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Abstract

Diffusion models have shown impressive performance for generative modelling of images. In
this paper, we present a novel semantic segmentation method based on diffusion models. By
modifying the training and sampling scheme, we show that diffusion models can perform
lesion segmentation of medical images. To generate an image-specific segmentation, we
train the model on the ground truth segmentation, and use the image as a prior during
training and in every step during the sampling process. With the given stochastic sampling
process, we can generate a distribution of segmentation masks. This property allows us to
compute pixel-wise uncertainty maps of the segmentation, and allows an implicit ensemble
of segmentations that increases the segmentation performance. We evaluate our method
on the BRATS2020 dataset for brain tumor segmentation. Compared to state-of-the-art
segmentation models, our approach yields good segmentation results and, additionally,
detailed uncertainty maps.
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1. Introduction

Semantic segmentation is an important and well-explored area in medical image analysis
(Rizwan I Haque and Neubert, 2020). The automated segmentation of lesions in medical
images with machine learning has shown good performances (Isensee et al., 2021) and is
ready for clinical application to support diagnosis (Sharrock et al., 2021). In medical ap-
plications, it is of high interest to measure the uncertainty of a given prediction, especially
when used for further treatments like radiation therapy.
In this work, we focus on the BRATS2020 brain tumor segmentation challenge (Menze
et al., 2014; Bakas et al., 2017, 2018). This dataset provides four different MR sequences
for each patient (namely T1-weighted, T2-weighted, FLAIR and T1-weighted with contrast
enhancement), as well as the pixel-wise ground truth segmentation. An exemplary image
can be found in Appendix A.
We propose a novel segmentation method based on a Denoising Diffusion Probabilistic
Model (DDPM) (Ho et al., 2020), which can provide uncertainty maps of the produced
segmentation mask. An overview of the workflow for an image of the BRATS2020 dataset
is shown in Figure 1. We train a DDPM on the segmentation masks and add the original
brain MR image as an image prior to induce the anatomical information. As sampling with
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Figure 1: Workflow for the implicit generation of segmentation ensembles and uncertainty
maps with diffusion models. The input image consists of four different MR se-
quences. Going n times through the sampling process of the diffusion model with
different Gaussian noise, n different segmentation masks are generated.

DDPMs has a stochastic element in each sampling step, we can generate many different seg-
mentation masks for the same input image and the same pretrained model. This ensemble
of segmentations allows us to compute the pixel-wise variance maps, which visualizes the
uncertainty of the generated segmentation. Moreover, the ensembling of the segmentations
in a mean map boosts the segmentation performance.
We compare ourselves against state-of-the-art segmentation algorithms, and visually com-
pare our variance map against common uncertainty maps. The code is publicly available
at https://github.com/JuliaWolleb/Diffusion-based-Segmentation.

Related Work In medical image segmentation, a common method is the application of
a U-Net (Ronneberger et al., 2015) or SegNet (Badrinarayanan et al., 2017) to predict the
segmentation mask for every input image. This approach was successfully applied for many
different tasks (Habijan et al., 2019; Kumar et al., 2019; Xiao et al., 2020). The state of
the art is given by nnU-Nets (Isensee et al., 2021), where the best architecture and hyper-
parameters are automatically chosen for every specific dataset.
Uncertainty quantification is of high interest in deep learning research (Abdar et al., 2021),
which is often done using Bayesian neural networks (Kendall et al., 2017; Mitros and
Mac Namee, 2019; Gal and Ghahramani, 2016). We can differentiate between epistemic
uncertainty, which refers to uncertainty in the model parameters, and aleatoric uncertainty,
which refers to uncertainty in the data. As stated in (Kendall and Gal, 2017), the epistemic
uncertainty of a segmentation model can be approximated with Monte Carlo Dropout,
whereas the aleatoric uncertainty can be modeled with Maximum-A-Posteriori inference.
Those methods were also applied on various medical tasks (Wang et al., 2019; Nair et al.,
2020; DeVries and Taylor, 2018), including brain tumor segmentation (Sagar, 2020; Jungo
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and Reyes, 2019; Mehta et al., 2020). Other approaches presented stochastic segmentation
networks to model aleatoric uncertainty (Monteiro et al., 2020), or proposed a probabilistic
U-Net to learn a distribution over segmentations (Kohl et al., 2018, 2019).
During the last year, DDPMs have gained a lot of attention due to their astonishing perfor-
mance in image generation (Dhariwal and Nichol, 2021). Images are generated by sampling
from Gaussian noise. This sampling scheme follows a stochastic process, and therefore
sampling from the same noisy image does not result in the same output image. A differ-
ent sampling scheme was introduced by Denoising Diffusion Implicit Models (DDIM)(Song
et al., 2020), where sampling is deterministic and can be done by skipping multiple steps.
Moreover, meaningful interpolation between images can be achieved. DDPM was further
improved by (Nichol and Dhariwal, 2021) and (Dhariwal and Nichol, 2021), where changes
in the loss objective, architecture improvements, and classifier guidance during sampling
improved the output image quality.
While some new work applies diffusion models on tasks such as image-to-image transla-
tion (Sasaki et al., 2021), style transfer (Choi et al., 2021), or inpainting tasks (Saharia
et al., 2021), so far there is only very little work about semantic segmentation. Recently,
one approach to perform semantic segmentation with a diffusion model was proposed by
(Baranchuk et al., 2022). A DDPM is trained to reconstruct the image that should be
segmented. Then, a multilayer perceptron for classification is applied on the features of
the model, which results in a segmentation mask for the original image. In contrast to this
method, we train a DDPM directly to generate the segmentation mask. Simultaneously
and independent from us, (Amit et al., 2021) developed an image segmentation method
similar to ours. However, they use a separate encoder for the image and the segmentation.
Training a larger model may be difficult for medical image analysis due to possible large
input images such as 3D data. Our method uses only one encoder to encode the image
information and the segmentation mask.

