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Abstract

Fine-tuning deep learning models for commercial use cases is growing exponen-1

tially as more and more companies are adopting AI to enhance their core products2

and services, as well as automate their diurnal processes and activities. However,3

not many countries like the U.S. and those in Europe follow quality data collection4

methods for AI vision or NLP related automation applications. Thus, on many5

of these kinds of data, existing state-of-the-art pre-trained deep learning models6

fail to perform accurately, and when fine-tuning is done on these models, issues7

like catastrophic forgetting or being less specific in predictions as expected occur.8

Hence, in this paper, simplified incremental learning methods are introduced to be9

considered in existing fine-tuning infrastructures of pre-trained models (such as10

those available in huggingface.com) to help mitigate the aforementioned issues11

for commercial applications. The methods introduced are: 1) Fisher Shut-off, 2)12

Fractional Data Retention and 3) Border Control. Results show that when applying13

these methods on vanilla pre-trained models, the models are in fact able to add more14

to their knowledge without hurting much on what they had learned previously.15

1 Introduction16

Many companies and organizations today are adopting AI in automation, automating their daily17

processes and activities, as well as offering them in their core products and services. Automation18

has traditionally been in the industry for many years, as a means for which economics of scale could19

be acheived so as to remain competitive in the market. Now with AI, more and more intelligence is20

being brought into automation, and in countries like India, organizations are beginning to adopt AI21

for this particular purpose.22

With recent advancements in AI vision and NLP models such as the GPT-3, Jurassic-1, and so on,23

organizations today are using AI for 1) Document Reading and Understanding, 2) Online Proctoring,24

3) Chatbots, 4) Intelligent Information Parsing and other application related process automations.25

Given these use cases, AI solutions need to be specific to their processes, but yet be an addition to26

their generally known formats. This in a sense, is more like making use of a human employee who27

has some kind of general education on various tasks or processes but still is required to learn the28

companies counterparts well and in detail before he/she is allowed to execute them. These processes29

can include between, reading customer emails for entering relevant information about their product30

requirements onto a structured database, to understanding various types of printed documents for31

information parsing, and to identifying newer objects for either document filtering or malicious32

activity detection.33

For natural language related tasks, powerful models like the GPT-3 are now being widely used, but34

they require good prompt engineering skills to get the best out of them. Also, given that they are35

probabilistic models, the generated outputs can sometimes falter away from what is expected, and36
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this can become a problem when selling it to customers, because even the slightest faltering may not37

be acceptable to them at all. Hence, to reduce this, more and more examples have to be provided in38

the prompt, and this can come at a high cost not suitable for low cost of living countries like India.39

The other workaround is to fine-tune the model on the new datasets, but this has epoch limitations40

on how deeply it can fit on the new dataset without hurting the body of general knowledge it gained41

earlier. Also, fine-tuning models like the GPT-3 comes at a very high cost now-a-days, and is no42

more an option. This leaves the automation builders to use huggingface.com transformers instead.43

In vision, although state-of-the-art pre-trained deep learning models are able to achieve human level44

performance on a variety of inputs, they can only perform so in upto close to high quality inputs. If45

the quality goes lower, they fail terribly. Not all organizations have a good quality data collection46

process involved for applying automation, and this is ubiquitously the case in many parts of the world.47

So it becomes quite difficult to sell AI as a human-level performer, and at this point AI becomes of48

lesser use than it could potentially be.49

Another approach typically used to resolve such problems is to employ transfer learning, which50

typically involves replacing the last layers of the model with a new model to get the specific outputs51

required. Some examples done in research are Too, et al. (2019), Dif & Elberrichi (2020), Alshalali52

