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ABSTRACT

The demand for large quantities of high-quality annotated images poses a signif-
icant bottleneck for developing an effective deep learning-based classifiers in the
biomedical domain. We present a simple yet powerful solution to the cold start
problem, i.e., selecting the most informative data for annotation within unlabeled
datasets. Our framework encompasses three key components: (i) Pretraining an
encoder using self-supervised learning to construct a meaningful data represen-
tation of unlabeled data, (ii) sampling the most informative data points for anno-
tation, and (iii) initializing a model ensemble to overcome the lack of validation
data in such contexts. We test our approach on four challenging public biomedical
datasets. Our strategy outperforms the state-of-the-art in all datasets and achieves
a 7% improvement on leukemia blood cell classification task with 8 times faster
performance. Our work facilitates the application of deep learning-based clas-
sifiers in the biomedical fields, offering a practical and efficient solution to the
challenges associated with tedious and costly, high-quality data annotation.

1 INTRODUCTION

When collaborating with clinical or biomedical experts in the development of health AI models,
computer scientists often encounter a fundamental question: “How many labels are required to train
an accurate classifier?”

The central challenge revolves around the selection of initial data for annotation when no initial
labels are available—a common conundrum known as the cold start problem. The cold start prob-
lem refers to the initial phase of training where, in the absence of any labels or prior knowledge
about the data, we are tasked with identifying and selecting the most informative data points for
annotation, a crucial step that lays the groundwork for any subsequent semi-supervised or fully su-
pervised training. This is especially critical in the biomedical domain. The scarcity of expert time
for manual annotation makes the cold start problem even more daunting, as it becomes a bottleneck
in advancing medical AI applications (Yakimovich et al., 2021). Specifically in active learning and
few-shot learning paradigms, previous works by Shetab Boushehri et al. (2022), Yi et al. (2022),
and Jin et al. (2022) demonstrated that careful selection of the initial annotation budget significantly
accelerates and facilitates reaching peak performance in models trained on biomedical images with
limited annotations like few-shot learning and active learning. Biomedical images significantly dif-
fer from natural images in color, contrast, complexity, and class distribution (van der Plas et al.,
2019). Respective datasets exhibit class imbalance, limited diversity in shapes and color ranges,
and rely on subtle feature variations for class distinctions—characteristics not commonly found in
natural images. Moreover, biomedical images vary significantly across domains and experimental
setups, further complicating the analysis (Blasi et al., 2016; Zhou, 2018; Konz et al., 2022). Fur-
thermore, the absence of a validation set and limited knowledge about class distribution and data
imbalances during initial data selection pose additional challenges.

The cold start problem has recently drawn considerable attention, underscoring the necessity of de-
veloping advanced techniques capable of identifying a high-quality initial annotated subset (Chandra
et al., 2021; Jin et al., 2022; Yi et al., 2022; Wang et al., 2022; Mannix & Bondell, 2023). All works
so far acknowledge that unlabeled pretraining is beneficial in arranging a clustered latent that is more
straight forward for sampling initial data (Chandra et al., 2021; Yi et al., 2022) which is widely ex-
plored by Bengar et al. (2021) in active learning concepts. Current approaches seek to identify an
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Figure 1: Our proposed framework has three steps for addressing the cold start problem for biomed-
ical image classifiers: We employ SimCLR to pretrain the encoder and generate a meaningful rep-
resentation of the unlabeled data. We apply furthest point sampling (FPS) to identify the most
informative initial data to be labeled. Having a fixed budget for expert annotations for our budget,
we start training the classifier head, where we apply model soups to achieve the best performance of
the classifier in the absence of an adequate validation set.

informative annotation budget by sampling from latent space regions, either dense or sparse, using
clustering and density estimation (Chandra et al., 2021; Jin et al., 2022). However, these methods
haven’t substantially outperformed random selection. This may be due to the sensitivity of many
clustering techniques to parameters and dependency on prior knowledge about the class distribu-
tion of the data, while still, an accurate estimation of density in high (e.g., 128)-dimensional spaces
is not guaranteed (Aggarwal et al., 2001). Some alternative methods propose adding optimizable
clustering-based techniques to identify samples for the deep pre-trained encoder, providing more
diverse samples based on the model’s understanding (Wang et al., 2022; Mannix & Bondell, 2023).
While promising, these techniques require significant resource and time during the initial training.

So far, none of the previous studies have applied their methods to the biomedical domain, where
the cold start problem is both a practical concern and of significant importance. This highlights a
notable research gap in addressing the unique challenges posed by biomedical datasets characterized
by their complexity and the lack of comprehensive annotations.

