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Abstract— This study introduces a novel application of
Vision-Language Models (VLMs) in the field of human-robot
interaction, specifically in controlling wearable robots with only
a single camera setup. Thanks to the pre-trained knowledge
of VLMs, our approach can estimate the weight of grasped
objects in an industrial setup and accordingly adjust the robot’s
assistance mode. We detail the methodology of the control
framework, including prompts that outline the hand gesture
detection, identification of grasped objects, weight estimation,
training-less datasets, and the response format for the robot
control. This allows the system to adapt to a specific user envi-
ronment without the need for extensive dataset collection, model
training, or fine-tuning. Our method has been demonstrated in
real-world applications with the wearable robot to confirm its
feasibility.

I. INTRODUCTION
In the field of human-robot interaction (HRI), the chal-

lenge of harmonizing human intentions with the assistance
of robots is critical. The pursuit of intuitive interfaces
has prompted the investigation of control mechanisms be-
yond conventional manual inputs. Notably, advancements in
vision-language models (VLMs) present new opportunities
for enhancing interaction between humans and robots. These
models excel in processing complex visual scenes and inter-
preting linguistic commands, facilitating more autonomous
and adaptable robotic tasks [1][2].

Traditional sensor-based control methods, though effec-
tive, often require complex and uncomfortable setups that
are both annoying for the end user and require extensive ex-
perience for correct control and integration. Moreover, these
methods can be restrictive and less adaptable to dynamic,
real-world environments. Straightforward voice control is
usually not feasible in an industrial or noisy setting while
requiring the users to explicitly state what they want, which
introduces further constraints. Our research seeks to address
these limitations by introducing a vision-based control mech-
anism that utilizes the advanced image processing and object
recognition capabilities of VLMs that are paired with their
semantic understanding of these objects.

As shown in Figure 1, traditional methods for detecting
hand gestures such as Google’s Mediapipe model completely
fail in detecting any hand key points when the hand is
occluded by itself (in a 2D image) or by an object or a
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Fig. 1. Comparison of results using Mediapipe-based classification model
and Visual Langauge Model(VLM) for hand poses captured by a first-person
view camera. Even if the fingers are obscured by other parts of the hand
or a tool, VLM can identify the hand pose and infer information about the
object being held.

tool. In contrast, VLMs can detect the correct gesture as
well as what object is being held which enables our system
to estimate object weights and adjust wearable robot states
accordingly. This approach fosters a more natural interaction,
allowing the robot to proactively support the user’s intentions
by providing higher or lower assistance as needed.

A key aspect of our study is a ‘training-less’ system
that facilitates the quick incorporation of new tools and
tasks without extensive retraining or data annotation. This
adaptability is especially valuable in industries with diverse
tools and task requirements [3][4]. This training-less dataset
approach, where entering the name and weight of a new
tool allows the system to immediately incorporate this data
without additional training (unlike traditional models such as
Grounding-Dino, SAM, or standard YOLOv8) or the need
to do Retrieval Augmented Generation (RAG) which is a
method used to retrieve data stored in a vector-database and
gives the autoregressive model memory-like capabilities.

This approach has proven to be effective as it can better
‘understand’ specific situations where traditional methods
fail, in particular hand movement recognition (e.g. grasping),
under occlusions (while holding tools) and in a cluttered
environment (industrial setting). The system can also easily
adapt to any environment without the need for retraining.
Another useful feature of this system is that it can estimate
the approximate weight of objects fairly accurately, which is
an emergent property coming from the VLM’s vast training
set, offering a flexible solution for numerous applications.

In the following sections, we will first describe in detail
the methodology of the algorithms we implemented, and
then demonstrate the results of applying VLM-based object
weight estimation to a real-world system.



Fig. 2. A high-level control framework that adjusts the assistance level of the upper-arm wearable robot based on the weight of the object in the user’s
hand, estimated through prompts sent to a Vision-Language Model (VLM) using images streamed in real-time from a camera attached to the body.

II. METHODOLOGY

In the proposed approach, we intended to use a single
camera to capture images of the user interacting with various
objects, without any dedicated control sensors. These images
were then processed by a VLM, with both GPT-4V(vision)
and LLaVA tested as they are currently the state-of-the-art
proprietary and open-source models. The VLM then tried to
recognize whether the user was grasping an object and, if that
was the case, attempted to identify the object and estimate
its weight based on pre-existing knowledge acquired at the
pre-training phase. Based on the information obtained as the
result of this approach, the wearable robot could dynamically
adapt the level of the support it provided to the user during
manipulation.