& Joysula (2018), Jung, et al. (2015), Qian, et al. (2021) and Vrbančič & Podgorelec (2020). While53

this may not seem to be a problem with vision based tasks, it is definitely a problem with natural54

language based tasks. This is because the final layers of the natural language models have all the vital55

information of language structure that help with the language generative process. When this is to56

be changed, catastrophic forgetting can happen. Catastrophic forgetting is a phenomenon in which57

previously learned knowledge is lost partly by the application of new data for training. Also, with58

vision based tasks, when the requirement is to just improve the performance on lower quality data,59

transfer learning may not be the appropriate approach. Fine-tuning for these must involve the final60

layers of the model which could inevitably lead to catastrophic forgetting on the higher quality inputs.61

This brings the only solution towards incremental learning. This type of learning is all about62

learning on newer datasets without having the side-effects catastrophic forgetting, and there has been63

substantial amount of research done in this area. Luo, et al. (2020) summarizes all the work that has64

happened in this area so far. There are several approaches to implementing incremental learning on65

pre-trained models, some of which will be discussed in the forthcoming sections. In this paper, a66

few of these approaches will be simplified for commercial applications along with novel intuitive67

additions to further help the learning process. The paper introduces: 1) Fisher Shut-off which is a68

simplification of the work done by Kirkpatrick, et al. (2017), 2) Fractional Data Retention which69

adopts ideas from Castro, et al. (2018), and 3) Border Control which is an extension to the idea70

outlined by Ren, et al. (2018) on reweighting examples by employing a method similar to Adaboost.71

The last one is the novel addition as it formulates a different approach to retaining salient examples72

for incremental learning. It is based on the work by Ruping (2001) on incremental learning with73

SVMs. But since SVMs are too complex in the context on neural networks, a similar but simplified74

approach is proposed.75

The purpose of this work is to initiate the development of a new infrastructure for commercial76

fine-tuning of pre-trained models with simplified incremental learning methods.77

The rest of this paper proceeds as follows: Section 2 will provide a brief discussion on incremental78

learning methods developed so far, followed by the proposal of simplified incremental learning79

methods in Section 3. Section 4 will show sample results of the proposed methods on a vanilla80

pre-trained model using a toy dataset. A toy dataset is used for the only purpose of providing81

visualizations on the performance of the proposed methods. Nevertheless, these methods can be82

extended on to real world datasets. The paper then concludes in Section 5 discussing steps forward83

for implementation.84

2 Incremental Learning85

This section is a summary of the review published by Luo, et al. (2020). In this review, four different86

types of strategies for incremental learning are highlighted, and every work published in this area87

uses either one or more such strategies. Some examples are Castro, et al. (2018) and He, et al. (2020).88

The four strategies are:89

2

huggingface.com


• Architectural90

• Regularization91

• Rehearsal92

• Pseudo-Rehearsal93

The following subsections will disccuss these briefly.94

2.1 Architectural Strategy95

This strategy is similar to boosting techniques where multiple models are trained. But when used in96

the context of incremental learning, each model is trained on a different task separately. Then another97

meta-model that effectively selects which model to use for inference is trained. The work done by98

Poliker, et al. (2001) resembles this in many ways. In this work, multiple classifiers are trained with99

different training sets, and then a Adaboost style of ensemble learning is employed to combine the100

model outputs.101

Another interesting work is by Rusu, et al. (2016) on Progressive Neural Networks (PNN). In this102

work, a neural network is trained sequentially on different tasks or training sets. However, each time,103

new neurons are added in each layer with new weights, and the weights of the previously learned104

neural network are frozen. Then, to prevent catastrophic forgetting, the outputs of each layer of the105

previous neural network on the earlier training set are used in addition to the new task or training106

set, when training the new layer neurons. The results on this type of incremental learning were quite107

encouraging that it set a new direction in the research of dynamically expanding networks that could108

make better use the neural networks capacity than the PNN. In fact, it will be seen later that the Fisher109

Shut-off method proposed in this paper inherently employs the idea of PNNs.110

2.2 Regularization Strategy111

In this strategy, as the name suggest, a regularization term is added in the loss function that measures112

the importance of old knowledge when learning on a new training set. The representive work done in113

this is Kirkpatrick, et al. (2017), whereby they introduce the concept of Elastic Weight Consolidation114

