
Model Soup for Better RLHF: Weight Space
Averaging to Improve Alignment in LLMs

Atoosa Chegini1∗ Hamid Kazemi2 Iman Mirzadeh2 Dong Yin2

Maxwell Horton2 Moin Nabi2 Mehrdad Farajtabar2

Keivan Alizadeh2

1University of Maryland 2Apple

Abstract

In Large Language Model (LLM) development, Reinforcement Learning
from Human Feedback (RLHF) is crucial for aligning models with human
values and preferences. RLHF traditionally relies on the Kullback-Leibler
(KL) divergence between the current policy and a frozen initial policy as a
reference, which is added as a penalty in policy optimization algorithms like
Proximal Policy Optimization (PPO). While this constraint prevents models
from deviating too far from the initial checkpoint, it limits exploration of
the reward landscape, reducing the model’s ability to discover higher-quality
solutions. As a result, policy optimization is often trapped in a narrow
region of the parameter space, leading to suboptimal alignment and per-
formance. This paper presents SALSA (Soup-based Alignment Learning
for Stronger Adaptation), a novel approach designed to overcome these
limitations by creating a more flexible and better located reference model
through weight-space averaging of two independent supervised fine-tuned
(SFT) models. This model soup allows for larger deviation in KL divergence
and exploring a promising region of the solution space without sacrificing
stability. By leveraging this more robust reference model, SALSA fosters bet-
ter exploration, achieving higher rewards and improving model robustness,
out-of-distribution generalization, and performance. We validate the effec-
tiveness of SALSA through extensive experiments on popular open models
(Llama2-7B, Mistral-7B, and Gemma-2B) across various benchmarks (MT-
Bench, Arena-Hard, UltraFeedback), where it consistently surpasses PPO
by fostering deeper exploration and achieving superior alignment in LLMs.

1 Introduction

Large language models (LLMs) have revolutionized natural language processing (NLP) by
demonstrating remarkable capabilities in understanding and generating human language.
These models, powered by vast amounts of data and advanced neural architectures, have set
new benchmarks in various NLP tasks, from machine translation to conversational agents.
Despite these advancements, aligning LLMs with human values and preferences remains a
significant challenge. Misalignment can lead to undesirable behaviors, including generating

∗Work done during an internship at Apple.

38th Workshop on Fine-Tuning in Machine Learning (NeurIPS 2024).

biased or inappropriate content, which undermines the reliability and safety of these models
[Kenton et al., 2021, Bender et al., 2021, Bommasani et al., 2021, Gehman et al., 2020].
Reinforcement Learning from Human Feedback (RLHF) has become a promising technique
for aligning large language models (LLMs) with human preferences. By fine-tuning LLMs
based on human feedback, RLHF guides models towards more human-aligned behaviors,
improving truthfulness, helpfulness, and harmlessness while maintaining the generation of
high-probability, correct answers [Christiano et al., 2017]. Reward-based RLHF methods
utilize a reward model to determine the reward for a given (prompt, response) pair. The
policy model is then optimized by maximizing the average reward through reinforcement
learning algorithms like Proximal Policy Optimization (PPO) [Schulman et al., 2017]. A
crucial aspect of RLHF is the use of a reference model to compute the Kullback-Leibler (KL)
divergence penalty, which prevents the fine-tuning process from deviating too far from the
original model [Ziegler et al., 2019]. This approach ensures that the policy remains close to
the initial model, reducing the risk of generating nonsensical responses.
While effective, reliance on a single reference model can be limiting. The KL penalty term
constrains the policy model to stay close to the initial supervised fine-tuning (SFT) model,
restricting its ability to fully explore the solution space for higher-reward models. This
constraint can lead to suboptimal alignment and a lack of robustness in the training process,
increasing the risk of generating nonsensical outputs. Ensuring that the reference model
is already positioned in a robust space can mitigate this issue, allowing for more confident
exploration without compromising output quality.
To address this limitation, we propose SALSA. It integrates a “model soup” as the reference
model within the RLHF framework. A model soup is constructed by performing weight-
space averaging of multiple independently supervised fine-tuned models that demonstrate
comparable performance. This method leverages the principle that fine-tuned models
from the same pre-trained initialization often reside in a shared low-error basin in the
loss landscape, enabling effective weight interpolation without compromising accuracy. As
evidenced by Wortsman et al. [2022], this approach results in significant improvements in
both in-distribution and out-of-distribution generalization. The key advantage of model
soup lies in its ability to harness the complementary strengths of diverse models, reducing
variance and improving robustness, while maintaining computational efficiency. This makes
the “model soup” reference model a superior choice for improving the stability and reliability
of the RLHF training process compared to relying on a single reference model.
In this paper, we demonstrate the effectiveness of SALSA through comprehensive experi-
ments. We apply SALSA to Llama2-7B, Mistral-7B, and Gemma-2B and benchmark
the results against standard evaluation datasets, including MT-Bench, Arena-Hard, and
UltraFeedback—the latter being used for RLHF training in our experiments. Our findings
reveal that weight space averaging is a straightforward yet effective approach for aligning
LLMs with human preferences, and enhancing their performance on real-world-like datasets.
In particular our contributions are following:

• We demonstrate that the reward in the region near the model soup is inherently superior
to that of the original SFT model. The improvement in reward is a newly observed
phenomenon and is complementary to the improvement in accuracy of model soups. We
further show having model soups as reference point of RLHF results in higher reward
outcomes. (Section 4.2).

• Drawing from these observations, we propose SALSA, a novel approach for implementing
RLHF that utilizes the model soup as the reference model.

• We perform a comprehensive evaluation across diverse benchmarks and models, demon-
strating that SALSA consistently outperforms PPO (Section 4.3).