We propose a straightforward solution for the cold start problem and test it on four biomedical image
datasets. Building upon prior findings, we investigate three state-of-the-art self supervised learning
(SSL) methods as a pretraining step to embed the entire unlabeled dataset in a meaningful latent
space. Subsequently, we explore four different sampling strategies to select the most informative
initial data points given a fixed annotation budget. Eventually, we address the lack of a validation
set with model soups. Figure 1 depicts our proposed framework.

The main contributions of our works are:

• We are the first to address the cold start problem on challenging real-world biomedical
datasets.

• We quantitatively compare three state-of-the-art self-supervised learning (SSL) meth-
ods—SimCLR (Chen et al., 2020), DINO (Caron et al., 2021), and SwAV (Caron et al.,
2020)—to derive a meaningful representation of unlabeled data. We find SimCLR as the
best SSL technique for biomedical data.

• We conduct a rigorous ablation study to assess the performance of four sampling strategies
and identify furthest point sampling (FPS) (Qi et al., 2017) as the most effective technique
to identify the most representative biomedical data points.

• We are the first proposing the model soups technique (Wortsman et al., 2022) to alleviate
the challenges of lacking a reliable validation set and knowledge about classes distributions.

• We make our framework’s code publicly available in a well documented repository, pro-
moting transparency and reproducibility in research.

2 METHODDOLOGY

We begin with the dataset X containing a total of n images. Within this dataset, we define an anno-
tation budget denoted as (X̃, Ỹ ). Here, X̃ represents a subset of m images selected from X (where
m� n). This subset also includes corresponding labels denoted as Ỹ , which are to be annotated by
domain experts. This annotated budget, (X̃, Ỹ ), serves as the sole source of information for training
a classifier model, denoted as hγ(fθ(.)). This model comprises two main components: (i) Backbone
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fθ(.) with parameters θ that is responsible for encoding input images into a lower-dimensional latent
space, denoted as Z = fθ(X), and (ii) a linear classifier head hγ , which takes the latent representa-
tions Z as input and performs a classification tasks based on the provided labels Ỹ . The classifier’s
parameters are denoted as γ.

Pretraining. The central challenge lies in the selection of informative and representative data for
annotation where no information about labels and distribution of classes is provided. To address
this challenge, we leverage the intrinsic information of the data through the self-supervised pre-
training of the backbone fθ(.). We consider SimCLR (Chen et al., 2020), SwAV (Caron et al.,
2020), and DINO (Caron et al., 2021) architectures by embedding fθ(.) as the deep encoder. These
architectures show state-of-the-art performance in contrastive-instance, clustering-based, and self-
distillation-based SSL approaches, respectively, and have demonstrated promising performance on
widely recognized computer vision benchmark datasets, such as ImageNet (Russakovsky et al.,
2015). At the end of pretraining, the trained backbone generates a meaningful latent representation
of data, where semantically similar data are mapped close to each other and far from dissimilar data,
resembling a clustered space ( see Figure 1).

Sampling. Random data selection lacks a strategic approach, treating all data points uniformly
regardless of their information content or location within the latent space. This can results in an-
notating closely clustered or redundant data points while overlooking those at cluster boundaries,
missing the opportunity to enhance model performance. Inspired by Qi et al. (2017), who used the
FPS algorithm (see Algorithm 1) to sample points from non-uniform distributions within 3D object
point clouds, we sample from the non-uniform distribution within our latent data space.

Algorithm 1 Furthest point sampling (FPS)

1: Z := {z1, . . . , zm} // Set of all the points
2: dZ : Z × Z → R≥0 // Distance metric
3: m ∈ N+ // Number of samples
4: Z̃ ← {z ∈ Z} // Initialize the sampled points set with a random point
5: while |Z̃| < m do
6: z∗ = argmax

z∈Z
min
z̃∈Z̃

dZ(z, z̃) // Furthest point from the sampled points set

7: Z̃ ← Z̃ ∪ z∗ // Update the sampled points set
8: end while
9: return Z̃

In the latent representation of our dataset Z := {z1, z2, ..., zn} FPS selects the first point randomly
and then iteratively choses points z∗, in a way that maximizes the minimum distance to any of the
previously selected points, i.e., z∗ = argmaxz∈Z minz̃∈Z̃ D(z, z̃), where z∗ is the selected point
in the current iteration, z represents a point in the point cloud Z, Z̃ is the set of points selected
in previous iterations, and D(z, z̃) calculates the Euclidean distance between points z and z̃. This
method ensures the creation of a representative and well-distributed initial annotation set, effectively
capturing both dense and sparse clusters within the data distribution. This systematic process guar-
antees that each newly chosen point contributes significantly to covering the remaining unselected
data points, thus preserving the diversity of the data distribution mentioned by Wang & Ji (2020).

