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Abstract

Multi-agent systems have emerged as a promis-
ing approach for enhancing the reasoning ca-
pabilities of large language models in com-
plex problem-solving. However, current MAS
frameworks are limited by poor flexibility and
scalability, with underdeveloped optimization
strategies. To address these challenges, we pro-
pose ReSo, which integrates task graph genera-
tion with a reward-driven two-stage agent selec-
tion process. The core of ReSo is the proposed
Collaborative Reward Model, which can pro-
vide fine-grained reward signals for MAS coop-
eration for optimization. We also introduce an
automated data synthesis framework for gen-
erating MAS benchmarks, without human an-
notations. Experimentally, ReSo matches or
outperforms existing methods. ReSo achieves
33.7% and 32.3% accuracy on Math-MAS and
SciBench-MAS SciBench, while other meth-
ods completely fail. Code is available at: ReSo

1 Introduction

Increasing inference time has emerged as a critical
method to enhance the reasoning capabilities of
large language models (LLMs)(Snell et al., 2024).
Two primary approaches have been explored: (1)
optimizing a large reasoning model (Xu et al.,
2025) by reinforcement learning and reward mod-
els during post-training, which could generate inter-
mediate reasoning steps before answering (OpenAl
et al., 2024b; DeepSeek-Al et al., 2025) and (2)
leveraging multi-agent system (MAS) collabora-
tion to complete complex tasks that are difficult to
solve by single inference (Han et al., 2024; Guo
et al., 2024; Wang et al., 2024b; Tran et al., 2025).

Compared to the success of inference time scal-
ing on the single LLM, MAS faces multiple chal-
lenges. (1) Most are handcrafted, with limited scal-
ability and adaptability. The lack of an effective
agent self-organization mechanism hinders large-
scale cooperation. (2) Most assume all agent abili-
ties are fully known while assigning tasks, which

is unrealistic for LLM-based agents. (3) Reward
signals are restricted to missing, self-evaluation or
outcome only, resulting in poorly defined optimiza-
tion objectives. (4) Existing MASs lack mecha-
nisms for dynamically optimizing agent networks,
making it difficult to achieve data-driven improve-
ments. To address these limitations, we ask: Can
we design a self-organizing MAS to learn directly
from data via reward signals without handcrafting?
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Figure 1: Overview of ReSo pipeline. ReSo first de-
composes the task into a DAG; and then constructs an
agent graph by topological sorting. First, it searches
for agent candidates for each subtask node from the
dynamic agent database (DADB). Then it leverages the
Collaborative Reward Model (CRM) to choose the best
agent and update the agent estimation in DADB.

To realize this potential, we propose ReSo, a
reward-driven self-organizing MAS that integrates
task graph generation and agent graph construction.
The key innovation of our approach is the incor-
poration of fine-grained reward signals by the Col-
laborative Reward Model (CRM), which leads to
dynamic optimization of agent collaboration. Dif-
ferent from existing MASs, our approach is both
scalable and optimizable, achieving state-of-the-art
performance on complex reasoning tasks.

While extensive datasets exist for evaluating the
reasoning capabilities of LLMs (Chang et al., 2023;
Guo et al., 2023), high-quality MAS evaluation
benchmarks are scarce. Therefore, we propose
an automatic data synthesis method to generate
various MAS tasks by converting existing LLM
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benchmarks into complex collaboration problems.
This method provides step-by-step reward signals
without additional human annotations, enabling
efficient and scalable MAS evaluation.

Our contributions can be summarized as:

* We propose ReSo, the first scalable and opti-
mizable self-organizing MAS framework.

* We first propose a Collaborative Reward
Model, which can provide fine-grained reward
signals for multi-agent collaboration.

* We present an automatic data synthesis
method to generate arbitrarily complex MAS
tasks from existing LLM benchmarks.

» Experimental results demonstrate the superior
performance of ReSo on challenging tasks.

2 Related Work
2.1 Reward Guidance

The reward model has become a critical compo-
nent in enhancing the capabilities of LLMs through
post-training (Wang et al., 2024d). By providing
feedback on the quality of LLM outputs, RMs facil-
itate performance improvement, enabling models
to generate more accurate and detailed responses.
The concept of reward-guided learning was first
introduced in InstructGPT (Ouyang et al., 2022),
which uses human feedback to fine-tune LLMs,
aligning their behavior with user intent. In addition
to outcome-based supervision, process-based su-
pervision has been shown to improve the reasoning
process itself (Uesato et al., 2022), enhancing not
just the final answer but also the steps leading to it.

Building on this, (Lightman et al., 2023) intro-
duced a process reward model (PRM) fine-tuned
on PRMS8O00OK, which provides fine-grained and
interpretable rewards for every reasoning step.
Similarly, (Wang et al., 2024c) developed Math-
Shepherd, an approach capable of autonomously
generating process supervision data. Despite the ad-
vantages of neural-based reward models in terms of
generalization, they also suffer from reward hack-
ing (Gao et al., 2022; Skalse et al., 2022). To
mitigate this, some recent approaches have em-
ployed rule-based rewards (DeepSeek-Al et al.,
2025) or fixed inference budgets (Muennighoff
et al., 2025), which have also proven effective. No-
tably, DeepSeek-R1 (DeepSeek-Al et al., 2025)
incorporates both output accuracy and reasoning
format evaluation, achieving the performance on
par with OpenAI-O1 (OpenAl et al., 2024b; Qin

et al., 2024). DeepSeek-R1 demonstrates that only
using large-scale reinforcement learning based on
rule-based reward during post-training can stim-
ulate LLM’s excellent reasoning ability, without
supervised fine-tuning.

2.2 Multi-Agent System

Recent advances in LLM-based MAS have raised
expectations for their ability to tackle increasingly
complex reasoning tasks (Han et al., 2024; Guo
et al., 2024; Wang et al., 2024b; Tran et al., 2025).

Predefined cooperation in MAS relies on struc-
tured interactions and role assignments before col-
laboration. Early works focus on MAS infrastruc-
ture, including Camel, AutoGen, and AgentVerse
(Li et al., 2023; Wu et al., 2023; Chen et al., 2023).
Some approaches adopt standard operating proce-
dures for structured task decomposition, as seen in
MetaGPT and ChatDev (Hong et al., 2024; Qian
et al., 2024a; Dong et al., 2024). Fixed topologies
are most adopted, such as hierarchical structures
in MOA (Wang et al., 2024a) and directed acyclic
graphs in MacNet and MAGDI (Qian et al., 2024b;
Chen et al., 2024c). Predefined role interactions are
also widely used such as debate (Du et al., 2023),
criticism (Chen et al., 2024b), and certain math rea-
soning patterns (Gou et al., 2024; Lei et al., 2024;
Xi et al., 2024). Predefined MASs exhibit several
limitations including: (1) Scalability and adaptabil-
ity being constrained by the imposition of rigid role
assignments and fixed topological structures. (2)
The unrealistic assumption that the agent’s abilities
are fully known when assigning tasks, which is
particularly problematic for LLM-based agents.

