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ABSTRACT

We introduce a new paradigm for active sound modification: Active Speech En-
hancement (ASE). While Active Noise Cancellation (ANC) algorithms focus
on suppressing external interference and traditional speech enhancement pas-
sively reconstructs degraded speech signals, ASE goes further by actively shaping
the speech signal, both attenuating unwanted noise components and amplifying
speech-relevant frequencies to improve intelligibility and perceptual quality. To
enable this, we propose a novel Transformer-Mamba-based architecture, along
with a task-specific loss function designed to jointly optimize interference sup-
pression and signal enrichment in an acoustic environment. Our method outper-
forms existing baselines across multiple speech processing tasks, including de-
noising, dereverberation, and declipping, demonstrating the effectiveness of ac-
tive, targeted modulation in challenging acoustic environments. A demo page and
source code are provided in the Supplementary Materials.

1 INTRODUCTION

Traditional speech enhancement and noise control are fundamental audio processing tasks. Tradi-
tional speech enhancement aims to passively improve the perceptual quality and intelligibility of
speech signals by mitigating degradations such as background noise, distortion, clipping, and re-
verberation. Classic approaches—including spectral subtraction, Wiener filtering, and statistical
model-based methods—have achieved varying degrees of success but often falter in highly non-
stationary noise environments (Boll, 2003; Lim & Oppenheim, (1978 |[Paliwal et al., 2012). Recent
advances in deep learning have, however, yielded state-of-the-art performance: convolutional neu-
ral networks (CNNs) (Pascual et al., [2017}; Rethage et al.l 2018} Pandey & Wang, [2018)), recurrent
neural networks (RNNs) (Hu et al.,2020), generative adversarial networks (GANs) (Fu et al.,2019;
2021; [Kim et al., [2021; [Shin et al. 2023} |Shetu et al., [2025)), Transformers (Wang et al., 2021}
de Oliveira et al.}2022; Zhang et al., 2022b;|Cao et al., 2022} |Ye & Wan, 2023} |Zhang et al., |[2024),
and diffusion models (Guimaraes et al., 2025 [Lu et al., 2022; Welker et al., 2022} [Richter et al.}
2023} [Lemercier et al.,|2023; Tai et al., 2023} |Ayilo et al.| [2024) demonstrate exceptional results on
benchmarks for denoising, dereverberation, and declipping.

Active noise cancellation takes a complementary approach by generating an anti-noise signal to
interfere with unwanted noise destructively. Pioneering work dating back to Lueg’s first patent in
1936 introduced the concept of adaptive feedforward ANC (Lueg, |1936), which was later refined
through advances in adaptive filtering (e.g., LMS, FXLMS), multi-channel algorithms, and appli-
cations in headphones and enclosure systems (Nelson & Elliott, (1991} [Fuller et al., [1996; Hansen
et al.,|1997; Kuo & Morgan,|1999;[Zhang & Wang, [202 1} Park et al.l 2023;|Mostafavi & Cha, 2023;
Cha et al.,2023; Singh et al.|[2024; |Pike & Cheer;, 2023; Mishaly et al., 2025). While ANC excels at
suppressing predictable or narrowband noise, it does not actively modify the speech content itself.

We propose a new paradigm—Active Speech Enhancement (ASE) that unifies the goals of tradi-
tional speech enhancement and active noise control. Unlike conventional ANC, which solely targets
noise suppression, ASE actively shapes the speech signal by simultaneously attenuating interfering
components and amplifying speech-related frequencies. This dual-action approach not only re-
duces noise but also emphasizes speech and improves perceptual quality under challenging acoustic
conditions. We make four key contributions. First, we formalize the ASE task and describe appro-
priate evaluation metrics that capture both noise suppression and speech enhancement. Second, we
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introduce a Transformer-Mamba-based model that generates an active modification signal, lever-
aging self-attention to capture long-range dependencies in time—frequency representations. Third,
we design a joint suppression—enrichment loss that balances interference removal and signal enrich-
ment, combining spectral, perceptual, and adversarial objectives to drive optimal ASE performance.
Fourth, we conduct a comprehensive evaluation, showing that our method outperforms adapted base-
lines across multiple ASE tasks—including denoising, dereverberation, and declipping—with sig-
nificant gains in metrics such as PESQ (Rix et al.|[2001).

