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ABSTRACT

As the alignment training of large language models (LLMs) usually requires ex-
pensive computational resources, exploring more efficient alignment methods to
reduce training overhead has always been an important and compelling research
challenge. Inspired by prior work on model interpolation, we present a sim-
ple method called EXPO (model extrapolation) to expedite the alignment of
LLMs with human preferences. Based on our observation that interpolating the
weights between existing DPO/RLHF models and their initial SFT checkpoints
usually produces new models with intermediate performance, we propose to
treat a partially-trained model M1 (corresponding to the intermediate-performing
model) as the interpolated result between the initial SFT checkpoint M0 and a
hypothetical better-aligned model M2. Thus, we can obtain the hypothetical M2

by simply extrapolating the model weights along the direction from M0 to M1,
which consequently saves the additional training overhead for M1 to reach bet-
ter alignment performance. We validate our hypothesis through controlled ex-
periments, demonstrating that EXPO can boost a DPO model trained with only
20% steps to outperform the fully-trained one. Additionally, we show that EXPO
can also notably improve existing open-source LLMs (ranging from 1.8B to 70B
parameters), as evidenced by evaluations on the mainstream LLM benchmarks
AlpacalEval 2.0 and MT-Bench, which further highlights EXPO’s utility and po-
tential in enabling more efficient LLM alignment.

1 INTRODUCTION

Large language models (LLMs) typically require additional fine-tuning to learn to follow human
instructions after unsupervised pre-training on massive textual corpora (OpenAI, 2022; 2023; Bai
et al., 2022). The current fine-tuning paradigm consists of two steps: supervised fine-tuning (SFT)
and human preference optimization. SFT employs a similar language modeling objective to pre-
training, where the model is trained to maximize the likelihood of responses on high-quality demon-
stration data. Human preference optimization, on the other hand, aims to adjust the model’s response
distribution to better align with human preferences. However, the alignment training1 process, as ex-
emplified by the well-known Reinforcement Learning from Human Feedback (RLHF; Ouyang et al.
2022; Schulman et al. 2017) and Direct Preference Optimization (DPO; Rafailov et al. 2023), still
requires expensive computational resources (Ji et al., 2024a; Meng et al., 2024). This underscores
the significance of exploring more efficient alignment methods to reduce the training overhead.

Our work draws inspiration from the literature on model interpolation (or model averaging). This
technique leverages mode connectivity of neural networks (Garipov et al., 2018; Entezari et al.,
2022) and interpolates model weights between multiple fine-tuned models (e.g., trained with dif-
ferent initializations or data subsets) to improve out-of-distribution generalization (Izmailov et al.,
2018; Lin et al., 2024; Wortsman et al., 2022). It has been commonly adopted in recent LLMs like
Gemma-2 (Gemma et al., 2024) and LLaMA-3 (Dubey et al., 2024). Given our interest in the align-
ment training, we applied model interpolation to existing open-source DPO/RLHF models (Tunstall
et al., 2023; Cai et al., 2024; Zhu et al., 2023) and their initial SFT checkpoints. Interestingly, we
observed that model interpolation, while producing new models that can generate normal responses,
usually results in in-between performance compared to the original models, as shown in Figure 1.

1In this paper, we use the term “alignment training” to refer to the process of training LLMs to align with
human preferences, such as via the RLHF or DPO algorithms.
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Interpolation Extrapolation

Figure 1: Model interpolation usually produces a new model with intermediate performance between
the DPO/RLHF model and the initial SFT checkpoint. This observation motivates our proposal of
the interpolation hypothesis and the derived EXPO method. Reward scores (§ 3.1) are calculated on
the UltraFeedback (Cui et al., 2023) development set.

Intrigued by the observation from model interpolation, we propose an interesting but unexplored
hypothesis: A partially-trained model M1 (e.g., with fewer training steps) may be treated as the
interpolated result between its initial SFT checkpoint M0 and a better-aligned model M2 that
requires more training steps to achieve. In other words, we assume that in the parameter space, M1

lies on the linear path from M0 to a hypothetically existing, better-aligned M2. Thereby, we can
simply obtain the hypothetical M2 by reversely extrapolating the model weights along the direction
from M0 to M1, as indicated by the gray arrow in Figure 1. If this hypothesis holds, we can bypass
further training of M1, and instead directly reach better alignment performance (corresponding to
M2) with remarkably reduced training overhead.

We refer to the process of obtaining M2 as EXPO (model extrapolation). To empirically validate
the aforementioned hypothesis and EXPO’s effectiveness, we conduct controlled experiments using
HuggingFace’s official checkpoints and training recipe. We first demonstrate that EXPO notably
boosts the DPO models using fewer training steps (e.g., only 20%) to outperform the fully-trained
one (§ 3.2), with the improvement of up to 8.4% on AlpacalEval 2.0 (Li et al., 2023). We then
conduct ablation studies to identify key factors influencing EXPO’s efficacy, including training data
quality (§ 3.4) and training configurations such as training hyperparameters and optimizer (§ 3.5).
Furthermore, we extend EXPO’s application to twelve open-source LLMs (§ 4.1), ranging from
1.8B to 70B parameters, which have undergone varied alignment training such as offline DPO, iter-
ative DPO, or online RLHF. We show that EXPO consistently improves these LLMs, by up to 4.5%
on AlpacaEval 2.0 and 0.37 on MT-Bench (Zheng et al., 2023b), which suggests that EXPO can also
serve as a practical and efficient means to compensate for potential inadequate training of existing,
already-aligned LLMs. In summary, our work demonstrates the utility of model extrapolation in en-
abling more efficient LLM alignment, which may inspire follow-up studies and broader applications
in future research.