The remainder of this paper is organized as follows: Section 2 reviews related work on
RLHF and model averaging techniques. Section 3 details our methodology for creating
and integrating the model soup in the RLHF process. Sections 4.1 through 4.4 present the
experimental results and analysis of model averaging for better alignment.

2

LSALSA(πθ) =−R(x, y) + β KL
(
πθ(y | x) ∥ πsoup(y | x)

)
LPPO(πθ) =−R(x, y) + β KL

(
πθ(y | x) ∥ πref(y | x)

)

MT-Bench Arena-Hard UltraFeedback40

50

55
52.50

54.01

50.75

47.50
45.99

49.25

SALSA
PPO

(a) Llama2-7B
MT-Bench Arena-Hard UltraFeedback40

50

55
51.89

54.40
52.40

48.11

45.60
47.60

SALSA
PPO

(b) Mistral-7B
MT-Bench Arena-Hard UltraFeedback40

50

55

57.19

53.70

50.68

42.81

46.30

49.32

SALSA
PPO

(c) Gemma-2B

Figure 1: Comparison of SALSA and PPO. The main difference between SALSA and PPO
is in the reference model within KL divergence of loss. SALSA consistently outperforms
PPO across different models and tasks.

2 Related Works

2.1 Model Soup

Model soups build on the findings of [Neyshabur et al., 2020], which showed that independently
fine-tuned models often lie within the same loss basin, allowing their weights to be successfully
combined through interpolation. [Wortsman et al., 2022] extended this, demonstrating that
averaging fine-tuned model weights can improve performance compared to using a single
model. Unlike traditional ensembling, model soups require no extra memory or inference
time, while still enhancing robustness. This method has shown consistent performance gains
across NLP and image classification tasks [Wortsman et al., 2022, Izmailov et al., 2018].

2.2 Reinforcement Learning from Human Feedback (RLHF)

Large language models (LLMs) have achieved significant success across tasks, thanks to
fine-tuning methods like Supervised Fine-Tuning (SFT) and Reinforcement Learning from
Human Feedback (RLHF) [Ouyang et al., 2022, Touvron et al., 2023a, Bai et al., 2022, Anil
et al., 2023]. RLHF has been crucial for aligning models with human preferences, enabling
outputs that are more helpful and aligned with societal values [Ziegler et al., 2019, Stiennon
et al., 2020, Achiam et al., 2023].
RLHF methods are divided into reward-based and reward-free approaches. Reward-based
methods rely on training a reward model to guide policy optimization, typically with Proximal
Policy Optimization (PPO) [Schulman et al., 2017, Gao et al., 2023]. PPO is widely used for
its balance of stability and exploration [Ouyang et al., 2022]. Studies have also examined the
importance of hyperparameter tuning and reward model quality to avoid overoptimization
[Casper et al., 2023, Zheng et al., 2023a]. Reward-free methods, such as Direct Preference
Optimization (DPO), bypass the reward model by directly optimizing human preference
data [Rafailov et al., 2023, Liu et al., 2023, Yuan et al., 2023]. While DPO simplifies training
and performs well on tasks like instruction following [Touvron et al., 2023a], it struggles with
out-of-distribution data, and its generalization capabilities are limited [Yuan et al., 2024, Xu
et al., 2024].
In this paper, we focus on Proximal Policy Optimization (PPO) for its demonstrated
robustness in managing large models and diverse tasks. Studies such as [Xu et al., 2024]
highlight the limitations of Direct Preference Optimization (DPO), which tends to find
biased solutions when confronted with out-of-distribution responses and is highly sensitive to
distribution shifts. In contrast, PPO effectively mitigates these challenges through the use
of reward models and KL divergence regularization [Ouyang et al., 2022, Schulman et al.,
2017]. This enables PPO to consistently outperform DPO in tasks like dialogue and code
generation, proving its reliability across alignment challenges [Xu et al., 2024].
Recent RLHF research has introduced novel approaches to improve upon traditional methods,
particularly in addressing the limitations of using reference models. SimPO [Meng et al.,
2024] eliminates the need for a reference model by optimizing the average log probability

3

of sequences with a reward-free approach. This reduces computational costs and improves
memory efficiency over traditional DPO, achieving better performance across benchmarks like
AlpacaEval and Arena-Hard. SimPO underscores the limitations of static reference models in
DPO and advocates for scalable, reference-free approaches. Conversely, [Gorbatovski et al.,
2024] introduces a dynamic reference model that evolves throughout training using Trust
Region methods. This dynamic approach allows the reference model to adapt alongside the
policy, preventing constraints imposed by outdated checkpoints and enabling more effective
generalization and alignment with human preferences.
The aforementioned papers have identified that the reference model may limit the optimization
process in DPO, and they propose innovative solutions to address this issue. Similarly, we
aim to solve this problem within the PPO framework. We adopt a model soup approach,
which averages the weights of fine-tuned models. This method allows the optimization
process in PPO to explore a broader solution space, offering greater flexibility and enhancing
alignment performance.

3 Method

In this section we present our method, SALSA (Soup-based Alignment Learning for Stronger
Adaptation). We begin with a brief overview of Proximal Policy Optimization (PPO), and
model soup, followed by a detailed description of our approach.