2 RELATED WORK

2.1 TRADITIONAL SPEECH ENHANCEMENT

Recent advances in deep learning have yielded substantial improvements in traditional speech en-
hancement. Pandey and Wang (Pandey & Wang| 2018)) proposed a CNN-based autoencoder that
applies convolutions directly to the raw waveform while computing the loss in the frequency do-
main. SEGAN (Pascual et al., 2017) employs strided convolutional layers in a generative adver-
sarial framework. |[Rethage et al.|(2018)) developed a WaveNet-inspired model that predicts multiple
waveform samples per step to reduce computational cost. Recurrent architectures have also been ex-
plored. |Hu et al.[(2020) presented DCCRN, which integrates complex-valued convolutional and re-
current layers to process spectrogram inputs. A real-time causal model based on an encoder—decoder
with skip connections was proposed by |Defossez et al.[(2020), operating directly on the raw wave-
form and optimized in both time and frequency domains.

MetricGAN (Fu et al.,2019) and its successor MetricGAN+ (Fu et al.,|2021)) incorporate evaluation
metrics such as PESQ (Perceptual Evaluation of Speech Quality) (Rix et al.,|2001) and STOI (Short-
Time Objective Intelligibility) (Kim et al., 2021) into the adversarial loss. [Kim et al.|(2021) further
enhance this approach by introducing a multiscale discriminator operating at different sampling rates
alongside a generator that processes speech at multiple resolutions.

Transformer-based models have recently gained prominence. [Wang et al.| (2021)) proposed a two-
stage transformer network (TSTNN) that outperforms earlier time- and frequency-domain methods.
CMGAN (Cao et al.} [2022) adapts the Conformer backbone (Gulati et al., 2020) for enhancement,
and|de Oliveira et al.|(2022)) replace the learned encoder of SepFormer (Subakan et al., [2021)) with
long-frame STFT (Short-Time Fourier Transform) inputs, reducing sequence length and lowering
computational cost without compromising perceptual quality.

More recently, diffusion-based approaches have emerged as a powerful generative paradigm. |Lu
et al.| (2022)) introduced a conditional diffusion probabilistic model that learns a parameterized re-
verse diffusion process conditioned on the noisy input. Welker et al.| (2022)) extended score-based
models to the complex STFT domain, learning the gradient of the log-density of clean speech coeffi-
cients. Richter et al.|(2023) formulate enhancement as a stochastic differential equation, initializing
reverse diffusion from a mixture of noisy speech and Gaussian noise and achieving high-quality re-
constructions in only 30 steps. [Lemercier et al.[(2023)) propose a stochastic regeneration method that
leverages an initial predictive-model estimate to guide a reduced-step diffusion process, mitigating
artifacts and reducing computational cost by an order of magnitude while maintaining quality.

2.2 ACTIVE AUDIO CANCELLATION

Recently, deep learning approaches have demonstrated remarkable results in ANC algorithms.
Zhang & Wang| (2021) introduced DeepANC, which employs a convolutional long short-term mem-
ory (Conv-LSTM) network to jointly estimate amplitude and phase responses from microphone
signals. Subsequently, attention-driven ANC frameworks integrating attentive recurrent networks
were proposed to enable real-time adaptation and low-latency operation (Zhang et al., [2022a)).

A selective fixed-filter ANC (SFANC) framework was developed to leverage a two-dimensional
CNN for optimal control-filter selection on a mobile co-processor and a lightweight one-dimensional
CNN for time-domain noise classification, yielding superior attenuation of real-world non-stationary
headphone noise (Shi et al.| 2022)). |[Luo et al.|(2022) proposed a hybrid SFANC-FxNLMS that first
applies a similar approach as SFANC for each noise frame and then applies the FxXNLMS algorithm
for real-time coefficient adaptation, thereby combining the rapid response of SFANC with the low
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steady-state error and robustness of adaptive optimization. Heuristic algorithms—such as bee colony
optimization (Ren & Zhang, |2022) and genetic algorithms (Zhou et al.| 2023)—have been explored
to avoid gradient-based learning.

