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ABSTRACT

We focus on a class of reinforcement learning algorithms, Monte-Carlo Tree
Search (MCTS), in stochastic settings. MCTS has excelled in deterministic do-
mains but can struggle in highly stochastic scenarios where transition randomness
and partial observability lead to underexploration and suboptimal value estimates.
To address these challenges, we integrate distributional Reinforcement Learning
(RL) with Thompson Sampling and an optimistic exploration bonus, resulting in
two novel distributional MCTS algorithms: CATSO (Categorical Thompson Sam-
pling with Optimistic Bonus) and PATSO (Particle Thompson Sampling with
Optimistic Bonus). In both methods, each Q-node in the search tree maintains
a distribution of returns—via either a fixed set of categorical atoms (CATSO) or
a dynamic set of particles (PATSO). We then employ Thompson Sampling plus
a polynomial optimism bonus to drive exploration in stochastic environments.
Theoretically, we show that both algorithms attain a non-asymptotic, problem-
dependent simple regret bound of O(n~'/2), with n as the number of visited
trajectories. Empirical evaluations confirm that our distributional approach signif-
icantly improves performance over existing baselines, demonstrating its potential
for robust online planning under uncertainty.

1 INTRODUCTION

Online planning in Markov Decision Processes (MDPs) involves making real-time decisions based
on the current state of the environment, balancing exploration and exploitation under uncertainty and
partial observability. Monte-Carlo Tree Search (MCTS) is one of the most powerful online planning
methods for tackling complex MDPs. It has demonstrated impressive performance in various set-
tings, including board games such as Chess and Go (Silver et al.}|2017a; 20165 2017b; |Schrittwieser
et al.,2020), video game strategy (Perez et al.,2014)), robot assembly (Funk et al.,2022), robot path
planning (Eiffert et al.| 2020} | Dam et al.,[2022), and autonomous driving (Mo et al.| [2021).

Despite these achievements, most standard MCTS methods primarily excel in deferministic or near-
deterministic environments and often overlook the significant impact of stochasticity common in
real-world scenarios. In highly random or partially observable settings, classical MCTS can suf-
fer from inaccurate value estimates and suboptimal decisions, ultimately degrading overall perfor-
mance. Hence, methods that handle stochasticity in MCTS are urgently needed for robust real-world
deployment.

Value Estimation and Action Selection in MCTS. A crucial aspect of MCTS is value estimation.
Classic approaches either use the empirical average for backup (as in UCT (Kocsis et al., 2006)),
which can systematically underestimate optimal values, or use a maximum operator, which tends
to overestimate them (Coulom, [2006). The power mean estimator (Dam et al., [2019) provides a
balanced solution by computing a mean between the average and maximum values. In our approach,
we adopt this principle at each V-node, storing the power mean of child Q-nodes’ empirical means
to avoid modeling V as a distribution.

For action selection, many MCTS algorithms borrow exploration ideas from Multi-Armed Ban-
dits. UCT (Kocsis et al. 2006) extends the UCB1 confidence-bound rule but can underperform
if its bonus constant is tuned incorrectly (Shah et al.l 2020). One way to improve exploration is
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through Thompson Sampling (TS), which randomly samples from a posterior over Q-values to bal-
ance exploration and exploitation. However, purely sampling from the posterior can lead to insuf-
ficient exploration if the posterior underestimates the potential of less-visited actions. To address
this, several works propose augmenting Thompson sampling with an explicit optimism or confi-
dence bonus—what may be referred to as Optimistic Thompson Sampling (May et al.,2012), Bayes-
UCB (Kaufmann et al., [2012), or PSRL + Optimism (Osband et al., 2013; |2018). Some of these
methods have also been explored in MCTS contexts, for instance via variance-based exploration (Bai
et al., 2013;2014) and Bayesian model adaptation. These ideas share a common motivation: if the
posterior is temporarily miscalibrated, an optimism bonus helps ensure that rarely tried actions are
not prematurely discarded.

Entropy Regularization. Another approach to balancing exploration and exploitation is en-
tropy regularization. Maximum Entropy Tree Search (MENTS) (Xiao et al., |2019) incorporates
a maximum-entropy policy objective, while RENTS and TENTS (Dam et al.,|[2021) extend this with
Relative and Tsallis entropy. However, these methods rely on a temperature parameter that may
impede convergence, and their estimated values converge to a regularized rather than true optimal
value. Boltzmann-based approaches (Painter et al.| [2024) can achieve exponential decay of simple
regret but again hinge on carefully tuned temperature parameters.