2. Method

The goal is to train a DDPM to generate segmentation masks. We follow the idea and
implementation proposed in (Nichol and Dhariwal, 2021). The core idea of diffusion models
is that for many timesteps T , noise is added to an image x. This results in a series of
noisy images x0, x1, ..., xT , where the noise level is steadily increased from 0 (no noise) to
T (maximum noise). The model follows the architecture of a U-Net and predicts xt−1 from
xt for any step t ∈ {1, ..., T}. During training, we know the ground truth for xt−1, and the
model is trained with an MSE loss. During sampling, we start from noise xT ∼ N (0, I),
sample for T steps, until we get a fake image x0.
The complete derivations of the formulas below can be found in (Ho et al., 2020; Nichol and
Dhariwal, 2021). The main components of diffusion models are the forward noising process
q and the reverse denoising process p. Following (Ho et al., 2020), the forward noising
process q for a given image x at step t is given by

q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI), (1)

where I denotes the identity matrix and β1, ..., βT are the forward process variances. The
idea is that in every step, a small amount of Gaussian noise is added to the image. Doing
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this for t steps, we can write

q(xt|x0) := N (xt;
√
αtx0, (1− αt)I), (2)

with αt := 1 − βt and αt :=
∏t

s=1 αs. With the reparametrization trick, we can directly
write xt as a function of x0:

xt =
√
αtx0 +

√
1− αtϵ, with ϵ ∼ N (0, I). (3)

The reverse process pθ is learned by the model parameters θ and is given by

pθ(xt−1|xt) := N
(
xt−1;µθ(xt, t),Σθ(xt, t)

)
. (4)

As shown in (Ho et al., 2020), we can then predict xt−1 from xt with

xt−1 =
1
√
αt

(
xt −

1− αt√
1− αt

ϵθ(xt, t)

)
+ σtz, with z ∼ N (0, I), (5)

where σt denotes the variance scheme that can be learned by the model, as proposed in
(Nichol and Dhariwal, 2021). We can see in Equation 5 that sampling has a random com-
ponent z, which leads to a stochastic sampling process. Note that ϵθ is the U-Net we train,
with input xt =

√
αtx0 +

√
1− αtϵ. The noise scheme ϵθ(xt, t) that will be subtracted from

xt during sampling according to Equation 5 has to be learned by the model. This U-Net is
trained with the loss objectives given in (Nichol and Dhariwal, 2021).
We now modify this idea to use diffusion models for semantic segmentation. A visualization
of the workflow is given in Figure 2 for the task of brain tumor segmentation.

Figure 2: The training and sampling procedure of our method. In every step t, the anatom-
ical information is induced by concatenating the brain MR images b to the noisy
segmentation mask xb,t.