2 METHODOLOGY

Our proposed EXPO method is inspired by the observation from model interpolation and builds upon
the aforementioned interpolation hypothesis. Formally, we denote the language model’s parameter
space as Θ and suppose that the alignment performance can be quantified by a continuous scalar
function Ω : Θ → R, where higher Ω(θ) indicates better alignment with human preferences. We
suppose that the model M1 (parameterized by θ1) has undergone moderate alignment training (e.g.,
via DPO). We denote its SFT checkpoint as M0 (parameterized by θ0), which is used for initializing
M1 and satisfies Ω(θ0) < Ω(θ1).

Interpolation Hypothesis We hypothesize that there exists a better-aligned model M2 (parame-
terized by θ2) that satisfies Ω(θ1) < Ω(θ2), and an interpolation coefficient γ ∈ [0, 1] such that:

θ1 = (1− γ)θ0 + γθ2. (1)

2
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θ1

α∆θ

θ0

θ2

∆θ

Figure 2: The solid orange
curve indicates the training
trajectory from θ0 to θ1,
while the dashed orange
line denotes the extrapola-
tion along the direction of
∆θ, thus producing θ2.

In other words, M1 is assumed to lie on the linear path from M0 to-
ward some better-aligned M2. Note that the current hypothesis takes
the simplest form of uniform interpolation, i.e., using the same inter-
polation coefficient for all model modules, which can be extended to
more sophisticated forms in future work.

EXPO: Model Extrapolation Deriving from the above hypothe-
sis, we can simply obtain the hypothetical M2 by extrapolating the
weights along the direction from M0 to M1, as illustrated in Fig-
ure 2. With the substitution of α = 1/γ − 1 ∈ [0,+∞), the process
of model extrapolation, or EXPO, can be formulated as follows:

θ2 = (1 + α)θ1 − αθ0 = θ1 + α(θ1 − θ0) = θ1 + α∆θ, (2)

which can be easily implemented within just a few lines of code. In
practice, the coefficient α acts as the hyperparameter that controls
the extrapolation length. Note that the search for α only involves model inference. Given the rapid
development of high-performance LLM inference infrastructures, such as vLLM (Kwon et al., 2023)
and SGLang (Zheng et al., 2023c), the search process consumes remarkably less GPU hardware
resources and GPU time compared to model training, which can ideally save additional training
overhead for M1 to reach better alignment performance.

In the following § 3, we will conduct controlled experiments to empirically validate the interpolation
hypothesis and identify key factors influencing EXPO’s efficacy, including training data quality and
detailed training configurations.

3 CONTROLLED EXPERIMENTS

3.1 SETUP AND EVALUATION PROTOCOL

Model and Training Recipe To conduct controlled experiments, we follow the training recipe of
the zephyr-7b-dpo model that is officially released by HuggingFace2. This open training recipe,
along with the resulting checkpoints, allows us to adjust the training data and configurations as
desired, and they are also widely used in controlled experiments in recent LLM alignment research
(Chen et al., 2024b; Ji et al., 2024b; Chen et al., 2024a).

Specifically, we use the same UltraFeedback (Cui et al., 2023) dataset for model training, which is
a classical preference dataset that is popularly used for LLM alignment (Ivison et al., 2023; Tun-
stall et al., 2023; Zhu et al., 2023; Dong et al., 2024). UltraFeedback contains diverse instruction-
response pairs with GPT-4-annotated preference labels, split into 61K and 1K data as the training
and development sets, respectively. For DPO training, we use zephyr-7b-dpo’s SFT checkpoint,
zephyr-7b-sft, for model initialization and as the reference model. We adopt the same global
batch size of 128, the learning rate of 5e-7, the AdamW (Loshchilov & Hutter, 2019) optimizer, and
the DPO hyperparameter β of 0.01. While zephyr-7b-dpo is trained for one epoch (478 optimiza-
tion steps in total), in § 3.2 we will vary the training steps to investigate EXPO’s effectiveness.

To determine the optimal α value in EXPO, we use a combination of binary search and grid search
with manually tuned intervals. We select the α giving the highest expected reward on the UltraFeed-
back development set (1K instructions), as calculated by an open-source reward model3.

Evaluation Protocol We resort to AlpacaEval 2.0 (Li et al., 2023) for model evaluation, which
is a leading benchmark that assesses LLMs’ instruction-following ability and their alignment with
human preferences. It contains a fixed set of 805 instructions chosen to be representative of real user
cases. For each instruction, it calculates the probability that a GPT-4 Turbo evaluator prefers the
output of the evaluated model over the GPT-4 baseline, thus providing an affordable and replicable
alternative to human annotation. The win rate over the GPT-4 baseline is computed as the expected
preference probability. Recently, AlpacaEval 2.0 has introduced the new length-controlled (LC)

2https://github.com/huggingface/alignment-handbook/blob/main/recipes/
zephyr-7b-beta/dpo/config_full.yaml

3https://huggingface.co/weqweasdas/RM-Mistral-7B
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win rate metric (Dubois et al., 2024), which alleviates the length bias of the GPT-4 Turbo evaluator
(i.e., the prior preference toward longer responses) and has a Spearman correlation of 0.98 with the
real-world human evaluation on Chatbot Arena (Zheng et al., 2023b).

In § 3.2, we report both the basic and LC win rates, as well as the expected reward over the 805
instructions calculated by the reward model. For the ablation studies in § 3.4 and 3.5, we calculate
the expected reward on the UltraFeedback development set (1K instructions) for ease of analysis.