To test the effectiveness of this system we used a general
prompt that requested the model to estimate the weight
of the objects being actively grasped by a human hand.
This approach showed promise; after the model thoroughly
described the image, we found that both the object name (or
category) and its approximate weight were quite accurate. To
parse the weight with a consistent unit and constantly identify
the name of the object within a similar category, we devised
a novel prompt. This prompt instructed the VLM to follow a
strict answer guide more rigorously and to focus more on the
steps it should take to provide the answer. It follows multiple
guidelines published by several leading research groups such
as Meta’s open-source guide for LLM prompting, OpenAI’s
Meta-Prompting [5], and several studies by Google Brain
and Deep Mind [6], [7].

The prompting techniques employed here incorporate the

• Chain of Thought approach which supports the use of
logical steps in inference.

• Capitalization which forces the attention mechanism to
give importance to specific parts of the prompt.

• few-shot prompting which provides multiple examples
for the model to detect a pattern.

This combination improved the VLMs’ analytical abilities,
returning the response in a parseable format that includes
three elements:

1) Holding flag: The model returns True or False de-
pending on if there is an object being held or not.

2) Object name: The model returns the name of the
object (or the closest category), which is mostly used
for debugging and constructing a simple dataset.

3) Estimated weight: The model returns the object’s
weight as a number in grams.

The prompt is separated into three main parts as shown in
Figure 2:

• A system prompt that describes the core behavior of the
system and how to use the Chain of Thought to get a
correct solution,

• An inference prompt, which asks the system to identify
the situation and estimate the object’s weight; and
finally,

• A text dataset (training-less) which is a collection of
names and corresponding weights for all objects of
interest.

In the end, all prompts are combined at the inference stage
to represent a single prompt, but initial separation supports
adjusting the behavior or adding items to the dataset during
operation in real-time. An example of the prompt used is
provided in the appendix.

III. DEMONSTRATION

We verified the performance of our developed VLM-based
control system applied to a wearable robot for upper arm
assistance. As depicted in Figure 2, a camera mounted on
the front of the wearable robot-wearing user transmits real-
time images and pre-set prompts to the VLM, which then
estimates the weight of the object held by the user in real-
time.

A typical workflow unfolds as follows: Initially, the user
wearing the wearable robot grasps a tool from a workstation
to undertake a task. The scene of the hand holding a tool
is captured by the chest-mounted camera and is transmitted
in real-time to a wireless remote computer, where the latest
video frame is decoded and tokenized and is then fed to
the Vision-Language Model (VLM) alongside the combined
prompts. Subsequently, the VLM processes this data to
deduce the weight of the tool being handled and returns
this information to the wearable robot, which then adjusts
the assistance levels accordingly. The assistance mode is
sustained throughout the task if there is no change in the



Fig. 3. As a demonstration result of applying a VLM-based controller to a wearable robot, the moment the weight of the object held in hand is estimated,
the robot’s assistance mode begins to change, subsequently altering the shoulder joint torque provided to the user.

inferred weight information. Upon the user returning the tool
to the workstation and the VLM determining the absence of
the tool in the user’s hand, the wearable robot reverts to the
minimal assistance mode.

The actual experiment was conducted in a workspace
simulating various tool-handling work environments, with
the users wearing an assistive robot with a camera while
performing various industrial tasks using a staple gun, pli-
ers, an electric drill, and a hammer. Figure 3 presents
experimental results of comparing labeled images with data
measured during the experiment as tools were switched,
alongside the VLM-estimated object information. Initially,
as the weight of the staple gun is estimated, the wearable
robot’s assistance level increases, leading to a change in
the shoulder joint torque provided to the user. Subsequently,
when handling the pliers, a lower measured weight prompted
an adjustment of the assistance mode. While holding the
electric drill, the increase in measured weight led to a peak
in the shoulder joint torque, and finally, while holding the
hammer, a decrease was observed.
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Fig. 4. Changes in shoulder joint torque of the wearable robot according
to the assistance mode

Figure 4 shows the variations in shoulder joint torque of
the wearable robot, adjusted following the weight informa-
tion estimated by the VLM throughout the demonstration.
The shoulder joint angle is set to 0 when the arm is parallel
to the ground, and the user receives assistance from the

wearable robot for compensating the weight of the tool held
in the hand while lifting and lowering the arm during the
task.