Optimizable cooperation in MAS aims to dynam-
ically adapt interaction topology and agent roles.
GPTSwarm (Zhuge et al., 2024) formulates MAS
as optimizable computational graphs, refining node
prompts and inter-agent connectivity via evolution-
ary algorithms. DyLAN (Liu et al., 2024b) em-
ploys a layerwise feedforward agent network and a
mutual rating mechanism to dynamically optimize
MAS. G-Designer (Zhang et al., 2025a) utilizes
variational graph auto-encoders to optimize MAS.
Current optimizing approaches are highly under-
explored. They often lack reliable, fine-grained
reward signals for MAS collaboration, relying in-
stead on outputs or self-generated reward mecha-
nisms. Meanwhile, dynamic network optimization
algorithms for MAS are also lacking.
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Figure 2: Illustration of our proposed ReSo. (a) We decompose the question into a subtask DAG. (b) The training
of ReSo: we first use the UCB score to perform a coarse search in DADB and select top-k agents, then score the
inference results using CRM, and update DADB by rewards. Repeat the above process for each node in DAG
by topological order. (c) The testing of ReSo: we directly select the best agent from DADB without CRM. The
determined agent collaboration pattern is the best path with the highest UCB score in the decision tree.

3 Methods

To tackle the existing challenges in MAS research,
we propose two core innovations: (1) ReSo, a
reward-driven self-organizing MAS, which is capa-
ble of autonomously adapting to complex tasks and
a flexible number of agent candidates, eliminating
the need for handcrafted solutions. (2) Introduction
of a Collaborative Reward Model (CRM), specifi-
cally tailored to optimize MAS performance. CRM
can deliver fine-grained reward signals on multi-
agent collaboration, enabling data-driven MAS per-
formance optimization.

3.1 Problem Formulation

We define a MAS algorithm f745 as a function
that, given a natural language question (), generates
a graph-structured task decomposition, solves each
subtask, and produces a final answer:

fuas(Q) = (G =(V,E), Ay, Ag) (1)

Here, G = (V, E) represents the task decom-
position graph, which is structured as a directed
acyclic graph (DAG). The set of nodes V =
{v1,v9,...,v,} corresponds to the subtasks de-
rived from @), while the edges £ C V x V
define the dependencies between these subtasks.
The system produces subtask answers Ay =

{av,, @y, ..., ay,} and ultimately derives the fi-
nal answer Ag. To achieve this, we decompose
farag into two sub-algorithms:

fMAS(Q) = fagent S ftask(Q) (2)

ftask 18 responsible for constructing the task de-
composition graph from the input question, ensur-
ing a structured breakdown of the problem into
subtasks and dependencies. f,gent dynamically se-
lects and assigns appropriate agents to solve the
identified subtasks. This modular design enables
independent optimization of each component, al-
lowing for greater flexibility and scalability.

For the MAS-generated answer Ag to be con-
sidered correct, the following conditions must be
satisfied: (1) All subtask answers must be correct.
(2) All directed edges must correctly enforce the
dependency relationships among subtasks. (3) The
final output Ag must be correct.

3.2 Task Graph Construction

In the proposed method, fiqsx first transforms the
question () into a directed acyclic task graph G:

ftask:Q — G:(V:E) 3)

where G represents the decomposition of the origi-
nal task ). Each node v; € V is a natural language



subtask, and each directed edge (v; — v;) € F
indicates that the subtask v; depends on the suc-
cessful completion of v;.

In practice, we perform supervised fine-tuning
(SFT) on an LLM to perform this step of task de-
composition. Using our synthetic data, we explic-
itly require the LLM to decompose () into logical
sub-problems, specify their execution order and
dependencies, and output in a format of DAG.

3.3 Two-Stage Agent Search

Once the task graph is obtained, we need to assign
each subtask to the most appropriate agent. We
denote this agent assignment procedure as fagent-
Conceptually, fugens classifies each node in the task
graph according to the most suitable agent from a
large agent pool A, constructing an agent graph
that maps each node to one or more selected agents.

fagent :v: €V — a; € A 4

Since A can contain a large number of agents,
we first introduce the concept of Dynamic Agent
Database. Then we decompose the agent graph
construction on every subtask into two search al-
gorithms from coarse to fine-grained: first, select a
subset of candidates from DADB then utilize the
reward model to evaluate and select the best agent.

3.3.1 Dynamic Agent Database

To increase MAS’s scalability and flexibility, we
propose the Dynamic Agent Database (DADB),
denoted as A, which enables adaptive agent selec-
tion by maintaining both static and dynamic agent
profiles. For each agent a; € A, its static profile in-
cludes the base model, role settings, initial prompt,
long-term memory, and tools. The dynamic pro-
file, continuously updated via the reward model,
tracks the agent’s average reward R(a;), computa-
tional cost C'(a;), and task count n(a;). Initially,
agents have only static attributes, while training
iteratively refines their evaluations by the process
reward model, optimizing future selection.

Given an input task v;, the DADB assigns a pre-
liminary quality score ()(a;, v;) to each agent a;,
balancing task-agent similarity, historical perfor-
mance, and computational costs:

Q(ai,vj) = sim(a;,v;) - perform(a;)  (5)

where sim(a;, v;) represents the similarity between
the subtask’s target profile and the agent’s static
profile. In practice, we employ a Heaviside func-
tion which ensures that only agents exceeding a

predefined similarity threshold V;;, are considered:
sim(ai,v;) = H[(qi,a;) — Vi) where q;, a;
are text embedding of subquestion and the agent
static profile. The perform(a;) term is given by
perform(a;) = R(a;) — BC(a;), where /3 con-
trols the trade-off between the agent’s historical
performance and cost.

3.3.2 Coarse Agent Search by UCB

Given a DADB A and a subtask v;, our first objec-
tive is to retrieve a promising subset of k£ candidate
agents. To take advantage of the known informa-
tion in DADB, also to explore unused agents, we
adopt an Upper Confidence Bound value:

N

UCB(ai, q5) = Q(ai,qj) + ¢ (@) +2

(6)
where N is the total number of agent selections
and n(a;) the number of times agent ¢ is se-
lected, € < 1. c is a constant controlling the
exploration-exploitation trade-off. Agents with
higher UCB scores are more likely to be selected,
helping the MAS to explore potentially under-
utilized agents. For each subtask ¢;, we sort agents
by their UCB(a;, ¢;) and choose the top £ agents
as the candidate set Acang = { a1, a2, ..., ax}.

