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ABSTRACT

The Travelling Salesman Problem (TSP) remains a fundamental challenge in com-
binatorial optimization, inspiring diverse algorithmic strategies. This paper re-
visits the “heatmap + Monte Carlo Tree Search (MCTS)” paradigm that has re-
cently gained traction for learning-based TSP solutions. Within this framework,
heatmaps encode the likelihood of edges forming part of the optimal tour, and
MCTS refines this probabilistic guidance to discover optimal solutions. Contem-
porary approaches have predominantly emphasized the refinement of heatmap
generation through sophisticated learning models, inadvertently sidelining the
critical role of MCTS. Our extensive empirical analysis reveals two pivotal in-
sights: 1) The configuration of MCTS strategies profoundly influences the solu-
tion quality, demanding meticulous tuning to leverage their full potential; 2) Our
findings demonstrate that a rudimentary and parameter-free heatmap, derived from
the intrinsic k-nearest nature of TSP, can rival or even surpass the performance of
complicated heatmaps, with strong generalizability across various scales. Empiri-
cal evaluations across various TSP scales underscore the efficacy of our approach,
achieving competitive results. These observations challenge the prevailing focus
on heatmap sophistication, advocating a reevaluation of the paradigm to harness
both components synergistically.

1 INTRODUCTION

The Travelling Salesman Problem (TSP) stands as a quintessential challenge in combinatorial op-
timization, drawing considerable interest from both theoretical and applied research communities.
As a problem characterized by NP-hardness, the TSP has become a benchmark for evaluating the
efficacy of novel algorithmic strategies in determining optimal or near-optimal solutions efficiently
(Applegate et al., 2009). It has significant practical applications in domains such as logistics, trans-
portation, manufacturing, and telecommunications, where finding efficient routes is crucial for min-
imizing costs and improving efficiency (Helsgaun, 2017; Nagata & Kobayashi, 2013).

Recent advancements in machine learning have inspired a fresh wave of methodologies for tack-
ling the TSP, particularly through the lens of the “heatmap + Monte Carlo Tree Search (MCTS)”
paradigm. This innovative approach, first introduced by Fu et al. (2021), leverages learning mech-
anisms to approximate edge probabilities in forming part of the optimal path (heatmap), while em-
ploying MCTS to intelligently search and refine this probabilistic scaffold. The method successfully
solved TSP instances with 10,000 nodes, inspiring more researchers to contribute to this solving
paradigm (Qiu et al., 2022; Sun & Yang, 2023; Min et al., 2024).

Historically, the focus within this paradigm has predominantly centered on the design and refine-
ment of effective heatmaps, as these serve as the foundational guides for MCTS. Sophisticated
learning-based designs, ranging from supervised learning (Fu et al., 2021) to diffusion models (Sun
& Yang, 2023), are employed to predict these probabilities with high accuracy, thus assuming that
the sophistication of the heatmap directly correlates with solution quality. However, this singular
emphasis may have inadvertently overshadowed the critical contribution of the MCTS phase. The
MCTS stage, tasked with exploring the solution space given the probabilistic cues from the heatmap,
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has the potential to significantly refine or degrade the final solution quality depending on its strategy
configuration (Xia et al., 2024).

In this study, we rigorously examine the underexplored dimension of the MCTS strategy within the
heatmap-guided paradigm, challenging the prevailing narrative that sophisticated heatmaps are the
singular key to superior solutions. We demonstrate that with carefully calibrated MCTS strategies,
the efficacy of the solution can be markedly enhanced, spotlighting the need for a dual focus on both
components of the paradigm. While SoftDist (Xia et al., 2024) also noticed that the competitive
performance can be obtained through a simple parameterization of heatmaps, we move forward
arguing that a parameter-free heatmap deriving from the k-nearest generalizable prior can achieve
better. Our findings not only uncover the potential of such naı̈ve methods, but also provide novel
perspectives to rethink essential factors in methodical designs for TSP.

Overall, our contributions are threefold:

• We elucidate the substantial role of MCTS configurations in optimizing TSP solutions,
encouraging a reevaluation of existing priorities in algorithm design. We demonstrate that
fine-tuning MCTS parameters such as exploration constant and node expansion criteria can
significantly impact solution quality.

• We demonstrate that simplicity in heatmap construction, based on k-nearest statistics and
devoid of parameters and training, does not necessarily equate to inferior results. Further-
more, it exhibits scalability across various sizes, thereby expanding the possibilities for
methodological innovations.

• We present empirical evidence of our approach achieving competitive performance across
large TSP scales.

These insights collectively advocate for a more balanced integration of learning and search, poten-
tially guiding future research endeavors towards more holistic algorithmic frameworks that better
capitalize on the inherent symbiosis of these components.

2 RELATED WORKS

The integration of machine learning techniques with combinatorial optimization has led to signif-
icant advancements in solving large-scale TSPs. We focus on approaches that have demonstrated
capability in addressing TSP instances with tens of thousands of nodes, particularly those employing
the heatmap-guided MCTS paradigm. For additional details on the neural solver for addressing TSP,
please see the Appendix A.

Fu et al. (2021) introduced a pioneering framework combining graph convolutional networks with
attention mechanisms to generate edge probability heatmaps for TSP. This approach guides MCTS
to refine complete tours instead of constructing partial solutions, marking a significant departure
from traditional MCTS methods. The framework’s efficacy in handling large-scale problems has
established it as a foundational approach for subsequent learning-based TSP solvers with heatmap-
guided MCTS.

Building upon this foundation, several methods have emerged, focusing predominantly on enhanc-
ing heatmap generation through sophisticated learning models. Qiu et al. (2022) proposed DIMES,
a differentiable meta-solver employing Graph Neural Networks (GNNs) to parameterize the solu-
tion space. Sun & Yang (2023) introduced DIFUSCO, leveraging diffusion models for heatmap
generation, while Min et al. (2024) developed UTSP, an unsupervised learning approach to address
challenges in data efficiency and reward sparsity. More recently, approaches like SoftDist (Xia et al.,
2024) have begun to explore simpler heatmap construction methods, introducing a temperature coef-
ficient to craft heatmaps based on distance. This shift towards simpler heatmaps suggests a growing
recognition of the potential overemphasis on heatmap sophistication.

While existing methods have primarily focused on refining heatmap generation, our work addresses
a gap in the literature by critically examining the balance between heatmap construction and MCTS
optimization. We analyze the effects of MCTS hyperparameters and propose a k-nearest prior
heatmap, thereby enhancing our understanding of how heatmap-guided MCTS can be optimized
for large-scale TSP solutions
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3 PRELIMINARY

To establish a solid foundation for our analysis, we define the Travelling Salesman Problem (TSP)
and outline the Monte Carlo Tree Search (MCTS) framework as applied to TSP solutions.

3.1 PROBLEM DEFINITION

A TSP instance of size N is formulated as a set of points I = {(xi, yi)}Ni=1 in the Euclidean
plane, where each point represents a city with coordinates (xi, yi) ∈ [0, 1] × [0, 1]. The distance
dij between any two cities i and j is determined by the euclidean distance formula, defined as:
dij =

√
(xi − xj)2 + (yi − yj)2. The goal is to find the shortest possible route that visits each city

exactly once and returns to the origin city. This optimal route is represented by the permutation
π∗ = (π∗

1 , π
∗
2 , . . . , π

∗
N ) of the sequence (1, 2, . . . , N), with the shortest tour length: L(π∗) =∑N−1

i=1 dπ∗
i π

∗
i+1

+ dπ∗
Nπ∗

1
. We can determine the optimality gap of a feasible tour π by

Gap =

(
L(π)

L(π∗)
− 1

)
× 100%. (1)

In the “Heatmap + MCTS” paradigm, a central concept is the heatmap, depicted as an N×N matrix
PN . Each element PN

ij ∈ [0, 1] denotes the probability of edge (i, j) being part of the optimal TSP
solution, providing a probabilistic guide for the search process.

3.2 MONTE CARLO TREE SEARCH FRAMEWORK

The MCTS framework is modeled as a Markov Decision Process (MDP), which is represented by
states, actions and the transition between states. The implementation is built upon the framework
proposed by Fu et al. (2021), integrating learned heatmaps to enhance search efficiency.

In this framework, each state π represents a feasible TSP tour, a permutation of the index of cities.
The initial state is constructed by iteratively selecting edges with a probability proportional to eP

N
ij .

Actions are defined as k-opt moves, which modify the current tour by replacing k edges to create a
new tour. The metric of a state π is defined as the tour length L(π).

Algorithmically, the MCTS for solving TSP consists of four primary steps:

1. Initialization: The weight matrix W is computed from the heatmap matrix PN , with each
element defined as Wij = 100 × PN

ij , representing the probability of selecting edge (i, j). This
approach adheres to the method introduced by Fu et al. (2021). The access matrix Q is initialized
with all elements set to zero (Qij = 0) to track the frequency with which each edge is selected,
while M is initialized to zero to enumerate the total number of actions. Additionally, a candidate set
is constructed for each node, and subsequent edges are exclusively selected from this candidate set.

2. Simulation: A number of actions (candidate k-opt moves) are generated by selecting edges based
on current state. The selection probability of an edge is proportional to its potential, calculated as:

Zij =
Wij

Ωi
+ α

√
ln(M + 1)

Qij + 1
, (2)

where Wij is the edge weight, Ωi =
∑

j ̸=i Wij normalizes for node i, Qij tracks edge usage, and α
controls the exploration-exploitation tradeoff.

3. Selection: During the simulation, if an improving action from the sampling pool is found, it will
be accepted to convert current state π into π′ with ∆L = L(π′)−L(π) < 0. Otherwise, the method
jumps to a random state by initializing another tour based on PN , which becomes the new starting
point for exploration.

4. Back-propagation: After applying an action, the weight matrix W is updated to reflect the
improvement in the tour length:

Wij ←Wij + β

(
exp

(
L(π)− L(π′)

L(π)

)
− 1

)
(3)
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where β is the learning rate. This update process promotes edges leading to better tours. The access
matrix Q is also incremented for edges involved in the action.

Termination: The MCTS process continuously repeats the four steps until a predefined termination
criterion (time limit) is met. The best state found is returned as the final solution.

4 THE IMPORTANCE OF HYPERPARAMETER TUNING

In this section, we highlight the often-overlooked importance of properly configuring MCTS hy-
perparameters, a factor crucial for improving solution quality, while recent studies have primarily
focused on advanced heatmap generation.

4.1 OVERVIEW OF HYPERPARAMETERS

We have identified several key hyperparameters that significantly influence the performance of the
heatmap-guided MCTS approach:

Alpha: Controls the exploration-exploitation balance in MCTS by weighting the exploration term
in Eq. (2). Higher values promote exploration of unvisited nodes, while lower values favor exploita-
tion of known good paths.