Other studies have applied recurrent convolutional networks (Park et al.| [2023; [Mostafavi & Cha,
2023; Cha et al., 2023) and fully connected neural networks (Pike & Cheer, 2023) to ANC.
Autoencoder-based encodings have been used to extract latent features for improved robust-
ness (Singh et all 2024)). Efforts in SFANC have extended to synthesizing optimized filter banks
via unsupervised methods (Luo et al., [2024), while advancements in multichannel setups continue
to leverage spatial diversity through deep controllers (Shi et al., [2024). Multichannel configura-
tions have been further enhanced by refined deep controllers that learn inter-channel relationships
for improved noise attenuation (Zhang & Wangl 2023} |Antonanzas et al., 2023} |Xiao et al., 2023;
Zhang et al.l [2023bj |Shi et al 2023), and attention-driven frameworks have been investigated for
low-latency operation (Zhang et al.| 2023a).

3 BACKGROUND

We first examine a feedforward ANC algorithm that employs a single error microphone to lay the
foundation for our new ASE framework. In the ANC framework (Figure [Th), the primary path,
characterized by the transfer function P(z), models the acoustic propagation from the disturbance
source to the error microphone. The secondary path, denoted by S(z), describes the transfer from
the loudspeaker to the error microphone. Let x(n) denote the reference signal applied to the ANC
system. The primary signal d(n) is obtained by filtering x(n) through the primary path:

d(n) = P(z) * z(n), (1)

where * denotes the convolution operation. The error microphone captures the residual signal e(n),
representing the difference between the original disturbance and the cancellation signal. Both z(n)
and e(n) are used by the ANC algorithm to compute the canceling signal y(n). The loudspeaker im-
plements y(n) according to its electro-acoustic transfer function frs{-}. After propagation through
the secondary path, the anti-signal (or cancellation signal) is given by

a(n) = S(2) * fus(y(n)). )

The error signal is defined formally as the difference between the primary signal and the anti-signal:

e(n) = d(n) —a(n). 3)

The objective of the ANC algorithm is to generate y(n) such that e(n) is minimized, ideally achiev-
ing e(n) = 0, which corresponds to complete cancellation of the disturbance. In contrast, the ASE
framework uses the primary and anti-signals to construct an enhanced signal:

ch(n) = d(n) +a(n). )

While ANC aims to eliminate the disturbance, ASE seeks to recover clean speech from a noisy
mixture of distorted speech z(n). The objective of the ASE task is to generate eh(n) such that
its deviation from the clean target signal c(n), i.e., eh(n) — ¢(n), is minimized. As illustrated
in Figure [Tp, the feedforward ASE setup comprises a disturbance source, a reference signal path,
and a control filter operating through the secondary path. Given the nature of the task, the error
microphone serves as the modification microphone in our framework.

Our work adapts three speech distortion types, previously defined by VoiceFixer (Liu et al.,[2022) for
general speech restoration, to the context of our ASE framework. Specifically, our ASE-TM model
targets the restoration of speech s(n) degraded by: (i) Additive noise: This common distortion,
where unwanted background sounds obscure the speech, is modeled as the sum of the clean speech
signal s(n) and a noise signal n(n):

dnoise (s(n)) = s(n) + n(n). ®)

(ii) Reverberation: Caused by sound reflections in an enclosure, reverberation blurs speech signals.
It is modeled by convolving the speech signal s(n) with a room impulse response (RIR) r(n):

drev(s(n)) = s(n) xr(n). (6)
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Figure 1: Comparison of feedforward ANC and ASE setups.

(iii) Clipping: This distortion arises when signal amplitudes exceed the maximum recordable level,
typically due to microphone limitations. Clipping truncates the signal s(n) within a certain range
[=n, +n:

dClip(s(n)) = max(min(s(n), 77)7 _77) I n € [07 1] . (7)
This leads to harmonic distortions and can degrade speech intelligibility.