We also leverage the k-means clustering technique, known for its efficacy in high-dimensional
space (Aggarwal et al., 2001). By applying k-means to the latent point cloud of unlabeled data,
we aim to identify meaningful clusters. Subsequently, we employ three distinct sampling strate-
gies: selecting data points closest to the centroids, opting for those farthest from the centroids, and
a combination of half from the closest group and half from the farthest (closest/farthest). Given
the absence of prior knowledge regarding the optimal number of clusters, we rigorously experiment
with various k values to comprehensively explore the latent space’s structure.

Initialization. We train the classifier head hγ by encoded sampled image set Z̃ and its corresponding
labels Ỹ in a supervised manner. As conventional training-validation splits may not provide reliable
results when annotated samples are scarce, we employ the concept of ”model soups” proposed by
Wortsman et al. (2022). Model soups involve averaging the weights of multiple models, each trained
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with varying hyperparameters. In our case, we focus on varying learning rates. This approach
effectively bypasses the need for extensive validation, achieving comparable results. The principle
behind this effectiveness lies in the exploration of global minima. Assuming the existence of a global
minimum, different hyperparameters lead to classifiers with weights localized around this minimum
(see Algorithm 2). We can effectively reduce noise and enhance model robustness by obtaining
multiple sets of weights through varied hyperparameters and averaging them.

Algorithm 2 Uniform model soup

1: Wi := {wi1, . . . , win} // Weights of model hγ
2: W := {W1, . . . , Wm} // Set of weights of all the trained models
3: W ∗ =

{
1
|W|

∑n
j=1 w1j , . . . ,

1
|W|

∑n
j=1 wmj

}
// Averaging weights to make the model soup

4: return W ∗

3 RELATED WORKS

Cold start learning. Chandra et al. (2021) delved into an exploration of label-free pretraining tech-
niques, including SimCLR (Chen et al., 2020) for self-supervised learning (SSL), VAE (Kingma &
Welling, 2013), and SCAN (Van Gansbeke et al., 2020) for unsupervised methods. These works
revealed SimCLR as the most promising pretraining approach among these methods. On top of SSL
pretraining, (Chandra et al., 2021; Jin et al., 2022; Yi et al., 2022; Mannix & Bondell, 2023) intro-
duced unique sampling techniques to identify the most informative data. Jin et al. (2022) introduced
a hierarchical clustering technique, to sample from high-density regions of latent space. While dense
regions primarily capture nearby data points and may overlook those situated farther away, Yi et al.
(2022) proposed monitoring the SSL model loss to select both challenging and straightforward data
samples, achieving more balanced coverage. However, none of these methods show a significant
improvement compared to random initial data selection. Recent studies by Wang et al. (2022) and
Mannix & Bondell (2023) demonstrated significant performance improvements through the use of
semi-supervised learning techniques. Wang et al. (2022), introduce an adaptable clustering-based
methodology designed to pinpoint data points situated at the periphery of densely clustered regions
within the latent space. These identified points are considered as the most informative candidates for
forming the initial annotation budget. Mannix & Bondell (2023) utilize k-medoids sampling within
the low-dimensional projection of the latent space, referred to as cold PAWS, using t-SNE (Mannix
& Bondell, 2023). Their approach demonstrates improved time efficiency and superior performance
compared to (Wang et al., 2022). However, t-SNE operates as a stochastic algorithm, resulting in
varying outcomes across different runs. This inherent stochasticity can introduce unpredictability
into the sampling process. Furthermore, it demands significant computational resources due to its
computational intensity and sensitivity to hyperparameters. Consequently, these factors can signifi-
cantly impact efficiency, particularly when handling large datasets. The primary limitation in most
of previous studies is the oversight of the unavailability of a validation set, which can be seen as a
form of information leakage in this context. None of the previous works have reported results that
specifically address a real-world scenario, particularly one involving biomedical datasets, character-
ized by data complexity and the overall information about the dataset, making it a critical area for
further research.

Self-supervised pretraining. The foundation of SimCLR, SwAV, and DINO lies in the pretrain-
ing of a deep encoder, denoted as fθ(.), which serves as the backbone for SSL. Within the latent
realm of SimCLR, data points representing meaningful features exhibit a distinctive tendency to
cluster naturally along the surface of a hypersphere. This intrinsic clustering plays a pivotal role in
defining the latent space’s character. Consequently, the constructed latent point cloud (Z) in Sim-
CLR encompasses the entire unlabeled dataset, providing a reflection of data dispersion within the
manifold.