(EWC) by means of a Fisher Information Matrix. The EWC brings about the regularization term in115

the loss function as116

R(w) =
∑
i

λ

2
Fi(wi − wi,old)

2 (1)

where Fi is the Fisher Information Matrix which suggests the importance of the i-th weight trained117

on the old (or previous) training set. Here, as one could speculate, the term Fisher Shut-off proposed118

in this paper actually derives itself from the Fisher Information Matrix, meaning that this matrix is119

used as the basis for shutting off the training of certain weights when training on a new set.120

Another popular type of regularization strategy is Knowledge Distillation introduced by Hinton, et al.121

(2015). In this method, knowledge from an ensemble of models trained on different tasks (or training122

sets) separately are distilled into a smaller model that can be deployed much easily for inference.123

There are many huggingface.com transformers that are a product of such knowledge distillation.124

The distillation ensures that the smaller model holds all the knowledge of the ensemble, and that it125

can infer as good as it. Distillation is done by setting soft-targets on the smaller network from all the126

earlier training sets of the ensemble. The soft-targets are the output logits from the ensemble models127

on their respective trained datasets.128

2.3 Rehearsal and Pseudo-Rehearsal Strategies129

Rehearsal strategies in incremental learning make use of the earlier training sets when training a130

model on new tasks or training sets. This by far is the simplest of all incremental learning strategies131

that ensures catastrophic forgetting is prevented. The only issue is that when this strategy is used for132

deep learning models trained on large datasets, the training on new datasets could become extremely133
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slow and even time consuming before any fruitful results are achieved. Hence, newer research work in134

this area formulate methods for retaining only the most important data points to prevent catastrophic135

forgetting. The work done by Castro, et al. (2018) is an example of this. In this work, selection and136

removal mechanisms on data are introduced for assimilation into a memory network.137

Talking about memory networks, the Pseudo-Rehearsal strategy involves training an additional data138

generator to generate the samples, the neural network was trained on earlier. Hence, newer research139

in this area involve GANs for data generation. Examples are Odena, et al. (2017) and Wu, et al.140

(2018).141

3 Proposed Incremental Learning Methods142

Commercial applications always require simplistic implementations of advanced methods no matter143

how complex they may be. Therefore, it is for this purpose alone this paper proposes some simplified144

methods for implementing incremental learning. As metioned earlier in Section 1, these methods are:145

1) Fisher Shut-off, 2) Fractional Data Retention, and 3) Border Control. This section covers them in146

detail.147

3.1 Fisher Shut-off148

As mentioned in the previous section, the term Fisher Shut-off derives itself from the Fisher Infor-149

mation Matrix which weighs the importance of weights trained on previous datasets. Hence, in this150

sub-section, a brief overview of the details behind this matrix is covered with the help of Aich (2021).151

Let D represent a dataset coming from a stream of data for incremental learning. Then p(w|D)152

represents the model trained on data D. This means that to train a model on a new dataset, the153

following posterior must satisfy:154

p(w|Dnew) =
p(Dnew|w)p(w|Dold)

p(Dnew)
(2)

Note here that p(w|Dold) is written in place of p(w) because when Dnew is applied to the model, the155

weights w have already been trained with Dold. Hence, given the model, p(w|Dold), the log-likelihood156

loss on Dnew becomes,157

LDnew
(w) = log(p(w|Dnew))

= log(p(Dnew|w)) + log(p(w|Dold))− log(p(Dnew))

≈ log(p(Dnew|w)) + log(p(w|Dold))

(3)

Here, the log(p(Dnew|w)) equals the cross-entropy loss of the model on Dnew while log(p(w|Dold))158

is loss of the model on Dold. To ensure that catastrophic forgetting does not occur on Dold in its159

absence while training on Dnew, the loss on Dold will have to be approximated using w alone. To do160

this, the Taylor’s expansion on log(p(w|Dold)) is taken as,161

LDold
(w) ≈ L(w)

