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Abstract

In this study, we combine the readout-concatenation framework with generative image pri-
ors to achieve simultaneous multislice imaging (SMS) reconstruction. The results show that
generative image priors have better generalization than supervised deep learning methods
such as VarNet, and it can be processed flexibly handle arbitrary slice aliasing patterns
with in-plane acceleration.
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1. Introduction

Simultaneous multislice imaging (SMS) (Barth et al., 2016) has undergone significant evo-
lution, emerging as a technology for accelerating Magnetic Resonance Imaging (MRI). In
addition to conventional reconstruction techniques like SENSE (Pruessmann et al., 1999),
GRAPPA (Griswold et al., 2002), and Compressed Sensing (CS) (Lustig et al., 2007), deep
learning-based methodologies have been noted for SMS image reconstruction. Traditional
reconstruction methods exhibit a vulnerability to noise amplification at high acceleration
factors, whereas certain supervised deep learning approaches lack the requisite generaliz-
ability, rendering them less effective when confronted with diverse datasets, such as VarNet
(Sriram et al., 2020). In recent times, techniques based on image priors (Luo et al., 2023)
have demonstrated commendable robustness; however, their application in the context of
SMS reconstruction remains underutilized in the academic community. To fill this gap, we
combine the readout-concatenation framework (Moeller et al., 2010) with generative image
priors method to achieve SMS reconstruction. This method can flexibly deal with arbitrary
in-plane accelerated slice aliasing mode while maintaining good stability.
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2. Methods

SMS-SPRECO reconstruction. The SMS reconstruction method we used is based on
the speed up MR scanner with generative priors for image reconstruction (SPRECO) (Luo
et al., 2020) and readout-concatenation framework.

As shown in Figure 1, the aliased raw SMS data are concatenated in the readout direction
and subsequently processed to generate data for the extended field of view (FOV). At the
same time, the coil sensitivity map (CSM) is estimated by BART (Blumenthal et al., 2023)
from the pre-scan calibration data. Then, the CSM is employed to perform coil expansion
and coil reduction operations. The expansion operation extends the image to multi-coil
representation, while the data consistency (DC) layer integrates portions of the originally
readout-concatenated k-space into the reconstructed k-space. Following this, the reduction
operation combines the image coils. We utilize a diffusion-denoised probabilistic model
(DDPM) as the prior, and Gaussian noise initialized undergoes T-step reverse diffusion
process with guidance from the DC.

Figure 1: The schematic illustration of SMS-SPRECO reconstruction approach. Diffusion
model is applied and the data consistency term of readout-concatenated k-space
is integrated as the guidance for the generative reverse process.
F: Fourier transform; IF: Inverse fourier transform.

Experiments on acquired data. We gathered a dataset comprising 17 EPI acquisi-
tions at The First Affiliated Hospital of Tsinghua University in Beijing of China. The data
was acquired using GE’s SIGNA Premier 3.0T magnetic resonance imaging system. Among
the specified acquisition parameters, the matrix size was configured at 128x128, with 48
imaging slices, and the number of receiver channels was automatically determined by the
machine, typically comprising 18 channels. Moreover, there exist additional data prepro-
cessing operations for EPI data, including ghost correction, rampling sampling correction.
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Details of the experiments. In our experiment, we employed various methods of
comparison, including the supervised deep-learning method E2E-VarNet, as well as tradi-
tional reconstruction methods such as GRAPPA and L1-PICS.

The SMS-SPRECO we used is one of the generative image priors pretrained by external
T1, T2 and FLAIR data, while E2E-VarNet methods were trained with mixed MB factors
ranging from 2 to 5 randomly in combination with in-plane acceleration of 1, 2, and 4 at
fastmri dataset emulated SMS data, and then fine-tuned using the EPI data.

3. Results

As the reconstructed EPI-SMS images under multiband at 2 and in-plane acceleration fac-
tors at 2 showing in Figure 2, the SMS-SPRECO method exhibits strong generalization and
closely aligns with GRAPPA and L1-PICS. By contrast, Varnet, a supervised deep learning
approach trained on similar data, performs less effectively than our method, which achieves
results comparable to those of the best traditional reconstruction methods under zero-shot
conditions. This demonstrates the strong generalization capability of our approach.

Figure 2: Visual comparison of EPI-SMS reconstruction results for Multiband Factor at 2
and acceleration factors at 2.

4. Discussion and Conclusion

In summary, we apply SPRECO to SMS reconstruction, and the results demonstrate that
the method is robust and applicable to SMS data. Furthermore, with improvements in
coil sensitivity estimation, this approach has the potential to achieve even better results,
highlighting its significant promise.
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