SwAV also benefits from the clustering tendencies within the latent space to shape feature repre-
sentations. The latent point cloud (Z) in SwAV is also constructed to capture the dispersion of data
within the manifold, encompassing the entire unlabeled dataset. SwAV’s key innovation compared
to SimCLR is its shift from traditional contrastive learning to clustering-based learning, with the goal
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Figure 2: We benchmark various pretraining and sampling methods on four distinct biomedical
datasets: (a) microscopic images of single white blood cells (Matek, n = 18, 365), (b) skin lesion
photographs (ISIC, n = 25, 331), (c) fundus images for diabetic retinopathy detection and severity
classification (Retinopathy, n = 3, 662), and (d) imaging flow cytometry images of cell stages
(Jurkat, n = 32, 266). For each class, we present an example image and the total number of images.

of creating clusters of semantically similar data points. The use of multiple views and assignment
swapping further enhances SwAV’s ability to learn meaningful representations in natural images.

In contrast, DINO introduces a unique paradigm through self-distillation, where a teacher network
(fθt ) guides the learning of a student network (fθs ) without explicit labels. DINO employs a dis-
tillation loss that encourages the student network to approximate the teacher’s predictions. Several
techniques, including centering and sharpening, are introduced to prevent mode collapse and en-
hance learning, making DINO distinctive in its approach.

Prioritizing classification tasks that necessitate discriminative feature learning, we chose self-
supervised learning over generative models like Masked Autoencoders (MAE) (He et al., 2022).
This aligns with the findings by Chandra et al. (2021) and Shetab Boushehri et al. (2022), where
the effectiveness of discriminative SSL in biomedical data is demonstrated. Moreover, methods like
MAE’s dependence on large-scale Vision Transformers Dosovitskiy et al. (2021) was impractical
for our dataset size.

4 EXPERIMENTS

4.1 DATA

We conduct experiments on four biomedical image datasets (see Figure 2).

• Matek: Microscopic images of single-cell white blood cells for studying Acute Myeloid
Leukemia (AML) featuring 18,365 images in 15 classes (Matek et al., 2019).

• ISIC: Skin lesion photographs, with a focus on melanoma-related cases, consisting of
25,331 images categorized into eight diagnostic classes (Codella et al., 2018).

• Retinopathy: Fundus images for diabetic retinopathy detection and severity classification,
encompassing 3,662 retina images in five severity classes (Karthik & Dane).

• Jurkat: Imaging flow cytometry images capturing cells in different cell cycle stages, with
32,266 images categorized into seven cell cycle phase classes (Eulenberg et al., 2017).

To address data sparsity in certain classes (see Figure 2), we adopt an 9:1 data split. We employ the
validation set for monitoring mode collapse in the pretraining phase. The training split is utilized
to train the backbone using SSL. Subsequently, we select sample points from the training split and
paired data with their respective labels for supervised training of the classifier head. All reported
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Figure 3: SimCLR outperforms other SSL techniques in generating a meaningful representation of
unlabeled data. 2D UMAP representations of the latent space for the Matek dataset generated by
(a) SimCLR, (b) SwAV, and (c)DINO. Cell types are shown in different colors. SimCLR excels by
creating the most medically relevant clustered latent space, highlighting its effectiveness in capturing
meaningful latent representations.

results are obtained from evaluations conducted on the isolated test split. To mitigate the influence
of inherent randomness in our methods, we conduct each experiment five times, each time setting a
different random seed. We report mean and standard deviation of the results.

4.2 TRAINING

We chose the Resnet-34 (He et al., 2016) encoder as the backbone fθ(.) owing to its consistently
robust performance across all datasets.

Self-supervised pretraining. We employ data augmentations from the original SimCLR
method (Chen et al., 2020), such as random cropping, rotation, color jitter, and Gaussian blur. Sim-
ilarly, we apply the original training configurations of DINO (Caron et al., 2021) and SwAV (Caron
et al., 2020) for our experiments with these methods. These augmentations are adjusted for each
dataset to ensure that augmented images did not become semantically ambiguous. Notably, we do
not utilize the local views for DINO due to the use of relatively small image sizes (128 for Matek,
ISIC, and Retinopathy, and 64 for Jurkat). To monitor the pretraining progress, we focus on de-
tecting instances of mode collapse within the latent space. This is accomplished by observing the
variance of image representations in the latent space during training.