To assess the performance of ASE-TM across these enhancement tasks, we employ a suite of estab-
lished objective metrics. Consistent with the evaluation protocol in SEmamba (Chao et al., |2024),
these include the Wide-band PESQ (Rix et al., [2001), STOI (Taal et al., [2010), and the compos-
ite measures CSIG (predicting signal distortion), CBAK (predicting background intrusiveness), and
COVL (predicting overall speech quality) (Hu & Loizou, 2007). Furthermore, we incorporate the
Normalized Mean Square Error (NMSE), a traditionally well-established metric in the ANC task.
The NMSE between a target signal u(n) and an estimated signal v(n) is defined in decibels (dB) as:

M _ 2
Zn:l u(n)
where M is the total number of samples. In our evaluations, u(n) represents the clean target speech

¢(n), and v(n) is the enhanced speech eh(n) produced by our model (the precise definition of ¢(n)
for each task is detailed in Section[4.T)).

4 METHOD

4.1 ASE-TM ARCHITECTURE OVERVIEW

The proposed model, ASE Transformer-Mamba (ASE-TM, Figure [2), adopts and extends the fun-
damental structure of the SEmamba architecture (Chao et al., [2024), which consists of a dense
encoder, a series of Time-Frequency Mamba (TFMamba) blocks (Xiao & Das, 2024), and parallel
magnitude and phase decoders. A notable distinction of our ASE-TM model is the utilization of
Mamba2 blocks (Dao & Gu,[2024) within these TFMamba pathways, in contrast to the original SE-
mamba architecture, which employed an earlier version of Mamba (Gu & Daol 2023)). This choice
is motivated by the potential improvements in efficiency offered by Mamba2.

The input noisy waveform, x(n), sampled at a rate of Fy, is processed through an STFT. The STFT
employs a Hann window of Ny;, samples, a hop length of Ny, samples, and an Ngpr-point FFT,
resulting in Ngeq = | Nwin/2]|+1 frequency features per frame. Its magnitude and phase components
are horizontally stacked and fed into the network. The dense encoder utilizes convolutional layers
and dense blocks to extract initial features from the stacked magnitude and phase, outputting a
representation with C,. channels, each with N, features.

The core of the temporal and spectral modeling is based on Ny TFMamba blocks. Each TFMamba
block contains separate Mamba-based pathways (t ime-mamba and freg-mamba) employing
bidirectional Mamba layers to capture dependencies across time and frequency dimensions, respec-
tively (Chao et al., [2024; Xiao & Das},2024)).

Following the initial N,;/2 TFMamba blocks, inspired by hybrid approaches like Jamba (Lieber
et al.,|2024), we introduce an attention-based block. Before applying attention, the feature represen-
tation, with Cip. channels, undergoes dimensionality reduction. A 2D convolution with a kernel size
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Figure 2: ASE-TM Architecture.

of (1, Nenc/2+ 1) reduces the channel dimension from Cepe to Cene /4 and each channel features size
from Nepe to Nepe/2. This results in a compact representation of size Nepe/2 X Cepe/4 for the at-
tention layer. In addition, positional encoding is applied to this compact representation. A standard
Multi-Head Attention layer with Nye.qs heads is then used on this reduced representation to weigh
features based on global context. Following the attention layer, an expansion module employing a
transposed 2D convolution, also with a kernel size of (1, Ny /2 + 1), is used to restore the channel
dimension to Ce,. and expand the feature dimension back towards N, before passing the features
to the remaining N,s/2 TFMamba blocks. An additional step before applying the remaining TF-
Mamba blocks is the use of a residual connection that sums the feature representations from before
the dimensionality reduction with those after the attention and expansion modules

The magnitude and phase decoders retain the structure used in SEmamba, employing dense blocks
and convolutional layers (including transposed convolutions) to reconstruct the target representa-
tion—not before applying a residual connection that performs element-wise multiplication between
the original STFT magnitude and the predicted magnitude. However, instead of predicting the en-
hanced spectra directly, the network is trained to output the complex spectrum of the cancelling
signal y(n). This signal y(n), after undergoing the electro-acoustic transfer function frs{-} and
propagation through the secondary path S(z), becomes the anti-signal a(n) (as defined in Eq. 2).
This anti-signal a(n) is then summed with the primary path signal d(n) to produce the final enhanced
signal eh(n) (as defined in Eq.[3).