3.1 RLHF

In our main experiments, we focus on reward-based RLHF, in particular Proximal Policy
Optimization (PPO). The conventional framework for reward-based RLHF consists of several
key stages as follows.
Supervised Fine-Tuning (SFT). The initial stage of alignment involves supervised
fine-tuning, where a pre-trained language model is refined using a high-quality instruction
dataset.
Reward Model. Reward-based RLHF involves training a reward model, which is typically
initialized from the SFT model. In this process, the logit layer of the SFT model is replaced
by a new linear layer. This linear layer takes the embedding of the last token and outputs a
scalar reward. Higher rewards indicate better samples. For a given prompt x and a pair of
responses yw (chosen) and yl (rejected), the loss function is optimized as:

L(Rθ) = − logσ(Rθ(x, yw)−Rθ(x, yl)), (1)

where Rθ(·, ·) is the reward model, θ denotes its parameters, σ indicates the sigmoid function.
Policy Training. The last phase of RLHF is dedicated to training the policy model, which
is initialized from a reference model, typically the SFT model. Based on a recent study [Xu
et al., 2024], PPO performs better in distribution shifts and results in superior alignment
with human preferences across challenging tasks like code generation and dialogue systems.
Therefore, we selected PPO as the training algorithm. The goal is to optimize the policy
model to maximize the reward for a given prompt x and its generated response y, while
also minimizing the KL divergence between the policy model and the reference model. The
overall loss function for this stage is given by:

LPPO(πθ) = −R(x, y) + βKL (πθ(y | x) ‖πref(y | x)) (2)

where πθ is the policy model, πref is the reference model, and R(., .) is the trained reward
model.

3.2 Model Soup
The concept of a model soup, introduced in Wortsman et al. [2022], aims to enhance model
performance by averaging the weights of multiple pre-trained networks. This technique
combines the parameters of independently trained models to produce a more robust outcome,
leveraging the strengths of each. There are three primary strategies for constructing a model
soup: uniform, greedy, and learned. In our approach, we employ its most basic strategy, i.e.,

4

the uniform method, where the parameters of separate SFTs are averaged. Investigating
other mixing strategies for RLHF and comparing them is left as future work. Formally, we
construct our soup model using two SFT models: πref , which serves as the initialization of
the policy model in the PPO framework, and πother, an additional SFT model trained on
the same data with a different random seed. Their weights denoted as θ is averaged using a
coefficient α:

θsoup = (1− α)θref + αθother (3)

In our experimental setup, as shown in Figure 4a, setting α to 0.5 produces the best results.
This will be further discussed in the next section, where we also explain our proposed method,
SALSA.

3.3 SALSA

The KL term in equation 2 ensures that the model remains closely aligned with the reference
model. This term is essential because optimizing solely for the reward can result in the
generation of nonsensical outputs. However, it also imposes a constraint by preventing
the model from deviating significantly from the initial reference model. To address this
limitation, we propose replacing the KL term in 2, with the following loss function:

LSALSA(πθ) = −R(x, y) + βKL (πθ(y | x) ‖πsoup(y | x)) (4)

As mentioned in Equation 3, πsoup refers to a model soup, which is the result of averaging
two independently trained supervised fine-tuned models (SFTs), including the reference
model. Since the policy model πθ is initialized from the reference model πref , substituting
the KL term in equation 2 with the KL term in 4 which is the model soup of πref and πother

allows the policy model to search around averaged model, thereby enabling exploration of
a broader and more promising parameter space. The primary distinction between the loss
terms in equations 2 and 4 is that the soup model is used in place of the reference model.
This substitution keeps our approach straightforward to implement while proving highly
effective. Our experiments demonstrate improved performance, resulting in higher win rates
over PPO across three models and three datasets. These consistent results indicate SALSA’s
effectiveness in various settings.

4 Experiments

4.1 Experimental setups

In this section, we outline our experimental setup. We use three models: Llama2-7B
[Touvron et al., 2023b], Mistral-7B [Jiang et al., 2023], and Gemma-2B [Team et al., 2024].
For Supervised Fine-Tuning (SFT), we employ the UltraChat-200k dataset [Ding et al.,
2023]. The UltraFeedback dataset [Cui et al., 2023] is utilized for both training the reward
model and optimizing preferences. All experiments across the three stages (SFT, reward
model, RLHF) are conducted using the TRL library by HuggingFace [von Werra et al., 2020].
For both PPO and SALSA, we use the KL coefficient β that achieves the highest win rate.
Further details on the hyperparameter settings are available in Appendix A.
Evaluation Benchmarks. We evaluate the effectiveness of our method using three well-
established instruction-following benchmarks: MT-Bench [Zheng et al., 2024], Arena-Hard
v0.1 [Li et al., 2024], and UltraFeedback [Cui et al., 2023] test dataset. MT-Bench comprises
80 questions across 8 categories, while Arena-Hard is an enhanced version of MT-Bench,
featuring 500 well-defined technical problem-solving questions.
In our evaluation process, we used the datasets described in the previous section to generate
samples. Pairwise comparisons were then conducted using GPT-4-Turbo as the judge model,
following the ”LLM-as-a-judge” methodology. The prompt used for our judge model is
provided in Figure 7 in the Appendix. For evaluation, we utilized the FastChat repository
[Zheng et al., 2023b]. For the MT-Bench questions, which involve two rounds, we generated
and evaluated outputs for each round.

5

0.0 0.2 0.4 0.5 0.6 0.8 1.0
α

−4.0

−3.5

−3.0

−2.5

−2.0

M
ea

n
R

ew
ar

d

Turn 1 Turn 2

(a) Gemma-7B

0.0 0.2 0.4 0.5 0.6 0.8 1.0
α

−6

−5

−4

M
ea

n
R

ew
ar

d

Turn 1 Turn 2

(b) Llama2-7B

SFT1 SFT2

SFT3

0.00015

0.00030

0.00045

R
ew

ar
d

(e
xp

)

(c) Reward Plane

Figure 2: (a) The reward of model averaging for Gemma-7B peaks in α = 0.5. (b) The same
phenomenon is seen for Llama2-7b (c) The heatmap of rewards of Llama2-7B around 3 SFT
model in a Barycentric space. Inside the triangle which is closer to average of 3 models has
significantly higher reward than outside triangle. This shows model soups are in a more
promising region for searching.