SimCLR emerges as the standout performer, demonstrating its ability to handle datasets with high
data imbalance. In DINO, which relies on self-distillation, the student network heavily relies on
guidance from the teacher network. Consequently, when dealing with minority class data, it may
face challenges in effectively distilling knowledge from the teacher network. SwAV, on the other
hand, prioritizes the creation of well-balanced clusters as its primary objective. However, this em-
phasis on cluster balance may come at the cost of learning highly discriminative features, especially
in complex datasets where subtle feature variations are essential for accurate classification or under-
standing. Furthermore, in imbalanced datasets where some classes have significantly fewer samples
than others, clustering algorithms like SwAV may struggle to create well-balanced clusters, further
complicating the learning process. To illustrate the performance of these three SSL techniques, we
visualize 2D UMAP (Uniform Manifold Approximation and Projection), (McInnes et al., 2018)
projection of Matek dataset in Figure 3.

Sampling. We conduct a comparative analysis with Cold PAWS (Mannix & Bondell, 2023), as the
state-of-the-art method. We specifically consider the variant labeled as ”best k-medoids (t-SNE)”
as described in the original paper. Our implementation does not incorporate a semi-supervised
approach on top of it; instead, we solely rely on labeled data for training the classifier head. We
make this decision to ensure a fair comparison between models designed to accommodate unlabeled
data and those that do not, considering the potential impact this might have on the results. We
also train a classifier using images sampled entirely randomly for evaluation purposes. This random
sampling approach establishes a robust baseline for our experiments, serving as a lower performance
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bound for our proposed framework. It’s worth mentioning that we refrain from comparing our work
with Wang et al. (2022)’s approach due to the unavailability of their source code.

Classifier head training. We utilize a fixed pretrained backbone, denoted as fθ, to project each
input image into a 512-dimensional feature space. On top of this feature representation, we train the
classifier head with 512 input features and a number of output features, corresponding to the classes
present within the annotation budget. Subsequently, we employ model soups to refine the classifier
head weights. During testing, we utilize this trained model to classify data beyond the annotated
subset. Any images belonging to classes not included in the subset are considered misclassified. To
establish an upper performance bound, we train the classifier head with fully annotated data in a
setting where proper validation is performed, focusing on maximizing the F1-macro score.

4.3 EVALUATION

Performance. Given the inherent data imbalance in all datasets, we assess the performance of our
proposed method using various metrics, including F1-macro, balanced accuracy, Cohen’s kappa,
and the area under the precision-recall curve. Table 1, shows the performance of four samplings.
We compare the results to random initialization (lower bound), supervised classifier training (upper
bound) on the full data, and cold paws (Mannix & Bondell, 2023) to assess our approach’s effec-
tiveness in biomedical image processing. FPS outperforms other samplings in three of four datasets
(for results on other metrics see Appendix A.1). The key insight from our table is that by judiciously
selecting limited annotations, we can significantly narrow this gap from the initial state of active
learning. This demonstrates that strategic data selection in the initial phase of active learning can
approach the optimal performance achievable with a fully annotated dataset.

F1-macro Balanced accuracy
Sampling method Matek ISIC Retinopathy Jurkat Matek ISIC Retinopathy Jurkat

Random 0.30±0.01 0.30±0.02 0.46±0.04 0.23±0.01 0.32±0.02 0.34±0.03 0.47±0.04 0.25±0.02

Cold paws 0.37±0.02 0.30±0.02 0.49±0.04 0.23±0.01 0.42±0.04 0.33±0.02 0.50±0.04 0.24±0.03
Furthest (k=100) 0.37±0.02 0.30±0.02 0.50±0.03 0.21±0.03 0.43±0.04 0.36±0.02 0.52±0.04 0.31±0.08
Closest (k=100) 0.38±0.02 0.29±0.01 0.51±0.04 0.23±0.01 0.42±0.01 0.32±0.01 0.52±0.05 0.23±0.01

Closest/furthest (k=50) 0.38±0.02 0.31±0.01 0.50±0.04 0.24±0.01 0.43±0.03 0.35±0.02 0.50±0.05 0.28±0.01
Furthest point sampling 0.41±0.02 0.32±0.02 0.54±0.02 0.22±0.01 0.49±0.05 0.35±0.01 0.55±0.02 0.33±0.07

Full data 0.49±0.03 0.43±0.00 0.61±0.01 0.35±0.00 0.71±0.03 0.56±0.00 0.65±0.01 0.50±0.01

Table 1: FPS achieves the highest F1-macro score on Matek, ISIC, and Retinopathy, while for the
Jurkat dataset closest/furthest sampling applied on k=50 clusters showed the best performance. The
best performance is displayed in bold (excluding using full data). Mean and standard deviation is
estimated for five runs for each experiment. k in parentheses corresponds to the number of clusters
in the pre-clustering step. Results show the performance of the classifier learned with 100 annotation
budget.