3.3.3 Fine-grained Agent Evaluation by CRM

Once the candidate agents A¢,nq are selected, we
evaluate their performance on the current subtask
v; using a Collaborative Reward Model (CRM).
This evaluation process is straightforward: each
candidate agent a; generates an answer to the sub-
task v;: a;(v;), and then we assess the quality of
that answer based on a reward signal:

r(a;,v;) = RewardModel(ai,vj,ai(vj)) 7

where RewardModel evaluates the quality of the
solution based on the given agent’s profile, subtask,
and previous reasoning process. After evaluating
the agents, we assign the agent with the highest
reward, a, to the subtask node v;, which means
a;’s solution is used as v;’s answer. This process
is repeated for each subtask on the graph.

The reward 7(a;,v;) is computed using the
CRM, which can be either rule-based (e.g., binary
correctness: 0 for incorrect, 1 for correct) or neural-
based (providing a score between 0 and 1 for qual-
ity). The reward model evaluates how well the
agent’s response aligns with the expected outcome,
factoring in both the solution’s correctness and its
collaboration within the MAS.



3.4 Training and Inference Stage

Our multi-agent system can operate in two modes:
training and testing. During training, we leverage
a high-quality reward r(a;, v;) available for evalu-
ating the correctness of every step of MAS. Upon
receiving r(a;, v;) for each candidate agent, we
update that agent’s dynamic profile in DADB. For
instance, we may maintain a running average of
rewards:

n(a;) - R(a;) + r(ai,v;)
n(al) +1

R(a;) ®)
similar for updating costc(a;, v;). By iteratively
learning from data, the DADB can dynamically
update agent evaluations based on historical reward,
facilitating adaptive agent selection and improving
both efficiency and performance. During testing,
the reward model is no longer required. Instead, we
leverage the learned DADB to select the best agent
candidates and the best answer to each subtask.

3.5 The Perspective of MCTS

The task graph, after topological sorting, forms a
decision tree where each node represents a subtask
and the edges denote dependencies. At each level,
we use UCB to prune the tree and select a subset
of promising agents, then simulate each agent and
evaluate their performance using the CRM. The re-
sulting reward updates the agent’s dynamic profile,
refining the selection strategy. The MAS construc-
tion is essentially finding the optimal path from the
root to the leaves, maximizing the UCB reward for
the best performance.

Consider there are N agents and a task requiring
D agents to collaborate. Assume that the average
inference cost is ¢ and the matching cost in DADB
is s < c per agent. A brute-force search has a
complexity of O(c-NP), which becomes infeasible
as D and D grow. In contrast, our self-organizing
strategy, selecting topk per step, reduces the cost to
O((s- N+ NlogN +k-c)- D), offering a near-
linear scaling with N and D, making the approach
highly scalable for large NV and D.

4 Data Synthesis

A key challenge in MAS is the lack of structured
datasets for evaluating and training agent collabo-
ration. To address this, we propose an automated
framework that converts existing LLM datasets into
structured, multi-step MAS tasks, enabling fine-
grained evaluation without human annotations.

Random DAG Generation We begin by gener-
ating a DAG, G = (V, E). Each node v; € V
will be filled with a subtask (g¢;, a;), where g; is
the textual description of the task, and a; is its nu-
merical answer. The subtasks are sampled from
the existing LLM benchmarks. The edges E will
encode dependency constraints between subtasks,
ensuring that the solution to one subtask is required
as an input for another, modeling the sequential
reasoning process of multi-agent collaboration.

Subtask Selection and Filling To populate the
nodes of G, we construct a master pool of candidate
subtasks, denoted as P. Each candidate subtask
p; € P consists of a textual problem description
s;, and a numerical answer a;. After obtaining
‘P, we randomly sample from it and fill one ques-
tion per node into the generated DAG. Candidate
subtasks should have clear numerical or option an-
swers, such as SciBench (Wang et al., 2024f), Math
(Hendrycks et al., 2021), GPQA (Rein et al., 2023),
etc. To ensure that the problem is computationally
feasible for later dependency construction, we ex-
tract a numerical constant ¢; € R from the problem
text. If the extracted constant is valid, the subtask
is retained in P; otherwise, it is discarded. This
ensures that only problems with well-defined nu-
merical attributes are incorporated.

Dependency Edge Construction After all nodes
are populated, we generate natural language depen-
dency descriptions for edges. Each edge (v; — vy)
should represent a relationship which connects pre-
vious subtask v;’s answer a;, with subsequent sub-
task v ’s question parameter ci. For each edge, we
generate a textual description e, such as “in this
question, cj = previous answer + 3.” Formally, it is
an algorithm that constructs a string from two num-
bers: e;; = f(aj,cx). f can be implemented using
elementary arithmetic and text templates, ensuring
that no answers or parameters in the original sub-
task need to be manually modified. Once the DAG
is fully constructed, we refine node descriptions by
removing any explicitly given numerical constants
{¢;} that are now dependent on the results of prior
nodes. Finally, an entire graph described in natural
language is a piece of synthetic data.

The proposed data synthesis framework gener-
ates structured, multi-step reasoning tasks with ad-
justable sizes, ensuring diverse and scalable prob-
lem structures. The synthesized dataset supports
both training and testing, enabling fine-grained
evaluation without human annotations.



Math-MAS SciBench-MAS

Method

Easy Medium Hard 7Tokens Easy Medium Hard Tokens
GPT-4o 27.5 9.0 0.0 22k 393 12.5 1.6 2.1k
Gemini-2.0-Flash ~ 69.2 247 9.0 3.0k 645 33.8 9.7 2.5k
Claude-3.5-Sonnet  12.1 0.0 0.0 1.0k 224 6.2 32 1.4k
Qwen2.5-Max 44.0 13.5 4.5 29k  55.1 30.0 4.8 2.8k
DeepSeek-V3 52.7 24.7 124 22k 523 31.3 129 23k
MetaGPT 30.8 12.4 2.2 16.1k  48.6 2.5 0.0 14.6k
DyLAN 40.7 9.0 0.0 64.1k 48.6 25 0.0 77.8k
GPTSwarm 35.2 5.6 4.5 149k  31.8 6.3 1.6 18.2k
GDesigner 14.2 5.6 0.0 169k 243 12.5 0.0 19.0k
ReSo (ours) 79.1 56.2 33.7 14.6k 67.3 51.3 323 20.7k

Table 1: Accuracy and average token usage on Math-MAS and SciBench-MAS. Bold and underlined represent
optimal and suboptimal results, respectively. Tokens denotes the average number of tokens consumed per task.