−1 0 2 4 6
Reward

0.00

0.10

0.20

0.30

0.40

0.50

D
en

si
ty

SALSA (µ = 1.97)
PPO (µ = 1.75)

(a) Arena-Hard

−4 −1 2 5 8
Reward

0.00

0.05

0.10

0.15

0.20

0.25

D
en

si
ty

SALSA (µ = 4.14)
PPO (µ = 3.48)

(b) MT-Bench

Figure 3: Comparison of reward distributions between SALSA and PPO for the Llama2-7B
model. SALSA gets higher reward in average across both datasets.

4.2 Reward Analysis

We hypothesize that πsoup resides in a region of the parameter space associated with generally
higher rewards, suggesting that models explored in this vicinity could generate responses with
increased reward values, in addition to the improved loss observed in the original model soup
paper Wortsman et al. [2022]. To test this hypothesis, we conducted an analysis along the
interpolation line between two SFT models, πref and πother, for Gemma-7B and Llama2-7B,
examining how the mean reward changes for the MT-Bench dataset. These rewards were
calculated on raw models prior to RLHF process. As illustrated in Figure 2a and 2b, we
observe that the mean reward on the dataset increases as we move towards the midpoint
between these two models, and subsequently decreases beyond this point. This pattern
indicates that πsoup - which represents the average of the SFTs - resides in a region of the
parameter space associated with higher rewards further supporting our hypothesis.
Next, based on our observations of improved rewards from model soup combining two SFT
models, we extended our experiments to explore reward behavior within the space defined
by three SFT models. These models were trained on UltraChat-200k using a pretrained
Llama2-7B, each initialized with different random seeds. Specifically, we evaluated rewards
on a plane defined by these three models, both inside and outside this space. Figure 2c
presents the results of these experiments. The vertices of the dotted-line triangle represent
the three SFT models. As shown, moving towards the midpoint between any two SFT
models consistently leads to increased rewards. A similar trend is observed as we approach
the center of the triangle. Additionally, the rewards for points outside the triangle decreases.
Since PPO tends to find solutions near the vertices of the triangle (due to its reliance on the
initial SFT model), the corresponding rewards in these regions are lower, as shown in the
figure. This suggests that PPO may struggle to guide the model towards areas associated
with higher rewards, which are located more centrally between the SFT models

6

Table 1: Comparison of Adjusted Win Rates across Models and Datasets
Dataset Model SALSA vs PPO SALSA vs SFT

MT-Bench Llama2-7B 52.50 52.50
Mistral-7B 51.89 55.94
Gemma-2B 57.19 56.88

Arena-Hard
Llama2-7B 54.01 54.70
Mistral-7B 54.40 55.70
Gemma-2B 53.7 53.8

UltraFeedback
Llama2-7B 50.75 52.23
Mistral-7B 52.40 51.93
Gemma-2B 50.68 54.32

Third, we hypothesize that SALSA’s ability to explore a better parameter space, enables the
model to discover regions with higher rewards while maintaining the generation of sensible
responses. This expanded exploration ultimately results in SALSA’s superior performance
over PPO. To validate this hypothesis, we compared the reward distributions for responses
generated by SALSA and PPO across the MT-Bench and Arena-Hard datasets. Figure 3
illustrates the reward distributions for both methods. The plot reveals that the reward
distribution for SALSA is shifted towards higher values compared to PPO. This rightward shift
is consistent across both datasets, indicating that SALSA consistently generates responses
associated with higher rewards. Furthermore, the mean reward for SALSA is higher than
that of PPO in both datasets, further supporting our hypothesis.
Furthermore our findings indicate that employing a model soup as the reference model
permits greater deviation in KL divergence. This increased flexibility allows the policy to
investigate a more extensive area within the solution space. More info in this regard can be
found in Appendix A.4.

4.3 Main Results

Figure 1 visualizes the win rate comparison between SALSA and PPO, where SALSA achieves
notable win rates of 54.01% for the Llama2-7B model and 54.40% for the Mistral-7B model
on the challenging Arena-Hard dataset. Table 1 provides a comparative analysis of SALSA
against the original PPO and SFT models for Llama2-7B, Mistral-7B, and Gemma-2B. The
results indicate that SALSA consistently outperforms both PPO and SFT, demonstrating
its effectiveness. Based on the detailed results in tables 2, 3, and 4 in the Appendixse
results, PPO and SFT often perform similarly on MT-Bench and Arena-Hard, likely because
UltraFeedback and UltraChat, which are utilized for SFT, Reward Modeling, and RLHF, are
considered out-of-distribution for these benchmarks. As a result, a basic version of PPO does
not significantly outperform SFT. However, SALSA’s robustness to out-of-distribution data
(derived from weight averaging and model soup techniques) delivers improvements of up to
57% and 54% on these datasets. These results underscore SALSA’s effectiveness in enhancing
out-of-distribution robustness in RLHF training while maintaining competitive performance
for in-distribution, and emphasize SALSA’s superior exploration capabilities and improved
reward optimization, resulting in better task alignment and overall performance. Additional
detailed results are available in tables 2, 3, and 4 in the Appendix. Also a qualitative
comparison of responses generated by SALSA and PPO is presented in Figure 8 in Appendix.

4.4 Ablation Study

We explored using alternative reference points along the line between πref and πother by
varying the α value in Equation 3. For each α, we adjusted the KL divergence to achieve the
optimal win rate over PPO. This systematic adjustment allowed us to observe how the win
rate varies with α, as shown in Figure 4a which reveals a clear trend: the adjusted win rate
increases as α approaches 0.5, peaking at this midpoint before declining at higher values.
Notably, using πother alone does not enhance performance, yielding an adjusted win rate of
only 43.07% over PPO. This outcome arises because, although the model explores a wide

7

0. 0.2 0.4 0.5 0.6 0.8 1.