Beta: Influences the MCTS Back-propagation process as defined in Eq. (3). Higher values lead to
more aggressive updates, potentially causing rapid shifts in search strategy based on recent results.

Max Depth: Sets the maximum depth for k-opt moves during MCTS simulation. Larger values
allow more complex moves at the cost of increased computation time.

Max Candidate Num: Limits the candidate set size at each node, sparsifying the graph and af-
fecting both algorithm speed and solution quality. Smaller sets accelerate search but may overlook
optimal solutions.

Param H: Determines the number of simulation attempts per move, with a maximum of Param H×
N simulations. Higher values provide more comprehensive exploration at the expense of increased
computation time.

Use Heatmap: A boolean parameter that decides whether candidate set construction is guided by
heatmap probabilities or distances. When enabled, it can enhance search efficiency if heatmaps are
accurate.

Time Limit: Sets the overall search time limit to Time Limit×N seconds. MCTS terminates
and returns a solution upon reaching this limit. The default value is 0.1, as specified in Fu et al.
(2021).

These hyperparameters collectively influence the MCTS process. In our tuning experiments, we
optimize all parameters except Time Limit, which remains fixed unless otherwise specified.

4.2 HYPERPARAMETER SEARCH AND IMPORTANCE ANALYSIS

To determine the impact of different hyperparameters, we conducted a comprehensive hyperpa-
rameter search on the TSP-500, TSP-1000 and TSP-10000 training sets. Datapoints were gener-
ated following Fu et al. (2021). We applied learning-based methods (Att-GCN (Fu et al., 2021),
DIMES (Qiu et al., 2022), DIFUSCO (Sun & Yang, 2023), UTSP (Min et al., 2024), SoftDist (Xia
et al., 2024)), non-learnable Zero baseline, and our proposed GT-Prior method (detailed in Sec-
tion 5.1) to generate heatmaps for grid search. The initial search space (Table 1) was based on
MCTS settings from Att-GCN and UTSP, and algorithm dynamics analysis. Bold configurations
represent default settings from previous works (Fu et al., 2021; Qiu et al., 2022; Sun & Yang, 2023;
Xia et al., 2024). Post grid search, we employed the SHapley Additive exPlanations (SHAP) method
(Lundberg & Lee, 2017; Lundberg et al., 2020) to analyze hyperparameter importance. SHAP is a
game theory-based approach that assigns importance values to features based on their contributions

In this context, the training set refers to the data used for hyperparameter tuning, distinct from the set used
for model training.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

0.25 0.00 0.25 0.50
SHAP value

Beta
H

MD
Alpha

UH
MCN

Low

High

Fe
at

ur
e 

va
lu

e

(a) Att-GCN

0.5 0.0 0.5
SHAP value

Beta
H

Alpha
UH
MD

MCN

Low

High

Fe
at

ur
e 

va
lu

e

(b) UTSP

0.0 0.5
SHAP value

H
Beta
MD

Alpha
UH

MCN

Low

High

Fe
at

ur
e 

va
lu

e

(c) SoftDist

Figure 1: Beeswarm plots of SHAP values for three different heatmaps. MD: Max Depth, MCN:
Max Candidate Num, H: Param H, UH: Use Heatmap. Each dot represents a feature’s SHAP
value for one instance, indicating its impact on the TSP solution length. The x-axis shows SHAP
value magnitude and direction, while the y-axis lists features. Vertical stacking indicates similar
impacts across instances. Wider spreads suggest greater influence and potential nonlinear effects.
Dot color represents the corresponding feature value.

to a model’s output. In our context, SHAP values indicate each hyperparameter’s impact on TSP so-
lution quality. Positive values suggest increased solution length (worse performance), while negative
values indicate reduced length (better performance).

Table 1: The search space. The bolded configura-
tion indicates the default settings.

Hyperparameter Range

Alpha [0,1, 2]
Beta [10, 100, 150]
Max Depth [10, 50, 100, 200]
Max Candidate Num [5, 20, 50,1000]
Param H [2, 5,10]
Use Heatmap [True,False]

Figure 1 presents SHAP value distributions
for hyperparameters across three heatmap
models (Att-GCN, UTSP, and SoftDist) on
TSP-500, with additional plots for different
models and problem sizes in Appendix C.
Max Candidate Num consistently shows a
strong, often positive impact across mod-
els, suggesting that reducing the candidate
set improves both speed and solution quality.
Max Depth generally exhibits positive SHAP
values, indicating that deeper explorations tend
to worsen performance. Alpha and Use Heatmap display mixed effects, revealing non-linear
interactions where their impact varies depending on the heatmap. Beta shows a strong positive
influence in SoftDist, implying that suboptimal update strategies negatively affect its performance.
Param H demonstrates minimal overall influence across the examined heatmaps.

4.3 PERFORMANCE IMPROVEMENT THROUGH HYPERPARAMETER TUNING

Experimental Setup The hyperparameter tuning process involves three different problem scales:
TSP-500, TSP-1000, and TSP-10000. The training set used for tuning consisted of 128 instances
each for TSP-500 and TSP-1000, and 16 instances for TSP-10000. To evaluate the performance of
different hyperparameter settings, we utilized the test set provided by Fu et al. (2021). The MCTS
computations and grid search were performed on an AMD EPYC 9754 128-Core CPU. During grid
search, the Time Limit for MCTS was set to 0.1 for TSP-500 and TSP-1000, 0.01 for TSP-10000.
A detailed discussion of the Time Limit is provided in Section 6.1.

Metrics We evaluated performance using two metrics: Gap defined in Eq. (1), which represents
the relative performance gap in solution length compared to a baseline method (Concorde (Ap-
plegate et al., 2009) for TSP-500, TSP-1000 and LKH-3 (Helsgaun, 2017) for TSP-10000), and
Improvement, which refers to the relative reduction in the gap after hyperparameter tuning.

Baselines We tuned and evaluated heatmaps generated by seven different methods: Zero , Att-
GCN, DIMES, DIFUSCO, UTSP, SoftDist and GT-Prior. To generate heatmaps for the training
set, we utilized the code and model checkpoints provided by the corresponding works, while the

We set the Use Heatmap parameter to False while maintaining other parameters as specified in Table 1
for the Zero heatmap, since Zero heatmap provides no information about the instances.
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Table 2: Performance Improvement after Hyperparameter Tuning.

METHOD MCTS SETTING
TSP-500 TSP-1000 TSP-10000

GAP ↓ IMPROVEMENT ↑ GAP ↓ IMPROVEMENT ↑ GAP ↓ IMPROVEMENT ↑

ZERO
DEFAULT
TUNED

3.60%
0.66% 2.93% 4.70%

1.16% 3.54% 5.45%
3.79% 1.66%

ATT-GCN DEFAULT
TUNED

1.47%
0.69% 0.79% 2.26%

1.09% 1.17% 3.62%
3.02% 0.60%

DIMES DEFAULT
TUNED

1.57%
0.69% 0.89% 2.30%

1.11% 1.19% 3.05%
3.85% -0.79%

UTSP DEFAULT
TUNED

3.14%
0.90% 2.24% 4.20%

1.53% 2.67% — —

SOFTDIST
DEFAULT
TUNED

1.22%
0.44% 0.79% 2.00%

0.80% 1.19% 2.94%
3.29% -0.34%

DIFUSCO DEFAULT
TUNED

0.45%
0.33% 0.12% 1.07%

0.53% 0.54% 2.69%
2.36% 0.32%

GT-PRIOR
DEFAULT
TUNED

1.41%
0.50% 0.91% 2.12%

0.85% 1.27% 3.10%
2.13% 0.97%

heatmaps for the test set were provided by Xia et al. (2024). It’s worth noting that UTSP does not
provide a way to generate heatmaps for TSP-10000. For simplicity, we utilize grid search to tune
the hyperparameters.

Results Table 2 summarizes our hyperparameter tuning experiments, revealing significant im-
provements in solution quality across all methods. Performance gains were particularly pronounced
for heatmaps with modest initial performance, such as UTSP, which improved from a 3.14% gap
to 0.90% (a 2.24% reduction) on TSP-500. Even high-performing methods like DIFUSCO showed
notable improvements: 0.12% on TSP-500 and 0.54% on TSP-1000. Some methods experienced
slight performance drops after tuning, potentially due to differences between tuning and test in-
stances. Detailed post-tuning hyperparameter settings are provided in Appendix F.

The computational effort required for hyperparameter tuning is comparable to the training time of
learning-based methods, both in scale and impact on subsequent performance. Our tuning process,
conducted via grid search, is a one-time investment that incurs no additional computational costs
during inference. The efficiency of this process can be further enhanced through increased paral-
lelization and advanced hyperparameter optimization algorithms such as SMAC3 (Lindauer et al.,
2022). For a detailed discussion on tuning performance, efficiency, and comparative results includ-
ing those from SMAC3, please refer to Appendix G.

These findings highlight the critical importance of hyperparameter tuning in optimizing heatmap-
guided MCTS for TSP solving. Our results suggest that a balanced approach, considering both
heatmap design and MCTS optimization, can yield superior outcomes compared to focusing solely
on heatmap sophistication. Notably, even with simpler heatmap construction methods (Zero and
GT-Prior), one can achieve competitive performance when coupled with carefully tuned MCTS,
rivaling more complex, learning-based approaches. Furthermore, our analysis reveals that the often-
overlooked postprocessing of heatmaps has a non-negligible impact on the final TSP solution quality.
A detailed examination of heatmap postprocessing effects is provided in Appendix B.

5 A PARAMETER-FREE BASELINE BASED ON k-NEAREST PRIOR

In the realm of heatmap-guided MCTS for TSP solving, the construction of effective heatmaps has
predominantly relied on complex learning methods (Fu et al., 2021; Qiu et al., 2022; Sun & Yang,
2023; Min et al., 2024) or parameterized approaches (Xia et al., 2024). These methods, while often
effective, can be computationally intensive during training or testing and may lack generalizabil-
ity across different problem scales. In this section, we introduce a simple yet effective baseline
method that capitalizes on the k-nearest prior commonly observed in optimal TSP solutions (see
Section 5.1). This approach eliminates the need for parameter tuning, showcasing robust perfor-
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mance (see Section 5.2) and strong generalization capabilities across different problem sizes (see
Section 5.3).

5.1 THE k-NEAREST PRIOR IN TSP
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Figure 2: Empirical distribution of k-nearest
neighbor selection in optimal TSP tours

The k-nearest prior in TSP refers to the obser-
vation that in optimal solutions, the next city
visited is frequently among the k nearest neigh-
bors of the current city, where k is typically a
small value. This property has been implicitly
utilized in various TSP solving approaches, in-
cluding the construction of sparse graph inputs
for deep learning architectures (Fu et al., 2021;
Sun & Yang, 2023; Min et al., 2024). How-
ever, the statistical characteristics and optimal
selection of k have been underexplored in the
literature.