5 Experiments

In Sec 5.1, we first use public datasets to create
complex MAS benchmarks and fine-tune ReSo’s
task decomposition and collaborative reward mod-
els. All code, datasets, and models are publicly
available. In 5.2, we train and evaluate ReSo on
both public and synthetic datasets. Sec 5.3 presents
ablation studies on task decomposition, agent se-
lection, and reward guidance mechanisms.

5.1 Data Synthesis and Model Fine-tuning

5.1.1 Data Synthesis

MATH (Hendrycks et al., 2021) consists of prob-
lems from diverse mathematical domains, while
SciBench (Wang et al., 2024f) includes scientific
reasoning tasks spanning physics, chemistry, and
mathematics. Using these datasets, we apply the
synthetic data generation method outlined in Sec
4 to create two datasets: one for single LLM fine-
tuning and another for benchmarking. Difficulty is
categorized by the number of subtasks—Easy (3),
Medium (5), and Hard (7).

Fine-tuning data For fine-tuning task decom-
position LLLM, we generate 14,500 questions and
answers from the MATH training set, with numbers
of subtasks ranging from 2 to 6. For fine-tuning the
neural-based CRM, we generate 5,000 questions
from the same set, with 5 subtasks per question.

MAS Benchmarks We select 201 questions from
SciBench as the sub-question data pool and syn-
thesized complex data using the method in 4.
This forms the SciBench-MAS dataset, comprising
200 easy-level training questions and 247 testing

questions (107 easy, 80 medium, 62 hard). For
MATH (Hendrycks et al., 2021), 348 level-5 ques-
tions are selected, from which we generate the
Math-MAS dataset, consisting of 269 test ques-
tions for ReSo (91 easy, 89 medium, 89 hard).

5.1.2 Model Fine-tuning

Task Decomposition Model Training To ensure
high-quality task composition, we fine-tune a spe-
cialized model for task decomposition based on
Qwen?2.5-7B-Instruct. We use 14500 dialogues on
task decomposition as described in 5.1.1, and fine-
tune the model under a batch size of 128 and a
learning rate of le-4 for 3 epochs. The fine-tuned
model can reliably produce task decomposition in
a structured format.

CRM Training The proposed CRM is fine-tuned
based on Qwen2.5-Math-PRM-7B (Zhang et al.,
2025b), which can provide effective process reward
signals on MAS collaborative reasoning tasks. We
use 5000 samples of sub-tasks with their answers as
described in 5.1.1. We follow a simplified training
scheme of PRMs, where the model should only
perform binary classification on the special token
at the end of the answer. The model is trained with
a batch size of 128 and a learning rate of 1e-4 for
5 epochs. The fine-tuned model can output the
probability of the answer being correct, which is
then taken as the collaborative reward signal.

5.2 Main Results of ReSo

Models and MASs We compare ReSo with state-
of-the-art LLM and MAS methods. Our single-
LLM baselines include GPT-40 (OpenAl et al.,
2024a), Gemini-2.0-Flash (Team et al., 2024),
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Figure 3: ReSo outperforms other MAS methods by a significant margin in complex reasoning accuracy.

Claude-3.5-Sonnet (Anthropic, 2024), Qwen2.5-
Max (Yang et al., 2024), DeepSeek-V3 (Liu et al.,
2024a). For ReSo, we build an agent database
that includes these base models, extended to 63
agents with different prompts. For MAS, we eval-
uate MetaGPT (Hong et al., 2024), DyLAN (Liu
et al., 2024b), GPTSwarm (Zhuge et al., 2024),
GDesigner (Zhang et al., 2025a), SEDM (Li et al.,
2024b). All MAS baselines use GPT-40 as the
backbone.

ReSo Training We train our ReSo framework us-
ing the SciBench-MAS training data as described
in 5.1.1. Figure 4 shows that ReSo’s accuracy in-
creases with the training process, demonstrating
that DADB effectively updates the estimation of
each agent’s capability and gradually learns to build
a better agent graph.
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Figure 4: Training Curve of ReSo.
Comparisons with LLMs As shown in Table 1,

most single-model agents exhibit a sharp decrease
in accuracy as the difficulty increases. At the hard
difficulty level, their accuracy approaches zero, sug-
gesting that single LLMs struggle with composi-
tional reasoning. In particular, we show the results
of these single LLMs on single Math and Scibench
datasets in Appendix A.2, with accuracy rates of

80%-90%. This means that a single LLM can suc-
cessfully solve a single sub-problem in the dataset,
but its generalization ability for combined complex
problems is very limited.

Comparisons with MASs Notably, ReSo out-
performs other approaches in both the Math-MAS
and SciBench-MAS datasets. At the hard difficulty
level, ReSo reaches an accuracy of 33.7% on Math-
MAS and 32.3% on SciBench-MAS, while other
MAS methods almost completely fail.

Token Efficiency Table 1 also compares the av-
erage number of tokens consumed per task. ReSo
maintains a relatively moderate token usage, which
is significantly lower than certain baselines like
DyLAN (14.6k vs 64.1k, 20.7k vs 77.8k). This bal-
ance between performance and computational cost
underlines ReSo’s practical efficiency in real-world,
large-scale scenarios.

Results on Existing Benchmarks Our method
excels not only on complex task datasets but also
on existing commonly used benchmarks. Table 2
shows our evaluation of the original MATH and
SciBench datasets, where ReSo (ours) achieves the
highest accuracy across all the tasks. Notably, it
outperforms GPT-40 and other baselines, reaching
89.8% on MATH and leading across SciBench cat-
egories. These results demonstrate ReSo’s strong
generalization and effectiveness in mathematical
and scientific reasoning.

Table 2: Accuracy on existing benchmarks.

Method MATH SciBench

Math  Phys Chem
GPT-3.5-Turbo 34.1 25.56 1483 32.11
GPT-40 81.1 66.8 53.4 60.1
SEDM - 61.4 50.3 56.1
GPTSwarm 81.0 60.5 36.6 49.7
ReSo (ours) 89.8 71.9 60.6 61.9
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Figure 5: Results of ablation studies. (a) Fine-tuning on domain-specific training data can significantly improve the
decomposition quality, thus enhancing overall system performance. (b) Our robust agent selection strategy within
the MAS is significant to the performance. (c) Compared to general reward models, our fine-tuned reward model is
more task-specific and brings more precise reward signals, thus improving the system performance.

5.3 Ablation Studies

We conduct ablation studies on our proposed multi-
agent system, examining three core designs: task
decomposition, agent selection, and reward signal.