α

45

50

55
W

in
R

at
e

ov
er

PP
O

50.00
51.50

52.27

54.40

52.13

50.10

43.07

Best: 54.4

(a) Win rates of SALSA over PPO for varying α

MT-Bench Arena-Hard40

45

50

55

A
dj

us
te

d
W

in
R

at
e

55.94 55.70

48.38
47.19

SALSA MKL

(b) SALSA vs MKL

Figure 4: (a) Win rates of SALSA vs. PPO (Mistral-7B) on Arena-Hard for various α
values. (b) Win rates of SALSA and Multiple KLs over SFT (Mistral-7B) on MT-Bench and
Arena-Hard.

range between πref and πother, it ultimately converges on a lower-reward region near πother.
These findings support our hypotheses on reward dynamics (Section 4.2) and the effects of
KL divergence (Section A.4).
To explore alternatives to SALSA, we experimented with a different loss function, LMKL,
shown in equation 5, which regularizes the policy by averaging the KL divergences between
the policy πθ and two SFT models, πref and πother.

LMKL(πθ) = −R(x, y) +
β

2
[KL (πθ,πref) + KL (πθ, πother)] (5)

While SALSA employs model soup (an ensemble average of two models) as a reference point,
this alternative approach calculates individual divergences from each model separately. Our
empirical results, as demonstrated in Figure 4b and Table 5, indicate that this method does
not outperform PPO. These findings highlight the significance of the averaging methodology
between SFT models: using the averaged model as a single reference point for KL divergence
proves more effective than computing the average of two separate KL divergences with
distinct reference points.
Finally, we conducted an ablation study to assess the impact of using soups with more than
two SFT models. As illustrated in Figure 2c, the reward is higher at the midpoints between
SFTs compared to the vertices. Moreover, the reward near the center of the triangle is at its
peak, higher than other regions. This suggests that incorporating more SFTs into the soup is

SALSA-1 (PPO) SALSA-2 SALSA-3
Number of Soups

45

50

55

W
in

R
at

e

50.00

53.70

56.71

(a) Arena-Hard

SALSA-1 (PPO) SALSA-2 SALSA-3
Number of Soups

45

50

55

W
in

R
at

e

50.00

57.19
58.13

(b) MT-Bench

Figure 5: Effect of the number of models in the soup on win rate. SALSA-n represents n
references in the soup, with SALSA-1 being equivalent to PPO. Llama2-7B is used for the
above experiments.

8

likely to enhance SALSA’s performance. Figure 5 supports this hypothesis, showing that the
win rate increases as the number of SFTs in the soup model grows. Although increasing the
number of SFTs for constructing the soup yields better performance, we limit the number to
two due to computational constraints. Investigating soups of more than three elements and
finding the optimal one is left as future work.

5 Conclusion

This paper presents SALSA, a novel method for improving alignment in large language
models by leveraging a model soup as a reference in the RLHF framework. By utilizing
weight-space averaging of fine-tuned models as the reference, SALSA facilitates more effective
exploration during policy optimization, leading to stronger performance in in-distribution
and more resilience in out-of-distribution regimes. We showed that model soup resides in
a higher reward region even before the PPO process, enabling SALSA to search for higher
potential model. Furthermore we showed using model soup as a reference model allows
for larger deviation in KL enabling search in a larger region. Experimental results across
multiple benchmarks consistently show that SALSA outperforms PPO, yielding higher win
rates, increased average rewards, and improved alignment with human preferences. We
further extended our work to show averaging over more SFT models results even in higher
win rates and robustness.
There are many avenues to extend this work: applying model soups to other forms of
learning from human feedback like DPO is a very interesting future work. Systematically
exploring other forms of ensembling different models as reference, and model averaging with
a non-uniform or adaptive weights is another valuable line of work. Finding out remedies for
KL-Hacks when using SALSA is another direction for theoretical and emperical research.

Acknowledgements

We would like to thank seyed mohsen dezfouli, fartash faghri, hooman shahrokhi for the
valuable discussions.

9

References
Zachary Kenton, Tom Everitt, Laura Weidinger, Iason Gabriel, Vladimir Mikulik, and

Geoffrey Irving. Alignment of language agents. arXiv preprint arXiv:2103.14659, 2021.

Emily M Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On
the dangers of stochastic parrots: Can language models be too big? In Proceedings of the
2021 ACM conference on fairness, accountability, and transparency, pages 610–623, 2021.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von
Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On
the opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Samuel Gehman, Suchin Gururangan, Maarten Sap, Yejin Choi, and Noah A Smith. Real-
toxicityprompts: Evaluating neural toxic degeneration in language models. arXiv preprint
arXiv:2009.11462, 2020.

Paul F Christiano, Jan Leike, Tom B Brown, Miljan Martic, Shane Legg, and Dario Amodei.
Deep reinforcement learning from human preferences. Advances in Neural Information
Processing Systems, 30, 2017.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei,
and Paul F Christiano. Fine-tuning language models from human preferences. arXiv
preprint arXiv:1909.08593, 2019.

Mitchell Wortsman, Gabriel Ilharco, Samir Yitzhak Gadre, Rebecca Roelofs, Raphael
Gontijo-Lopes, Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, and Simon
Kornblith. Model soups: averaging weights of multiple fine-tuned models improves accuracy
without increasing inference time. In International Conference on Machine Learning, pages
23965–23998. PMLR, 2022.

Behnam Neyshabur, Hanie Sedghi, and Chiyuan Zhang. What is being transferred in transfer
learning? Advances in neural information processing systems, 33:512–523, 2020.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon
Wilson. Averaging weights leads to wider optima and better generalization. arXiv preprint
arXiv:1803.05407, 2018.