∣∣
Dold

+

(
∂L(w)
∂w

∣∣∣∣
Dold

)
+

1

2
(w − w

∣∣
Dold

)T

(
∂2L(w)
∂2w

∣∣∣∣
Dold

)
(w − w

∣∣
Dold

)

≈ L(w)
∣∣
Dold

+
1

2
(w − w

∣∣
Dold

)T

(
∂2L(w)
∂2w

∣∣∣∣
Dold

)
(w − w

∣∣
Dold

)

(4)

since technically ∂L(w)
∂w

∣∣∣
Dold

= 0, if the model is trained well on Dold. Then, noting that the last term162

in (4) is equivalent to a regularization term, this term alone could be considered as the loss on Dold163
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for preventing catastrophic forgetting. In doing so, the Fisher Information Matrix will equal to the164

Hessian, ∂2L(w)
∂2w

∣∣∣
Dold

. This Hessian, H, can be simply computed by the model gradients ∂L(w)
∂w

∣∣∣
Dold

165

assuming that not all gradients are zero, as,166

H =
∂L(w)
∂w

∣∣∣∣
Dold

· ∂L(w)
∂w

∣∣∣∣T
Dold

(5)

Doing so, and keeping only the diagonal terms, would imply that the model gradients are more167

than enough to weigh the important weights of the model trained on Dold. Replacing (5) in (4) and168

substituting in (3) would give the loss on Dnew as,169

LDnew
(w) ≈ log(p(Dnew|w))+

1

2
(w−w

∣∣
Dold

)T

(
∂L(w)
∂w

∣∣∣∣
Dold

· ∂L(w)
∂w

∣∣∣∣T
Dold

)
(w−w

∣∣
Dold

) (6)

which to an extent implies that if the model gradients on Dold are absolutely zero, they get trained on170

Dnew without regularization, while those that are not, get regularized towards w
∣∣
Dold

.171

This is what the proposed Fisher Shut-off exploits. In Fisher Shut-off, all weights of the model172

trained on Dold that do not have absolute zero gradients get shut-off for training on Dnew, while the173

remaining that do take part. Also, since in practice ReLU functions are commonly used in deep174

learning models as the activation functions of the neurons, shutting off these weights becomes as175

simple as setting a condition. Figure 1 shows a sample performance of Fisher Shut-off on a regression176

model trained sequentially on mutually exclusive batches of data. These batches could represent the177

different tasks or training sets.178

However, when it comes to classification, simple shut-off does not work completely. This is because,179

while in regression problems datasets could inherently employ some kind of piece-wise nonlinear fit180

in their distributions, the same cannot always be guaranteed in classification. Thus, in classification,181

Figure 1: Fisher Shut-off on a regression model on six mutually exclusive batches of data. Blue dots
represent the overall dataset, while green square dots are the batch or task data. The red line is the
model’s output after each batch is fed to it. Fisher Shut-off is used from Batch #2 onwards.
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the shut-off weights must also take part in training. And, as per (1), there is a learning constant182

required in the regularization to ensure that the right balances between Dnew and Dold are met on183

these weights. This paper provides a novel learning constant determination for this regularization.184

This is detailed in Appendix A.185

Also in regression problems, if datasets have batch distributions that are quite far apart from each186

previous batch, then Fisher-Shutoff may not fully work too. Appendix B shows some of these187

examples188

3.2 Fractional Data Retention189

This is a very simply proposal. The idea is to retain only a fraction of the data trained on the neural190

network on the earlier tasks or training sets. There is nothing more to this. However, banking on191

the ideas of selection highlighted in Castro, et al. (2018), whereby data is selected based on their192

proximity to cluster centers, to be more representative of the classes, this paper uses this as the193

baseline idea behind its proposal on Fractional Data Retention. Thus in Fractional Data Retention, a194

fraction of the data within the data cluster is retained and appended in every stage of incremental195

learning.196

3.3 Border Control197

The most important requirement when incrementally learning classes is to ensure that the decision198

boundaries of the earlier training tasks are protected as much as possible when training on new sets.199