Distributional Reinforcement Learning. On the RL side, Distributional RL (Bellemare et al.}
2017; |Dabney et al., 2018b; [Mavrin et al.| [2019) extends the classical Bellman equation to model
full value distributions, thus capturing randomness in rewards and transitions more faithfully. Tech-
niques like the C51 algorithm (Bellemare et al.| [2016) represent Q-values via a discrete set of atoms,
while quantile-based methods (Dabney et al., |2018a) approximate the distribution more flexibly.
Nevertheless, most distributional approaches focus on learning rather than planning, leaving open
questions about how best to incorporate distributional estimates into MCTS.

Contributions and Outline. In this paper, we bridge this gap by introducing distributional MCTS
with Thompson Sampling and a polynomial optimism bonus. Specifically:

* We propose two distributional MCTS algorithms, CATSO (Categorical Thompson Sampling with
Optimistic Bonus) and PATSO (Particle Thompson Sampling with Optimistic Bonus), each cap-
turing Q-node distributions differently. CATSO discretizes Q-values into a fixed set of atoms,
whereas PATSO grows a set of sampled particles. Both methods also integrate a UCB-style poly-
nomial bonus to ensure that underexplored actions receive additional optimism, following the
principle of Optimistic Thompson Sampling (May et al., 2012 |Bai et al.l 2013).

* We show theoretically that both approaches achieve a non-asymptotic simple regret rate of
O(n~'/?) with n as the number of visited trajectories, matching the known existing bounds of
Fixed-depth-MCTS (Shah et al., 2022).

* We prove that our algorithms produce near-optimal policies for Wasserstein Distributionally Ro-

i : RS HsP1A ]2
bust MDPs, achieving sample complexity bounds of O [6 =E log ( 5 )} for learn-

ing (e, ¢)-robust policies.
» Empirical evaluations on synthetic trees and Atari tasks confirm the viability of our distributional
and optimism-based strategies.

Overall, our work provides a new way to handle stochastic environments in MCTS through the
synergy of distributional value representations, Thompson sampling, and optimism. The subsequent
sections detail the algorithms, theoretical analysis, and experimental validation.

2 SETTING

We study an infinite-horizon discounted MDP M = (S, A, R, P, ~) with state space S, action set
A, transition distribution P(- | s, a), discount factor v € (0, 1], and reward function R(s,a, s’) €
[0, Rimax| - The optimal action-value function Q* satisfies the Bellman equation

Q*(s,a) = Egp(isa) |R(s,a,8) + ’yn}f}x@*(s',a')}.

MCTS plans from an initial state so by repeatedly simulating trajectories of length H (for analysis),
resulting in an estimate (),,(so,a) of the root action-value. Let V*(s9) = max, Q*(so,a) and
Vo (s0) £ max, Q,(s0,a). The simple regret at time n is:

~

R(sg,n) = V*(s0) — Vin(s0)-
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To analyze MCTS performance, we define planning horizon H and playout policy 7o with value Vj.

For node s, at depth h from root sg, estimated value functions are defined inductively: V(sg) =
Vo(sy) at depth H, and for h < H — 1:

Q(sn,a) = r(sn,a) + 7 Z P(shi1lsn, )V (she1), V(sn) = m&x@(sm a),

Sh+1 €A,

where (s, a) is the expected reward for action « in state sy,. This yields the approximation bound:

|Q* (50, a) — Q(s0,a)| <A |V* = Vol oo,

where the norm is over states reachable within H steps from so. MCTS minimizes the simple regret
by accurately estimating Q(sg, a) and V (sq) to approximate V*(sq), @* (S0, @) and identify optimal
action a, = argmax, Q* (s, a) at the root.

Our main theorems show that both CATSO and PATSO achieve the convergence rate of O(n'/?),
matching that of earlier methods like Fixed-Depth MCTS (Shah et al., 2022).

2.1 MONTE-CARLO TREE SEARCH BACKGROUND

MCTS iterates four key steps: Selection (from sg, select actions according to a tree policy until
reaching a leaf node or an unexpanded node), Expansion (add the newly visited node to the search
tree), Simulation (perform a short rollout or simulation from the leaf), and Backpropagation (use
the reward outcomes to update node statistics along the path). Unlike standard MCTS that stores a
single mean Q-value, we store distributional Q-values, updated with each new sample.