Long Ouyang et al. Training language models to follow instructions with human feedback.
Advances in Neural Information Processing Systems, 2022.

Hugo Touvron et al. Llama 2: Open and efficient foundation language models. arXiv preprint
arXiv:2307.00000, 2023a.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma,
Dawn Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful
and harmless assistant with reinforcement learning from human feedback. arXiv preprint
arXiv:2204.05862, 2022.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre
Passos, Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2
technical report. arXiv preprint arXiv:2305.10403, 2023.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec
Radford, Dario Amodei, and Paul F Christiano. Learning to summarize with human
feedback. Advances in Neural Information Processing Systems, 33:3008–3021, 2020.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al.
Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

10

Lianwen Gao et al. Scaling laws for reward model overoptimization. Proceedings of ICML,
2023.

Stephen Casper et al. Open problems and fundamental limitations of reinforcement learning
from human feedback. arXiv preprint arXiv:2307.15217, 2023.

Rui Zheng, Shihan Dou, Songyang Gao, Yuan Hua, Wei Shen, Binghai Wang, Yan Liu,
Senjie Jin, Qin Liu, Yuhao Zhou, et al. Secrets of rlhf in large language models part i:
Ppo. arXiv preprint arXiv:2307.04964, 2023a.

Ross Rafailov et al. Direct preference optimization: Your language model is secretly a reward
model. arXiv preprint arXiv:2305.18290, 2023.

Tianqi Liu, Yao Zhao, Rishabh Joshi, Misha Khalman, Mohammad Saleh, Peter J Liu, and
Jialu Liu. Statistical rejection sampling improves preference optimization. arXiv preprint
arXiv:2309.06657, 2023.

Weifan Yuan et al. Preference-based fine-tuning without reward modeling. arXiv preprint
arXiv:2305.01770, 2023.

Weifan Yuan et al. Enhanced direct preference optimization for instruction-tuning large
language models. arXiv preprint arXiv:2401.00000, 2024.

Shusheng Xu, Wei Fu, Jiaxuan Gao, Wenjie Ye, Weilin Liu, Zhiyu Mei, Guangju Wang,
Chao Yu, and Yi Wu. Is dpo superior to ppo for llm alignment? a comprehensive study.
arXiv preprint arXiv:2404.10719, 2024.

Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a
reference-free reward. arXiv preprint arXiv:2405.14734, 2024.

Alexey Gorbatovski, Boris Shaposhnikov, Alexey Malakhov, Nikita Surnachev, Yaroslav
Aksenov, Ian Maksimov, Nikita Balagansky, and Daniil Gavrilov. Learn your reference
model for real good alignment. arXiv preprint arXiv:2404.09656, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2:
Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, et al. Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju,
Shreya Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, Pouya
Tafti, Léonard Hussenot, Pier Giuseppe Sessa, Aakanksha Chowdhery, Adam Roberts,
Aditya Barua, Alex Botev, Alex Castro-Ros, Ambrose Slone, Amélie Héliou, Andrea
Tacchetti, Anna Bulanova, Antonia Paterson, Beth Tsai, Bobak Shahriari, Charline Le Lan,
Christopher A. Choquette-Choo, Clément Crepy, Daniel Cer, Daphne Ippolito, David Reid,
Elena Buchatskaya, Eric Ni, Eric Noland, Geng Yan, George Tucker, George-Christian
Muraru, Grigory Rozhdestvenskiy, Henryk Michalewski, Ian Tenney, Ivan Grishchenko,
Jacob Austin, James Keeling, Jane Labanowski, Jean-Baptiste Lespiau, Jeff Stanway,
Jenny Brennan, Jeremy Chen, Johan Ferret, Justin Chiu, Justin Mao-Jones, Katherine
Lee, Kathy Yu, Katie Millican, Lars Lowe Sjoesund, Lisa Lee, Lucas Dixon, Machel
Reid, Maciej Mikuła, Mateo Wirth, Michael Sharman, Nikolai Chinaev, Nithum Thain,
Olivier Bachem, Oscar Chang, Oscar Wahltinez, Paige Bailey, Paul Michel, Petko Yotov,
Rahma Chaabouni, Ramona Comanescu, Reena Jana, Rohan Anil, Ross McIlroy, Ruibo
Liu, Ryan Mullins, Samuel L Smith, Sebastian Borgeaud, Sertan Girgin, Sholto Douglas,
Shree Pandya, Siamak Shakeri, Soham De, Ted Klimenko, Tom Hennigan, Vlad Feinberg,
Wojciech Stokowiec, Yu hui Chen, Zafarali Ahmed, Zhitao Gong, Tris Warkentin, Ludovic
Peran, Minh Giang, Clément Farabet, Oriol Vinyals, Jeff Dean, Koray Kavukcuoglu,
Demis Hassabis, Zoubin Ghahramani, Douglas Eck, Joelle Barral, Fernando Pereira,
Eli Collins, Armand Joulin, Noah Fiedel, Evan Senter, Alek Andreev, and Kathleen
Kenealy. Gemma: Open models based on gemini research and technology, 2024. URL
https://arxiv.org/abs/2403.08295.

11

https://arxiv.org/abs/2403.08295

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi Zheng, Shengding Hu, Zhiyuan Liu,
Maosong Sun, and Bowen Zhou. Enhancing chat language models by scaling high-quality
instructional conversations. arXiv preprint arXiv:2305.14233, 2023.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie,
Zhiyuan Liu, and Maosong Sun. Ultrafeedback: Boosting language models with high-
quality feedback. arXiv preprint arXiv:2310.01377, 2023.

Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush,
Nathan Lambert, Shengyi Huang, Kashif Rasul, and Quentin Gallouédec. Trl: Transformer
reinforcement learning. https://github.com/huggingface/trl, 2020.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao
Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with
mt-bench and chatbot arena. Advances in Neural Information Processing Systems, 36,
2024.

Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap, Banghua Zhu, Joseph E. Gonzalez, and
Ion Stoica. From live data to high-quality benchmarks: The arena-hard pipeline, April
2024. URL https://lmsys.org/blog/2024-04-19-arena-hard/.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao
Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang, Joseph E. Gonzalez,
and Ion Stoica. Judging llm-as-a-judge with mt-bench and chatbot arena, 2023b.

12

https://github.com/huggingface/trl
https://lmsys.org/blog/2024-04-19-arena-hard/

A Hyper-parameter setting

A.1 Supervised fine-tuning setup

We use a learning rate of 2.5e− 5, warmup ratio of 0.03, and batch size of 8 for Llama2-7B
and Mistral-7B, and 16 for Gemma-2B. For each of these models, we train two supervised fine-
tuned models with different random seeds. Flash attention is applied to conserve resources,
and the maximum sequence length is set to 2048 tokens for all models.

A.2 Reward model training

The reward model training uses a learning rate of 2e− 5, with a batch size of 8. We apply a
weight decay of 0.001 and use the AdamW optimizer. The learning rate schedule follows a
linear decay policy.

A.3 RLHF setup

For the RLHF stage, we use different learning rates: 2e− 6 for Llama2-7B and Mistral-7B,
and 1e− 7 for the Gemma-2B model. The batch size is set to 8, with 2 epochs of training.
We set the initial KL divergence coefficient to 0.2 for the PPO experiments and 0.01 for the
SALSA experiments.

A.4 KL divergence

The model soup resides on the line between two SFT models. As previous work by Wortsman
et al. [2022] has shown, each point along the line between two fine-tuned models can
improve the accuracy compared to the individual fine-tuned models. With this intuition, we
hypothesize that there is a broader search space around the model soup that can still be
beneficial for RLHF. Essentially, instead of searching for a model that does not diverge from
a single SFT model, we can find models that do not diverge from the line between two SFT
models. This allows for higher KL-divergence from the model soup. To verify this hypothesis,
we tried using a small KL-divergence coefficient of β = 0.01 for PPO as well (in comparison
to β = 0.2 in the optimal setting). Figure 6 illustrates that while PPO converged to a state
producing gibberish output, SALSA, using the same β value, achieved its optimal win rate.
Furthermore, high KL coefficients cannot be applied when using SALSA because the response
length tends to converge to zero. Specifically, if the response length y for a given prompt x is
zero, the KL divergence between the trained policy and the frozen policy (whether reference
or soup model) also becomes zero. As a result, the policy can gravitates toward regions
where the response length is zero, a phenomenon we refer to as the KL-Hack. Investigating
this issue is an interesting future research direction.

A gibberish response from PPO when KL coefficient is small (0.01)

<|user|>
yo GPT can you make a text about spaghetti and sand?
<|assistant|>
Gucci Piperoni, gccce, sfkbyn Kreczel,
yucca, sand, fennel, clove, marjantrest,
yeti, sem, kava, haly, cilantro,
yeti, sem, kava, haly, clouro”,
yucca, sand, fennel.

Figure 6: A gibberish response from PPO when KL coefficient is small (0.01)

B Prompt Used for Judgment by GPT4-Turbo

Figure 7 illustrates the prompt utilized to employ GPT4-Turbo as judge in our experiments.

13

Prompt for Judgment
Please act as an impartial judge and evaluate the quality of the responses provided by two
AI assistants to the user question displayed below.
You should choose the assistant that follows the user’s instructions and answers the user’s
question better. Your evaluation should consider factors such as the helpfulness, relevance,
accuracy, depth, creativity, and level of detail of their responses.
Begin your evaluation by comparing the two responses and provide a short explanation.
Avoid any position biases and ensure that the order in which the responses were presented
does not influence your decision.
Do not allow the length of the responses to influence your evaluation. Do not favor certain
names of the assistants. Be as objective as possible.
After providing your explanation, output your final verdict by strictly following this format:
”[[A]]” if assistant A is better, ”[[B]]” if assistant B is better, and ”[[C]]” for a tie.

Figure 7: Instruction prompt for AI response evaluation

C An example of generated answers by SALSA and PPO

Figure 8 displays responses generated by SALSA and PPO for a question from the Ultra-
Feedback dataset.

Comparison of PPO and SALSA Methods

Question

I am planning a vacation and need your help to optimize the trip

PPO
I do not have access to information about
your specific vacation goals and interests.
However, here are some general tips that can
help you optimize your vacation:
1. Choose a travel package: there are many
travel packages that include a range of ser-
vices, including flights, hotel stays, and ac-
tivities. Choose one that includes everything
you need to have a comfortable and enjoyable
vacation.
2. Book your flights and hotel stays ahead
of time: booking your flights and hotel stays
ahead of time can save you money and time.
It also gives you a better chance to get the
best deals and availability. 3. Book your ac-
tivities in advance: booking your activities in
advance can save you money and time. Many
attractions and activities have discounts or
promotions for booking ahead of time.
4. Use public transportation: taking public
transportation is a great way to save money
on transportation costs. It also allows you to
experience the local culture and get off the
beaten path.
5. Eat like a local: eating like a local can
save you money on eating out and also give
you a taste of the local culture.