If data points are used for this purpose, it would seem that, those that lie closest to the decision200

boundaries after training would be the most important ones to retain, for any succeeding incremental201

learning tasks. Thus, the Border Control method proposed in this paper exploits this. Ruping (2001)202

used SVMs to identify these data points as the support vectors that helped define the overall decision203

boundaries. But with deep learning models or vanilla neural networks, SVM is quite complex and204

therefore in order to be able retain data points closest to the decision boundaries, a different selection205

mechanism is required. This selection mechanism could instead be based on selecting data points206

on how large the absolute errors in sigmoidal outputs are for the applied dataset, as the data points207

closest to the decision boundaries have this inherent property.208

Furthermore, since real world data can be quite complex, it would be necessary to not only select data209

points based on how large their errors in sigmoidal outputs are, but also those points that are far away210

from them. This is because, given the context of incremental learning where there is a high chance211

that newer training sets may have data points that could potentially set newer decision boundaries in212

those fartherest regions, these data points would help protect those.213

Hence in Border Control, the top-k data points that have the largest absolute errors in the sigmoidal214

outputs and their respective top-k fartherest data points are retained in every task or training set215

for further incremental learning. These points are appended to the newer training sets before further216

training is applied.217

4 Sample Results218

The proposed methods are tested on a toy dataset, as mentioned in Section 1, only to provide some219

visuals on how the incremental learning progresses using the proposed methods. Figure 2 shows this220

dataset. A vanilla deep neural network of size, 1000-1000-1000-1000-3, is used for incrementally221

learning batches of data from this toy dataset. The activation functions for all layers are ReLU except222

for the output which is a softmax. All weights are uniformly but randomly initialized with a single223

random seed to make the results comparable. The weights are also scaled by a 2√
n

factor to ensure224

that minimal overfitting occurs during training. Here n is the layer fan-in.225

To visualize incremental learning on the proposed methods, the dataset is divided into 6 batches226

with mututally exclusive data points. This gives roughly between 100 to 200 data points in each227

batch, a size that is commonly used when training neural networks of this size. Figure 3 shows this.228

In this figure, it can be clearly seen that the batch distributions on the class data for incremental229

learning do not always form a piece-wise nonlinear fit, and therefore, plain shut-off of weights cannot230

fully retain knowledge learned earlier. Also, among these distributions, some allowed incremental231

6



Figure 2: The toy dataset having three nonlinearly arranged classes.

Figure 3: Batches on the toy dataset.

learning to happen easily, while others did not, and the distribution shown in Figure 3 is one such.232

Table 1 summarizes the results of the proposed methods on this particular distribution. For other batch233

distributions, similar results could be achieved. Note here that quite some ML-Ops were required to234

achieve the results in Table 1. This was especially the case for those that employed Fisher Shut-off,235

since this method has a regularization constant that requires adapting on each batch. Furthermore,236

training on each batch was stopped once 100.0% accuracy was obtained on the batch. This left quite237

some data points to lie very close to the boundary lines or in some cases just right on them. Thus,238

the neural network was very vulnerable to catastrophic forgetting when succeeding batch trainings239

occurred as part of incremental learning.240

However, taking a look at Table 1, it can be seen that when Fisher Shut-off is applied, additional241

leverage against catastrophic forgetting occurs on each incremental batch, than when it is not used.242

And, among the three methods proposed in this paper, the Border Control method shows much243

stronger performance. In Figure 4, sample decision boundaries learned when each incremental batch244

is applied to the neural network using Fisher Shut-off and Border Control together is shown. A topk245

value of 5 is used for the Border Control. Also, note in Figure 4 that the red circles mark the border246

points accumulated on each batch. It can be seen that they clearly assume the data points closest247

to the decision boundaries, as well as those far away from it. All with respect to their batches. For248

the far away data points, their purpose can be clearly seen between batches #1 and #2, where the249

fartherest points of class 2 in Batch #1 helped protect the decision boundaries from the data points250
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Table 1: Performance of proposed methods on the dataset of Figure 2