3.2 RESULTS OF VARYING TRAINING STEPS

Initialized from the SFT checkpoint (M0), we first train the DPO models (M∗
1) with varying steps

(10%, 20%, 40%, and 100%), where all other training configurations are kept the same. We then
apply EXPO to obtain the extrapolated model M∗

2. The evaluation results in Table 1 show that,
although fewer training steps typically result in lower-tier performance, EXPO can effectively bridge
the gap caused by the reduced training steps. For instance, in terms of the LC win rate, EXPO boosts
M10%

1 by 5.8% (to M10%
2 ’s 16.3%) and M20%

1 by 8.4% (to M20%
2 ’s 21.3%), making them perform

comparably and surpass the fully-trained M100%
1 (17.3%), respectively.

Table 1: Evaluation results on AlpacaEval 2.0 of applying EXPO to DPO models trained with vary-
ing steps (M∗

1). All the DPO models (M∗
1) are initialized from the SFT checkpoint zephyr-7b-sft

(M0). We directly use zephyr-7b-dpo as the DPO model trained with 100% steps (M100%
1 ).

Reward Win Rate LC Win Rate
SFT (M0) 3.42 4.7% 8.7%

DPO, 10% training steps (M10%
1 ) 3.97 5.9% 10.4%

+ EXPO (M10%
2 ) 6.57 (+2.60) 17.9% (+12.0%) 16.3% (+5.8%)

DPO, 20% training steps (M20%
1 ) 4.70 8.6% 12.9%

+ EXPO (M20%
2 ) 6.95 (+2.25) 22.7% (+14.2%) 21.3% (+8.4%)

DPO, 40% training steps (M40%
1 ) 5.77 12.1% 14.6%

+ EXPO (M40%
2 ) 6.75 (+0.98) 17.7% (+5.6%) 16.6% (+2.0%)

DPO, 100% training steps (M100%
1 ) 6.16 14.7% 17.3%

+ EXPO (M100%
2 ) 6.52 (+0.36) 18.0% (+3.3%) 20.2% (+2.8%)

In terms of computational overhead, training M100%
1 takes about 12 GPU hours (on A100 80GB).

In contrast, for M20%
2 , the hyperparameter search process of EXPO takes less than 0.5 GPU hours.

Adding M20%
1 ’s training, which takes about 2.5 GPU hours, EXPO results in a 75% reduction

in computational overhead while achieving same-tier (or superior) alignment performance. Since
EXPO’s hyperparameter search only involves model inference, it also remarkably reduces the GPU
hardware requirements compared to model training (e.g., for a 7B model, a single A10 24GB vs.
eight A100 80GB). These empirical results validate the soundness of our interpolation hypothesis in
§ 2 and demonstrate that EXPO can effectively expedite LLM alignment.

Other Observations Meanwhile, we observe several other noteworthy phenomena:

• The reward score is not perfectly correlated with the LC win rate, as seen in the comparison
between M40%

2 and M100%
2 . We believe this is a limitation of our currently used reward model.

Employing stronger reward models in the future could lead to more accurate evaluation results
and better hyperparameter search outcomes.

• For M100%
1 , applying EXPO (M100%

2 ) still brings moderate performance improvement (by 2.8%).
This suggests that EXPO may enhance more existing, already-aligned LLMs, and we will extend
EXPO’s application in § 4.1.

• The model performance after applying EXPO does not simply improve with increased training
steps (e.g., M20%

2 outperforms M100%
2 ). This implies that the effectiveness of EXPO may be

influenced by other key factors, e.g., training data and detailed training configurations. We will
conduct ablation studies in § 3.4 and 3.5 to analyze these factors.
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3.3 WHY EXPO CAN WORK?

Given the surprising effectiveness of EXPO shown in § 3.2, we attempt to discuss why EXPO can
work before proceeding with more empirical studies. Under the formulation of § 2, EXPO can be
explained as a first-order approximation that implicitly optimizes the alignment objective Ω. By
applying a first-order Taylor Expansion of Ω at θ1, we get:

Ω(θ2) = Ω(θ1 + α∆θ) ≈ Ω(θ1) + α∇Ω(θ1) ·∆θ. (3)

For this approximation to hold, the condition |α∆θ| needs to be small. Interestingly, we observe that
this condition aligns with the hyperparameter search results in § 3.2 (Appendix § B). Specifically,
for M10%

2 , M20%
2 , M40%

2 , and M100%
2 , the optimal α values found are 8.0, 2.5, 0.5, and 0.3,

respectively. This suggests that models trained with more steps, whose |∆θ| is usually larger, require
smaller optimal α values. Based on this consistency, we can reasonably assume that the first-order
approximation holds in the following discussion.

EXPO’s effectiveness indicates that Ω(θ2) > Ω(θ1), or equivalently, ∇Ω(θ1) · ∆θ > 0. In other
words, the gradient of Ω at θ1 has a positive component along the direction of ∆θ, which can
be intuitively illustrated by Figure 2. We thus speculate that for EXPO to work in practice, two
requirements need to be satisfied: First, θ1 should not be the local optimum or an overfitted point
of Ω. Second, ∆θ should indicate a direction that genuinely improves alignment performance4,
rather than exploiting spurious features (e.g., length bias; Park et al. 2024). We will discuss the two
requirements more specifically in conjunction with the subsequent ablation studies in § 3.4 and 3.5.