Class coverage. Table 2 presents a comparative analysis of class coverage across our experiments.
This assessment examines the ability of each approach to capture the diversity of classes within
the dataset, particularly in scenarios involving class imbalances and critical classes. The table un-
derscores the significance of sampling methods that demonstrate the best coverage across different
data distributions. Our analysis shows how well each approach captures the diversity of classes
within the dataset, which is crucial in imbalanced and critical-class scenarios. For instance, in the
case of the retinopathy dataset, the latent distribution forms a clustered space where each cluster
exhibits a heterogeneous distribution of all classes (see Appendix A.2). As a result, all sampling
techniques excel in achieving optimal class coverage during initial data selection. Conversely, for
Matek dataset, characterized by a high-class imbalance, features non-uniformly sized homogeneous
clusters in the latent space (see Appendix 7). This poses a challenge for most sampling techniques
to achieve comprehensive class coverage.

Efficiency. We assess the computational efficiency of different data sampling methods (Table 3).
The the time complexity of FPS is O(nm), while time complexity of Cold paws is O(n2m), where
m represents the size of annotation budget and n the size of whole dataset. Indeed, Cold paws,
with its iterative t-SNE process, proves to be more computationally demanding, especially for large
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Sampling method Matek ISIC Retinopathy Jurkat

Random 5.6±0.9 7.4±0.5 5.0±0.0 4.0±0.7

Cold paws 8.2±1.3 6.8±0.4 5.0±0.0 4.0±1.0
Furthest (k=100) 10.0±0.7 7.6±0.5 5.0±0.0 5.8±0.4
Closest (k=100) 7.4±0.5 6.4±0.5 5.0±0.0 3.2±0.4

Closest/furthest (k=50) 8.4±0.9 7.8±0.4 5.0±0.0 4.4±0.5
Furthest point sampling 11.0±0.7 7.8±0.4 5.0±0.0 5.6±0.5

Full data 15.0±0.0 8.0±0.0 5.0±0.0 7.0±0.0

Table 2: Comparative class coverage analysis across diverse data distributions with annotation bud-
get of 100. Over all datasets FPS provides the best coverage. All sampling techniques excel in
the retinopathy dataset as classes are distributed in clusters (see Figure A.2). Values are mean and
standard deviation from five independent runs.

datasets. In contrast, FPS, while slightly adding overhead compared to random sampling, remains
highly efficient across various dataset sizes.

Sampling method Matek ISIC Retinopathy Jurkat

Random 0.4±0.0 0.5±0.1 0.1±0.0 0.6±0.1

Cold paws 34.1±0.4 53.9±1.6 5.6±0.1 75.8±1.8
Furthest (k=100) 6.9±1.2 10.0±1.5 0.8±0.1 14.3±2.4
Closest (k=100) 7.7±1.4 10.3±2.0 0.7±0.0 11.8±1.1

Closest/furthest (k=50) 3.8±0.5 5.2±0.8 0.5±0.0 7.3±1.4
Furthest point sampling 6.8±1.4 8.6±1.7 0.7±0.3 10.0±0.3

Table 3: Sampling method runtimes in seconds (↓) for an annotation budget of 100. Mean and
standard deviation are calculated from 5 runs for each experiment. The worst-performing method
is, cold paws (underlined). FPS is five times faster than this state-of-the-art.

Ablation study. We study the performance of all sampling strategies while we determine the opti-
mal number of k-means clusters for each method. We widely experiment with the effect of k-mean
clustering with a variant number of clusters on sampling performance (Figure 4). To see more explo-
ration on sampling strategies using variant budgets and number of clusters please refer to Appendix
A.3. We conduct similar experiments on bigger annotation budget (200, and 500 images). As ex-
pected, we observe a diminishing performance gap between our best-performing method and the
random baseline, particularly as the annotation budget increases (Appendix A.4).

To evaluate the performance of different SSL techniques in our framework, we monitored the clas-
sification performance achieved base on each approach. Figure 5a shows F1-score for the FPS strat-
egy, while Figure 5b illustrates the best classification outcomes with different sampling techniques
applied to latent representations generated by three SSL techniques.

It’s worth noting that FPS appears to share a conceptual similarity with algorithms like Gon algo-
rithm (Dyer & Frieze, 1985). While Cold PAWS reports promising results with their approach, our
experiments on biomedical datasets did not corroborate these findings. It’s important to consider
that Cold paws utilizes the testing dataset for early stopping, potentially introducing information
leakage into their results.