Task Decomposition We compare three differ-
ent approaches to task decomposition: (1) Ground
Truth, representing an upper bound with human-
crafted, meticulously designed task breakdowns;
(2) GPT-4, which autonomously decomposes com-
plex tasks into sub-tasks without targeted fine-
tuning; and (3) Qwen2.5-7B-SFT, a model fine-
tuned on our dataset based on Qwen2.5-7B, specif-
ically adapted to generate more effective decompo-
sitions for complex questions. Figure 5(a) presents
the reasoning accuracy under different decompo-
sition strategies. The ground-truth decomposition
consistently yields the highest accuracy, underscor-
ing the critical role of precise subproblem segmen-
tation. Meanwhile, the fine-tuned task generator
surpasses the naive GPT-4 approach, demonstrating
that even a small amount of domain-specific train-
ing data can significantly improve decomposition
quality and enhance overall system performance.

Agent Selection We compare three strategies for
agent selection: a random strategy, a greedy strat-
egy that always selects the most matching profile,
and our proposed ReSo approach. As shown in
Figure 5(b), ReSo significantly outperforms other
strategies across all the datasets, which emphasizes
the importance of a robust agent selection strategy
within the multi-agent framework. By strategically
assigning each sub-task to the most suitable agent,
the system can handle increasingly complex tasks
with markedly better accuracy.

Reward Signal We investigate the impact of dif-
ferent reward signals on system optimization, con-
sidering three approaches: (1) Rule-based, which
provides strictly accurate, predefined evaluations
for sub-task solutions; (2) General Reward Model,
using Qwen2.5-Math-PRM-7B as a reward func-
tion without task-specific fine-tuning; and (3) Fine-
tuned Reward Model, i.e., our CRM proposed
in Section 3.3.3. Figure 5(c) presents the results
of training our MAS under these reward schemes
on the SciBench-MAS dataset. The rule-based re-
ward yields the best results, confirming the im-
portance of precise reward signals. Besides, our
CRM brings a slight improvement compared to the
original Qwen2.5-Math-PRM-7B model. We also
observe an instance of reward hacking when using
the Qwen reward model: specifically, Qwen2.5-
Max tends to receive inflated scores when acting as
the reasoning agent. As a result, during inference,
the MAS disproportionately selects Qwen2.5-Max
to handle sub-tasks, even in cases where it does not
necessarily produce the best solutions.

6 Conclusion

In this work, we introduce ReSo, a reward-driven
self-organizing MAS for complex reasoning. By
integrating a collaborative reward model, ReSo au-
tomates agent selection and collaboration, improv-
ing scalability and adaptability. The automated
data synthesis framework eliminates manual anno-
tations. Experiments show that ReSo outperforms
existing MAS and single LLM baselines. All codes,
models, and data have been open-sourced. We ex-
pect ReSo to enable co-optimization of MAS and
LLM to further enhance reasoning capabilities.



7 Limitations

Although the base model for the agents is a fixed
model, ReSo has demonstrated strong optimizabil-
ity and scalability as well as good performance. A
further interesting research question is: Can the
optimization of MAS be performed together with
the optimization of a single LLM agent? Specifi-
cally, can the reward signal given to the model by
our CRM in each step of cooperation be combined
with the reinforcement learning-based post-training
of a single model to further optimize MAS at both
the macro and micro levels? This means a dynamic
agent cooperation network, where agents can not
only learn how to interact with each other but also
fine-tune their weights through feedback from co-
operation. We look forward to follow-up research.

8 Ethical Considerations

While our proposed ReSo framework focuses on
reasoning tasks in the domains of mathematics
and science, it has the potential to be applied in
other, possibly unethical, contexts. Such misuse
could pose significant threats to human society. We
strongly urge readers to carefully consider these
ethical implications and to adopt a conscientious
approach in the development and application of
these methods.

References

Al Anthropic. 2024. The claude 3 model family: Opus,
sonnet, haiku. Claude-3 Model Card.

Cameron B Browne, Edward Powley, Daniel White-
house, Simon M Lucas, Peter I Cowling, Philipp
Rohlfshagen, Stephen Tavener, Diego Perez, Spyri-
don Samothrakis, and Simon Colton. 2012. A survey
of monte carlo tree search methods. IEEE Transac-
tions on Computational Intelligence and Al in games,
4(1):1-43.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu,
Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi,
Cunxiang Wang, Yidong Wang, Wei Ye, Yue Zhang,
Yi Chang, Philip S. Yu, Qiang Yang, and Xing Xie.
2023. A survey on evaluation of large language mod-
els. Preprint, arXiv:2307.03109.

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan.
2024a. Alphamath almost zero: Process supervision
without process. Preprint, arXiv:2405.03553.

Justin Chih-Yao Chen, Archiki Prasad, Swarnadeep
Saha, Elias Stengel-Eskin, and Mohit Bansal. 2024b.
Magicore: Multi-agent, iterative, coarse-to-fine re-
finement for reasoning. Preprint, arXiv:2409.12147.

Justin Chih-Yao Chen, Swarnadeep Saha, Elias Stengel-
Eskin, and Mohit Bansal. 2024c. Magdi: Struc-
tured distillation of multi-agent interaction graphs
improves reasoning in smaller language models.
Preprint, arXiv:2402.01620.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang,
Chenfei Yuan, Chi-Min Chan, Heyang Yu, Yaxi
Lu, Yi-Hsin Hung, Chen Qian, Yujia Qin, Xin
Cong, Ruobing Xie, Zhiyuan Liu, Maosong Sun,
and Jie Zhou. 2023. Agentverse: Facilitating multi-
agent collaboration and exploring emergent behav-
iors. Preprint, arXiv:2308.10848.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang,
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang,
Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong
Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue,
Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu,
Chenggang Zhao, Chengqi Deng, Chenyu Zhang,
Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji,
Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo,
Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang,
Han Bao, Hanwei Xu, Haocheng Wang, Honghui
Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li,
Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L.
Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai
Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai
Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong
Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan
Zhang, Minghua Zhang, Minghui Tang, Meng Li,
Miaojun Wang, Mingming Li, Ning Tian, Panpan
Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen,
Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan,
Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen,
Shanghao Lu, Shangyan Zhou, Shanhuang Chen,
Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng
Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun,
T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu,
Wenfeng Liang, Wenjun Gao, Wenqgin Yu, Wentao
Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin
Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li,
Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin,
Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxi-
ang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang,
Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang
Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi,
Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang,
Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo,
Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yu-
jia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You,
Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu,
Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu,
Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan,
Z.7Z.Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean
Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao,
Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zi-
jia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song,
Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu


https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://arxiv.org/abs/2307.03109
https://arxiv.org/abs/2307.03109
https://arxiv.org/abs/2307.03109
https://arxiv.org/abs/2405.03553
https://arxiv.org/abs/2405.03553
https://arxiv.org/abs/2405.03553
https://arxiv.org/abs/2409.12147
https://arxiv.org/abs/2409.12147
https://arxiv.org/abs/2409.12147
https://arxiv.org/abs/2402.01620
https://arxiv.org/abs/2402.01620
https://arxiv.org/abs/2402.01620
https://arxiv.org/abs/2402.01620
https://arxiv.org/abs/2402.01620
https://arxiv.org/abs/2308.10848
https://arxiv.org/abs/2308.10848
https://arxiv.org/abs/2308.10848
https://arxiv.org/abs/2308.10848
https://arxiv.org/abs/2308.10848

Zhang, and Zhen Zhang. 2025. Deepseek-rl: Incen-
tivizing reasoning capability in llms via reinforce-
ment learning. Preprint, arXiv:2501.12948.