4.2 OPTIMIZATION OBJECTIVE

The primary goal of the ASE-TM model is to generate an enhanced signal eh(n) that is as close
as possible to a clean target speech signal c(n). The definition of this target ¢(n) varies based
on the specific enhancement task. For additive noise reduction, c(n) is the clean speech signal
convolved with the primary path P(z), representing the clean signal as perceived at the modification
microphone. For dereverberation and declipping, c(n) is the original anechoic, unclipped clean
speech signal, prior to any acoustic path effects or clipping distortion.

The training of ASE-TM largely follows the multi-level loss framework established in SEmamba
and originating from MP-SENet (Lu et al.| 2023)). This framework combines several loss com-
ponents. Our approach incorporates this established framework with specific modifications. The
overall generator loss L« is a weighted sum of the following components:

1. Time-Domain Loss (L1): We employ a combination of L1 and L2 distances between the
enhanced waveform eh(n) and the target waveform c(n):

Lr = |leh(n) - c(n)[[1 + |leh(n) — c(n)]]3. 9
This hybrid loss aims to leverage the robustness of L1 to outliers and the smoothness en-
couraged by L2.

2. Magnitude Spectrum Loss (Lyag): Similar to the time-domain loss, a combined L1 and
L2 loss on the magnitude spectra is applied. If EN,, and C,, are the magnitude spectra of
eh(n) and ¢(n) respectively, then:

Loy = HENm_CmHl"‘HENm_CmH%- (10)
This contrasts with the L2 loss typically used in MP-SENet for this component.

3. Complex Spectrum Loss (Lcom): This loss penalizes differences in the STFT domain. It
is the sum of L2 losses on the real and imaginary parts of the STFTs of eh(n) and ¢(n).
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4. Anti-Wrapping Phase Loss (Lpp,): Includes instantaneous phase loss, group delay loss,
and instantaneous angular frequency loss to optimize the phase spectrum directly, address-
ing phase wrapping issues.

5. Metric-Based Adversarial Loss (Lyget): A discriminator trained to predict a perceptual
metric (e.g., PESQ), guiding the generator to produce outputs that score well on it.

6. Consistency Loss (Lcon): We incorporate a consistency loss. This loss minimizes the dis-
crepancy between the complex spectrum directly output by the model’s decoders (magni-
tude and phase) and the complex spectrum obtained by applying STFT to the time-domain
waveform eh(n) that results from an inverse STFT of the initially predicted spectrum.

The total generator loss is then defined with the hyperparameter -y as follows:

La =1Lt + 72 Lvag + V3Lcom + VaLmer + V5 Lpha + Y6 Lcon- (11)

5 EXPERIMENTS

5.1 DATASETS AND TASK GENERATION

We conduct evaluations across three primary speech restoration tasks: additive noise reduction,
dereverberation, and declipping. For additive noise reduction, we use the VoiceBank-DEMAND
dataset (Botinhao et al.,[2016), a standard benchmark in speech enhancement. This dataset combines
clean speech from the VoiceBank corpus (Veaux et al.l 2013) with various non-stationary noises
from the DEMAND database (Thiemann et al., 2013). Our training set consists of utterances from
28 speakers with 10 different noise types at Signal-to-Noise Ratios (SNRs) of 0, 5, 10, and 15 dB. We
used two speakers from the training set as the validation set. The test set comprises 824 utterances
from 2 unseen speakers, mixed with 5 unseen noise types at SNRs of 2.5, 7.5, 12.5, and 17.5 dB.

The datasets for the dereverberation and declipping tasks are generated using the clean speech
utterances of the speakers available in the VoiceBank corpus. Dereverberation: Reverberant speech
is synthesized by convolving the clean VoiceBank utterances with Room Impulse Responses (RIRs)
as defined in Eq.[6]using the SpeechBrain package (Ravanelli et al.,[2024). For training, we randomly
sample RIRs from the training portion of the RIR dataset provided alongside VoiceFixer (Liu et al.,
2022). For the test set, a fixed and distinct set of RIRs (from the VoiceFixer RIR test set) is applied
to the clean test utterances to ensure consistent evaluation conditions. Declipping: Clipped speech
signals are generated by applying a clipping threshold 7 to the clean utterances according to Eq.
During training, the clipping ratio 7 is uniformly sampled from the range [0.1, 0.5] for each utterance
to expose the model to varying degrees of distortion. For testing, a specific clipping threshold is used.