2.2 DISTRIBUTIONAL RL IN TREE SEARCH

Formally, we view each Q-value as a distribution over possible returns. By letting X'(s,a) denote
the immediate reward distribution, we have

Q(s,a) 2 X(s,a) + yV(s),

where s’ ~ P(- | s,a) and V(s') merges the Q distributions under the chosen policy (tree policy in
MCTS). Conceptually, we track a distribution Q(s, a) at each node rather than a single mean. Next,
we show how to implement this using two parameterizations: categorical and particles.

3 DISTRIBUTIONAL THOMPSON SAMPLING IN TREE SEARCH

A pure Thompson Sampling (TS) approach can sometimes under-estimate the value of less-visited
actions, leading to insufficient exploration in stochastic environments. To address this, several works
have proposed combining TS with an explicit optimism bonus or confidence bound. For instance,
Optimistic Thompson Sampling May et al.| (2012)) adds a UCB-style term to the TS-sampled value
in multi-armed bandits; Bayes-UCB [Kaufmann et al.| (2012) selects actions by the upper-quantile
of a Bayesian posterior; and PSRL + Optimism Osband et al.| (2013} 2018) incorporates additional
confidence bonuses into posterior sampling for tabular or deep RL. In Monte Carlo Tree Search
(MCTS), Bai et al.[ (2013 [2014) investigated Bayesian model adaptation with variance-based ex-
ploration, effectively mixing posterior sampling and optimism. These lines of work underscore a
shared principle: augmenting Thompson-drawn estimates with a boost for rarely visited actions can
enhance exploration if the posterior is temporarily overconfident or miscalibrated.

Building upon these ideas, we propose two new distributional MCTS algorithms that combine TS
and an optimism bonus:

* CATSO (Categorical Thompson Sampling with Optimistic Bonus),
e PATSO (Particle Thompson Sampling with Optimistic Bonus).

Both methods maintain a distribution over Q-values at each node, using Thompson sampling to
select actions, and then add a polynomial exploration bonus. In CATSO, Q-nodes track a fixed set of
categorical atoms; in PATSO, Q-nodes maintain a growing particle set. This synergy aims to capture
the uncertainty in return estimates while preventing underexploration.

3.1 CATEGORICAL THOMPSON SAMPLING WITH OPTIMISTIC BONUS (CATSO)

Each Q-node (s, @) maintains:

» Atom locations: {z;(s, a)}fif)l, equally spaced in [Qmin, Qmax)s
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Algorithm 1: CATSO Algorithm 2: PATSO
SelectAction (sy,) ( Sec SelectAction (sy,) ( Sec
for a € [A] do for a € [A] do
L(sp,a) ~ Dir(a®(sp, a),..., o <5h a)) L(sp,a) ~ Dir(a(sy,a))
B(sn,a) = [20(sn,a), - .., 2x(sn,a)] " L(sn, a) B(sn,a) = S(sn,a)" L(spy,a)
end end
a = argmax {@(sn, a) + B(n, s, a) } a = argmax {@(sn, a) + B(n, s, a) }
o a
return a return a
SimulateV (s, t) (Sec SimulateV (s, t) (SEC
a =SelectAction (sp) a =SelectAction (sp)
SimulateQ (sp,a,t) SimulateQ (sp,a,t)
Ts,(f):T (t)+1 To(t) = Ts(t) +1 B
Qsn,a Zzt(% a)pi(sn,a) Qlsn,a) = 3 arlsn, a)Q,(sn, a)
1 poa(t) v
» : Vion) = (S50
V(sn) = ( T <5>)Qp<sh\a>) @ T
5 a o SimulateQ (s, a,t) (Sec|3.3)
SimulateQ 5,7, o0 I L ST o -2
sny1 ~ P([sn, @), mi(sn, @) ~ R(sn, @ sn41) R(Sh, @ She1)
if Node s}, 11 not expanded then if Node s,41 not expanded then
‘ Rollout(sp+1) ‘ Rollout(spy1)
else else
‘ SimulateV (sp41,t) ‘ SimulateV (Sp41,1)
end end
Topa(t) = Topa(t) +1 Ty at) = Ty a(t) +1
Qf(bh [1) =rt(sn,a) + 7V (sh+1) Q,(sn,a) = r¢(sn,a) +",‘7(5h+1)
if Q (51, @) & [Quin(5h, @), Qmax(sn, a)] then if Q,(s,a) € {S(sp,a)} then
Qmax(sn,a) = m LX@!("I] ), Quax(sn, @)} ai(spsa)  += 1 lag(sp,a)
Qumin(sn,a) = min{Q,(s1, @), Quin(sn, a)} weight of Q, (s, a)
Az = aor=Qunin else B
2i(5n,0) = Quin +102:0<i <N S(sn,a) = (S(sn, a), Qy(sn, a))
a(sp,a) := (a(sp,a),1)
Update p(sn, a) = [po(sn,a), ..., px(sn, a)] end