Yihong Dong, Xue Jiang, Zhi Jin, and Ge Li. 2024. Self-
collaboration code generation via chatgpt. Preprint,
arXiv:2304.07590.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B.
Tenenbaum, and Igor Mordatch. 2023. Improving
factuality and reasoning in language models through
multiagent debate. Preprint, arXiv:2305.14325.

Xidong Feng, Ziyu Wan, Muning Wen, Stephen Marcus
McAleer, Ying Wen, Weinan Zhang, and Jun Wang.
2024. Alphazero-like tree-search can guide large
language model decoding and training. Preprint,
arXiv:2309.17179.

Leo Gao, John Schulman, and Jacob Hilton. 2022.
Scaling laws for reward model overoptimization.
Preprint, arXiv:2210.10760.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen,
Yujiu Yang, Minlie Huang, Nan Duan, and Weizhu
Chen. 2024. Tora: A tool-integrated reasoning
agent for mathematical problem solving. Preprint,
arXiv:2309.17452.

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang,
Shichao Pei, Nitesh V. Chawla, Olaf Wiest, and Xi-
angliang Zhang. 2024. Large language model based
multi-agents: A survey of progress and challenges.
Preprint, arXiv:2402.01680.

Zishan Guo, Renren Jin, Chuang Liu, Yufei Huang, Dan
Shi, Supryadi, Linhao Yu, Yan Liu, Jiaxuan Li, Bo-
jian Xiong, and Deyi Xiong. 2023. Evaluating large
language models: A comprehensive survey. Preprint,
arXiv:2310.19736.

Shanshan Han, Qifan Zhang, Yuhang Yao, Weizhao Jin,
Zhaozhuo Xu, and Chaoyang He. 2024. LIm multi-
agent systems: Challenges and open problems. arXiv
preprint arXiv:2402.03578.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the math dataset. Preprint,
arXiv:2103.03874.

Sirui Hong, Mingchen Zhuge, Jiaqi Chen, Xiawu Zheng,
Yuheng Cheng, Ceyao Zhang, Jinlin Wang, Zili
Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang
Zhou, Chenyu Ran, Lingfeng Xiao, Chenglin Wu,
and Jiirgen Schmidhuber. 2024. Metagpt: Meta pro-
gramming for a multi-agent collaborative framework.
Preprint, arXiv:2308.00352.

Bin Lei, Yi Zhang, Shan Zuo, Ali Payani, and Caiwen
Ding. 2024. Macm: Utilizing a multi-agent system
for condition mining in solving complex mathemati-
cal problems. Preprint, arXiv:2404.04735.

10

Guohao Li, Hasan Abed Al Kader Hammoud, Hani
Itani, Dmitrii Khizbullin, and Bernard Ghanem. 2023.
Camel: Communicative agents for "mind" explo-
ration of large language model society. Preprint,
arXiv:2303.17760.

Qingyao Li, Wei Xia, Kounianhua Du, Xinyi Dai, Ruim-
ing Tang, Yasheng Wang, Yong Yu, and Weinan
Zhang. 2024a. Rethinkmcts: Refining erroneous
thoughts in monte carlo tree search for code genera-
tion. Preprint, arXiv:2409.09584.

Ziyue Li, Yuan Chang, and Xiaoqiu Le. 2024b. Simulat-
ing expert discussions with multi-agent for enhanced
scientific problem solving. In Proceedings of the
Fourth Workshop on Scholarly Document Processing
(SDP 2024), pages 243-256.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri
Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023.  Let’s verify step by step.  Preprint,
arXiv:2305.20050.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, et al. 2024a.
Deepseek-v3 technical report.  arXiv preprint
arXiv:2412.19437.

Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi
Yang. 2024b. A dynamic llm-powered agent net-
work for task-oriented agent collaboration. Preprint,
arXiv:2310.02170.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat
Phatale, Meiqi Guo, Harsh Lara, Yunxuan Li, Lei
Shu, Yun Zhu, Lei Meng, Jiao Sun, and Abhinav
Rastogi. 2024. Improve mathematical reasoning in
language models by automated process supervision.
Preprint, arXiv:2406.06592.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi-
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and
Tatsunori Hashimoto. 2025. sl: Simple test-time
scaling. Preprint, arXiv:2501.19393.

OpenAl, :, Aaron Hurst, Adam Lerer, Adam P. Goucher,
Adam Perelman, Aditya Ramesh, Aidan Clark,
AJ Ostrow, Akila Welihinda, Alan Hayes, Alec
Radford, Aleksander Madry, Alex Baker-Whitcomb,
Alex Beutel, Alex Borzunov, Alex Carney, Alex
Chow, Alex Kirillov, Alex Nichol, Alex Paino, Alex
Renzin, Alex Tachard Passos, Alexander Kirillov,
Alexi Christakis, Alexis Conneau, Ali Kamali, Allan
Jabri, Allison Moyer, Allison Tam, Amadou Crookes,
Amin Tootoochian, Amin Tootoonchian, Ananya
Kumar, Andrea Vallone, Andrej Karpathy, Andrew
Braunstein, Andrew Cann, Andrew Codispoti, An-
drew Galu, Andrew Kondrich, Andrew Tulloch, An-
drey Mishchenko, Angela Baek, Angela Jiang, An-
toine Pelisse, Antonia Woodford, Anuj Gosalia, Arka
Dhar, Ashley Pantuliano, Avi Nayak, Avital Oliver,
Barret Zoph, Behrooz Ghorbani, Ben Leimberger,