To elucidate the k-nearest prior, we conducted a
comprehensive analysis of (near-) optimal solu-
tions for TSP instances of various sizes. Given
a set of TSP instances I, for each instance
I ∈ I and its optimal solution, we calculate
the rank of the nearest neighbors for the next
city: k ∈ {1, 2, ..., N}, and count their occur-
rences nI

k, where nI
k represents the number of selecting the k-nearest cities in an instance’s optimal

solution. We then calculate the distribution:

PI
N (k) =

nI
k

N
, k ∈ {1, 2, ..., N} (4)

and average these distributions across all instances to derive the empirical distribution of the k-
nearest prior:

P̂N (k) =
1

|I|
∑
I∈I

PI
N (k), k ∈ {1, 2, ..., N}. (5)

To visualize the empirical distribution P̂N (·), we first generate instances by uniformly sampling
cities from the unit square. Then we examined 3000 optimal solutions for TSP-500 and TSP-1000
using the Concorde solver, as well as 128 near-optimal solutions for TSP-10000 employing LKH3.
As shown in Figure 2, the probability of selecting the next city from the top 5 nearest neighbors ex-
ceeds 94%, increasing to over 99% for the top 10, and surpassing 99.9% for the top 15. Importantly,
this distribution pattern remains consistent across different TSP sizes, suggesting a universal rule
applicable to various scales.

Leveraging insights from the optimal solution, we construct the heatmap by assigning probabilities
to edges based on the empirical distribution of the k-nearest prior P̂N (·). For each city i in a TSP
instance of size N , we assign probabilities to edges (i, j) as follows:

PN
ij = P̂N (kij), kij ∈ {1, 2, ..., N} (6)

where kij is the rank of city j among i’s neighbors in terms of proximity (see the detailed statistical
results in Appendix H). Importantly, this heatmap is parameter-free and scale-independent, thus
requiring no tuning or learning phase.

5.2 PERFORMANCE DEMONSTRATION

Experimental Setup We conducted hyperparameter tuning for our proposed parameter-free
heatmap, named GT-Prior, using the same setup and metrics as described in Section 4.3.

7
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Table 3: Results on large-scale TSP problems. Abbreviations: RL (Reinforcement learning), SL
(Supervised learning), UL (Unsupervised learning), AS (Active search), G (Greedy decoding), S
(Sampling decoding), and BS (Beam-search). ∗ indicates the baseline for performance gap calcula-
tion. † indicates methods utilizing heatmaps provided by Xia et al. (2024), with MCTS executed on
our setup. Some methods list two terms for Time, corresponding to heatmap generation and MCTS
runtimes, respectively. Baseline results (excluding those methods with MCTS) are sourced from Fu
et al. (2021); Qiu et al. (2022).

METHOD TYPE
TSP-500 TSP-1000 TSP-10000

LENGTH ↓ GAP ↓ TIME ↓ LENGTH ↓ GAP ↓ TIME ↓ LENGTH ↓ GAP ↓ TIME ↓
CONCORDE OR(EXACT) 16.55∗ — 37.66M 23.12∗ — 6.65H N/A N/A N/A
GUROBI OR(EXACT) 16.55 0.00% 45.63H N/A N/A N/A N/A N/A N/A
LKH-3 (DEFAULT) OR 16.55 0.00% 46.28M 23.12 0.00% 2.57H 71.78∗ — 8.8H
LKH-3 (LESS TRAILS) OR 16.55 0.00% 3.03M 23.12 0.00% 7.73M 71.79 — 51.27M
NEAREST INSERTION OR 20.62 24.59% 0S 28.96 25.26% 0S 90.51 26.11% 6S
RANDOM INSERTION OR 18.57 12.21% 0S 26.12 12.98% 0S 81.85 14.04% 4S
FARTHEST INSERTION OR 18.30 10.57% 0S 25.72 11.25% 0S 80.59 12.29% 6S

EAN RL+S 28.63 73.03% 20.18M 50.30 117.59% 37.07M N/A N/A N/A
EAN RL+S+2-OPT 23.75 43.57% 57.76M 47.73 106.46% 5.39H N/A N/A N/A
AM RL+S 22.64 36.84% 15.64M 42.80 85.15% 63.97M 431.58 501.27% 12.63M
AM RL+G 20.02 20.99% 1.51M 31.15 34.75% 3.18M 141.68 97.39% 5.99M
AM RL+BS 19.53 18.03% 21.99M 29.90 29.23% 1.64H 129.40 80.28% 1.81H
GCN SL+G 29.72 79.61% 6.67M 48.62 110.29% 28.52M N/A N/A N/A
GCN SL+BS 30.37 83.55% 38.02M 51.26 121.73% 51.67M N/A N/A N/A
POMO+EAS-EMB RL+AS 19.24 16.25% 12.80H N/A N/A N/A N/A N/A N/A
POMO+EAS-LAY RL+AS 19.35 16.92% 16.19H N/A N/A N/A N/A N/A N/A
POMO+EAS-TAB RL+AS 24.54 48.22% 11.61H 49.56 114.36% 63.45H N/A N/A N/A

ZERO MCTS 16.66 0.66% 0.00M+
1.67M

23.39 1.16% 0.00M+
3.34M

74.50 3.79% 0.00M+
16.78M

ATT-GCN† SL+MCTS 16.66 0.69% 0.52M+
1.67M

23.37 1.09% 0.73M+
3.34M

73.95 3.02% 4.16M+
16.77M

DIMES† RL+MCTS 16.66 0.43% 0.97M+
1.67M

23.37 1.11% 2.08M+
3.34M

73.97 3.05% 4.65M+
16.77M

UTSP† UL+MCTS 16.69 0.90% 1.37M+
1.67M

23.47 1.53% 3.35M+
3.34M

— — —

SOFTDIST† SOFTDIST+MCTS 16.62 0.43% 0.00M+
1.67M

23.30 0.80% 0.00M+
3.34M

73.89 2.94% 0.00M+
16.78M

DIFUSCO† SL+MCTS 16.60 0.33% 3.61M+
1.67M

23.24 0.53% 11.86M+
3.34M

73.47 2.36% 28.51M+
16.87M

GT-PRIOR PRIOR+MCTS 16.63 0.50% 0.00M+
1.67M

23.31 0.85% 0.00M+
3.34M

73.31 2.13% 0.00M+
16.78M

Baselines We evaluated several baseline methods in addition to those listed in Section 4.3. These
include exact solvers such as Concorde (Applegate et al., 2009) and Gurobi (Gurobi Optimiza-
tion, LLC, 2024) (using mixed-integer linear programming formulation), the heuristic solver LKH-
3 (Helsgaun, 2017), and four end-to-end learning-based methods: EAN (d O Costa et al., 2020),
AM (Kool et al., 2019), GCN (Joshi et al., 2019), and POMO+EAS (Hottung et al., 2021).

Results As detailed in Table 3, our simple heatmap construction method, combined with well-
tuned MCTS, demonstrates competitive and often superior performance compared to more complex,
learning-based approaches. The GT-Prior method exhibits remarkable consistency across different
problem scales. For TSP-500, TSP-1000, and TSP-10000 instances, it consistently achieves so-
lutions within 0.5%, 0.85%, and 2.13% of the best known solutions, respectively. Moreover, the
GT-Prior method demonstrates a significant computational advantage. For instance, in TSP-10000
instances, our method achieved solutions within 2.13% of the best known, while reducing computa-
tional time by over 60% compared to the leading deep learning method DIFUSCO. This efficiency
is partially due to our method not requiring heatmap generation, similar to the Zero and SoftDist
baselines. This efficiency gain becomes increasingly important as problem sizes scale up, making
our approach particularly suitable for large-scale TSP instances.

Interestingly, the Zero baseline, utilizing a heatmap filled entirely with zeros, provides further in-
sights. Despite its apparent lack of guidance, it achieves surprisingly competitive results through
careful hyperparameter tuning, particularly for TSP-500 and TSP-1000 instances. The most impact-
ful hyperparameter for the Zero baseline is Use Heatmap, with its optimal value being False,
directing MCTS to construct candidate sets based on distance information rather than the uninforma-
tive heatmap. The strong performance of this baseline underscores the power of well-tuned search
strategies, even without informative priors.

These results challenge the notion that sophisticated heatmap generation is necessary for effective
TSP solving (Sun & Yang, 2023), aligning with the observation in SoftDist (Xia et al., 2024). It
suggests that a judicious combination of a simple, statistically-informed heatmap with optimized
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Table 4: Generalization performance of different methods trained on TSP500 across varying TSP
sizes (TSP-500, TSP-1000, TSP-10000). “Res Type” refers to the result type: “Ori.” indicates the
performance on the same scales during the test phase, while “Gen.” represents the model’s general-
ized performance on different scales.

METHOD RES TYPE
TSP-500 TSP-1000 TSP-10000

GAP ↓ DEGENERATION ↓ GAP ↓ DEGENERATION ↓ GAP ↓ DEGENERATION ↓

DIMES ORI.
GEN.

0.43%
0.43% 0.00% 1.11%

1.19% 0.08% 3.05%
4.29% 1.24%

UTSP ORI.
GEN.

0.90%
0.90% 0.00% 1.53%

1.44% -0.09% — —

DIFUSCO ORI.
GEN.

0.33%
0.33% 0.00% 0.53%

0.86% 0.33% 2.36%
5.27% 2.91%

SOFTDIST
ORI.
GEN.

0.43%
0.43% 0.00% 0.80%

0.97% 0.17% 2.94%
3.90% 0.96%

GT-PRIOR
ORI.
GEN.

0.50%
0.50% 0.00% 0.85%

0.88% 0.03% 2.13%
2.13% -0.01%

search strategies can yield highly competitive results, potentially shifting the focus in future research
towards more balanced algorithm designs.

5.3 GENERALIZATION ABILITY

We evaluated the generalization ability of our parameter-free baseline, GT-Prior, against other meth-
ods across various TSP sizes. The MCTS of each method employs the corresponding Tuned setting
as described in Section 4.3. Table 4 presents the generalization performance of models trained on
TSP-500. GT-Prior demonstrates superior generalization performance across all problem scales.
For TSP-1000, GT-Prior exhibits minimal performance degradation (0.01%) relative to other meth-
ods. Remarkably, for TSP-10000, GT-Prior maintains consistent performance with a slight improve-
ment (-0.01% degradation), surpassing all other approaches. Conversely, DIMES, DIFUSCO, and
SoftDist exhibit increasing performance degradation as problem size increases, with DIFUSCO ex-
periencing the most substantial decline (2.91%) for TSP-10000. These results highlight the robust
generalization capability of GT-Prior, especially for larger problem instances. The generalization re-
sults of models trained on TSP-1000 and TSP-10000 are left in Appendix D, and additional results
on TSPLIB instances are listed in Appendix E.