Sample accuracy on accumulated dataset after Batch1

Method #1 #2 #3 #4 #5 #6

No Incremental Learning 100.0% 90.98%2 92.76% 94.89% 98.32% 96.11%
Fisher Shut-off (FS) 100.0% 99.74% 98.19% 98.88% 98.96% 96.89%
Frac. Data Ret. (FDR)[10%] 100.0% 97.94% 98.39% 98.89% 98.71% 98.67%
FDR[20%] 100.0% 98.71% 98.59% 99.36% 98.97% 98.78%
Border Ctrl. (BC)[topk = 5] 100.0% 100.0% 100.0% 99.84% 100.0% 100.0%
BC[topk = 10] 100.0% 100.0% 100.0% 99.84% 100.0% 100.0%
FS + FDR[10%] 100.0% 99.74% 98.79% 99.52% 99.23% 98.78%
FS + FDR[20%] 100.0% 100.0% 99.19% 99.52% 99.48% 99.11%
FS + BC[topk = 5] 100.0% 100.0% 100.0% 99.84% 100.0% 100.0%
FS + BC[topk = 10] 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Figure 4: Incremental learning using Fisher Shut-off and Border Control together [topk = 5]. Black
circles mark the batch data, while the red circles mark the accumulated border points.

of class 0 in Batch #2. This means that more complex datasets can be accommodated by simply251

applying Border Control. More examples are shown in Appendix C.252

Also, to add on further to this, for the most difficult incremental learning applications such as learning253

new classes as highlighted in Castro, et al. (2018) and He, et al. (2020), Border Control can help254

leverage the many issues associated with it like class imbalance, concept drift and so on.255

5 Conclusion256

To summarize the work in this paper, three simplified methods for implementing incremental learning257

for commercial fine-tuning of pre-trained models was proposed. Results showed that while Border258

Control performed the best, Fisher Shut-off was able to leverage the performances. However, dataset259

used in this paper was a toy dataset and not one of the benchmark datasets typically used for260

1Incremental learning method aplied from Batch #2 onwards.
2Indicates catastrophic forgetting
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incremental learning. Hence, testing these methods on the benchmark datasets is a potential next step261

forward. Then, preparing the prerequisites for each model available, like say in huggingface.com,262

for incremental learning must be done so that automation companies or any other AI organization263

can make use of them. From the methods proposed in this paper, the prerequisites would be: 1)264

the Shut-off matrix for the neural network weights, and 2) the border points for each of the learned265

classes. Additionally, an ML-Ops infrastructure can be provided to optimize the performances of266

the models that employ the Fisher Shut-off method. Metrics like the Backward Transfer (BWT) and267

Forward Transfer (FWT) proposed in Lopez-Paz & Ranzato (2017) can be used for this purpose.268
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Checklist311
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• Did you include the license to the code and datasets? [No] The code and the data are317

proprietary.318

• Did you include the license to the code and datasets? [N/A]319

Please do not modify the questions and only use the provided macros for your answers. Note that the320
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1. For all authors...323

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s324

contributions and scope? [Yes]325

(b) Did you describe the limitations of your work? [Yes] See Sections 4 and 5326
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(b) Did you mention the license of the assets? [N/A]347

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]348

349

(d) Did you discuss whether and how consent was obtained from people whose data you’re350

using/curating? [N/A]351

(e) Did you discuss whether the data you are using/curating contains personally identifiable352

information or offensive content? [N/A]353

5. If you used crowdsourcing or conducted research with human subjects...354

(a) Did you include the full text of instructions given to participants and screenshots, if355

applicable? [N/A]356

(b) Did you describe any potential participant risks, with links to Institutional Review357