https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2304.07590
https://arxiv.org/abs/2304.07590
https://arxiv.org/abs/2304.07590
https://arxiv.org/abs/2305.14325
https://arxiv.org/abs/2305.14325
https://arxiv.org/abs/2305.14325
https://arxiv.org/abs/2305.14325
https://arxiv.org/abs/2305.14325
https://arxiv.org/abs/2309.17179
https://arxiv.org/abs/2309.17179
https://arxiv.org/abs/2309.17179
https://arxiv.org/abs/2210.10760
https://arxiv.org/abs/2309.17452
https://arxiv.org/abs/2309.17452
https://arxiv.org/abs/2309.17452
https://arxiv.org/abs/2402.01680
https://arxiv.org/abs/2402.01680
https://arxiv.org/abs/2402.01680
https://arxiv.org/abs/2310.19736
https://arxiv.org/abs/2310.19736
https://arxiv.org/abs/2310.19736
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2308.00352
https://arxiv.org/abs/2308.00352
https://arxiv.org/abs/2308.00352
https://arxiv.org/abs/2404.04735
https://arxiv.org/abs/2404.04735
https://arxiv.org/abs/2404.04735
https://arxiv.org/abs/2404.04735
https://arxiv.org/abs/2404.04735
https://arxiv.org/abs/2303.17760
https://arxiv.org/abs/2303.17760
https://arxiv.org/abs/2303.17760
https://arxiv.org/abs/2409.09584
https://arxiv.org/abs/2409.09584
https://arxiv.org/abs/2409.09584
https://arxiv.org/abs/2409.09584
https://arxiv.org/abs/2409.09584
https://arxiv.org/abs/2305.20050
https://arxiv.org/abs/2310.02170
https://arxiv.org/abs/2310.02170
https://arxiv.org/abs/2310.02170
https://arxiv.org/abs/2406.06592
https://arxiv.org/abs/2406.06592
https://arxiv.org/abs/2406.06592
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2501.19393

Ben Rossen, Ben Sokolowsky, Ben Wang, Benjamin
Zweig, Beth Hoover, Blake Samic, Bob McGrew,
Bobby Spero, Bogo Giertler, Bowen Cheng, Brad
Lightcap, Brandon Walkin, Brendan Quinn, Brian
Guarraci, Brian Hsu, Bright Kellogg, Brydon East-
man, Camillo Lugaresi, Carroll Wainwright, Cary
Bassin, Cary Hudson, Casey Chu, Chad Nelson,
Chak Li, Chan Jun Shern, Channing Conger, Char-
lotte Barette, Chelsea Voss, Chen Ding, Cheng Lu,
Chong Zhang, Chris Beaumont, Chris Hallacy, Chris
Koch, Christian Gibson, Christina Kim, Christine
Choi, Christine McLeavey, Christopher Hesse, Clau-
dia Fischer, Clemens Winter, Coley Czarnecki, Colin
Jarvis, Colin Wei, Constantin Koumouzelis, Dane
Sherburn, Daniel Kappler, Daniel Levin, Daniel Levy,
David Carr, David Farhi, David Mely, David Robin-
son, David Sasaki, Denny Jin, Dev Valladares, Dim-
itris Tsipras, Doug Li, Duc Phong Nguyen, Duncan
Findlay, Edede Oiwoh, Edmund Wong, Ehsan As-
dar, Elizabeth Proehl, Elizabeth Yang, Eric Antonow,
Eric Kramer, Eric Peterson, Eric Sigler, Eric Wal-
lace, Eugene Brevdo, Evan Mays, Farzad Khorasani,
Felipe Petroski Such, Filippo Raso, Francis Zhang,
Fred von Lohmann, Freddie Sulit, Gabriel Goh,
Gene Oden, Geoff Salmon, Giulio Starace, Greg
Brockman, Hadi Salman, Haiming Bao, Haitang
Hu, Hannah Wong, Haoyu Wang, Heather Schmidt,
Heather Whitney, Heewoo Jun, Hendrik Kirchner,
Henrique Ponde de Oliveira Pinto, Hongyu Ren,
Huiwen Chang, Hyung Won Chung, Ian Kivlichan,
Ian O’Connell, Ian O’Connell, Ian Osband, Ian Sil-
ber, Ian Sohl, Ibrahim Okuyucu, Ikai Lan, Ilya
Kostrikov, Ilya Sutskever, Ingmar Kanitscheider,
Ishaan Gulrajani, Jacob Coxon, Jacob Menick, Jakub
Pachocki, James Aung, James Betker, James Crooks,
James Lennon, Jamie Kiros, Jan Leike, Jane Park,
Jason Kwon, Jason Phang, Jason Teplitz, Jason
Wei, Jason Wolfe, Jay Chen, Jeff Harris, Jenia Var-
avva, Jessica Gan Lee, Jessica Shieh, Ji Lin, Jiahui
Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joanne Jang,
Joaquin Quinonero Candela, Joe Beutler, Joe Lan-
ders, Joel Parish, Johannes Heidecke, John Schul-
man, Jonathan Lachman, Jonathan McKay, Jonathan
Uesato, Jonathan Ward, Jong Wook Kim, Joost
Huizinga, Jordan Sitkin, Jos Kraaijeveld, Josh Gross,
Josh Kaplan, Josh Snyder, Joshua Achiam, Joy Jiao,
Joyce Lee, Juntang Zhuang, Justyn Harriman, Kai
Fricke, Kai Hayashi, Karan Singhal, Katy Shi, Kavin
Karthik, Kayla Wood, Kendra Rimbach, Kenny Hsu,
Kenny Nguyen, Keren Gu-Lemberg, Kevin Button,
Kevin Liu, Kiel Howe, Krithika Muthukumar, Kyle
Luther, Lama Ahmad, Larry Kai, Lauren Itow, Lau-
ren Workman, Leher Pathak, Leo Chen, Li Jing, Lia
Guy, Liam Fedus, Liang Zhou, Lien Mamitsuka, Lil-
ian Weng, Lindsay McCallum, Lindsey Held, Long
Ouyang, Louis Feuvrier, Lu Zhang, Lukas Kon-
draciuk, Lukasz Kaiser, Luke Hewitt, Luke Metz,
Lyric Doshi, Mada Aflak, Maddie Simens, Madelaine
Boyd, Madeleine Thompson, Marat Dukhan, Mark
Chen, Mark Gray, Mark Hudnall, Marvin Zhang,
Marwan Aljubeh, Mateusz Litwin, Matthew Zeng,
Max Johnson, Maya Shetty, Mayank Gupta, Meghan
Shah, Mehmet Yatbaz, Meng Jia Yang, Mengchao
Zhong, Mia Glaese, Mianna Chen, Michael Jan-