Model soups. Figure 6 visually illustrates the effectiveness of model soups technique in enhancing
the performance of our proposed method when a validation set is unavailable. The effect of model
soups on the performance of our framework using other sampling techniques is shown in Appendix
A.5.
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Figure 4: Consistant outperformance of FPS across all datasets compared to other sampling strate-
gies, demonstrating superior performance without any need for clustering. Each case evaluates the
effectiveness of different sampling strategies applied with varying numbers of clusters. Annotation
budget is fixed to 100. Upper and lower bounds from five runs are shown with doted/dashed lines.
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different SSL techniques. (a) shows the performance based on FPS sampling, while (b) shows the
best performance utilizing all sampling strategies (see also Appendix A.3).
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Figure 6: Optimized classifier parameters with model soups in absence of validation data. Our
experiments utilize 100 labeled samples and multiple random seeds for each biomedical dataset and
involve training three linear heads with varying learning rates (0.1, 0.01, and 0.001).

5 CONCLUSION

Our work proposes an effective solution to tackle the cold start problem in challenging biomedical
datasets that excels in the absence of prior data knowledge or a suitable validation set. Our ap-
proach encompasses generating meaningful representations of unlabeled data, conducting diverse
sampling while taking into account the data distribution density, and aggregating the optimal model
weights even when a validation set is unavailable. Our work is a significant step towards the effi-
cient annotation of unlabelled data. This is particularily relevant for the the development of decision
support systems in medical diagnostics, where the annotation of large data sets is typically limited
by expensiveness and scarcity of medical experts.
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A APPENDIX

A.1 EVALUATION OF CLASSIFICATION PERFORMANCE ON OTHER METRICS

In this section, we present detailed results of our approach (see Table 4). Throughout the thesis, we
utilized the F1-macro metric as our primary measure due to its sensitivity to classes regardless of
their sample counts. Our choice of this metric is driven by the equal importance of all the classes
in each dataset. Furthermore, to underscore the robustness of our approach, we offer additional
widely-used metrics.

Cohen’s kappa (↑) Area under the precision-recall curve (↑)
Sampling method Matek Isic Retinopathy Jurkat Matek Isic Retinopathy Jurkat

random 0.88±0.03 0.33±0.02 0.52±0.02 0.30±0.02 0.31±0.02 0.28±0.02 0.49±0.03 0.25±0.01

cold paws 0.86±0.05 0.35±0.03 0.57±0.03 0.28±0.03 0.40±0.01 0.29±0.02 0.51±0.03 0.24±0.01
furthest (k=100) 0.84±0.02 0.34±0.03 0.56±0.02 0.18±0.06 0.39±0.01 0.30±0.01 0.53±0.03 0.27±0.06
closest (k=100) 0.89±0.03 0.35±0.01 0.58±0.02 0.30±0.03 0.38±0.01 0.28±0.00 0.55±0.04 0.23±0.01

closest/furthest (k=50) 0.88±0.02 0.36±0.02 0.58±0.03 0.25±0.03 0.39±0.01 0.30±0.01 0.53±0.04 0.26±0.01
furthest point sampling 0.87±0.02 0.37±0.02 0.61±0.02 0.23±0.02 0.43±0.01 0.31±0.02 0.59±0.01 0.28±0.04

full data 0.80±0.03 0.46±0.00 0.65±0.01 0.47±0.00 0.58±0.02 0.49±0.00 0.68±0.01 0.46±0.01

Table 4: Other classification metrics (↑) for the annotation budget of 100. The best performance is
always displayed in bold (excluding using full data).

A.2 LATENT REPRESENTATION OF BIOMEDICAL DATASETS USING SSL TECHNIQUES

Figure7 shows the 2D UMAP projection of biomedical dataset’s latent space achieved by three SSL
techniques. Table 5

The strength of SimCLR compared to SwAV and DINO is shown in Table 5.

SwAV DINO
Sampling method Matek Isic Retinopathy Jurkat Matek Isic Retinopathy Jurkat

random 0.27±0.01 0.26±0.02 0.39±0.02 0.17±0.00 0.20±0.01 0.20±0.02 0.36±0.03 0.13±0.01

cold paws 0.28±0.01 0.27±0.02 0.39±0.03 0.16±0.01 0.17±0.03 0.21±0.01 0.29±0.04 0.14±0.00
furthest (k=100) 0.31±0.04 0.26±0.03 0.38±0.02 0.20±0.04 0.17±0.02 0.19±0.01 0.29±0.02 0.13±0.01
closest (k=100) 0.29±0.01 0.25±0.01 0.42±0.03 0.15±0.01 0.20±0.01 0.19±0.02 0.31±0.04 0.15±0.00

closest/furthest (k=50) 0.29±0.01 0.25±0.02 0.39±0.03 0.19±0.03 0.20±0.02 0.17±0.00 0.28±0.04 0.15±0.01
furthest point sampling 0.29±0.02 0.28±0.03 0.38±0.02 0.17±0.04 0.18±0.03 0.21±0.01 0.27±0.01 0.11±0.01

full data 0.47±0.01 0.38±0.00 0.46±0.01 0.32±0.00 0.24±0.00 0.26±0.00 0.37±0.01 0.21±0.01

Table 5: Other self-supervised learning techniques. We observe that the performance benefit of our
non-naive methods over the random baseline is less prominent (or worse) with both self-supervised
methods.