6 ABLATION STUDY

To better understand the efficacy of hyperparameter tuning in MCTS for solving TSP, we conducted
an ablation study focusing on two critical aspects: the relationship between search time and solution
quality, and the sample efficiency of our tuning process. These experiments provide valuable insights
into our algorithm’s performance characteristics and highlight areas for potential optimization.

6.1 IMPACT OF TUNING STAGE TIME LIMIT ON SOLVER PERFORMANCE

The relationship between Time Limit and hyperparameter quality is crucial in MCTS hyperpa-
rameter tuning. While longer search times might intuitively yield better results, they also lead to
significantly increased tuning time. We conducted an ablation study to investigate this trade-off and
seek a balance between performance and efficiency.

Experimental Setup We examined the impact of search time on solver performance for TSP-500
and TSP-1000 instances, varying the tuning stage Time Limit from 0.1 to 0.05 and 0.01.

Figure 3 shows the performance of different methods with varying inference times, each with three
hyperparameter sets tuned using different Time Limit values. Surprisingly, the relative perfor-
mance remains largely consistent across search durations, suggesting that hyperparameter effective-
ness can be accurately assessed within a limited time frame.

9
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Figure 3: Impact of search time on solver performance across different hyperparameter configura-
tions

For TSP-500, most heatmaps exhibit similar performance across all tuning stage Time Limit
values, with Zero and GT-Prior methods showing nearly identical performance curves. The best
learning-based method, DIFUSCO, displays a small performance gap at the default 50-second in-
ference time limit. However, this gap widens with longer inference times, suggesting that opti-
mal MCTS settings for high-quality heatmaps may vary with different Time Limit values during
tuning phase. Efficiently tuning hyperparameters for such high-quality heatmaps remains a future
research direction. Notably, TSP-1000 results show even smaller performance gaps between dif-
ferent tuning stage Time Limit values, indicating that shorter tuning times can yield satisfactory
hyperparameter settings for larger problem instances.

The consistency of relative performance across search times has significant implications for efficient
hyperparameter tuning in large-scale TSP solving. This insight enables the development of acceler-
ated evaluation procedures that can identify promising hyperparameter settings without exhaustive,
long-duration searches.

6.2 SAMPLE EFFICIENCY

Experiments were conducted to evaluate the sample efficiency of the hyperparameter tuning pro-
cedure for our proposed k-nearest prior heatmap. By varying the number of TSP instances in the
training set and measuring the resulting solution quality of the tuned hyperparameter setting, insights
were gained into the computational efficiency of our method. With only 64 samples for hyperparam-
eter tuning, our proposed GT-prior achieved a gap of 0.493% on TSP-500 and 0.866% on TSP-1000,
rivaling the performance of hyperparameter tuning with 256 samples, which achieved 0.493% on
TSP-500 and 0.858% on TSP-1000. These results demonstrate the high sample efficiency of our
approach, enabling effective tuning with minimal computational resources.

7 CONCLUSIONS AND LIMITATIONS

This study revisited the “Heatmap + MCTS” paradigm for large-scale TSP, highlighting the under-
estimated importance of MCTS hyperparameter tuning. We demonstrated that careful tuning, es-
pecially of parameters like Max Candidate Num, can drastically improve solution quality, even
with simple or non-informative heatmaps. To this end, we introduced a parameter-free k-nearest
prior heatmap, which achieves competitive performance against complex learning-based methods
across various TSP sizes. This simple yet effective approach challenges the prevailing focus on
sophisticated models, showing that leveraging basic statistical prior of TSP can often be sufficient,
particularly when scaling to large instances. Future work should explore more adaptive search strate-
gies within MCTS or improve tuning efficiency through advanced optimization techniques.

Overall, this study contributes a nuanced understanding that could pivot future research towards
more balanced and efficacious integration of learning and search in TSP algorithms.
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A ADDITIONAL RELATED WORKS

Approaches using machine learning to address the Travelling Salesman Problem (TSP) generally fall
into two distinct groups based on how they generate solutions. The first group, known as construc-
tion methods, incrementally forms a path by sequentially adding cities to an unfinished route, fol-
lowing an autoregressive process until the entire path is completed. The second group, improvement
methods, starts with a complete route and continually applies local search operations to improve the
solution.

Construction Methods Since Vinyals et al. (2015); Bello et al. (2016) introduced the autoregres-
sive combinatorial optimization neural solver, numerous advancements have emerged in subsequent
years (Deudon et al., 2018; Kool et al., 2019; Peng et al., 2020; Kwon et al., 2021; 2020). These
include enhanced network architectures (Kool et al., 2019), more sophisticated deep reinforcement
learning techniques (Khalil et al., 2017; Ma et al., 2019; Choo et al., 2022), and improved training
methods (Kim et al., 2022; Bi et al., 2022). For large-scale TSP, Pan et al. (2023) adopts a hierarchi-
cal divide-and-conquer approach, breaking down the complex TSP into more manageable open-loop
TSP sub-problems.

Improvement Methods In contrast to construction methods, improvement-based solvers leverage
neural networks to progressively refine an existing feasible solution, continuing the process until the
computational limit is reached. These improvement methods are often influenced by traditional local
search techniques like k-opt, and have been shown to deliver impressive results in various previous
studies (Chen & Tian, 2019; Wu et al., 2021; Kim et al., 2021; Hudson et al., 2021). Ye et al. (2024)
implements a divide-and-conquer approach, using search-based methods to enhance the solutions of
smaller subproblems generated from the larger instances.

Recent breakthroughs in solving large-scale TSP problems (Fu et al., 2021; Qiu et al., 2022; Sun &
Yang, 2023; Min et al., 2024; Xia et al., 2024), have incorporated Monte Carlo tree search (MCTS)
as an effective post-processing technique. These heatmaps serve as priors for guiding the MCTS,
resulting in impressive performance in large-scale TSP solutions, achieving state-of-the-art results.

Other Directions In addition to exploring solution methods for combinatorial optimization prob-
lems, some studies investigate intrinsic challenges encountered during the learning phase. These
include generalization issues during inference (Wang et al., 2021; Zhou et al., 2023; Wang et al.,
2024) and multi-task learning (Wang & Yu, 2023; Liu et al., 2024; Zhou et al., 2024) aimed at
developing foundational models.

B IMPACT OF HEURISTIC POSTPROCESSING

In our experimental reproduction of various learning-based heatmap generation methods for the
Travelling Salesman Problem (TSP), we identified a critical yet often overlooked factor affecting
performance: the post-processing of model-generated heatmaps. This section details the post-
processing strategies employed by different methods and evaluates their impact on performance
metrics.

B.1 POSTPROCESSING STRATEGIES

DIMES DIMES generates an initial sparse heatmap matrix of dimension n × n from a k-nearest
neighbors (k-NN) subgraph of the original TSP instance (k = 50). The post-processing involves
two steps:

1. Sparsification: Retaining only the top-5 values for each row, setting all others to a significantly
negative number.

2. Adaptive softmax: Iteratively applying a temperature-scaled softmax function with gradual
temperature reduction until the minimum non-zero probability exceeds a predefined threshold.

DIFUSCO DIFUSCO also generates a sparse heatmap based on the k-NN subgraph (k = 50 for
TSP-500, k = 100 for larger scales). The post-processing differs based on problem scale:
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Table 5: Performance Degeneration for Different Methods with and without Postprocessing on TSP-
500, TSP-1000, and TSP-10000. ‘W’ indicates with postprocessing, while ‘W/O’ indicates without
postprocessing.

METHOD POSTPROCESSING
TSP-500 TSP-1000 TSP-10000

GAP ↓ DEGENERATIONS ↓ GAP ↓ DEGENERATIONS ↓ GAP ↓ DEGENERATIONS ↓

DIMES W/O
W

2.50%
1.57% 0.93% 9.07%

2.30% 6.77% 15.87%
3.05% 12.81%

UTSP W/O
W

4.50%
3.14% 1.36% 6.30%

4.20% 2.10% — —

DIFUSCO W/O
W

2.33%
0.45% 1.88% 0.66%

1.07% -0.40% 45.20%
2.69% 42.52%

1. For TSP-500 and TSP-1000: A single step integrating Euclidean distances, thresholding, and
symmetrization.

2. For TSP-10000: Two steps are applied sequentially: a) Additional supervision using a greedy
decoding strategy followed by 2-opt heuristics. b) The same process as used for smaller instances.

UTSP UTSP’s post-processing is straightforward, involving sparsification of the dense heatmap
matrix by preserving only the top 20 values per row.

B.2 EXPERIMENTAL RESULTS

We conducted experiments on the test set for heatmaps generated by these three methods, both with
and without post-processing, using the default MCTS setting. Results are presented in Table 5.

Our findings reveal that heatmaps generated without post-processing generally exhibit performance
degradation, particularly for TSP-10000, where the gap increases by orders of magnitude. This
underscores the importance of sparsification for large-scale instances and highlights the tendency of
existing methodologies to overstate their efficacy in training complex deep learning models.

Interestingly, DIFUSCO’s heatmap without post-processing outperforms its post-processed coun-
terpart for TSP-1000, suggesting that the DIFUSCO model, when well-trained on this scale, can
generate helpful heatmap matrices to guide MCTS without additional refinement.

These results emphasize the critical role of post-processing in enhancing the performance of
learning-based heatmap generation methods for TSP, particularly as problem scales increase. They
also highlight the need for careful evaluation of model outputs and the potential for over-reliance on
post-processing to mask limitations in model training and generalization.

The substantial performance gap between heatmaps with and without post-processing raises ques-
tions about the extent to which the reported performance gains can be attributed solely to the learning
modules of these methods. While the learning components undoubtedly contribute to the overall ef-
fectiveness, the significant impact of post-processing suggests that the raw output of the learning
models may not be as refined or directly applicable as previously thought.

In light of these findings, we recommend that future research on heatmap-based methods for TSP
provide a detailed description of their post-processing operations. Additionally, we suggest reporting
results both with and without post-processing to offer a more comprehensive understanding of the
method’s performance and the relative contributions of its learning and post-processing components.
This approach would foster greater transparency in the field and facilitate more accurate comparisons
between different methodologies.