Board (IRB) approvals, if applicable? [N/A]358

(c) Did you include the estimated hourly wage paid to participants and the total amount359

spent on participant compensation? [N/A]360
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A Appendix361

Here, the derivation of regularization constant for Fisher Shut-off method is detailed. To start with,362

let the neural network be defined as,363

y = wTϕ(x, ω) (7)

Here, w is the weights of the output layer, ϕ(·) is the output of the preceding layer, x is the input and364

ω represents the rest of the weights of the neural network. Throughout the derivation, we will be365

dealing with only the output layer, and so the ϕ(x, ω) will be written in short form as Φ from here on.366

Let ek denoted the error of fitting in the k-th iteration, and gk denote the error gradient. This would367

mean that gk = Φkek.368

Then, given the regularization term in (6), let w̃ denote difference in weights, between the new369

training and the previous training. This would give the weight updation policy as,370

wk+1 = wk − ηgk − βw̃k (8)

If ek = wT
k Φk − Y , then the error ek+1 after the weight updation would equal,371

ek+1 = wT
k+1Φk+1 − Y

= (wk − ηgk − βw̃k)
TΦk+1 − Y

= wT
k Φk+1 − ηgTk Φk+1 − βw̃T

k Φk+1 − Y

(9)

Asumming for simplicity sake that Φk+1 ≈ Φk + δ, then (9) can continue as,372

ek+1 ≈ wT
k Φk − ηgTk Φk − βw̃T

k Φk − Y +∆

≈ ek − ηgTk Φk − βw̃T
k Φk

(10)

Taking the square norm of ek+1 in (10), would equate this to,373

||ek+1||2 = ||ek||2 + η2||gTk Φk||2 + β2||w̃T
k Φk||2

− 2ηeTkΦ
T
k gk − 2βeTkΦ

T
k w̃k + 2ηβw̃T

k ΦkΦ
T
k gk

(11)

We require that ||ek+1||2 < ||ek||2 at all times, so that regularization does not affect the fit at any374

point during the training. Applying this condition in (11) would give,375

η2||gTk Φk||2 + β2||w̃T
k Φk||2 − 2ηeTkΦ

T
k gk − 2βeTkΦ

T
k w̃k + 2ηβw̃T

k ΦkΦ
T
k gk < 0 (12)

Then, taking the partial derivatives of (12) w.r.t η and β would give the following equations to be376

satisfied:377

η||gTk Φk||2 − eTkΦ
T
k gk + βw̃T

k ΦkΦ
T
k gk = 0 (13)

β||w̃T
k Φk||2 − eTkΦ

T
k w̃k + ηw̃T

k ΦkΦ
T
k gk = 0 (14)
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Solving, (13) and (14) can result in negative η and β, which is not acceptable, and so to simplify the378

solution, we neglect the β-term in (13). Doing so we get,379

η =
eTkΦ

T
k gk

||gTk Φk||2
,

β =
eTkΦ

T
k w̃k − ηw̃T

k ΦkΦ
T
k gk

||w̃T
k Φk||2

(15)

Then, substituting for gk and openning up the norms, we get,380

η =
eTkΦ

T
kΦkek

eTk (Φ
T
kΦk)(ΦT

kΦk)ek
,

β =
eTkΦ

T
k w̃k − ηw̃T

k (ΦkΦ
T
k )Φkek

w̃T
k (ΦkΦT

k )w̃k

(16)

Simplifying (16) gives,381

η =
eTk ek

eTkΦ
T
kΦkek

,

β = (1− η)
w̃T

k Φkek
w̃T

k w̃k

(17)

Equation (17) gives the raw form for both η and β to be regulated. However, this will be further382

simplified for computating purposes, but will be used as a basis.383

Since the errors ek get smaller as the neural network fits the data, using them in learning constants384

will only slow down the fits. A common way to overcome this is by replacing ek with all ones.385