5.2 ACOUSTIC PATH SIMULATION

To emulate the acoustic environment for the ASE framework, we simulate the primary path P(z)
and secondary path S(z). Our simulation setup is based on previous setups for the ANC task (Zhang
& Wang, 2021;[Zhang et al.,|2023a), modeling a rectangular enclosure with dimensions of 3 x 4 x 2
meters (width x length x height). Room Impulse Responses (RIRs) are generated using the
image method (Allen & Berkleyl [1979), implemented with a Python-based RIR generator pack-
age (Habets, 2006) with high-pass filtering. The modification microphone, capturing eh(n), is at
[1.5,3, 1] meters. The reference microphone, capturing x(n), is at [1.5, 1, 1] meters, and the can-
cellation loudspeaker, which outputs the signal leading to a(n), is at [1.5,2.5, 1] meters within
the enclosure. The RIR length for both P(z) and S(z) is Lrir = 512 taps. The non-linear
characteristics of the loudspeaker are modeled using the Scaled Error Function (SEF), defined as
fus{y} = J exp(—2%/(2A?))dz. Here, y is the loudspeaker input, and A? controls the severity of
the saturation non-linearity. Different A\? values simulate varying degrees of distortion, with larger
values approaching linear behavior. To introduce variability during training, the room’s reverbera-
tion time (T50) and A\? are randomly sampled from the sets {0.15,0.175,0.2,0.225,0.25} seconds
and {0.1, 1, 10, oo}, respectivly, for each training sample. For testing, fixed Tgo and \? are used.
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Table 1: Average denoising results on the VoiceBank-DEMAND test set (159 = 0.25s and A2 = 00).

Method PESQ (1) CSIG () CBAK(t) COVL (1) STOI(1) NMSE ()
Noisy-speech 1.97 3.50 2.55 2.75 0.92 -8.44
THF-FxLMS 2.37 3.66 2.84 3.00 0.97 -15.32
DeepANC 1.48 1.99 2.19 1.69 0.93 -12.80
ARN 2.45 3.64 3.13 3.03 0.97 -20.64
ASE-TM 2.98 4.21 349 3.62 0.99 -21.76

5.3 MODEL HYPERPARAMETERS AND TRAINING

The ASE-TM model processes audio at F; = 16 kHz. For the STFT, we use a Hann window of
Nyin = 400 samples, hop length of Np,, = 100 samples, and an Ngrr = 400-point FFT. The
dense encoder outputs a feature representation with Cepe = 128 channels, where each channel has
a feature dimension of N, = 100. Our model employs a total of Ny = 8 TFMamba blocks.
The Multi-Head Attention layer within the attention-based block uses Npeags = 10 heads. Other
internal architectural details for the TFMamba blocks and dense convolutional blocks largely follow
the configurations presented in SEmamba. The ASE-TM model is trained for 350 epochs using the
AdamW optimizer (Loshchilov & Hutter, 2017) with 5; = 0.8 and 82 = 0.99. The initial learning
rate is set to 5 x 10~%. We use a batch size of 4. Audio segments of 32,000 samples (equivalent to 2
seconds at 16 kHz) are used for training. The model parameters yielding the best performance on the
validation set, evaluated based on the PESQ score, are saved for final testing. We used an NVIDIA
RTX A6000 GPU (internal cluster). The training runtime of the ASE-TM model was ~ 10 days.

5.4 BASELINE METHODS

We compare ASE-TM with several established baseline methods commonly used in ANC. These
include THF-FXLMS (Ghasemi et al.l [2016), which is an extension to the traditional FXLMS al-
gorithm (Kuo & Morgan, |1999), DeepANC that utilizes a convolutional LSTMs (Zhang & Wang,
2021), and ARN that incorporates an attention mechanism (Zhang et al., 2023a). These baseline
methods were adapted and retrained or configured to the ASE framework across all tested tasks.