C ADDITIONAL HYPERPARAMETER IMPORTANCE ANALYSIS

The SHAP method was employed to provide more insights into hyperparameter importance for
all conducted grid search experiments. Most of the beeswarm plots for TSP-500, TSP-1000, and
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TSP-10000 are presented in Figures 4. The beeswarm plots for the Zero heatmap are presented in
Figure 5, as only the case where Use Heatmap is set to False is considered for the Zero heatmap.

The patterns of TSP-1000 are similar to those of TSP-500, as discussed in Section 4.2. However,
the patterns for TSP-10000 show a major difference, where the influence of Max Candidate Num
and Use Heatmap becomes dominant. Furthermore, their SHAP values are clearly clustered rather
than continuous, as observed in smaller scales. This could be explained by the candidate set of
large-scale TSP instances having a major impact on the running time of MCTS k-opt search. Ad-
ditionally, the time limit setting causes the performance of different hyperparameter settings for
Max Candidate Num and Use Heatmap to become more distinct.

D ADDITIONAL GENERALIZATION ABILITY RESULTS

Tables 6 presents additional results on the generalization ability of various methods when trained on
TSP-1000 and TSP-10000, respectively.

For models trained on TSP-1000, GT-Prior continues to demonstrate superior generalization ca-
pability. When generalizing to smaller instances (TSP-500), GT-Prior shows minimal performance
degradation (0.02%), comparable to DIMES and better than UTSP and SoftDist. For larger instances
(TSP-10000), GT-Prior maintains consistent performance with a slight improvement (-0.02% degra-
dation), outperforming all other methods. DIFUSCO, while showing good performance on TSP-500
and TSP-1000, experiences significant degradation (2.91%) when scaling to TSP-10000.

The results for models trained on TSP-10000 further highlight GT-Prior’s robust generalization abil-
ity. When applied to smaller problem sizes (TSP-500 and TSP-1000), GT-Prior exhibits minimal
performance degradation (0.01% and 0.02%, respectively). In contrast, other methods show more
substantial degradation, particularly for TSP-1000. Notably, SoftDist experiences severe perfor-
mance deterioration (73.36%) when generalizing to TSP-1000, while DIFUSCO shows significant
degradation for both TSP-500 (0.63%) and TSP-1000 (2.74%).

These results consistently demonstrate GT-Prior’s exceptional ability to generalize across various
problem scales, maintaining stable performance regardless of whether it is scaling up or down from
the training instance size. This stability is particularly evident when compared to the other meth-
ods, which often struggle with significant performance degradation when generalizing to different
problem sizes.

E ADDITIONAL RESULTS ON TSPLIB

We categorize all Euclidean 2D TSP instances into three groups based on the number of nodes:
Small (0-500 nodes), Medium (500-2000 nodes), and Large (more than 2000 nodes). For each
category, we evaluate all baseline methods alongside our proposed GT-Prior.

We conducted MCTS evaluations under two distinct parameter settings: (1) Tuned Settings, opti-
mized using uniform TSP instances as listed in Table 14, whose results are shown in Table 7, 8, 9,
and (2) the Default Settings, as originally employed by Fu et al. (2021), whose results are shown
in Table 10, 11, 12. The results in these tables showcase the performance of the methods in terms
of solution length and optimality gap, highlighting the effectiveness of the proposed GT-Prior ap-
proach.

Several key insights emerge from these experimental results. First, we observe a strong interac-
tion between instance distribution and parameter tuning effectiveness. While methods like UTSP
and DIMES excel on small uniform instances, their performance exhibits high sensitivity to pa-
rameter settings when faced with real-world TSPLIB instances, particularly at larger scales (e.g.,
UTSP degrading from 26.51% to 1481.66% on large instances). This finding reveals a fundamental
generalization challenge shared by most learning-based methods - the optimal parameters learned
from one distribution may not transfer effectively to another, highlighting the critical importance of
robust parameter tuning strategies. To illustrate this distribution sensitivity, we visualize representa-
tive hard and easy instances from each group in Figures 6, demonstrating that hard instances deviate
significantly from uniform distribution while easy instances closely resemble it.
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Figure 4: Beeswarm plots of SHAP values for Att-GCN, DIMES, SoftDist, DIFUSCO and GT-Prior.
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(c) TSP-10000

Figure 5: Beeswarm plots of SHAP values for Zero Heatmap.

Table 6: Generalization on the model trained on TSP1000 (the upper table) and TSP10000 (the
lower table).

METHOD RES TYPE
TSP-500 TSP-1000 TSP-10000

GAP ↓ DEGENERATION ↓ GAP ↓ DEGENERATION ↓ GAP ↓ DEGENERATION ↓

DIMES ORI.
GEN.

0.69%
0.71% 0.02% 1.11%

1.11% 0.00% 3.05%
4.06% 1.01%

UTSP ORI.
GEN.

0.90%
0.96% 0.06% 1.53%

1.53% 0.00% — —

DIFUSCO ORI.
GEN.

0.33%
0.26% -0.07% 0.53%

0.53% 0.00% 2.36%
5.27% 2.91%

SOFTDIST
ORI.
GEN.

0.43%
0.51% 0.08% 0.80%

0.80% 0.00% 2.94%
3.68% 0.74%

GT-PRIOR
ORI.
GEN.

0.50%
0.52% 0.02% 0.85%

0.85% 0.00% 2.13%
2.11% -0.02%

METHOD RES TYPE
TSP-500 TSP-1000 TSP-10000

GAP ↓ DEGENERATION ↓ GAP ↓ DEGENERATION ↓ GAP ↓ DEGENERATION ↓

DIMES ORI.
GEN.

0.69%
0.75% 0.06% 1.11%

1.18% 0.07% 3.05%
3.05% 0.00%

DIFUSCO ORI.
GEN.

0.33%
0.95% 0.63% 0.53%

3.34% 2.81% 2.36%
2.36% 0.00%

SOFTDIST
ORI.
GEN.

0.43%
0.65% 0.22% 0.80%

74.24% 73.44% 2.94%
2.94% 0.00%

GT-PRIOR
ORI.
GEN.

0.50%
0.51% 0.01% 0.85%

0.89% 0.04% 2.13%
2.13% 0.00%

This generalization issue is particularly noteworthy as it affects all methods except the Zero heatmap,
which maintains relatively stable performance across different instance sizes and parameter settings.
The Zero heatmap’s consistency (varying only from 5.54% to 6.51% on large instances) provides
compelling evidence for our thesis that the MCTS component’s contribution to solution quality has
been historically undervalued in the framework. Furthermore, this stability suggests that proper
MCTS parameter tuning might be more crucial for achieving robust performance than developing
increasingly sophisticated heatmap generation methods.

From a practical perspective, our analysis also reveals an important computational consideration.
The learning-based baselines necessitate GPU resources for both training and inference stages, po-
tentially creating a bottleneck when dealing with real-world data. In contrast, methods that reduce
reliance on complex learned components might offer more practical utility in resource-constrained
settings while maintaining competitive performance through careful parameter optimization.

These findings collectively suggest that future research in this domain might benefit from a more
balanced focus between heatmap sophistication and MCTS optimization, particularly when consid-
ering real-world applications where robustness and computational efficiency are paramount.
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Table 7: Results on small TSPLIB instances (with 0-500 nodes). The hyperparameter settings are
tuned on uniform TSP instances as listed in Table 14.

Instance Optimal Zero Att-GCN DIMES UTSP SoftDist DIFUSCO GT-Prior
Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓

st70 675 676 0.15% 676 0.15% 676 0.15% 676 0.15% 724 7.26% 676 0.15% 676 0.15%
eil76 538 538 0.00% 538 0.00% 538 0.00% 538 0.00% 538 0.00% 538 0.00% 538 0.00%
kroA200 29368 29368 0.00% 29383 0.05% 29368 0.00% 29382 0.05% 29383 0.05% 29380 0.04% 29368 0.00%
eil51 426 427 0.23% 427 0.23% 427 0.23% 427 0.23% 427 0.23% 427 0.23% 427 0.23%
rat195 2323 2328 0.22% 2328 0.22% 2323 0.00% 2328 0.22% 2328 0.22% 2328 0.22% 2328 0.22%
pr144 58537 59932 2.38% 63736 8.88% 59553 1.74% 59211 1.15% 66950 14.37% 63389 8.29% 65486 11.87%
bier127 118282 118282 0.00% 118282 0.00% 118282 0.00% 118282 0.00% 118282 0.00% 118282 0.00% 118282 0.00%
lin105 14379 14379 0.00% 14379 0.00% 14379 0.00% 14379 0.00% 15081 4.88% 14379 0.00% 14379 0.00%
kroD100 21294 21294 0.00% 21294 0.00% 21294 0.00% 21294 0.00% 21294 0.00% 21294 0.00% 21294 0.00%
kroA100 21282 21282 0.00% 21282 0.00% 21282 0.00% 21282 0.00% 21282 0.00% 21282 0.00% 21282 0.00%
pr152 73682 74089 0.55% 73682 0.00% 73682 0.00% 73818 0.18% 74443 1.03% 74609 1.26% 74274 0.80%
ts225 126643 126643 0.00% 126643 0.00% 126643 0.00% 126643 0.00% 126643 0.00% 126643 0.00% 126643 0.00%
rd400 15281 15314 0.22% 15333 0.34% 15323 0.27% 15408 0.83% 15352 0.46% 15320 0.26% 15303 0.14%
kroB100 22141 22141 0.00% 22141 0.00% 22141 0.00% 22141 0.00% 22141 0.00% 22141 0.00% 22141 0.00%
d198 15780 15817 0.23% 16344 3.57% 15844 0.41% 15804 0.15% 15816 0.23% 16237 2.90% 15817 0.23%
eil101 629 629 0.00% 629 0.00% 629 0.00% 629 0.00% 629 0.00% 629 0.00% 629 0.00%
linhp318 41345 42558 2.93% 42523 2.85% 42763 3.43% 42420 2.60% 42283 2.27% 42223 2.12% 42387 2.52%
gil262 2378 2380 0.08% 2382 0.17% 2380 0.08% 2380 0.08% 2379 0.04% 2380 0.08% 2380 0.08%
rat99 1211 1211 0.00% 1211 0.00% 1211 0.00% 1211 0.00% 1211 0.00% 1211 0.00% 1211 0.00%
berlin52 7542 7542 0.00% 7542 0.00% 7542 0.00% 7542 0.00% 7542 0.00% 7542 0.00% 7542 0.00%
kroC100 20749 20749 0.00% 20749 0.00% 20749 0.00% 20749 0.00% 20749 0.00% 20749 0.00% 20749 0.00%
pr226 80369 87311 8.64% 83828 4.30% 83828 4.30% 81058 0.86% 80850 0.60% 80463 0.12% 85793 6.75%
fl417 11861 12852 8.36% 11945 0.71% 12169 2.60% 12800 7.92% 13198 11.27% 12158 2.50% 12437 4.86%
kroE100 22068 22068 0.00% 22068 0.00% 22068 0.00% 22068 0.00% 22068 0.00% 22068 0.00% 22068 0.00%
pr76 108159 108159 0.00% 108159 0.00% 108159 0.00% 108159 0.00% 109325 1.08% 108159 0.00% 108159 0.00%
ch130 6110 6111 0.02% 6111 0.02% 6111 0.02% 6111 0.02% 6242 2.16% 6111 0.02% 6111 0.02%
tsp225 3916 3932 0.41% 3916 0.00% 3919 0.08% 3923 0.18% 3916 0.00% 3916 0.00% 3923 0.18%
rd100 7910 7910 0.00% 7910 0.00% 7910 0.00% 7910 0.00% 7938 0.35% 7910 0.00% 7910 0.00%
pr264 49135 51267 4.34% 50451 2.68% 49949 1.66% 49635 1.02% 49374 0.49% 50389 2.55% 49508 0.76%
pr124 59030 59168 0.23% 59210 0.30% 59551 0.88% 59210 0.30% 59257 0.38% 59688 1.11% 59030 0.00%
kroA150 26524 26525 0.00% 26525 0.00% 26525 0.00% 26525 0.00% 26525 0.00% 26525 0.00% 26525 0.00%
kroB200 29437 29437 0.00% 29438 0.00% 29437 0.00% 29446 0.03% 29437 0.00% 29437 0.00% 29437 0.00%
kroB150 26130 26178 0.18% 26141 0.04% 26176 0.18% 26136 0.02% 26130 0.00% 26143 0.05% 26130 0.00%
pr107 44303 44303 0.00% 44387 0.19% 44303 0.00% 44303 0.00% 44303 0.00% 44303 0.00% 44303 0.00%
lin318 42029 42558 1.26% 42561 1.27% 42609 1.38% 42420 0.93% 42283 0.60% 42254 0.54% 42387 0.85%
pr136 96772 96772 0.00% 96772 0.00% 96772 0.00% 96772 0.00% 96772 0.00% 96772 0.00% 96772 0.00%
pr299 48191 48279 0.18% 48223 0.07% 48230 0.08% 48191 0.00% 48197 0.01% 48269 0.16% 48197 0.01%
u159 42080 42080 0.00% 42080 0.00% 42080 0.00% 42080 0.00% 42396 0.75% 42080 0.00% 42080 0.00%
a280 2579 2579 0.00% 2579 0.00% 2579 0.00% 2579 0.00% 2579 0.00% 2579 0.00% 2579 0.00%
pr439 107217 109241 1.89% 108944 1.61% 109594 2.22% 108476 1.17% 110701 3.25% 108485 1.18% 109624 2.24%
ch150 6528 6528 0.00% 6528 0.00% 6528 0.00% 6528 0.00% 6533 0.08% 6528 0.00% 6528 0.00%
d493 35002 35347 0.99% 35331 0.94% 35318 0.90% 35235 0.67% 35297 0.84% 35292 0.83% 35244 0.69%
pcb442 50778 50935 0.31% 50902 0.24% 50856 0.15% 51060 0.56% 50847 0.14% 50908 0.26% 50927 0.29%