Let b be the given brain MR image of dimension (c, h, w), where c denotes the number of
channels, and (h,w) denote the image height and image width. The ground truth segmen-
tation of the tumor for the input image b is denoted as xb, and is of dimension (1, h, w). We
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train a DDPM for the generation of segmentation masks. In the classical DDPM approach,
xb would be the only input we need for training, which would result in an arbitrary segmen-
tation mask x0 when we sample from noise during inference. In contrast to that, the goal in
our proposed method is not to generate any segmentation mask, but we want a meaningful
segmentation mask xb,0 for a given image b. To achieve this, we add additional channels
to the input: We induce the anatomical information present in b by adding it as an image
prior to xb. We do this by concatenating b and xb, and define X := b ⊕ xb. Consequently,
X has dimension (c+ 1, h, w).
During the noising process q, we only add noise to the ground truth segmentation xb:

xb,t =
√
αtxb +

√
1− αtϵ, with ϵ ∼ N (0, I), (6)

and we define Xt := b⊕ xb,t. Equation 5 is then altered to

xb,t−1 =
1
√
αt

(
xb,t −

1− αt√
1− αt

ϵθ(Xt, t)

)
+ σtz, with z ∼ N (0, I) (7)

and results in a slightly denoised xb,t−1 of dimension (1, h, w). During inference, we follow
the procedure presented in Algorithm 1, which is a stochastic process. Therefore, sampling
twice for the same brain MR image b does not result in the same segmentation mask predic-
tion xb,0. Exploiting this property, we can implicitly generate an ensemble of segmentation
masks without having to train a new model. This ensemble can then be used to boost the
segmentation performance.

Algorithm 1: Sampling Procedure

Input: b, the original brain MRI
Output: xb,0, the predicted segmentation mask
sample xb,T ∼ N(0, I);
for t← T to 1 do

Xt ← b⊕ xb,t;

xb,t−1 ← 1√
αt

(
xb,t − 1−αt√

1−αt
ϵθ(Xt, t)

)
+ σtz, with z ∼ N (0, I) ;

end

3. Dataset and Training Details

We evaluate our method on the BRATS2020 dataset. As described in Section 1, images of
four different MR sequences are provided for each patient, which are stacked to 4 channels.
We slice the 3D MR scans in axial slices. Since tumors rarely occur on the upper or lower
part of the brain, we exclude the lowest 80 slices and the uppermost 26 slices. For intensity
normalization, we cut the top and bottom one percentile of the pixel intensities. We crop
the images to a size of (4, 224, 224). The provided ground truth labels contain four classes,
which are background, GD-enhancing tumor, the peritumoral edema, and the necrotic and
non-enhancing tumor core. We merge the three different tumor classes into one class and
therefore define the segmentation problem as a pixel-wise binary classification. Our training

5



Wolleb Sandkühler Bieder Valmaggia Cattin

set includes 16,298 images originating from 332 patients, and the test set comprises 1,082
images with non-empty ground truth segmentations, originating from 37 patients. No data
augmentation is applied.
The hyperparameters for our DDPM models are described in the appendix of (Nichol and
Dhariwal, 2021). We choose a linear noise schedule for T = 1000 steps. The model is
trained with the hybrid loss objective, with a learning rate of 10−4 for the Adam optimizer,
and a batch size of 10. The number of channels in the first layer is chosen as 128, and we
use one attention head at resolution 16. We train the model for 60,000 iterations on an
NVIDIA Quadro RTX 6000 GPU, which takes around one day. The training details for the
comparing methods can be found in Appendix B.

4. Results and Discussion

During evaluation, we take an image b from the test set, follow Algorithm 1 and produce
a segmentation mask. This mask is thresholded at 0.5 to obtain a binary segmentation. In
Table 1, the Dice score, the Jaccard index, and the 95 percentile Hausdorff Distance (HD95)
are presented. We achieve good results with respect to all those metrics.
For every image of the test set, we sample 5 different segmentation masks. This implicitly
defines an ensemble by averaging over the 5 masks and thresholding it at 0.5. We report
the results for this ensemble in the second line of Table 1. We see that already an ensemble
of 5 increases the performance of our approach.
In the last column of Table 1, we count the cases where the model produces an empty
segmentation mask. This results in a Dice of zero, and HD95 cannot be computed. If we
disregard those cases, we report the HD95 score, and the average Dice score and Jaccard
index are reported in square brackets in Table 1.
As baseline, we report the segmentation scores for the nnU-Net and SegNet. By default,
nnU-Net is an ensemble of a 5-fold cross validation. We also implement Bayesian SegNet
with Monte Carlo dropout as proposed in (Kendall et al., 2017). By sampling five times
during inference, we can again make an ensemble of the generated segmentation masks.
The scores for this ensemble are reported in the last line of Table 1.
The generation of one sample with our method takes 48 seconds, while the computation of
the segmentation mask with SegNet takes 13 ms. To speed up the sampling process, we
will consider sampling with the DDIM approach in future work.
For visualization of the uncertainty maps, we select three exemplary images b1, b2, and
b3 from the test set. More examples are presented in Appendix C. To generate detailed

Table 1: Segmentation scores of our method and nnU-Net on different metrics.