3.4 ANALYSIS OF TRAINING DATA QUALITY

In § 3.2, we observed that the model performance after applying EXPO does not simply improve
with the increased training steps. We speculate that this may be because increasing the training steps
makes the model more prone to learning spurious features from the training data, such as length
bias5. This issue consequently prevents ∆θ from indicating a direction that genuinely improves
alignment performance, corresponding to the second requirement in § 3.3.

Table 2: Ablation results on UltraFeedback (development set) of adjusting the training data quality.
“N/A” denotes that the calculated expected reward does not improve after applying EXPO even with
the smallest α = 0.1.

Training Data
Original (M∗

1) + EXPO (M∗
2)

Reward Length Optimal α Reward Length

10% training steps, random (M10%
∗ ) 3.59 262 8.0 5.82 541

10% training steps, length-biased (M10%,b
∗ ) 4.62 770 0.2 4.69 810

20% training steps, random (M20%
∗ ) 4.37 294 2.5 6.08 567

20% training steps, length-biased (M20%,b
∗ ) 5.05 748 0.4 5.11 875

40% training steps, random (M40%
∗ ) 5.30 407 0.5 5.80 594

40% training steps, length-biased (M40%,b
∗ ) 4.90 671 N/A N/A N/A

To analyze the impact of training data quality on EXPO’s efficacy in a controlled manner, we take
length bias as an example and investigate changes in model performance by artificially introduc-
ing length bias into the training data. Specifically, unlike the random sampling of training data in
§ 3.2, here we arrange the training data in descending order based on the length difference between
preferred and unpreferred responses. The evaluation results in Table 2 show that, although introduc-
ing length bias can temporarily improve the reward score (M10%,b

1 and M20%,b
1 outperform M10%

1

and M20%
1 , respectively), the performance after applying EXPO is consistently worse (M10%,b

2

4It is particularly worth noting that Equation 2 can be rewritten as θ2 = θ0 + (1 + α)∆θ. Therefore, the
controlled setup in § 3 makes it possible for us to analyze the role of ∆θ, as with the fixed M0, the achievable
performance of M2 is only dependent on ∆θ.

5The average lengths of preferred and unpreferred responses in the UltraFeedback training set are 319 and
277 tokens, respectively.

5
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and M20%,b
2 underperform M10%

2 and M20%
2 , respectively). Moreover, we find that the optimal α

values corresponding to M10%,b
2 and M20%,b

2 are 0.2 and 0.4, respectively, which are significantly
smaller than those for M10%

2 and M20%
2 (8.0 and 2.5, respectively), and M40%,b

1 even fails to show
improvement after applying EXPO. These results suggest that the lowered training data quality, e.g.,
with length bias, can cause ∆θ to fail in indicating a genuine direction of alignment optimization,
thus impairing the achievable performance by EXPO.

3.5 ANALYSIS OF TRAINING CONFIGURATIONS

We next analyze the impact of detailed training configurations on EXPO’s efficacy. Specifically,
since EXPO amplifies the weight changes ∆θ from M0 to M1, we are interested in whether EXPO
is equivalent to directly increasing the magnitude of weight changes, including through increasing
the training epochs or learning rate. Additionally, we investigate how configurations closely re-
lated to the training trajectory from M0 to M1, such as the hyperparameter β in DPO and the
choice of optimizer, influence EXPO’s effectiveness.

Training Epochs and Learning Rate Using the same training data and configurations as in the
setup with 20% training steps in § 3.2, we investigate whether EXPO is equivalent to directly in-
creasing the training epochs or learning rate to increase the magnitude of weight changes. The
evaluation results in Table 3 show that, both M1 and M2 after increasing the training epochs or
learning rate perform worse compared to the default configuration of M2, while the optimal α val-
ues for the former M2 are also much smaller than for the latter. This suggests that increasing the
training epochs or learning rate may more easily lead to overfitting or cause ∆θ to fail in indicating
a genuine direction of alignment optimization, corresponding to the two requirements in § 3.3.

Table 3: Ablation results on UltraFeedback of increasing the training epochs or learning rate.

Training Epochs
M1 M2

Learning Rate
M1 M2

Reward α Reward Reward α Reward
1 (×1; default) 4.37 2.5 6.08 5e-7 (×1; default) 4.37 2.5 6.08
2 (×2) 4.93 0.3 5.06 1e-6 (×2) 5.20 0.5 5.54
3 (×3) 4.47 N/A N/A 2e-6 (×3) 5.33 0.4 5.52

β in DPO and Optimizer We also adjust the hyperparameter β in DPO, which controls the
strength of the KL constraint in the DPO algorithm, as well as the optimizer used for training
M1. We adjust β among 0.001, 0.01 (default), and 0.1, and the optimizer among AdamW (de-
fualt), AdaGrad (Duchi et al., 2011), and RMSprop (Hinton, 2012), to ensure a diverse range of
ablation studies. Note that we study the two configurations because they intuitively influence the
training trajectory from M0 to M1 and the resulting ∆θ. From the left part of Table 4, we observe
that applying EXPO to M1 trained with different β values leads to consistent improvements, and
the performance across different β values is similar (for both M1 and M2). This may be because,
given the same other configurations (e.g., the seen training data, learning rate, etc.), DPO training
with different β values tends to stably converge to a similar region.

Table 4: Ablation results on UltraFeedback of varying β in DPO and training optimizers.