SALSA
Sure, I’d be happy to help you optimize your vaca-
tion! Here are some tips to get you started:
1. Plan ahead: Take some time to plan your vacation
in advance, including your travel dates, destinations,
and activities. This will help you avoid last-minute
expenses and ensure that you have enough time to
do everything you want to do.
2. Research your destination: Do your research on
your destination, including what you want to see,
do, and eat. This will help you make the most of
your time and money.
3. Use travel apps: There are many travel apps
that can help you stay organized and on track. For
example, TripAdvisor can help you find the best
restaurants and attractions, while Google Maps can
help you plan your transportation.
4. Make use of travel rewards: Take advantage of
your travel rewards, including points and miles. This
will help you save money on your trip and make it
more enjoyable.
5. Be flexible: Be flexible with your travel plans,
and don’t be afraid to try new things. This will help
you avoid getting stuck in a routine and make your
trip more exciting.

Figure 8: Qualitative comparison of PPO and SALSA.

D Win Rates

This section provides a comprehensive breakdown of win rates across all our experiments.
We have included the details of win rates for all the experiments for llama2-7b in table 2, for

14

Table 2: Comparison of SALSA, PPO, and SFT across Various Datasets for Llama2-7B
Model

Dataset Comparison Win Loss Tie Win Rate Adj. Win Rate

Llama2-7B Model

MT-Bench

SALSA 29 21 110 18.12 52.50
PPO 21 29 110 13.12 47.50

SALSA 36 28 96 22.50 52.50
SFT 28 36 96 17.50 47.50

PPO 23 21 116 14.37 50.63
SFT 21 23 116 13.12 49.37

Arena-Hard

SALSA 102 62 335 20.44 54.01
PPO 62 102 335 12.42 45.99

SALSA 91 44 365 18.20 54.70
SFT 44 91 365 8.80 45.30

PPO 58 52 387 11.67 50.60
SFT 52 58 387 10.46 49.40

UltraFeedback

SALSA 477 447 1075 23.86 50.75
PPO 447 477 1075 22.36 49.25

SALSA 504 415 1080 25.21 52.23
SFT 415 504 1080 20.76 47.77

PPO 443 417 1136 22.19 50.65
SFT 417 443 1136 20.89 49.35

gemma-2b in table 4 and for Mistral-7b in table 3. For each dataset we have compared the
win rates of SALSA over PPO, SALSA over SFT and PPO over SFT. We have included win
rates and adjusted win rates. SALSA consistently outperforms PPO and SFT.

E Multiple KL

Table 5 gives additional info of win MKL win rate over PPO. We compared MKL win rate
over PPO over MT-Bench and Arena-Hard and in both cases MKL doesn’t outperform PPO.
This means simply trying to use multiple models is not gonna be effective and doing weight
averaging in SALSA is crucial for effectiveness.

15

Table 3: Comparison of SALSA, PPO, and SFT across Various Datasets for Mistral-7B
model

Dataset Comparison Win Loss Tie Win Rate Adj. Win Rate
Mistral-7B Model

MT-Bench

SALSA 30 24 105 18.87 51.89
PPO 24 30 105 15.09 48.11

SALSA 42 23 95 26.25 55.94
SFT 23 42 95 14.37 44.06

PPO 28 23 109 17.50 51.56
SFT 23 28 109 14.37 48.44

Arena-Hard

SALSA 109 65 326 21.80 54.40
PPO 65 109 326 13.00 45.60

SALSA 126 69 305 25.20 55.70
SFT 69 126 305 13.80 44.30

PPO 71 67 362 14.20 50.40
SFT 67 71 362 13.40 49.60

UltraFeedback

SALSA 497 401 1102 24.85 52.40
PPO 401 497 1102 20.05 47.60

SALSA 465 388 1146 23.26 51.93
SFT 388 465 1146 19.41 48.07

PPO 455 450 1095 22.75 50.65
SFT 450 455 1095 20.89 49.35

Table 4: Comparison of SALSA, PPO, and SFT across Various Datasets for Gemma-2B
model

Dataset Comparison Win Loss Tie Win Rate Adj. Win Rate

Gemma-2B Model

MT-Bench

SALSA 37 14 109 23.13 57.19
PPO 14 37 109 8.75 42.81

SALSA 40 18 102 25.0 56.88
SFT 18 40 102 11.25 43.12

PPO 14 8 138 8.75 51.88
SFT 8 14 138 5.0 48.12

Arena-Hard

SALSA 154 117 229 30.8 53.7
PPO 117 154 229 23.4 46.3

SALSA 154 116 230 30.8 53.8
SFT 116 154 230 23.2 46.2

PPO 24 19 451 4.86 50.51
SFT 19 24 451 3.84 49.49

UltraFeedback

SALSA 174 147 1660 8.78 50.68
PPO 147 174 1660 7.42 49.32

SALSA 300 129 1548 15.17 54.32
SFT 129 300 1548 6.53 45.68

PPO 276 129 1580 13.90 53.70
SFT 129 276 1580 6.50 46.30

16

Table 5: Comparison of MKL and PPO across MT-Bench and Arena-Hard for Mistral-7B.
Dataset Comparison Win Loss Tie Win Rate Adj. Win Rate

MT-Bench MKL 69 85 340 13.97 48.38
PPO 85 69 340 17.21 51.62

Arena-Hard MKL 20 29 111 12.50 47.19
PPO 29 20 111 18.13 52.81

17

	Introduction
	Related Works
	Model Soup
	Reinforcement Learning from Human Feedback (RLHF)

	Method
	RLHF
	Model Soup
	SALSA

	Experiments
	Experimental setups
	Reward Analysis
	Main Results
	Ablation Study

	Conclusion
	Hyper-parameter setting
	Supervised fine-tuning setup
	Reward model training
	RLHF setup
	KL divergence

	Prompt Used for Judgment by GPT4-Turbo
	An example of generated answers by SALSA and PPO
	Win Rates
	Multiple KL