Figure 1: Comparing CATSO (left) and PATSO (right) The main distinction is in the Q value func-
tion backup(SimulateQ) and action selection function (SelectAction); the two methods are identi-
cal in other procedures. In CATSO, we init (a’(s,a),...,a™(s,a)) = (1,...,1) and in PATSO,
S(s,a) = (1), a(s,a) = (@) for each s, a.

* Probabilities: {p;(s,a)} ', forming a categorical distribution over those atoms,
* Dirichlet prior: Dir(a®(s,a),...,a~1(s, a)) enabling Thompson sampling.

Initially set Qnin = 0 and Q. = 0.001. Whenever a newly observed return

Quls,a) = i + V()

exceeds this range, we expand [Qumin, Qmax] accordingly. If Q, (s, a) falls in the interval of atom
zm($, a), we increment o™ (s, a). In detail,

Q-node Atom Update. To simplify the notation, we express all related quantities as functions of
(s,a), such that Q,, z;, a" are written as Q,(s, a), z;(s,a), &' (s, a), respectively. To incorporate a
new return (J,, we consider two cases:

(i) Inside current support (20 <Q, <zn_1):
e Identify m = argmin; | Q; — 2.
* Update o™ < o™ + 1. -
(ii) Outside current support (Qt < zgorQ, > zZN-1):
* Compute new bounds me = min(z0,Q;), 2. = max(zn_1,Q,).
* Create anew grid z(), ..., 2y_; = linspace(2 i, Zmaxs IV)-
e Initialize @’ = (a0, ... ,O/N_l) = (1,---,1).
» For each old z;: find j(i) = arg ming |2}, — 2|, then a/7) + /7 4 o2
* Find m = arg miny, | Q, — 2}, increment /™ « o™ + 1.
* Overwrite (2;, a%) with (z},a'*) fori =0,...,N — 1.

Either way, the revised categorical PMF is

i new

o
new __ — —
Pi = SNTT ew fori=0,...,N —1.
Zj:oa
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Action Selection. At each node s;,:

(i) Sample (Thompson): For each action a, draw L(sp,a) ~ Dir(a®(sp,a),...,aN " (s, a)),
then compute P(sp,a) = Zf\;l 2i(8p,a) Li(sp, a).
1/4
(i) Add optimism bonus Shah et al. (2020): B(n,s;,a) = C % where T}, (n) and
T;,o(n) are the respective visit counts. Then @' (s, a) = @(sp,a) + B(n, sp,a).
(iii) Choose: a* = argmax . @ (sp,a’).

In short, CATSO uses a fixed set of atom locations to track Q-values with Thompson sampling, while
an added polynomial bonus encourages sufficient exploration.

3.2 PARTICLE THOMPSON SAMPLING WITH OPTIMISTIC BONUS (PATSO)
Each Q-node (s, a) maintains:

* Set of particles: S(s,a), each storing a distinct observed return value.

» Weights: «(s, a), tracking how many times each particle has been revisited.
When a new sample Q, (s, a) arrives:

« If Q,(s,a) € S(s,a), increment its weight in a(s, a).
* Otherwise, add a new particle with weight 1.

Action Selection. At node s;,:

(i) Sample Q-values (Thompson): For each action a, draw L(sy, a) ~ Dir(a(sp,a)), and then

Blsn,a)= Y i+ Li(s,a).

i € S(sh,a)

Tsh(n)l/4

(ii) Add optimism bonus Shah et al.| (2020): B(n, s;,,a) = C TGy

yielding
@' (sn,a) = @(sn,a) + B(n, sy, a).

(iii) Select: a* = arg max ,/c4 @ (sp,a’).

Because S(s,a) dynamically expands, PATSO can capture a more flexible approximation of the
underlying Q distribution, while the polynomial optimism bonus ensures active exploration of rarely
tried actions.