IV. DISCUSSION AND CONCLUSION

Our results showcase substantial benefits of using VLMs
for task and object detection over conventional sensor-based
configurations, notably in terms of simplifying setup pro-
cesses, reducing costs, and enhancing user comfort, while
also offering seamless adaptability to new tasks and envi-
ronments. Nonetheless, we acknowledge certain limitations,
particularly the reliance on the camera’s field of view and
challenges related to low-bandwidth control. The latter issue
may be addressed through the employment of more advanced
models, a subject currently experiencing vigorous research
activity.

This study attempts to make another step towards intuitive
human-robot interaction, highlighting the efficacy of vision-
language models (VLMs) as a novel control mechanism for
robotic systems. Our findings emphasize the critical role
of adaptability and straightforward implementation in the
evolution of assistance robots of the future, suggesting that
the integration of VLMs could significantly augment the
ways these systems understand and interact with their human
counterparts. With faster, more accurate and coherent models
being published daily, the possibilities of using VLMs for
HRI are endless and more promising than ever.
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APPENDIX

A. System Prompt

1 Below i s an image which i n c l u d e s a hand and an
o b j e c t , your t a s k i s t o d e t e r m i n e i f t h e hand
i s h o l d i n g an o b j e c t o r not , and i f so ,
e s t i m a t e t h e mass o f t h i s o b j e c t :

2 F i r s t , you s h o u l d d e t e r m i n e i f t h e t h e r e i s hand i n
t h e image

3 Second , you s h o u l d d e t e r m i n e i f t h a t hand i s
h o l d i n g an o b j e c t

4 Thi rd , i f t h e hand i s i n d e e d h o l d i n g an o b j e c t , you
s h o u l d e s t i m a t e t h e mass o f t h a t o b j e c t

5 Your answer s h o u l d a lways i n c l u d e t h e TRUE i f hand
i s h o l d i n g an o b j e c t , o r FALSE i f n o t h o l d i n g
an o b j e c t

6 Your answer s h o u l d a lways i n c l u d e t h e mass i n grams
, o r ’ 0 ’ i f no o b j e c t can be found

7 Your answer s h o u l d a lways i n c l u d e t h e name or
c a t e g o r y o f t h e o b j e c t b e i n g h e l d .

8 YOU ARE ONLY ALLOWED TO RESPOND IN THE FOLLOWING
FORMAT ’ Hold ing : <TRUE or FALSE>, O b j e c t : <
ob j e c t na me >, Weight : <o b j e c t e s t i m a t e d w e i g h t >
’ , and t h e MAXIMUM o b j e c t e s t i m a t e d w e i g h t i s ’
3000 grams . ’

B. Text Dataset

1 D r i l l , 2000 g
2 Vaccum Cleane r , 1430 g
3 Hacksaw , 323g
4 S c r e w d r i v e r , 220g
5 . . .

C. Few-Shot Examples & Inference Prompt

1 Here a r e m u l t i p l e examples f o r d i f f e r e n t s i t u a t i o n s
:

2 example 1 ( p e r s o n h o l d i n g a cup i n h i s hand ) :
3 User : What i s t h e we i gh t o f t h e o b j e c t i n t h e image

?
4 A s s i s t a n t : Hold ing : TRUE, O b j e c t : cup , Weight : 200

grams
5 example 2 ( p e r s o n i n t h e image b u t h i s hands a r e

n o t v i s i b l e ) :
6 User : What i s t h e we i gh t o f t h e o b j e c t i n t h e image

?
7 A s s i s t a n t : Hold ing : FALSE , O b j e c t : None , Weight : 0

grams
8 example 3 ( p e r s o n h o l d i n g a power t o o l ) :
9 User : What i s t h e we i gh t o f t h e o b j e c t i n t h e image

?
10 A s s i s t a n t : Hold ing : TRUE, O b j e c t : d r i l l , Weight :

1500 grams
11 example 4 ( p e r s o n h o l d i n g a hammer− l i k e o b j e c t ) :
12 User : What i s t h e we i gh t o f t h e o b j e c t i n t h e image

?
13 A s s i s t a n t : Hold ing : TRUE, O b j e c t : hammer , Weight :

2000 grams
14
15 User : What i s t h e we i gh t o f t h e o b j e c t i n t h e image

?
16 A s s i s t a n t : . . .