6 RESULTS AND ANALYSIS

6.1 ACTIVE DENOISING PERFORMANCE

The speech denoising performance on the VoiceBank-DEMAND dataset is in Table[I] Our ASE-TM
model demonstrates superior performance, achieving a PESQ score of 2.98, significantly surpassing
the baselines: THF-FXLMS achieved a PESQ of 2.37, and the deep learning-based ANC methods,
DeepANC and ARN, yielded PESQ scores of 1.48 and 2.45, respectively. These results demonstrate
a substantial gap between conventional ANC approaches and our ASE-TM, which benefits from
actively shaping the speech signal in addition to noise suppression, as also evidenced by its leading
scores in CSIG, CBAK, COVL, STOI, and a significantly better NMSE of —21.76 dB.

6.2 DEREVERBERATION AND DECLIPPING PERFORMANCE

ASE-TM’s efficacy was further evaluated on dereverberation and declipping tasks, with results pre-
sented in Tables [2] and [3] respectively. For dereverberation (Table [2), ASE-TM achieved a PESQ
score of 2.43, a considerable improvement from the reverberant speech baseline (PESQ 1.60). In
contrast, the adapted ANC baselines struggled; THF-FXLMS scored a PESQ of 1.43, while Deep-
ANC and ARN achieved 1.06 and 1.35, respectively. This suggests that these methods, even when
retrained or configured for the task, struggled to effectively adjust their processes to mitigate re-
verberation in the ASE framework. Similarly, in the declipping task, with a clipping threshold of
n = 0.25 (Table [3)), ASE-TM restored speech to a PESQ of 3.09 from an initial score of 2.17. The
baseline methods again showed limited effectiveness: THF-FXLMS (PESQ 1.92), DeepANC (PESQ
1.05), and ARN (PESQ 1.67). These tasks, particularly where the target c(n) is the original clean
speech before any primary path effects, highlight the challenge and efficacy of the ASE approach in
not just cancelling an interfering signal but actively restoring a desired signal characteristic.
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Table 2: Average dereverberation results on the reverbed test set (159 = 0.25s and A2 = 00).

Method PESQ (1) CSIG (1) CBAK(t) COVL (1) STOI(1) NMSE ()
Reverbed-speech 1.60 2.60 1.88 2.02 0.80 2.00
THF-FxLMS 1.43 2.55 1.64 1.89 0.78 4.77
DeepANC 1.06 1.00 1.00 1.00 0.53 21.19
ARN 1.35 1.25 1.54 1.18 0.76 4.58
ASE-TM 243 3.71 2.67 3.07 0.93 -0.04

Table 3: Average declipping results on the clipped test set (1 = 0.25, Tgo = 0.25s, and A2 = c0).

Method PESQ (1) CSIG(}) CBAK({) COVL({) STOI(f) NMSE (})
Clipped-speech 2.17 3.49 2.51 2.82 0.89 023
THF-FxLMS 1.92 3.35 2.36 2.62 0.88 0.02
DeepANC 1.05 1.00 1.00 1.00 0.53 11.10
ARN 1.67 1.60 2.12 1.57 0.87 031
ASE-TM 3.09 4.20 3.06 3.67 0.93 -1.70

6.3 DENOISING ASE-TM MODEL ANALYSIS

An ablation study, presented in Figure [3p, investigates the contributions of our proposed loss func-
tion modifications, the attention mechanism, and the use of Mamba2 over Mambal to the ASE-TM
model for the denoising task. The full model consistently achieves the highest validation PESQ
score throughout training. Replacing Mambal with Mamba2 and the modified loss yielded the most
considerable performance improvement among all evaluated components. Notably, configurations
incorporating the attention mechanism demonstrate a faster convergence to higher performance lev-
els, suggesting that attention aids in efficiently learning relevant features. Spectrogram analysis
of a representative denoising example (Figure 3p) visually confirms the model’s effectiveness; the
spectrogram of the enhanced signal closely mirrors that of the clean speech (after primary path),
indicating successful noise suppression while preserving essential speech characteristics.

