract Features

1: Input: Data D := {Zi}i∈[N ] for Zi ∈ Rd×ni and yi ∈ Rd

2: for Zi ∈ D do
3: Let z1, z2, ...zd be the rows of Zi and let za,b be the (a, b) entry of Zi

4: for j ∈ [d] do
5: for k ∈ [d] do
6: for ℓ ∈ [d] do
7: Let Xi ∈ Rd×d2 be defined as follows
8: Xi[j, kd+ ℓ] = [⟨zj:, zk:⟩zℓni ]
9: end for

10: end for
11: end for
12: end for
13: Return: {Xi}i∈[N ] such that

Xi :=


⟨z1:, z1:⟩z1ni ⟨z1:, z2:⟩z1ni · · · ⟨z1:, zd:⟩z1ni · · · ⟨z1:, zd:⟩zdni
⟨z2:, z1:⟩z1ni ⟨z2:, z2:⟩z1ni · · · ⟨z2:, zd:⟩z1ni · · · ⟨z2:, zd:⟩zdni

...
...

. . .
...

. . .
...

⟨zd:, z1:⟩z1ni ⟨zd:, z2:⟩z1ni · · · ⟨zd:, zd:⟩z1ni · · · ⟨zd:, zd:⟩zdni

 . (68)

G.1 Training details of attention networks

We use Adam Kingma and Ba [2014] optimizer to train linear attention model Equation (4) and the
full Transformer Vaswani et al. [2017] models.

hyper parameter search space
d input dimension [2, 4, 8, 16]
m number of heads [1, 2, 4, 8, 16]
n number of layers [1, 2, 4]
learning rate [0.01, 0.001]
batch size [32, 64]
optimizer AdamW Loshchilov and Hutter [2018]

G.2 Training details in DFA Execution

We use the Llama variant of the Transformer arhitecture from Touvron et al. [2023]. We run
each setting with N number of training examples with the following different values N ∈
{16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 6144, 8192, 12290, 16384, 20480, 32768, 65536}. The
other hyper parameters are given in the below table.

29



hyper parameter search space
d input dimension [2048]
m number of heads [16]
n number of layers [4]
learning rate [0.00025]
epochs 100
optimizer AdamW Loshchilov and Hutter [2018]

G.3 Additional Experiments

0 100 200 300 400 500
epochs

10 16

10 13

10 10

10 7

10 4

10 1
M

SE
(y

,y
)

(a) N = 2048, d = 4

Figure 3: Performance comparison of multi-head, multi-layer linear attention models and
the original Transformer model (denoted as full). We trained using SGD on synthetic data
generated from a single-layer linear attention model for varying training set sizes (N ) and input
dimensions (d), number of heads m, and number of layers n. We present mean squared error of
the predictions w.r.t number of training epochs. Results demonstrate that multi-head architectures
converge faster on different input dimensions and match the performance of our algorithm 1 (convex
algorithm). Increasing the number of layers or incorporating multilayer perceptrons (MLPs) and
layer normalization did not yield consistent improvements. Shading indicates the standard error over
three different runs.

G.4 Learning the Computation History of Deterministic Finite Automata

Universal automata (like the universal Turing machine discussed in Appendix F.2) receive descriptions
of other automata as input, and simulate them to produce an output. Here we empirically evaluate the
ability of MHLA models to perform universal simulation of deterministic finite automata (DFAs). We
limit our study to DFAs with a maximum number of states (N ), alphabet size (V ), and input length
(L). While recent work on in-context learning [Akyürek et al., 2024] has focused on inferring DFA
behavior from input–output examples, here, we aim to simulate DFAs given explicit descriptions of
their state transitions as input—a task somewhat analogous to instruction following in large scale
language models.

The construction in Lemma C.5 shows that a linear attention layer can output the polynomially
bounded computation history of any TM (and therefore any DFA). Our construction requires embed-
ding size linear with maximum length of computation history, number of states and alphabet size.
Therefore, we predict the data requirements are polynomial in each of N,V and L.

Dataset Our dataset consists of strings containing three components: the input DFA’s transition
function δ : Q× Σ → Q, the input word x ∈ ΣL and the computation history h ∈ QL which is the
sequence of states visited in the DFA as it decides if x is in its language. The first two components
are the input to the model, while the computation history is the target output. We adopt the following
schema for representing δ, x, and h:

(si, w, sj), . . . ,∀si∈Q,w∈Σ ∈ δ︸ ︷︷ ︸
DFA transition function

| w0w1 . . . wL︸ ︷︷ ︸
word

| (s0w0s
1), (s1w1s

2), . . . , (sL−1wLs
L)︸ ︷︷ ︸

computation history

30



2 4 6 8 10 12 16
Number of States (Q)

210

211

212

213

214

215

N
L

L = 4, V = 4

2 4 6 8 10 12 16
Word Length (L)

Q = 4, V = 4

2 4 6 8 10 12 16
Alphabet Size (V)

Q = 4, L = 4

Figure 4: Data requirement for universal DFA simulation: We train a fixed sized Transformer
(4-layers, 16 heads and 2048 hidden dimensions) to simulate a DFA given a transition table and input
word. The vertical axis shows the number of tokens (expressed as word length L times the number of
examples Q) required to obtain 99% next token accuracy.

We encode each input-output relation in the transition function as a sequence of three tokens (si, w, sj)
where δ(si, w) = sj . We also include two parantheses to separate each triplet of tokens for a total of
five tokens for each input-output relation. The total description length of δ is then 5QΣ. We encode
word x of length L as a sequence of L tokens. Finally, we encode the computation history as the
sequence of state transitions the DFA visits when deciding if x is in its language. Here we designate
s0 as the start state, and let si = δ(si−1, wi−1). Each state transition is again represented by a triplet
(s, w, δ(s, w)). We train an autoregressive Transformer model using cross-entropy loss to predict the
computation history tokens given the transition function and word. Please refer to Appendix G.2 for
hyperparameter details.

Results In Figure 4, we vary each of the parameters Q, L and V , while the other two parameters
are fixed to a constant (in this case we fix them to be 4). Then, on the vertical axis, we display
the minimum number of tokens (number of examples times the word length) required to get 99%
accuracy on the next token prediction. Plots are suggestive of a sub-exponential dependence on DFA
complexity.

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Both in the abstract and the introduction, we accurately describes the scope
and objective of the work.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss our limitations.

Guidelines:

31



• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We include all proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We will release code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

32



• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

33

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide statistical significance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have a dedicated section in Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

34



9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We do not foresee any such issue in our work.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Not applicable.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Not applicable

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

35

https://neurips.cc/public/EthicsGuidelines


• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, we make sure to fully credit them.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not produce any new data asset.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This is not applicable to our research.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

36

paperswithcode.com/datasets


• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This is not applicable to our research.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This is not applicable to our research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

37

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Technical Overview
	Polynomial-time learnability
	Identifiability

	Application to learning Universal Turing Machines.
	Experiments
	Do extra heads help optimization with SGD?
	Does certifiable identifiability predict generalization?

	Related Work
	Formal Expressivity of Transformers
	Learning Transformers

	Conclusion and Limitations
	Certificate for identifiability of linear attention
	Realizability of Universal Automata in MHLA
	Application to Learning Universal Turing Machines
	Proof of the Main Theorem
	Proofs from Identifiability Section
	Programs Expressible as Fixed Depth Linear Transformer
	Construction of UTM
	Proofs For Learning UTM

	Additional Definitions
	Training details of attention networks
	Training details in DFA Execution
	Additional Experiments
	Learning the Computation History of Deterministic Finite Automata