β in DPO
M1 M2

Optimizer
M1 M2

Reward α Reward Reward α Reward
0.01 (default) 4.37 2.5 6.08 AdamW (default) 4.37 2.5 6.08
0.1 4.36 2.5 6.43 AdaGrad 3.42 15.0 6.25
0.001 4.31 3.0 6.34 RMSprop 4.88 0.4 5.08

On the other hand, from the right part of Table 4, we observe a more interesting phenomenon. Specif-
ically, although AdaGrad converges more slowly, i.e., the M1 performs worst, its M2 achieves
slightly higher performance than AdamW. In contrast, while RMSprop converges more quickly, i.e.,

6
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the M1 performs best, its M2’s performance is lower than that of both AdamW and AdaGrad. This
suggests that different optimizers profoundly influence the training trajectory from M0 to M1 and
the resulting ∆θ. In particular, AdamW, as the optimizer widely used in modern LLM training,
achieves an excellent balance between convergence speed (corresponding to M1’s performance)
and optimization direction (∆θ, which directly impacts M2’s performance).

4 EXTENDED APPLICATIONS OF EXPO

4.1 APPLYING EXPO TO MORE EXISTING LLMS

In § 3.2, we observed that EXPO brings moderate performance improvements to zephyr-7b-dpo.
This inspires us to apply EXPO to more existing, already-aligned LLMs. We then select twelve
open-source models from HuggingFace6: (1) Five models trained via offline DPO, including
zephyr-7b-alpha/beta (Tunstall et al., 2023) and tulu2-7/13/70b (Ivison et al., 2023); (2)
Two models trained via iterative DPO, including snorkel-7b-iter (Tran et al., 2023) and
llama3-8b-iter (Dong et al., 2024); (3) Five models trained via online RLHF, including
starling-7b-alpha/beta (Zhu et al., 2023) and internlm2-1.8/7/20b (Cai et al., 2024).
These models cover a diverse range of model sizes (from 1.8B to 70B) and span three mainstream
alignment algorithms widely used in practice.

Based on our hyperparameter search experience for zephyr-7b-dpo in § 3.2, for the twelve models
above, we conduct a simple grid search for the optimal α, using the interval of 0.1 within the range
[0.1, 0.5]. In addition to AlpacaEval 2.0, we also evaluate these models on MT-Bench (Zheng et al.,
2023b), another leading benchmark for assessing instruction-tuned LLMs’ general and multi-turn
ability. It contains a set of challenging multi-turn open-ended questions covering topics such as
writing, role-playing, math, coding, and more. The model-generated answers are judged by GPT-4
via a scalar score (from 1 to 10).

Table 5: Evaluation results on AlpacaEval 2.0 (win rate and LC win rate) and MT-Bench of applying
EXPO to existing DPO/RLHF LLMs.

Original (M1) + EXPO (M2)
WR LC WR MT-B Win Rate LC Win Rate MT-Bench

M1 is trained via Offline DPO

zephyr-7b-alpha 6.7% 10.0% 6.85 10.6% (+3.8%) 13.6% (+3.6%) 6.87 (+0.02)
zephyr-7b-beta 10.2% 13.2% 7.02 11.1% (+0.9%) 14.0% (+0.8%) 7.06 (+0.04)
tulu2-7b 8.5% 10.2% 6.35 11.5% (+3.0%) 11.7% (+1.5%) 6.38 (+0.03)
tulu2-13b 11.2% 15.5% 7.00 15.6% (+4.3%) 17.6% (+2.1%) 7.26 (+0.26)
tulu2-70b 15.4% 21.2% 7.79 23.0% (+7.6%) 25.7% (+4.5%) 8.03 (+0.24)

M1 is trained via Iterative DPO

snorkel-7b-iter 24.7% 24.0% 7.63 28.8% (+4.1%) 26.4% (+2.4%) 7.69 (+0.07)
llama3-8b-iter 29.2% 36.0% 8.08 32.7% (+3.5%) 37.8% (+1.8%) 8.45 (+0.37)

M1 is trained via Online RLHF

starling-7b-alpha 15.0% 18.3% 7.82 18.2% (+3.2%) 19.5% (+1.2%) 7.91 (+0.09)
starling-7b-beta 26.6% 25.8% 8.10 29.6% (+3.0%) 26.4% (+0.7%) 8.18 (+0.08)
internlm2-1.8b 3.8% 4.0% 5.17 5.2% (+1.5%) 4.3% (+0.3%) 5.26 (+0.08)
internlm2-7b 20.5% 18.3% 7.72 28.1% (+7.6%) 22.7% (+4.4%) 7.80 (+0.08)
internlm2-20b 36.1% 24.9% 8.13 46.2% (+10.1%) 27.2% (+2.4%) 8.26 (+0.13)

Table 5 shows that EXPO consistently improves the evaluated LLMs, with notable improvements
of up to 10.1% win rate and 4.5% LC win rate on AlpacaEval 2.0 (for internlm2-20b and
tulu2-70b, respectively) and 0.37 on MT-Bench (for llama3-8b-iter). This suggests that these
already-aligned LLMs may still not have been trained to their optimal status, even though achieving

6However, we found that many well-known LLMs, such as LLaMA (Touvron et al., 2023b; Dubey et al.,
2024) and Qwen (Bai et al., 2023; Yang et al., 2024), only release the final DPO/RLHF checkpoints without
the SFT ones. Therefore, we are unable to experiment with these more representative models at this time.
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optimal training is inherently challenging given the complexity of hyperparameter tuning. For ex-
ample, for the tulu2-7b/13b/70b models that adopt identical training configurations, it is intuitive
that larger models, due to their greater capacity, are more difficult to train to optimality, which may
also explain why the improvements brought by EXPO increase with their model sizes (e.g., 1.5%,
2.1%, and 4.5% LC win rate for 7B, 13B, and 70B, respectively). EXPO, on the other hand, offers
a practical and efficient means to compensate for potential inadequate training of existing LLMs, as
it only requires inference-level hardware resources and bypasses the costly training overhead.