Remark 1 (CATSO vs. PATSO). CATSO discretizes Q-values into N + 1 fixed atoms, potentially
introducing approximation errors if IV is small. PATSO grows its particle set automatically, often
yielding a finer representation of the return distribution. However, carefully picking N in CATSO
can be more efficient, whereas PATSO ’s flexibility may require more storage or computation. Both
methods share similar theoretical guarantees on regret.

3.3 VALUE BACKUP FOR V-NODES

Although Q-nodes track full distributions, our V-nodes only store a power-mean backup of child
Q-means:

7o) = (X Fy Qs a]’)?, p21

This helps balance between plain averaging and a maximum operator Dam et al.|(2019). In CATSO,

~

Q(s,a) is the expected value of the categorical distribution; in PATSO, it is the weighted average of
all observed particles.

4 THEORETICAL ANALYSIS

Our main goal is to prove that both CATSO and PATSO achieve a simple regret rate of O(n’l/ 2)
under suitable assumptions. We begin by noting that each node in the search tree can be modeled
as a non-stationary multi-armed bandit problem, since evolving the search (by expanding deeper
nodes) gradually modifies the empirical rewards in a non-static manner. Subsequently, we extend
these bandit-based findings to the entire MCTS procedure.

5
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Algorithm 3: CATSO in Non-stationary bandits
Require: K arms; n: number of plays;
N + 1 support size of categorical distributions

Algorithm 4: PATSO in Non-stationary bandits

Require: K arms; n: number of plays;
Init o = (1); Sp = (1) foreach a € [K]

Init (a2,...,ad) = (1,...,1) foreach a € [K]

Main ()
fort=0,12,...,ndo
for a € [A] do
Loy~ Dir(aB, .. aarjl\)
Pay = [0, 52 20 R Lo
end

1
a= arginax {@M +C Tat(;% }
To(t) =Ta(t) +1
Pull arm ¢ and observe reward
Ry = ™8 where m € {0,1,... N}
Update o' = aj' +1

end

Main ()

fort=0,1,2,...,ndo
for a € [A] do
L.+ ~ Dir(ay)
Pt =S4 Lavt

a

end

) — o4

¢ = argmax {“pa,t +C ot }
Tu(t) = Ta(t) + 1
Pull arm a and observe reward R, ;
if R, € {S,} then

| of +=1//al : weight of R, ¢
else
Sa 1= (Sa; Rart)

Qg :; (e, 1)

end

end

Figure 2: An illustration of CATSO (left) and PATSO (right) adapted to non-stationary bandits. Both
incorporate a Thompson-sampled estimate plus an optimism bonus C't/4 /T, (t)'/2.

4.1 NON-STATIONARY BANDIT SETTING

Consider a bandit with K actions (arms). Each arm « is associated with a possibly non-stationary
reward process { R, ; }, taking values in [0, R]. We let /1, ,, denote the empirical mean reward of arm
a after it has been pulled n times, and we assume

e = lim E [ﬁmn} .

n— oo

Throughout, either a categorical-based or particle-based variant of Thompson Sampling (as de-
scribed in CATSO and PATSO) governs how arms are selected. We further define a power mean
operator to combine the arms’ empirical means:

K 1/p

E:ENOU%nmﬂp :

n
a=1

fin(p) =

where T, (n) counts the number of times arm a has been chosen in n total rounds. Our objective is
to show that this power-mean estimator fi,,(p) concentrates around the largest mean reward p, =
maX,e(k] Ha» at a rate implying an overall convergence of O(n~'/?) in our MCTS.

~

Definition 1. A sequence of estimators (V,,)n>1 converges to some value V' with concentration if
it satisfies:
(A) Concentration: For every n > 1 and any ¢ > 0, there is a constant ¢ > 0 such that
o~ —1
PQM,—VV>Q < engt

&

(B) Convergence: lim,,_ ]E[Vn] =V
When these two conditions hold, we write plim Vn =V.

n—oo

Algorithms in the Bandit Context. We combine Thompson Sampling with an optimistic term
akin to Stochastic-Power-UCT |Dam et al.| (2024), ensuring each arm is initially sampled at least
once. [Figure 2|sketches the pseudocode of CATSO and PATSO in the simpler bandit domain:

Fundamental Assumption. To formalize the notion that each arm’s empirical means converge,
we adopt:

Assumption 1. For each arm a € [K], let (ﬂa7n)n>1 be a sequence of estimators such that

plim fign = Ya-

n—oo

By “plim” we refer to the limit notion from Definition [T} ensuring both concentration and conver-
gence in expectation. Under this assumption, we can prove the next two theorems.
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Theorem 1. (CATSO in Non-Stationary Bandits) Let ([iqn)n>1 be a bounded sequence in [0, R]
satisfying Assumption |I} and let j1, = max ,¢[x] pa- Assume CATSO (the categorical-based TS)
chooses each arm once initially, then follows the exploration strategy in Fig.[2] For any p > 1, the
power-mean estimator [i,(p) converges to [, in the sense of Deﬁnition i.e. plim fin(p) = fx-

n—oo

Theorem 2. (PATSO in Non-Stationary Bandits) Under the same assumptions as Theorem
if instead PATSO (the particle-based TS) is employed, the identical convergence result holds:

plim 7in(p) = fix.
n—oo

Proofs of both theorems appear in the Appendix. Based on these bandit analyses, we can next ex-
amine how Q-value nodes converge in MCTS.

4.2 EXTENDING TO MCTS

Within MCTS, each node of the search tree can be interpreted as a (non-stationary) bandit instance:
as the search tree grows, the empirical rewards from each node’s children evolve. By applying The-
orems [I] and [2] at every internal node, we show that each Q-node value concentrates around its

truncated optimal value Q (s, a), and thus V (s;,) converges accordingly.

At the root s(, we establish the convergence of the expected payoff, with detailed arguments deferred
to the Appendix.

Theorem 5. (Convergence of Expected Payoff of CATSO) We have at the root node s, there exists
a constant C' > 0 such that ]E[’Vn(so) - IN/(SO)H < rf%,
Theorem 6. (Convergence of Expected Payoff of PATSO) We have at the root node s, there exists
a constant C' > 0 such that ]E[’Vn(so) - IN/(SO)H < rf%,

Remark 2. For a power-mean exponent p > 1, both CATSO and PATSO inherit the same O(n~1/2)
rate seen in Stochastic-Power-UCT [Dam et al.| (2024). This encompasses well-known backup rules
like max (when p — 00) or mean (when p = 1).

Thus, both of our distributional Thompson sampling approaches achieve a convergence rate on par
with the best known results for fixed-depth MCTS, bridging the analysis of non-stationary bandits
to the multi-level structure of tree search.

4.3 DISTRIBUTIONAL MCTS AND WASSERSTEIN ROBUST OPTIMIZATION

The distributional MCTS approach presented in our paper extends naturally beyond sequential
decision-making to the broader domain of robust planning under uncertainty. In this section, we es-
tablish formal connections between our algorithms (CATSO and PAT SO) and the field of Wasserstein
Distributionally Robust Optimization (WDRO), which offers a principled framework for decision-
making under distributional uncertainty. We establish that for an appropriate choice of constants C
and e, CATSO/PATSO produces a near-optimal policy for the Wasserstein Distributionally Robust
MDP (WDRMDP):

max min_ Ep[V™]
T PeB.(P)

where P is the empirical distribution represented by the categorical or particle approach, BE(?) is

the Wasserstein ball of radius € around ]3 and W), is the p-Wasserstein distance. Formally, we derive
a rigorous sample complexity guarantee for robust planning as follows.

Theorem 7. Let M be an MDP with state space S, action space A, bounded rewards in [0, Ry ax),
and discount factor ~y. The required number of samples to learn an (&, 8)-robust policy using the dis-
tributional representations from CATSO/PATSO combined with a concentration-based Wasserstein

2H
radius is of order O ([E(Ifﬁ’i{")a log (H\SJ;lA\)] ) _

Remark 3. (Robust Planning via Distributional Estimation). The connection to WDRO reveals
that our distributional MCTS algorithms naturally provide robustness against model uncertainty. By
maintaining and updating full distributions rather than point estimates, CATSO and PATSO implic-
itly construct uncertainty sets that can be formalized within the Wasserstein framework. The expo-
nential dependence on horizon H is typical for finite-horizon robust optimization problems, while
the polynomial dependence on problem parameters |S|, |.A|, and Ry,., demonstrates computational
tractability for moderate-sized problems.

bl
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4.4 ADDRESSING MEMORY AND COMPUTATION COSTS

CATSO memory complexity. Each (s, a) edge stores a categorical support of /N atoms and their
probabilities, so the memory is O(NN) per Q-edge. In the worst case, if one expands a full |S|x|A|
frontier the memory scales as O(N |S] |A|). In practice MCTS is budget limited and biased toward
the optimal branch, so the number of distinct Q-edges visited is O (n) for n rollouts, keeping memory
linear in the explored tree size. Since N is fixed, CATSO’s per-edge footprint does not grow over
time.