Similarly, for the w̃k, all weights that are to be regularized are replaced with ones. If we denote386

the weights to be regularized as wr, and there are m patterns in the dataset with n weights to be387

regularized, the η and β computations become,388

η =
1

||Φk||2
,

β =
α

mn

∑
i:w∈wr

Φi,k

(18)

Here, α represents the (1− η)-term in (17). This constant will not neccessarily take the computed η389

when being regulated. Instead, this constant will have to be adapted each time for every incremental390

batch applied to the neural network.391

The reason why the computed η is not used for the α adaptation is because this η can sometimes392

become too small in the adaptation, that the 1 − η would always tend towards 1. When this was393

empirically tested on the toy dataset, the regularization was found at times to have gone too strong394

that the fit never happened. ML-Ops on the α found that this constant is not always 1, and can be395

anywhere between 0 and 1, or higher in some cases.396
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B Appendix397

Additional examples on the regression problem with Fisher Shut-off. Fisher Shut-off could not be398

used completely, and regularization had to take over for some batches. Figures 5 and 6 show this.

Figure 5: Complete Fisher Shut-off is used in Batches #2 and #6. Batches #3, #4 and #5 are
regularized.

399

Figure 6: Complete Fisher Shut-off is used in Batches #2 and #6. Batches #3 and #4 are regularized.
Batch #5 is fine-tuned
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C Appendix400

In this appendix, additional examples on the toy dataset classification is shown. Figures 7 and 8 show401

the batch distributions considered. Among these, Figure 8 has more cases in which the farthest points402

in Border Control can play a vital role in retaining previously learned knowledge. Tables 2 and 3403

summarize their performances.

Figure 7: Another batch distribution on the toy dataset.
404

Table 2: Performance of proposed methods on the dataset of Figure 7

Sample accuracy on accumulated dataset after Batch

Method #1 #2 #3 #4 #5 #6

No Incremental Learning 100.0% 73.14% 92.07% 97.56% 88.33% 91.67%
Fisher Shut-off (FS) 100.0% 99.43% 98.26% 99.54% 92.85% 97.78%
Frac. Data Ret. (FDR)[10%] 100.0% 97.43% 96.13% 98.93% 98.75% 96.78%
FDR[20%] 100.0% 98.86% 98.84% 99.69% 99.75% 98.89%
Border Ctrl. (BC)[topk = 5] 100.0% 100.0% 100.0% 100.0% 100.0% 99.78%
BC[topk = 10] 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
FS + FDR[10%] 100.0% 99.71% 98.84% 99.54% 98.75% 98.33%
FS + FDR[20%] 100.0% 100.0% 99.23% 99.85% 99.87% 98.89%
FS + BC[topk = 5] 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
FS + BC[topk = 10] 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
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Figure 8: Yet another batch distribution on the toy dataset.

Table 3: Performance of proposed methods on the dataset of Figure 8

Sample accuracy on accumulated dataset after Batch

Method #1 #2 #3 #4 #5 #6

No Incremental Learning 100.0% 89.34% 93.80% 95.60% 97.81% 84.78%
Fisher Shut-off (FS) 100.0% 95.36% 99.59% 99.55% 99.36% 94.56%
Frac. Data Ret. (FDR)[10%] 100.0% 95.08% 96.07% 97.42% 99.61% 98.67%
FDR[20%] 100.0% 98.36% 98.97% 99.85% 100.0% 99.67%
Border Ctrl. (BC)[topk = 5] 100.0% 100.0% 99.79% 99.85% 100.0% 100.0%
BC[topk = 10] 100.0% 100.0% 100.0% 100.0% 99.74% 100.0%
FS + FDR[10%] 100.0% 95.36% 99.79% 98.48% 99.61% 98.89%
FS + FDR[20%] 100.0% 98.36% 99.79% 99.69% 100.0% 99.67%
FS + BC[topk = 5] 100.0% 100.0% 100.0% 100.0% 99.74% 100.0%
FS + BC[topk = 10] 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
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