4.2 APPLYING EXPO TO MORE ALIGNMENT ALGORITHMS

So far, we have primarily applied EXPO to models trained via the dominant DPO or RLHF algo-
rithms (§ 3 and 4.1). However, the formalization and the proposed interpolation hypothesis in § 2 are
not tied to any specific alignment algorithm, so we expect that EXPO can also be applied to models
trained via other algorithms than DPO or RLHF. To this end, we use a series of Mistral/LLaMA-3
models7 released by Meng et al. (2024), which are trained via various alignment algorithms and are
all initialized from the same SFT checkpoints. These algorithms include: RRHF (Yuan et al., 2023),
SLiC-HF (Zhao et al., 2023a), IPO (Azar et al., 2024), CPO (Xu et al., 2024), KTO (Ethayarajh
et al., 2024), R-DPO (Park et al., 2024), and SimPO (Meng et al., 2024). We refer readers to Meng
et al. (2024) for elaboration on these algorithms’ optimization objectives as well as the models’
training configurations. Following the previous experience, we search the optimal α value within
the range of [0.1, 0.5] with the interval of 0.1.

Table 6: Evaluation results on UntraFeedback of applying EXPO to models trained via different
alignment algorithms.

Algorithm

M0 is SFTed from Mistral M0 is SFTed from LLaMA-3

Original (M1) + EXPO (M2) Original (M1) + EXPO (M2)
Reward α Reward Reward α Reward

SFT (M0) 2.97 - - 1.93 - -

RRHF 4.71 0.1 4.73 (+0.02) 3.02 0.5 3.15 (+0.13)
SLiC-HF 4.90 0.4 5.16 (+0.26) 4.06 0.5 4.68 (+0.62)
IPO 4.97 0.5 5.44 (+0.47) 4.75 0.3 4.86 (+0.11)
CPO 4.86 0.3 5.01 (+0.15) 4.04 0.5 4.75 (+0.71)
KTO 3.84 N/A N/A 4.48 0.4 4.67 (+0.19)
R-DPO 5.53 0.3 5.73 (+0.20) 4.25 0.5 4.64 (+0.39)
SimPO 5.88 0.1 5.95 (+0.07) 4.89 0.4 5.21 (+0.32)

As shown in Table 6, EXPO can be effectively combined with various alignment algorithms, even
though these models (M1) have been fully trained according to Meng et al. (2024). Although the
only exception is the KTO model on the left, which does not get improved after applying EXPO,
we believe this is related to the specific training details of this model, e.g., the configurations lead-
ing to overfitting. Overall, we remain optimistic about EXPO’s general compatibility with various
alignment algorithms.

4.3 DISCUSSION ON MODEL CHOICE

In the interpolation hypothesis in § 2 and in our experiments so far, M0 is an SFT model and M1 is
one that further undergoes alignment training. A natural question is whether EXPO’s interpolation
hypothesis can be extended to other model types, for example, where M0 is a pre-trained model
and M1 is an SFT one. However, based on our attempts with open-source models, we find that in
this case, model extrapolation typically fails to improve alignment performance and may even lead
to model collapse (e.g., the extrapolated model struggles to generate the EOS token or mistakenly
generate special tokens). We speculate that there are two reasons for this phenomenon. First, the
training from a pre-trained model to an SFT model typically employs a larger learning rate than
the subsequent alignment training. The resulting larger |∆θ| could invalidate EXPO’s underlying

7https://huggingface.co/princeton-nlp?search_models=+Mistral-7B-Base-SFT
https://huggingface.co/princeton-nlp?search_models=+Llama-3-Base-8B-SFT
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first-order approximation (§ 3.3). Second, one important function of SFT is to adapt the model to
the instruction/chat-style input template (Zheng, 2024). Extrapolation will amplify this part of the
information in ∆θ, which could thus lead to model collapse and impact normal response generation.

5 RELATED WORK

LLM Alignment Modern large language models (LLMs) are first pre-trained on massive textual
corpora with the unsupervised language modeling objective (Brown et al., 2020; Touvron et al.,
2023b; Dubey et al., 2024), and then fine-tuned to learn to follow human instructions (OpenAI,
2022; 2023; Ji et al., 2023). The current fine-tuning paradigm typically contains two steps: super-
vised fine-tuning (SFT) and human preference optimization. Our work focuses on the later step,
which aims to adjust the model’s response distribution to better align with human preferences. In
this process, the model is usually trained on preference data (“A is better than B”; Zhao et al. 2023b;
Zheng et al. 2023a), thus learning to assign higher probabilities to human-preferred responses over
the disfavored ones. Common implementations for human preference optimization include Rein-
forcement Learning from Human Feedback (RLHF; Ouyang et al. 2022; Schulman et al. 2017),
Direct Preference Optimization (DPO; Rafailov et al. 2023), and many other DPO’s variants or
competitors (Azar et al., 2024; Xu et al., 2024; Ethayarajh et al., 2024; Park et al., 2024; Meng et al.,
2024). Given LLMs’ gigantic parameters, the processes from pre-training to SFT and the alignment
training still require expensive computational resources. Therefore, exploring more efficient align-
ment methods to reduce training overhead has always been an important and compelling research
challenge (Ji et al., 2024a). To address this challenge, we propose the EXPO method, which has
demonstrated promising efficacy in expediting LLM alignment.