PATSO memory management (cap with merge-on-insert). Without intervention, PATSO’s par-
ticle set on a (Q-edge may grow with the number of distinct returns. We cap it at M < K particles
via merge-on-insert:

(i) Maintain a sorted list of pairs {(Q;, a;)}, (value, weight) with M < K.
(i) When a new sample z arrives:
(a) If z matches an existing value (within numeric tolerance): increment its weight.
(b) Elseif M < K: insert (z, 1) in sorted order.
(c) Else (M = K; overflow): merge the closest neighboring pair to free one slot (preserv-
ing first moment), then insert (z, 1).
Guarantees of the cap. Let range(s, a):=Qmax(8,a) — Qmin(s, a) be the local return range on
a (Q-edge. Nearest-neighbor merge preserves the first moment exactly and increases the W distance
to the uncapped empirical distribution by at most the merged gap times the merged mass. With a

size cap K and merges between nearest neighbors, the total discrepancy satisfies W1(137 ﬁ) =
O(%(S’a)) . Because the Bellman operator is 1/(1 — «y)-Lipschitz in W7, the cap induces at

range
K(1-v)
with the baseline simple-regret rate O(n~'/2) established in our analysis yields simple regret =

O(nfl/Q) + O(%). Practical choice of K. We set K so that the additive term is be-

low the statistical term at our rollout budgets, e.g., choose K o< y/n or pick the smallest K with
range/(K(1 —7)?)<n~1/2,

Why the merge is safe. The merge replaces two adjacent masses 71, +ma20,, by a single mass

(my1+m2)d,» at x* = %, which preserves the first moment. The induced W7 increase is

(m1 +ma) - |2* — {z1,22}| < (M1+m2) - [x2—21]. Over K bins with nearest-neighbor merges,
the average gap is O(range/K), yielding the bound above.
Complexity with the cap.

range

) and thus in simple regret O( R(—~)? ) Combining

the root an additive value error O(

Operation Cost

Per-(s, a) memory 2K floats = O(K)
Per-selection compute  One Dirichlet draw over K bins + a dot product = O(K)
Insertion (incl. merge) binary search O(log K') + constant-time merge = O(log K)

CATSO has fixed O(N) per-edge memory and linear compute in N; PATSO with capping has O(K)
per-edge memory and O(K) selection compute with O(log K') amortized insertion. The cap keeps
memory bounded while preserving the O(n_l/ %) convergence rate up to a tunable, additive term
that vanishes as K grows.

5 EXPERIMENTS

We compare CATSO and PATSO with several baselines, including UCT (Kocsis et al., 2006),
Fixed-Depth-MCTS (Shah et al.l [2022), MENTS/TENTS (Xiao et al., |2019; [Dam et al., |2021)),
BTS (Painter et al., 2024), and DNG (Bai et al., 2013). We first evaluate on a synthetic tree envi-
ronment, then on 17 Atari games (details in the Appendix). In all experiments, we set v = 1 for the
synthetic domain and v = 0.99 for Atari, using N = 100 atoms for CATSO.

5.1 SYNTHETICTREE ENVIRONMENT

The SyntheticTree (Dam et al., 2021) has depth d, branching factor k, and stochastic edges. Each
leaf node’s reward is sampled from a Gaussian(u, o = 0.5), with o € [0, 1]. Additionally, transitions
are stochastic: with 50% probability the agent moves to an intended child and otherwise transitions
uniformly among the other children. The agent’s goal is to find the leaf node with the highest mean
reward. We combine (k, d) in {2,4,6,8,10,12,14, 16,100,200} x {1, 2, 3, 4}, repeating each com-
bination over multiple runs.