Average - 35281 0.79% 35244 0.67% 35155 0.48% 35050 0.45% 35340 1.23% 35165 0.58% 35321 0.76%

Table 8: Results on medium TSPLIB instances (with 500-2000 nodes). The hyperparameter settings
are tuned on uniform TSP instances as listed in Table 14.

Instance Optimal Zero Att-GCN DIMES UTSP SoftDist DIFUSCO GT-Prior
Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓

u574 36905 37211 0.83% 37226 0.87% 37399 1.34% 37211 0.83% 37142 0.64% 36989 0.23% 37146 0.65%
pcb1173 56892 57837 1.66% 57715 1.45% 57618 1.28% 57770 1.54% 57633 1.30% 57304 0.72% 57248 0.63%
rat783 8806 8903 1.10% 8887 0.92% 8892 0.98% 8919 1.28% 8884 0.89% 8842 0.41% 8851 0.51%
u1432 152970 156669 2.42% 154684 1.12% 154889 1.25% 154703 1.13% 154338 0.89% 154046 0.70% 154285 0.86%
fl1400 20127 27446 36.36% 26280 30.57% 23066 14.60% 23467 16.59% 29343 45.79% 21519 6.92% 22924 13.90%
vm1084 239297 255009 6.57% 257899 7.77% 254512 6.36% 246531 3.02% 240016 0.30% 240265 0.40% 244968 2.37%
rat575 6773 6844 1.05% 6826 0.78% 6845 1.06% 6829 0.83% 6814 0.61% 6800 0.40% 6807 0.50%
vm1748 336556 377814 12.26% 385587 14.57% 378032 12.32% 376605 11.90% 341506 1.47% 341443 1.45% 343834 2.16%
rl1889 316536 479282 51.41% 444184 40.33% 397609 25.61% 441143 39.37% 327774 3.55% 324242 2.43% 451948 42.78%
u724 41910 42288 0.90% 42105 0.47% 42330 1.00% 42317 0.97% 42161 0.60% 42003 0.22% 42086 0.42%
d1291 50801 72786 43.28% 70051 37.89% 71972 41.67% 72779 43.26% 52023 2.41% 51342 1.06% 74911 47.46%
pr1002 259045 265784 2.60% 265338 2.43% 263164 1.59% 264061 1.94% 262591 1.37% 262472 1.32% 262929 1.50%
fl1577 22249 29723 33.59% 27605 24.07% 30050 35.06% 29581 32.95% 29102 30.80% 25960 16.68% 29222 31.34%
nrw1379 56638 57171 0.94% 57070 0.76% 57326 1.21% 57172 0.94% 58266 2.87% 56961 0.57% 56974 0.59%
rl1304 252948 332691 31.53% 316879 25.27% 316925 25.29% 316283 25.04% 262598 3.82% 257797 1.92% 297448 17.59%
d657 48912 49228 0.65% 49228 0.65% 49303 0.80% 49350 0.90% 49094 0.37% 49098 0.38% 49118 0.42%
p654 34643 38112 10.01% 38864 12.18% 35210 1.64% 35884 3.58% 47033 35.76% 36765 6.13% 35569 2.67%
d1655 62128 66466 6.98% 65547 5.50% 64743 4.21% 65977 6.20% 63986 2.99% 64358 3.59% 63951 2.93%
u1817 57201 90599 58.39% 68245 19.31% 71276 24.61% 80609 40.92% 58838 2.86% 58587 2.42% 75131 31.35%
u1060 224094 233417 4.16% 232573 3.78% 242781 8.34% 236866 5.70% 227830 1.67% 225164 0.48% 229725 2.51%
rl1323 270199 306164 13.31% 297453 10.09% 305970 13.24% 307474 13.80% 274440 1.57% 274104 1.45% 293294 8.55%

Average - 142449 15.24% 138583 11.47% 136662 10.64% 138644 12.03% 125305 6.79% 123621 2.38% 135160 10.08%

F TUNED HYPERPARAMETER SETTINGS

In this section, we present the results of hyperparameter tuning, summarized in the following Ta-
ble 14. The table includes the various hyperparameter combinations explored during the tuning
process and their corresponding heatmap generation methods.
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Table 9: Results on large TSPLIB instances (with more than 2000 nodes). The hyperparameter
settings are tuned on uniform TSP instances as listed in Table 14.

Instance Optimal Zero Att-GCN DIMES UTSP SoftDist DIFUSCO GT-Prior
Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓

u2152 64253 66719 3.84% 66301 3.19% 67244 4.66% 79556 23.82% 66354 3.27% 66111 2.89% 65467 1.89%
u2319 234256 240657 2.73% 236054 0.77% 237061 1.20% 235667 0.60% 234765 0.22% 236201 0.83% 235093 0.36%
pcb3038 137694 142320 3.36% 141418 2.70% 142646 3.60% 140351 1.93% 139547 1.35% 141446 2.72% 139325 1.18%
fl3795 28772 35138 22.13% 33971 18.07% 36294 26.14% 43940 52.72% 36803 27.91% 40183 39.66% 35715 24.13%
pr2392 378032 384727 1.77% 388518 2.77% 386985 2.37% 385057 1.86% 385073 1.86% 387623 2.54% 380722 0.71%
fnl4461 182566 187380 2.64% 186985 2.42% 187913 2.93% 185869 1.81% 184057 0.82% 186521 2.17% 184776 1.21%
d2103 80450 83622 3.94% 82614 2.69% 83690 4.03% 86119 7.05% 83644 3.97% 83360 3.62% 81813 1.69%
rl5934 556045 588550 5.85% 579206 4.17% 589806 6.07% 843158 51.63% 570853 2.66% 594357 6.89% 574556 3.33%
rl5915 565530 589372 4.22% 588542 4.07% 585404 3.51% 809375 43.12% 578232 2.25% 584327 3.32% 583477 3.17%
usa13509 19982859 20947758 4.83% 20613997 3.16% 21033416 5.26% 28386893 42.06% 21193246 6.06% 20723480 3.71% 20396752 2.07%
brd14051 469385 492159 4.85% 480186 2.30% 489324 4.25% 506961 8.01% 485812 3.50% 482790 2.86% 479123 2.07%
d18512 645238 672990 4.30% 662312 2.65% 667466 3.44% 701169 8.67% 663460 2.82% 662022 2.60% 656164 1.69%
rl11849 923288 994084 7.67% 955040 3.44% 973842 5.48% 1866653 102.17% 948548 2.74% 953754 3.30% 962460 4.24%
d15112 1573084 1659366 5.48% 1613134 2.55% 1631994 3.74% 1978136 25.75% 1614098 2.61% 1612163 2.48% 1598467 1.61%

Average - 1934631 5.54% 1902019 3.92% 1936648 5.48% 2589207 26.51% 1941749 4.43% 1911024 5.68% 1883850 3.52%

Table 10: Results on small TSPLIB instances (with 0-500 nodes). The hyperparameter settings are
the default settings as used by Fu et al. (2021).