Method Dice HD95 Jaccard empty
Ours (1 sampling run) 0.866 [0.892] 6.052 0.795 [0.819] 31
Ours (ensemble of 5 runs) 0.881 [0.909] 5.178 0.819 [0.845] 34
nnU-Net (ensemble of 5-fold cross-val.) 0.891 [0.905] 5.004 0.831 [0.845] 17
SegNet (1 run) 0.839 [0.867] 7.190 0.761 [0.786] 34
Bayesian SegNet (ensemble of 5 runs) 0.838 [0.841] 13.707 0.747 [0.749] 3
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Figure 3: Examples of the produced mean and variance maps for 100 sampling runs.

uncertainty maps, we sample 100 segmentation masks for each of the images, and compute
the pixel-wise variance. In Figure 3, we present one channel of the original brain MR
image b, the ground truth segmentation, two different sampled segmentation masks, as well
as the mean and variance map. We can clearly identify the areas where the model was
uncertain. Moreover, by thresholding the mean map at 0.5, we can produce the ensembled
segmentation mask. In Table 2, we report the segmentation scores and for this ensemble
mask, as well as the average scores for the 100 samples. We see that the ensemble can boost
the performance for the examples b1, b2 and b3.

Table 2: Segmentation scores for the 100 samples of the examples presented in Figure 3.

Average Ensemble
Example Dice HD95 Jaccard Dice HD95 Jaccard

b1 0.969 2.360 0.939 0.981 1.000 0.962
b2 0.869 18.503 0.769 0.885 18.468 0.783
b3 0.932 5.227 0.872 0.952 4.474 0.907

In Figure 4, we plot the number of samples in the ensemble against the Dice score for
the three examples b1, b2, and b3. We can see that already an ensemble of five samples
improves the performance, and then the curve flattens. In (Amit et al., 2021), a similar
experiment was performed on a different data set. Independently from each other, we got
the same findings. In Figure 5, we compare our variance maps against the ones of the
Bayesian SegNet with Monte Carlo (MC) dropout for 100 samples, as well as the aleatoric
uncertainty maps for SegNet, computed as proposed in (Kendall and Gal, 2017).
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Figure 4: Performance of the ensemble with respect to the number of samples for the ex-
amples b1, b2, and b3, presented in Figure 3.
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Figure 5: Comparison of the different uncertainty maps for the three examples.

5. Conclusion

We presented a novel approach for biomedical image segmentation based on DDPMs. Using
the stochastic sampling process, our method allows implicit ensembling of different segmen-
tation masks for the same input brain MR image, without having to train a new model.
We could show that ensembling those segmentation masks increases the performance of the
model with respect to different segmentation scores. Moreover, we can generate uncertainty
maps by computing the variance of the different segmentation masks. This is of great in-
terest in clinical applications, when we want to measure the uncertainty of the decision of
the model. For future work, we plan to investigate the segmentation of the different tumor
classes provided by the BRATS2020 challenge. Furthermore, we plan to use the DDIM
scheme to speed up the sampling process.
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Appendix A. Exemplary Image of BRATS2020

Figure 6: Exemplary image of the BRATS2020 dataset, with four different MR sequences
and the ground truth segmentation.

Appendix B. Implementation Details

We provide implementation details of the comparing methods.

• SegNet: We train the SegNet as proposed in (Badrinarayanan et al., 2017), with a
learning rate of 10−4 for the Adam optimizer and a batch size of 20. Training is
performed with the binary cross-entropy loss and is stopped after 100 epochs.

• Bayesian SegNet: We adapt the SegNet architecture, and place the dropout layers
with a dropout probability of p = 0.5 as proposed in (Kendall et al., 2017). The
training schedule is kept the same as for SegNet.

• nnU-Net: We take over all hyperparameter settings as proposed in their official im-
plementation, which can be found at https://github.com/MIC-DKFZ/nnUNet.

• Aleatoric Uncertainty Estimation: We keep the training settings for SegNet. The only
change we need to make to the SegNet architecture is to double the number of out-
put channels, such that we get both a prediction and a variance map. We follow the
aleatoric loss implementation as proposed in (Jungo and Reyes, 2019), which can be
found at https://github.com/alainjungo/reliability-challenges-uncertainty.

Appendix C. Further Examples

In Figure 7, we provide the mean and variance maps of three more exemplary images b4,
b5, and b6 of the test set.
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Diffusion-Based Segmentation
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Figure 7: Additional examples of the produced mean and variance maps for 100 sampling
runs.
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