Under review as a conference paper at ICLR 2026

ug_' k=16 d=1 k=200 d=1 k=14 d=3 k=16 d=3 k=16 d=4 k=200 d=2

c 1 V" 2 _l,,-——_

S 1

é I N 5 _L¥

= i N W e

- .

wn ;

@ 0.0 0 ‘0: o bl o LT 9.0 -

T?: 0 500 10000 500 10000 500 10000 500 10000 500 10000 500 1000

> # Simulations # Simulations # Simulations # Simulations # Simulations # Simulations
— UCT — DNG e MENTS TENTS CATSO

Power-UCT  —— Fixed-Depth-MCTS - RENTS — BTS —— PATSO

Figure 3: Performance in the SyntheticTree environment. We plot the absolute error of the estimated
root value vs. the number of simulated trajectories n. Both CATSO and PATSO converge faster than non-
distributional baselines, showcasing their robustness in stochastic transitions.

Table 1: Mean returns + standard deviation on 12 Atari games. Best result per game is bold-faced.

Game CATSO PATSO MENTS RENTS TENTS UCT
Alien 1124 £ 154 1980 + 539 238 + 62 326 = 116 1260 =372 1962 + 689
Atlantis 37540 £ 1828 31340 £ 1920 10980 42294 34980 + 1995 16920 £ 6745 34580 + 1743
BeamRider 1973 £ 229 1598 £ 178 406 + 247 1594 + 382 785 £89 1796 £ 292
Enduro 125 + 11 130 £ 20 0+0 45 £ 18 77 £ 25 131 + 28
Frostbite 660 £+ 567 1794 + 686 100 £ 62 456 + 427 242+ 19 1146 4 1003
Gopher 308 + 210 380 + 77 296 + 183 448 + 445 300 % 206 376 + 116
Hero 3021 £ 22 2994 £ 8 1645 £ 1282 2880 £ 53 2990 £ 0 2988 £ 26
MsPacman 2594 £+ 705 1988 + 56 244 + 17 1724 + 288 1566 +£293 2652 + 818
Phoenix 3760 £ 0 5050 £ 0 600 + 0 4380 £ 0 4470 £ 465 1334 + 500
Robotank 1144+ 1.0 114 + 3.1 28+ 1.6 10.0 £ 2.6 34+£22 11.0+24
Seaquest 3832 +560 3316 £ 375 136 £ 59 296 + 114 1176 £285 3004 £+ 311
Spacelnvaders 637 £ 260 766 £ 270 209 £ 96 358 + 168 468 £+ 154 1145 + 464

Figure [3] shows that both CATSO and PATSO converge more rapidly than baselines in terms of
the root-value error. PATSO often outperforms CATSO because it does not rely on a fixed-atom
approximation. However, the theoretical convergence rates of the two are the same.

5.2 ATARI EXPERIMENTS

We evaluated our algorithms on 12 Atari games using a pretrained DQN network as a feature ex-
tractor for MCTS variants, following |Xiao et al.| (2019); Dam et al.[ (2021). Table |I| summarizes
the results. Our proposed algorithms demonstrate strong performance across the test suite. CATSO
achieves the highest scores in 5 games (Atlantis, BeamRider, Hero, and Seaquest), while PATSO
leads in 4 games (Alien, Frostbite, Phoenix, and Robotank). The performance gap is most significant
in games requiring complex exploration - for instance, in Frostbite, PAT SO outperforms MENTS by
17.9x and TENTS by 7.4x.

UCT remains competitive in Enduro, MsPacman, and Spacelnvaders, suggesting traditional confi-
dence bounds remain effective for certain game dynamics. Both our methods excel particularly in
environments with high stochasticity (e.g., Breakout, Enduro) and those requiring strategic explo-
ration of sparse reward landscapes.

These results validate the effectiveness of our proposed exploration strategies in complex environ-
ments. Full details and additional analysis are provided in the supplementary material.

6 CONCLUSION

We presented two distributional MCTS algorithms, CATSO and PATSO, which model Q-nodes via
categorical or particle-based distributions and utilize Thompson Sampling with a polynomial ex-
ploration bonus. Both methods enjoy a simple regret convergence rate of O(n~'/2), matching the
known convergence rate of Fixed-Depth-MCTS [Shah et al.|(2020). Additionally, we established for-
mal connections to Wasserstein Distributionally Robust Optimization, proving that our algorithms
produce near-optimal policies for distributionally robust MDPs with polynomial sample complexity
guarantees. Empirical results on both synthetic and Atari domains confirm the benefits of distribu-
tional planning in stochastic environments. Future directions include scaling up to larger state-action
spaces, exploring partial observability, and studying risk-sensitive or distribution-aware policies in
more detail.
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