Instance Optimal Zero Att-GCN DIMES UTSP SoftDist DIFUSCO GT-Prior
Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓

st70 675 676 0.15% 676 0.15% 1056 56.44% 676 0.15% 694 2.81% 676 0.15% 676 0.15%
kroA200 29368 29635 0.91% 29368 0.00% 29464 0.33% 29529 0.55% 29383 0.05% 29831 1.58% 29397 0.10%
eil76 538 538 0.00% 538 0.00% 803 49.26% 538 0.00% 538 0.00% 538 0.00% 538 0.00%
pr144 58537 58554 0.03% 67632 15.54% 72458 23.78% 58537 0.00% 66184 13.06% 58901 0.62% 58537 0.00%
rat195 2323 2365 1.81% 2323 0.00% 2331 0.34% 2352 1.25% 2323 0.00% 2337 0.60% 2328 0.22%
eil51 426 427 0.23% 427 0.23% 653 53.29% 427 0.23% 427 0.23% 427 0.23% 427 0.23%
bier127 118282 118580 0.25% 118282 0.00% 118715 0.37% 118282 0.00% 118423 0.12% 118657 0.32% 118282 0.00%
lin105 14379 14379 0.00% 14379 0.00% 16437 14.31% 14379 0.00% 15073 4.83% 14401 0.15% 14379 0.00%
kroD100 21294 21294 0.00% 21294 0.00% 28391 33.33% 21309 0.07% 21294 0.00% 21374 0.38% 21294 0.00%
pr152 73682 73880 0.27% 73682 0.00% 86257 17.07% 73682 0.00% 73682 0.00% 74029 0.47% 73682 0.00%
kroA100 21282 21282 0.00% 21282 0.00% 25168 18.26% 21282 0.00% 21282 0.00% 21396 0.54% 21282 0.00%
ts225 126643 127147 0.40% 126713 0.06% 143360 13.20% 126726 0.07% 126962 0.25% 126643 0.00% 126643 0.00%
rd400 15281 15819 3.52% 15413 0.86% 15829 3.59% 15580 1.96% 15418 0.90% 15350 0.45% 15454 1.13%
kroB100 22141 22193 0.23% 22141 0.00% 26014 17.49% 22141 0.00% 22141 0.00% 22601 2.08% 22141 0.00%
d198 15780 15883 0.65% 15784 0.03% 16016 1.50% 15874 0.60% 15806 0.16% 15859 0.50% 15789 0.06%
eil101 629 630 0.16% 629 0.00% 914 45.31% 629 0.00% 629 0.00% 629 0.00% 629 0.00%
linhp318 41345 43250 4.61% 42359 2.45% 43263 4.64% 42453 2.68% 43111 4.27% 42336 2.40% 42212 2.10%
gil262 2378 2433 2.31% 2383 0.21% 2482 4.37% 2394 0.67% 2392 0.59% 2380 0.08% 2389 0.46%
rat99 1211 1211 0.00% 1211 0.00% 1218 0.58% 1211 0.00% 1211 0.00% 1214 0.25% 1211 0.00%
berlin52 7542 7542 0.00% 7542 0.00% 10569 40.14% 7542 0.00% 7542 0.00% 7542 0.00% 7542 0.00%
kroC100 20749 20749 0.00% 20749 0.00% 24666 18.88% 20749 0.00% 20749 0.00% 20901 0.73% 20749 0.00%
pr226 80369 80822 0.56% 83203 3.53% 84543 5.19% 81060 0.86% 85411 6.27% 83028 3.31% 80369 0.00%
fl417 11861 11932 0.60% 12014 1.29% 14036 18.34% 45810 286.22% 14897 25.60% 13977 17.84% 11907 0.39%
kroE100 22068 22068 0.00% 22068 0.00% 26062 18.10% 22068 0.00% 22068 0.00% 22135 0.30% 22068 0.00%
pr76 108159 108159 0.00% 108159 0.00% 130741 20.88% 108159 0.00% 109325 1.08% 111683 3.26% 108159 0.00%
ch130 6110 6149 0.64% 6111 0.02% 7706 26.12% 6120 0.16% 6248 2.26% 6157 0.77% 6111 0.02%
rd100 7910 7910 0.00% 7910 0.00% 14528 83.67% 7910 0.00% 7932 0.28% 7910 0.00% 7910 0.00%
tsp225 3916 3982 1.69% 3923 0.18% 3945 0.74% 3966 1.28% 3919 0.08% 3920 0.10% 3923 0.18%
pr264 49135 49552 0.85% 49135 0.00% 49248 0.23% 49844 1.44% 49309 0.35% 49180 0.09% 49135 0.00%
pr124 59030 59030 0.00% 59030 0.00% 76615 29.79% 59030 0.00% 59524 0.84% 59385 0.60% 59030 0.00%
kroA150 26524 26726 0.76% 26525 0.00% 26719 0.74% 26528 0.02% 26525 0.00% 26556 0.12% 26525 0.00%
kroB200 29437 29619 0.62% 29455 0.06% 29511 0.25% 29552 0.39% 29438 0.00% 29659 0.75% 29475 0.13%
kroB150 26130 26143 0.05% 26132 0.01% 26335 0.78% 26176 0.18% 26130 0.00% 26149 0.07% 26130 0.00%
pr107 44303 44358 0.12% 44387 0.19% 48621 9.75% 44303 0.00% 44303 0.00% 44387 0.19% 44303 0.00%
lin318 42029 43250 2.91% 42352 0.77% 43116 2.59% 42453 1.01% 43111 2.57% 42646 1.47% 42212 0.44%
pr136 96772 97515 0.77% 96772 0.00% 119314 23.29% 96785 0.01% 96772 0.00% 96781 0.01% 96772 0.00%
pr299 48191 48979 1.64% 48280 0.18% 48257 0.14% 48594 0.84% 48241 0.10% 48306 0.24% 48303 0.23%
u159 42080 42080 0.00% 42080 0.00% 43188 2.63% 42080 0.00% 42396 0.75% 42685 1.44% 42080 0.00%
a280 2579 2633 2.09% 2579 0.00% 2581 0.08% 2589 0.39% 2581 0.08% 2579 0.00% 2585 0.23%
pr439 107217 109872 2.48% 108631 1.32% 108602 1.29% 108424 1.13% 115530 7.75% 108855 1.53% 107656 0.41%
ch150 6528 6562 0.52% 6528 0.00% 8178 25.28% 6528 0.00% 6528 0.00% 6533 0.08% 6528 0.00%
d493 35002 35874 2.49% 35373 1.06% 35522 1.49% 36384 3.95% 35480 1.37% 35537 1.53% 35487 1.39%
pcb442 50778 52292 2.98% 51098 0.63% 51147 0.73% 51775 1.96% 51177 0.79% 50976 0.39% 51095 0.62%

Average - 35208 0.87% 35268 0.67% 38711 16.01% 35870 7.16% 35630 1.80% 35280 1.06% 34961 0.20%

G HYPERPARAMETER TUNING WITH SMAC3

In addition to the grid search method employed in the main content of this paper, we also conducted
hyperparameter tuning using the Sequential Model-based Algorithm Configuration (SMAC3) frame-
work (Lindauer et al., 2022). SMAC3 is designed for optimizing algorithm configurations through
an efficient and adaptive search process that balances exploration and exploitation of the hyperpa-
rameter space.

Table 13: The Comparison of Tuning Time Be-
tween Grid Search and SMAC3. “h” indicates
hours.

Grid Search SMAC3

TSP-500 24h 1.39h
TSP-1000 48h 2.78h
TSP-10000 6h 3.47h

The SMAC3 framework utilizes a surrogate
model based on tree-structured Parzen estima-
tors (TPE) to predict the performance of vari-
ous hyperparameter configurations. This model
is iteratively refined as configurations are eval-
uated, allowing SMAC3 to identify promising
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Table 11: Results on medium TSPLIB instances (with 500-2000 nodes). The hyperparameter set-
tings are the default settings as used by Fu et al. (2021).

Instance Optimal Zero Att-GCN DIMES UTSP SoftDist DIFUSCO GT-Prior
Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓

u574 36905 38171 3.43% 37545 1.73% 37803 2.43% 38018 3.02% 37545 1.73% 37026 0.33% 37441 1.45%
pcb1173 56892 60231 5.87% 58452 2.74% 58664 3.11% 59761 5.04% 58209 2.31% 57717 1.45% 58251 2.39%
u1432 152970 162741 6.39% 157322 2.85% 157056 2.67% 159654 4.37% 155566 1.70% 154734 1.15% 156126 2.06%
rat783 8806 9230 4.81% 8995 2.15% 9088 3.20% 9124 3.61% 8936 1.48% 8863 0.65% 8986 2.04%
fl1400 20127 20917 3.93% 23347 16.00% 20932 4.00% 37919 88.40% 30111 49.61% 22608 12.33% 21272 5.69%
vm1084 239297 251602 5.14% 242848 1.48% 245994 2.80% 252204 5.39% 243541 1.77% 242375 1.29% 244267 2.08%
rat575 6773 6982 3.09% 6901 1.89% 7053 4.13% 6959 2.75% 6871 1.45% 6801 0.41% 6842 1.02%
vm1748 336556 352556 4.75% 344077 2.23% 347356 3.21% 372117 10.57% 344193 2.27% 340888 1.29% 343973 2.20%
rl1889 316536 335641 6.04% 325270 2.76% 338164 6.83% 358570 13.28% 329839 4.20% 322969 2.03% 328399 3.75%
u724 41910 43487 3.76% 42525 1.47% 42915 2.40% 43106 2.85% 42508 1.43% 42081 0.41% 42420 1.22%
d1291 50801 52757 3.85% 52063 2.48% 53833 5.97% 54231 6.75% 52230 2.81% 51937 2.24% 52553 3.45%
pr1002 259045 273143 5.44% 264647 2.16% 267949 3.44% 268931 3.82% 266468 2.87% 263242 1.62% 264704 2.18%
fl1577 22249 23351 4.95% 26082 17.23% 23954 7.66% 27592 24.01% 28630 28.68% 25493 14.58% 27531 23.74%
nrw1379 56638 58991 4.15% 57681 1.84% 57737 1.94% 65399 15.47% 58021 2.44% 57297 1.16% 57654 1.79%
rl1304 252948 270179 6.81% 259681 2.66% 270057 6.76% 268425 6.12% 264884 4.72% 255970 1.19% 263748 4.27%
d657 48912 50971 4.21% 49798 1.81% 50577 3.40% 50437 3.12% 49657 1.52% 49153 0.49% 49616 1.44%
p654 34643 35266 1.80% 36233 4.59% 35873 3.55% 49921 44.10% 44016 27.06% 37936 9.51% 35979 3.86%
d1655 62128 66819 7.55% 63970 2.96% 64668 4.09% 75875 22.13% 64467 3.76% 63575 2.33% 63610 2.39%
u1817 57201 61671 7.81% 59226 3.54% 60219 5.28% 63152 10.40% 59585 4.17% 58780 2.76% 59318 3.70%
u1060 224094 232616 3.80% 227340 1.45% 232619 3.80% 236167 5.39% 228869 2.13% 227868 1.68% 229515 2.42%
rl1323 270199 283701 5.00% 276363 2.28% 282500 4.55% 282676 4.62% 278379 3.03% 274038 1.42% 278283 2.99%

Average - 128143 4.88% 124779 3.73% 126905 4.06% 132392 13.58% 126310 7.20% 123873 2.87% 125261 3.63%

Table 12: Results on large TSPLIB instances (with more than 2000 nodes). The hyperparameter
settings are the default settings as used by Fu et al. (2021).