A.3 SAMPLING ON TOY DATASETS

Here we illustrate the coverage of various sampling techniques across different data distribution
models, as explored in our ablation study. In this figure, each column shows a toy distribution, and
each row depicts the result of each sampling strategy using hyperparameters of their best perfor-
mance estimated with our main experiments. Additionally, we include the results obtained using
the cold PAWS method for comprehensive comparison. For visual demonstrations of the tested
sampling methods on toy datasets generated from typical probability distributions, see Figure 8).

A.4 DETAILED INFLUENCE OF ANNOTATION BUDGET SIZE ON THE PERFORMANCE

To gain a deeper understanding of the scalability and potential of our approach, we executed ex-
periments with varying initial annotation budgets. Specifically, we explored annotation budgets of
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Figure 7: Biomedical Data Latent Distribution is shown here. In these UMAP 2D representations
of four biomedical datasets, (a) Matek, (b) ISIC, (c) Retinopathy, and (d) Jurkat, colored by class,
we visualize the latent distribution created by SimCLR, SwAV, and DINO (rows up-down). Matek
exhibits a homogeneously clustered class distribution, whereas Retinopathy displays a more hetero-
geneous distribution. Jurkat and ISIC datasets do not exhibit strong clustering.

100, 200, and 500 images (representing less than 3%, 7%, and 17% of the smallest dataset (i.e.,
Retinopathy)), shedding light on the utility of our method as the annotation budget increases (see
Table 6 Figure 9).

annotation budget of 200 annotation budget of 500
Sampling method Matek Isic Retinopathy Jurkat Matek Isic Retinopathy Jurkat

random 0.33±0.02 0.32±0.02 0.51±0.03 0.25±0.01 0.37±0.04 0.32±0.01 0.57±0.05 0.26±0.01

cold paws 0.38±0.01 0.32±0.00 0.54±0.02 0.24±0.01 0.40±0.02 0.32±0.02 0.54±0.03 0.25±0.01
furthest (k=200|500) 0.35±0.01 0.32±0.01 0.51±0.03 0.22±0.01 0.37±0.02 0.33±0.00 0.56±0.02 0.26±0.01
closest (k=200|500) 0.40±0.01 0.30±0.01 0.52±0.02 0.25±0.00 0.41±0.00 0.33±0.01 0.57±0.03 0.26±0.01

closest/furthest (k=100|250) 0.39±0.02 0.33±0.01 0.54±0.03 0.26±0.02 0.40±0.01 0.33±0.00 0.57±0.01 0.28±0.01
furthest point sampling 0.42±0.01 0.34±0.01 0.55±0.03 0.24±0.01 0.41±0.00 0.35±0.01 0.60±0.03 0.26±0.01

full data 0.49±0.03 0.43±0.00 0.61±0.01 0.35±0.00 0.49±0.03 0.43±0.00 0.61±0.01 0.35±0.00

Table 6: F1-macro (↑) for the annotation budget of 200 and 500.
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Figure 8: Visual demonstration of different sampling methods. Points selected by a given method
are drawn in black. Where preclustering was used, we also provided separation boundaries between
neighboring clusters.
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Figure 9: Visual demonstration of different sampling methods. Points selected by a given method
are drawn in black. Where preclustering was used, we also provided separation boundaries between
neighboring clusters.

A.5 MODEL SOUPS VS. SAMPLING

Model soups, in general, emerged as a crucial strategy, particularly for enhancing robustness and
facilitating domain knowledge transfer. Demonstrating their effectiveness, we empirically show

14



Under review as a conference paper at ICLR 2024

how averaging weights of models (i.e., uniform soup, as referred to in the original paper) trained
with varying hyperparameters—such as learning rates in our case—can circumvent the need for
validation while yielding comparable results (see Figure 10).

Figure 10: Comprehensive comparison of model soups performance against varying learning rates
across multiple datasets and sampling strategies. The datasets are represented column-wise, while
the different sampling techniques are delineated row-wise. Within each experimental setup, we
trained the classifier head with 5 distinct initial weight configurations (depicted on the x-axis) com-
bined with various learning rates (indicated by different shapes in the plot). The results consis-
tently demonstrate that model soups, in most instances, effectively match or surpass the performance
achieved by the most optimal learning rate. Results are shown for the annotation budget of 100.
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