There is another line of work that attempts to bypass the expensive alignment training by blending
multiple models’ token predictions during the inference time (Liu et al., 2021; Lu et al., 2024; Liu
et al., 2024), usually referred to as inference-time alignment methods. In comparison to EXPO,
these inference-time methods often require more complex and varied implementations of model in-
ference, which are not typically supported by existing high-performance LLM inference infrastruc-
tures (e.g., vLLM). This inconvenience not only reduces the practical efficiency of model inference
but also significantly increases the cost of their hyperparameter search processes. In contrast, EXPO
only involves regular inference of a single model, which can be seamlessly supported by existing
infrastructures, thereby inheriting the merit in inference efficiency.

Model Interpolation Model interpolation (or model averaging) is a commonly used technique in
machine learning. It typically involves training multiple models with different random initializations
or data subsets and then interpolating the weights of these models to obtain a new model with
stronger out-of-distribution generalization (Izmailov et al., 2018; Lin et al., 2024; Wortsman et al.,
2022; Lin et al., 2023). This technique is based on the (linear) mode connectivity of neural networks
(Garipov et al., 2018; Entezari et al., 2022; Zhao et al., 2020; Frankle et al., 2020). Specifically,
prior work found that multiple local optima in the parameter space can often be connected by low-
loss (linear) paths, particularly for models with residual connection structures (He et al., 2016).
This may explain why model interpolation can produce new, functional models when applied to
LLMs (as we observed in § 1), as residual connection has become a dominant choice of architecture
design in modern LLMs like LLaMA (Touvron et al., 2023a). We notice that recent LLMs have
widely adopted model interpolation, as exemplified by Gemma-2 (Gemma et al., 2024) and LLaMA-
3 (Dubey et al., 2024), possibly also for further enhancement in out-of-distribution generalization.

Unlike interpolating between multiple fine-tuned M1, our work begins with the attempt to interpo-
late between models before and after alignment training (M0 and M1). The resulting observation
in § 1 inspires the hypothesis and the proposal of the EXPO (model extrapolation) method.

6 CONCLUSION

We demonstrate the efficacy of the EXPO (model extrapolation) method in enabling more efficient
LLM alignment with human preferences. EXPO is based on the hypothesis that, for a partially-
trained model M1, we may obtain a better-aligned model M2 by simply extrapolating the model
weights along the weight difference ∆θ between M1 and its initial SFT checkpoint M0, thus
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bypassing further training of M1 and directly reaching better alignment performance. We empiri-
cally validate this hypothesis through controlled experiments, where we show that the DPO model
trained with 20% steps can be boosted to outperform the fully-trained one. Furthermore, we extend
EXPO’s application to twelve existing, already-aligned LLMs, showing that EXPO consistently im-
proves their performance on the mainstream LLM benchmarks AlpacaEval 2.0 and MT-Bench. This
suggests that EXPO can also serve as a practical and efficient means to compensate for potential
inadequate alignment training of existing LLMs. Overall, our work highlights the utility of model
extrapolation in efficient LLM alignment, which may inspire future research in this direction.
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A LIMITATIONS

Theoretical Analysis Although we provide a preliminary discussion for why EXPO can work
(§ 3.3), a more rigorous theoretical analysis is necessary to fully understand the factors contribut-
ing to its effectiveness. Future work could establish more profound theoretical foundations for the
underlying mechanisms of EXPO (model extrapolation).

Hyperparameter Search The current EXPO adopts the simplest form of uniform extrapolation
(§ 2) and requires manual hyperparameter search for α. Future work could explore how to deter-
mine the optimal α automatically and adaptively (i.e., using different α values for different model
modules). For example, the information from optimizer states and parameter gradients during the
later stage of alignment training could be useful for this purpose.

Alignment Tax While EXPO makes notable improvements in instruction-following ability and
alignment with human preferences, this seems not “free” and may instead incur an additional align-
ment tax, a widely-observed issue in human preference optimization algorithms (Ouyang et al.,
2022; Dong et al., 2024; Meng et al., 2024), which indicates the possible fluctuations or drops in
downstream task performance after human preference optimization. We evaluate the models in § 3.2
and 4.1 on the six downstream tasks (Clark et al., 2018; Zellers et al., 2019; Hendrycks et al., 2021;
Lin et al., 2022; Sakaguchi et al., 2021; Cobbe et al., 2021) from the Open LLM Leaderboard8 (v1;
Beeching et al. 2023). We find that in most cases, EXPO amplifies the alignment tax introduced
by the alignment training (from M0 to M1). For example, for the partially-trained models in § 3.2
(Figure 3), the original DPO models (M1) show improvements over the initial SFT model (M0) on
TruthfulQA and declines on GSM8K, while applying EXPO (M2) leads to further improvements
or declines, respectively. For the existing, fully-trained LLMs in § 4.1, the amplification of the
alignment tax by EXPO is usually smaller as shown in Figure 4, suggesting a trade-off between the
alignment training overhead (from M0 to M1) and the additional alignment tax brought by EXPO
(from M1 to M2).
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Figure 3: Evaluation results for the models in § 3.2 on downstream tasks. The x-axis denotes the
proportions of training steps. As the “cost” of simply improving instruction-following ability and
alignment with human preferences, EXPO can also amplify the alignment tax introduced by the
alignment training.

8We employ the evaluation implementation of Eleuther’s lm-evaluation-harness (https://github.com/
EleutherAI/lm-evaluation-harness, version 0.4.4). Note that the mismatch of input templates used for
chat-style evaluations (e.g., AlpacaEval 2.0 and MT-Bench) and for these downstream task evaluations could
also contribute to the observed alignment tax, as discussed in Meng et al. (2024).
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Figure 4: Evaluation results for the LLMs in § 4.1 on downstream tasks. For these fully-trained
models, the additional alignment tax brought by EXPO is usually smaller, suggesting a trade-off
between the alignment training overhead (from M0 to M1) and the additional alignment tax brought
by EXPO (from M1 to M2).
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B HYPERPARAMETER SEARCH DETAILS

Table 7: Hyperparameter search results for α in § 3.2 and 4.1.