Instance Optimal Zero Att-GCN DIMES UTSP SoftDist DIFUSCO GT-Prior
Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓ Length ↓ Gap ↓

u2152 64253 68293 6.29% 66717 3.83% 69322 7.89% 71240 10.87% 96834 50.71% 77826 21.12% 66600 3.65%
u2319 234256 243093 3.77% 237114 1.22% 251125 7.20% 244142 4.22% 235644 0.59% 237035 1.19% 236159 0.81%
pcb3038 137694 150518 9.31% 142015 3.14% 163500 18.74% 148143 7.59% 141977 3.11% 157341 14.27% 141372 2.67%
fl3795 28772 30032 4.38% 35694 24.06% 35201 22.34% 50835 76.68% 36579 27.13% 42120 46.39% 38852 35.03%
pr2392 378032 392998 3.96% 391367 3.53% 426194 12.74% 401216 6.13% 438424 15.98% 430218 13.80% 385009 1.85%
fnl4461 182566 192471 5.43% 187802 2.87% 235876 29.20% 229934 25.95% 186632 2.23% 192868 5.64% 186359 2.08%
d2103 80450 88698 10.25% 83881 4.26% 96968 20.53% 88022 9.41% 84662 5.24% 90773 12.83% 82723 2.83%
rl5934 556045 590393 6.18% 576829 3.74% 703750 26.56% 781490 40.54% 647689 16.48% 645291 16.05% 592889 6.63%
rl5915 565530 603653 6.74% 587231 3.84% 694199 22.75% 809014 43.05% 644676 14.00% 656872 16.15% 591517 4.60%
usa13509 19982859 21177174 5.98% 20733868 3.76% 442759283 2115.70% 1115269461 5481.13% 21094456 5.56% 22241850 11.30% 20742301 3.80%
brd14051 469385 496359 5.75% 484032 3.12% 3757018 700.41% 13600054 2797.42% 493461 5.13% 489311 4.25% 483657 3.04%
d18512 645238 685983 6.31% 665993 3.22% 4922388 662.88% 22893796 3448.12% 664334 2.96% 663087 2.77% 659537 2.22%
rl11849 923288 1014118 9.84% 961746 4.17% 7381138 699.44% 40891587 4328.91% 990268 7.25% 977396 5.86% 970070 5.07%
d15112 1573084 1681649 6.90% 1621028 3.05% 19507797 1140.10% 71782581 4463.18% 1615421 2.69% 1653223 5.09% 1618636 2.90%

Average - 1958245 6.51% 1912522 4.84% 34357411 391.89% 90518679 1481.66% 1955075 11.36% 2039657 12.62% 1913977 5.51%

areas of the search space more effectively than
traditional methods.

For our experiments, we configured SMAC3
to optimize the same hyperparameters as those
previously tuned via grid search. The search space remains identical to that demonstrated in Table 1,
However, we set SMAC3 to search for 50 epochs (50 different hyperparameter combinations) in-
stead of exploring the entire search space (864 different combinations) and the time limit for MCTS
was set to 50 seconds for TSP-500, 100 seconds for TSP-1000, and 1000 seconds for TSP-10000.
We show the time cost of each tuning method in Table 13.

The results of these experiments, including the hyperparameter settings identified by SMAC3 and
their corresponding performance metrics, are presented in Tables 14 and 15. As shown, the per-
formance achieved by SMAC3 is comparable to that of grid search. Specifically, for TSP-500 and
TSP-1000, SMAC3 produces results similar to those of Att-GCN DIFUSCO and GT-Prior, with
even better outcomes observed on TSP-10000. This improvement can be attributed to the extended
tuning time allowed by SMAC3 compared to grid search. Given the significant difference in time
costs, SMAC3 proves to be an efficient and economical option for tuning MCTS hyperparameters.

H GT-PRIOR INFORMATION

We provide detailed information about GT-Prior for constructing the heatmap for TSP500, TSP1000,
and TSP10000 as follows:

# GT_Prior
# TSP500:
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(a) Hard instances at small, medium, and large scales.
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(b) Easy instances at small, medium, and large scales.

Figure 6: Representative TSPLIB instances visualization.

Table 14: Tune parameters of all the methods for TSP500, TSP1000 and TSP10000 by grid search
(the left table) and SMAC3 (the right table).

METHOD ALPHA BETA H MCN UH MD

TSP500

ZERO 2 10 2 5 0 100
ATT-GCN 0 150 5 5 0 100
DIMES 0 100 5 5 0 200
DIFUSCO 1 150 2 5 0 50
UTSP 0 100 5 5 0 50
SOFTDIST 1 100 5 20 0 200
GT-PRIOR 0 10 5 5 1 200

TSP1000

ZERO 1 100 5 5 0 100
ATT-GCN 0 150 5 5 0 200
DIMES 0 150 2 5 0 200
DIFUSCO 0 150 2 5 1 100
UTSP 1 100 5 5 0 50
SOFTDIST 0 150 2 20 1 200
GT-PRIOR 1 10 5 5 1 200

TSP10000

ZERO 0 100 2 20 0 10
ATT-GCN 1 150 2 5 1 50
DIMES 1 100 2 20 0 10
DIFUSCO 0 100 5 20 0 50
SOFTDIST 2 100 5 20 0 10
GT-PRIOR 1 100 10 1000 1 100

METHOD ALPHA BETA H MCN UH MD

TSP500

ZERO 0 150 2 5 0 50
ATT-GCN 2 150 2 5 0 100
DIMES 0 100 5 5 0 200
DIFUSCO 1 150 2 5 0 50
UTSP 0 100 5 5 0 50
SOFTDIST 1 100 5 20 0 200
GT-PRIOR 0 10 5 5 1 200

TSP1000

ZERO 0 150 2 5 0 100
ATT-GCN 2 150 2 5 0 100
DIMES 2 150 5 5 0 100
DIFUSCO 0 150 2 5 1 200
UTSP 0 100 5 5 0 50
SOFTDIST 1 100 2 50 1 200
GT-PRIOR 0 150 2 5 1 200

TSP10000

ZERO 0 100 2 20 0 10
ATT-GCN 1 150 2 5 1 50
DIMES 1 100 2 20 0 10
DIFUSCO 0 100 5 20 0 50
SOFTDIST 2 100 5 20 0 10
GT-PRIOR 1 100 10 1000 1 100

[4.40078125e-01, 2.56265625e-01, 1.32750000e-01, 7.32656250e-02,
4.08125000e-02, 2.35937500e-02, 1.34062500e-02, 7.75000000e-03,
4.48437500e-03, 2.73437500e-03, 1.78125000e-03, 1.18750000e-03,
6.87500000e-04, 3.75000000e-04, 3.75000000e-04, 1.87500000e-04,
7.81250000e-05, 1.56250000e-05, 4.68750000e-05, 1.56250000e-05,
4.68750000e-05, 3.12500000e-05, 1.56250000e-05, 1.56250000e-05]

# TSP1000:
[4.37554687e-01, 2.54718750e-01, 1.37671875e-01, 7.41093750e-02,
3.97890625e-02, 2.35156250e-02, 1.32265625e-02, 7.45312500e-03,
4.73437500e-03, 3.00781250e-03, 1.59375000e-03, 1.08593750e-03,
5.62500000e-04, 2.96875000e-04, 2.65625000e-04, 1.71875000e-04,
1.01562500e-04, 4.68750000e-05, 1.56250000e-05, 3.12500000e-05,
2.34375000e-05, 7.81250000e-06, 1.56250000e-05]
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Table 15: Results of Hyperparameter Tuning using SMAC3. The underlined figures in the table
indicate results that are equal to or better than those of Grid Search, rounded to two decimal places.

METHOD TYPE
TSP-500 TSP-1000 TSP-10000

LENGTH ↓ GAP ↓ TIME ↓ LENGTH ↓ GAP ↓ TIME ↓ LENGTH ↓ GAP ↓ TIME ↓
CONCORDE OR(EXACT) 16.55∗ — 37.66M 23.12∗ — 6.65H N/A N/A N/A
GUROBI OR(EXACT) 16.55 0.00% 45.63H N/A N/A N/A N/A N/A N/A
LKH-3 (DEFAULT) OR 16.55 0.00% 46.28M 23.12 0.00% 2.57H 71.78∗ — 8.8H
LKH-3 (LESS TRAILS) OR 16.55 0.00% 3.03M 23.12 0.00% 7.73M 71.79 — 51.27M

ZERO MCTS 16.67 0.73% 0.00M+
1.67M

23.39 1.17% 0.00M+
3.34M

74.44 3.71% 0.00M+
16.78M

ATT-GCN† SL+MCTS 16.66 0.69% 0.52M+
1.67M

23.38 1.15% 0.73M+
3.34M

73.87 2.92% 4.16M+
16.77M

DIMES† RL+MCTS 16.67 0.73% 0.97M+
1.67M

23.42 1.31% 2.08M+
3.34M

74.17 3.33% 4.65M+
16.77M

UTSP† UL+MCTS 16.72 1.07% 1.37M+
1.67M

23.51 1.68% 3.35M+
3.34M

— — —

SOFTDIST† SOFTDIST+MCTS 16.62 0.46% 0.00M+
1.67M

23.33 0.90% 0.00M+
3.34M

75.34 4.97% 0.00M+
16.78M

DIFUSCO† SL+MCTS 16.62 0.43% 3.61M+
1.67M

23.24 0.53% 11.86M+
3.34M

73.26 2.06% 28.51M+
16.87M

GT-PRIOR PRIOR+MCTS 16.63 0.50% 0.00M+
1.67M

23.32 0.85% 0.00M+
3.34M

73.26 2.07% 0.00M+
16.78M

# TSP10000:
[4.4175625e-01, 2.5409375e-01, 1.3292500e-01, 7.1950000e-02,
3.9518750e-02, 2.3750000e-02, 1.4143750e-02, 8.0937500e-03,
4.9125000e-03, 3.3312500e-03, 1.8437500e-03, 1.1125000e-03,
8.3750000e-04, 5.5625000e-04, 3.7500000e-04, 2.6250000e-04,
1.8125000e-04, 8.7500000e-05, 6.8750000e-05, 5.0000000e-05,
5.0000000e-05, 2.5000000e-05, 2.5000000e-05, 6.2500000e-06,
1.2500000e-05, 6.2500000e-06, 6.2500000e-06, 6.2500000e-06,
6.2500000e-06, 6.2500000e-06]
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