To assess robustness, ASE-TM was evaluated under varying acoustic conditions for the denoising
task, with results in Table[d] This analysis focused on ASE-TM due to its significantly better perfor-
mance over baselines in Table[I] The model shows consistent high performance across different T
values under linear loudspeaker conditions (A?> = o0), achieving a PESQ of 3.02 for Tgo = 0.15s
and 3.13 for Tgo = 0.20s. When strong non-nonlinearities are introduced (e.g., A> = 0.1 at
Tso = 0.25s), the PESQ score is 2.74, still indicating robust performance. As \? increases (less
non-linearity), performance improves, reaching a PESQ of 2.97 for A? = 10 at Ty = 0.25s.
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Figure 3: Model analysis of ASE-TM model for the denoising task.
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Table 4: Average performance of ASE-TM (denoising task) under varying conditions (7 and loud-
speaker non-linearity factor A?) on the VoiceBank-DEMAND test set.

Teo () A2 PESQ(1) CSIG(f) CBAK(1) COVL(}) STOI(t) NMSE ()

0.25 0.1 2.74 4.01 3.29 3.39 0.98 -20.21

0.25 1.0 2.92 4.17 3.44 3.57 0.99 -21.92

0.25 10 2.97 4.21 348 3.62 0.99 -22.37

0.15 oo 3.02 422 3.50 3.65 0.98 2231

020 oo 3.13 433 3.60 3.77 0.99 -22.88
Dereverberation task Declipping task
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Figure 4: Power spectra for the dereverberation and declipping tasks over the entire test set.

6.4 RUNTIME ANALYSIS

To satisfy real-time constraints in active systems, we evaluated ASE-TM under a future-frame pre-
diction strategy, following prior work (Zhang & Wang, 2021;|Zhang et al., [2023a). In our setup, the
causality condition Txse-tm < T}, — T evaluates to Txse-tv < 373 — 553 ~ 0.0043 seconds, where
T, and T denote the acoustic delays of the primary and secondary paths, respectively. To accom-
modate the model’s inference latency, we predict 500 future frames (0.03125 seconds), remaining
within real-time limits of our computational environment. Despite this future context, performance
degradation is minimal: on the VoiceBank-DEMAND test set (Tgo = 0.25 s, n? = o0), ASE-TM
achieves a PESQ of 2.96 and STOI of 0.99—closely matching the non-causal configuration.

6.5 DEREVERBERATION AND DECLIPPING ASE-TM MODEL ANALYSIS

Figure [ presents the power spectra of the enhanced signals for the dereverberation and declipping
tasks, over the entire test set. For both tasks, the spectrum of the enhanced signal eh(n) exhibits
significantly more power across a broad frequency range compared to the distorted input (reverber-
ated or clipped after primary path), indicating successful signal restoration and enrichment. In the
declipping task, it is particularly noteworthy that lower frequencies, crucial for speech intelligibility,
show substantial power recovery in the enhanced signal’s spectrum. We further evaluated the declip-
ping performance under a more aggressive clipping threshold of 77 = 0.1. The unprocessed clipped
speech at this level yielded a PESQ score of 1.53 and an NMSE of —0.18 dB. ASE-TM restored
these signals to a PESQ of 2.52 (CSIG 3.61, CBAK 2.76, COVL 3.08, STOI 0.91) and an NMSE of
—1.22 dB. While these results are lower than for = 0.25, they represent a substantial improvement
over the severely clipped input, showing ASE-TM’s capability to handle extreme distortions.

7 CONCLUSIONS AND LIMITATIONS

In this paper, we introduced ASE, a novel paradigm that extends beyond traditional ANC by ac-
tively shaping the speech signal to enhance quality and intelligibility. Our ASE-TM model, which
leverages a Transformer-Mamba architecture and a specialized loss function, demonstrated strong
performance in denoising, dereverberation, and declipping, outperforming baseline methods. This
study also reveals limitations that require further investigation. Baseline methods, designed for
ANC, were adapted to ASE tasks, which may explain their reduced performance. Furthermore, fu-
ture work should focus on developing a unified model that can handle multiple speech enhancement
objectives, potentially leading to more versatile and efficient systems.

We utilized large language models (LLMs) to assist in refining the manuscript’s writing.
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