Search Interval Optimal α
Models in § 3.2 (binary/grid search)

DPO (10% data) 1.0 8.0
DPO (20% data) 0.5 2.5
DPO (40% data) 0.1 0.5
zephyr-7b-dpo 0.1 0.3

Models in § 4.1 (grid search within [0.1, 0.5])

zephyr-7b-alpha 0.1 0.3
zephyr-7b-beta 0.1 0.1
tulu2-7/13/70b 0.1 0.5
snorkel-7b-iter 0.1 0.3
llama3-8b-iter 0.1 0.3
starling-7b-alpha 0.1 0.2
starling-7b-beta 0.1 0.5
internlm2-1.8/7/20b 0.1 0.5

We present the hyperparameter search results in Table 7. For the partially-trained DPO models
in § 3.2, we plot in Figure 5 the reward distribution on the UltraFeedback development set (1K
instructions). We also plot in Figure 6 how M2’s expected reward score and response length vary
with the different α values.
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Figure 5: Reward distribution on the UltraFeedback development set (1K instructions) for the
partially-trained DPO models in § 3.2.

Figure 6: M2’s expected reward scores and response lengths on UltraFeedback varying with α (x-
axis) for the partially-trained DPO models in § 3.2. Dashed vertical lines correspond to the optimal
α values. α = 0 indicates that EXPO is not applied (i.e., M1).

C INFERENCE DETAILS

For model inference in the experiments, we employ the vLLM (Kwon et al., 2023) library for high-
throughput inference. We use top-k (k = 40) and nucleus sampling (Holtzman et al., 2020) (p =
0.9) with a temperature of 0.7. To avoid repetition in generated texts, we set both the factors of
presence penalty and frequency penalty to 0.1. We set the sampling random seed to 42.
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D HUGGINGFACE MODELS

HuggingFace Model ID
Reward model weqweasdas/RM-Mistral-7B

Models in § 3
Pre-trained mistralai/Mistral-7B-v0.1

zephyr-7b-dpo M0 alignment-handbook/zephyr-7b-sft-full
M1 alignment-handbook/zephyr-7b-dpo-full

Models in § 4.1

zephyr-7b-alpha
M0 HuggingFaceH4/mistral-7b-sft-alpha
M1 HuggingFaceH4/zephyr-7b-alpha

zephyr-7b-beta
M0 HuggingFaceH4/mistral-7b-sft-beta
M1 HuggingFaceH4/zephyr-7b-beta

tulu2-7b
M0 allenai/tulu-2-7b
M1 allenai/tulu-2-dpo-7b

tulu2-13b
M0 allenai/tulu-2-13b
M1 allenai/tulu-2-dpo-13b

tulu2-70b
M0 allenai/tulu-2-70b
M1 allenai/tulu-2-dpo-70b

snorkel-7b-iter
M0 mistralai/Mistral-7B-Instruct-v0.2
M1 snorkelai/Snorkel-Mistral-PairRM-DPO

llama3-8b-iter
M0 RLHFlow/LLaMA3-SFT
M1 RLHFlow/LLaMA3-iterative-DPO-final

starling-7b-alpha
M0 openchat/openchat 3.5
M1 berkeley-nest/Starling-LM-7B-alpha

starling-7b-beta
M0 openchat/openchat-3.5-0106
M1 Nexusflow/Starling-LM-7B-beta

internlm2-1.8b
M0 internlm/internlm2-chat-1 8b-sft
M1 internlm/internlm2-chat-1 8b

internlm2-7b
M0 internlm/internlm2-chat-7b-sft
M1 internlm/internlm2-chat-7b

internlm2-20b
M0 internlm/internlm2-chat-20b-sft
M1 internlm/internlm2-chat-20b

Mistral-based Models in § 4.2
SFT M0 alignment-handbook/zephyr-7b-sft-full

RRHF M1 princeton-nlp/Mistral-7B-Base-SFT-RRHF
SLiC-HF M1 princeton-nlp/Mistral-7B-Base-SFT-SLiC-HF
IPO M1 princeton-nlp/Mistral-7B-Base-SFT-IPO
CPO M1 princeton-nlp/Mistral-7B-Base-SFT-CPO
KTO M1 princeton-nlp/Mistral-7B-Base-SFT-KTO
R-DPO M1 princeton-nlp/Mistral-7B-Base-SFT-RDPO
SimPO M1 princeton-nlp/Mistral-7B-Base-SFT-SimPO

LLaMA-3-based Models in § 4.2
SFT M0 princeton-nlp/Llama-3-Base-8B-SFT

RRHF M1 princeton-nlp/Llama-3-Base-8B-SFT-RRHF
SLiC-HF M1 princeton-nlp/Llama-3-Base-8B-SFT-SLiC-HF
IPO M1 princeton-nlp/Llama-3-Base-8B-SFT-IPO
CPO M1 princeton-nlp/Llama-3-Base-8B-SFT-CPO
KTO M1 princeton-nlp/Llama-3-Base-8B-SFT-KTO
R-DPO M1 princeton-nlp/Llama-3-Base-8B-SFT-RDPO
SimPO M1 princeton-nlp/Llama-3-Base-8B-SFT-SimPO
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