11

ner, Michael Lampe, Michael Petrov, Michael Wu,
Michele Wang, Michelle Fradin, Michelle Pokrass,
Miguel Castro, Miguel Oom Temudo de Castro,
Mikhail Pavlov, Miles Brundage, Miles Wang, Mi-
nal Khan, Mira Murati, Mo Bavarian, Molly Lin,
Murat Yesildal, Nacho Soto, Natalia Gimelshein, Na-
talie Cone, Natalie Staudacher, Natalie Summers,
Natan LaFontaine, Neil Chowdhury, Nick Ryder,
Nick Stathas, Nick Turley, Nik Tezak, Niko Felix,
Nithanth Kudige, Nitish Keskar, Noah Deutsch, Noel
Bundick, Nora Puckett, Ofir Nachum, Ola Okelola,
Oleg Boiko, Oleg Murk, Oliver Jaffe, Olivia Watkins,
Olivier Godement, Owen Campbell-Moore, Patrick
Chao, Paul McMillan, Pavel Belov, Peng Su, Pe-
ter Bak, Peter Bakkum, Peter Deng, Peter Dolan,
Peter Hoeschele, Peter Welinder, Phil Tillet, Philip
Pronin, Philippe Tillet, Prafulla Dhariwal, Qiming
Yuan, Rachel Dias, Rachel Lim, Rahul Arora, Ra-
jan Troll, Randall Lin, Rapha Gontijo Lopes, Raul
Puri, Reah Miyara, Reimar Leike, Renaud Gaubert,
Reza Zamani, Ricky Wang, Rob Donnelly, Rob
Honsby, Rocky Smith, Rohan Sahai, Rohit Ramchan-
dani, Romain Huet, Rory Carmichael, Rowan Zellers,
Roy Chen, Ruby Chen, Ruslan Nigmatullin, Ryan
Cheu, Saachi Jain, Sam Altman, Sam Schoenholz,
Sam Toizer, Samuel Miserendino, Sandhini Agar-
wal, Sara Culver, Scott Ethersmith, Scott Gray, Sean
Grove, Sean Metzger, Shamez Hermani, Shantanu
Jain, Shengjia Zhao, Sherwin Wu, Shino Jomoto, Shi-
rong Wu, Shuaiqi, Xia, Sonia Phene, Spencer Papay,
Srinivas Narayanan, Steve Coffey, Steve Lee, Stew-
art Hall, Suchir Balaji, Tal Broda, Tal Stramer, Tao
Xu, Tarun Gogineni, Taya Christianson, Ted Sanders,
Tejal Patwardhan, Thomas Cunninghman, Thomas
Degry, Thomas Dimson, Thomas Raoux, Thomas
Shadwell, Tianhao Zheng, Todd Underwood, Todor
Markov, Toki Sherbakov, Tom Rubin, Tom Stasi,
Tomer Kaftan, Tristan Heywood, Troy Peterson, Tyce
Walters, Tyna Eloundou, Valerie Qi, Veit Moeller,
Vinnie Monaco, Vishal Kuo, Vlad Fomenko, Wayne
Chang, Weiyi Zheng, Wenda Zhou, Wesam Manassra,
Will Sheu, Wojciech Zaremba, Yash Patil, Yilei Qian,
Yongjik Kim, Youlong Cheng, Yu Zhang, Yuchen
He, Yuchen Zhang, Yujia Jin, Yunxing Dai, and
Yury Malkov. 2024a. Gpt-4o system card. Preprint,
arXiv:2410.21276.

OpenAl, :, Aaron Jaech, Adam Kalai, Adam Lerer,

Adam Richardson, Ahmed El-Kishky, Aiden Low,
Alec Helyar, Aleksander Madry, Alex Beutel, Alex
Carney, Alex Iftimie, Alex Karpenko, Alex Tachard
Passos, Alexander Neitz, Alexander Prokofiev,
Alexander Wei, Allison Tam, Ally Bennett, Ananya
Kumar, Andre Saraiva, Andrea Vallone, Andrew Du-
berstein, Andrew Kondrich, Andrey Mishchenko,
Andy Applebaum, Angela Jiang, Ashvin Nair, Bar-
ret Zoph, Behrooz Ghorbani, Ben Rossen, Benjamin
Sokolowsky, Boaz Barak, Bob McGrew, Borys Mi-
naiev, Botao Hao, Bowen Baker, Brandon Houghton,
Brandon McKinzie, Brydon Eastman, Camillo Lu-
garesi, Cary Bassin, Cary Hudson, Chak Ming Li,
Charles de Bourcy, Chelsea Voss, Chen Shen, Chong
Zhang, Chris Koch, Chris Orsinger, Christopher
Hesse, Claudia Fischer, Clive Chan, Dan Roberts,


https://arxiv.org/abs/2410.21276

Daniel Kappler, Daniel Levy, Daniel Selsam, David
Dohan, David Farhi, David Mely, David Robinson,
Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Free-
man, Eddie Zhang, Edmund Wong, Elizabeth Proehl,
Enoch Cheung, Eric Mitchell, Eric Wallace, Erik
Ritter, Evan Mays, Fan Wang, Felipe Petroski Such,
Filippo Raso, Florencia Leoni, Foivos Tsimpourlas,
Francis Song, Fred von Lohmann, Freddie Sulit,
Geoff Salmon, Giambattista Parascandolo, Gildas
Chabot, Grace Zhao, Greg Brockman, Guillaume
Leclerc, Hadi Salman, Haiming Bao, Hao Sheng,
Hart Andrin, Hessam Bagherinezhad, Hongyu Ren,
Hunter Lightman, Hyung Won Chung, Ian Kivlichan,
Ian O’Connell, Ian Osband, Ignasi Clavera Gilaberte,
Ilge Akkaya, Ilya Kostrikov, Ilya Sutskever, Irina
Kofman, Jakub Pachocki, James Lennon, Jason Wei,
Jean Harb, Jerry Twore, Jiacheng Feng, Jiahui Yu,
Jiayi Weng, Jie Tang, Jieqi Yu, Joaquin Quifionero
Candela, Joe Palermo, Joel Parish, Johannes Hei-
decke, John Hallman, John Rizzo, Jonathan Gordon,
Jonathan Uesato, Jonathan Ward, Joost Huizinga,
Julie Wang, Kai Chen, Kai Xiao, Karan Singhal, Ka-
rina Nguyen, Karl Cobbe, Katy Shi, Kayla Wood,
Kendra Rimbach, Keren Gu-Lemberg, Kevin Liu,
Kevin Lu, Kevin Stone, Kevin Yu, Lama Ahmad,
Lauren Yang, Leo Liu, Leon Maksin, Leyton Ho,
Liam Fedus, Lilian Weng, Linden Li, Lindsay Mc-
Callum, Lindsey Held, Lorenz Kuhn, Lukas Kon-
draciuk, Lukasz Kaiser, Luke Metz, Madelaine Boyd,
Maja Trebacz, Manas Joglekar, Mark Chen, Marko
Tintor, Mason Meyer, Matt Jones, Matt Kaufer,
Max Schwarzer, Meghan Shah, Mehmet Yatbaz,
Melody Y. Guan, Mengyuan Xu, Mengyuan Yan,
Mia Glaese, Mianna Chen, Michael Lampe, Michael
Malek, Michele Wang, Michelle Fradin, Mike Mc-
Clay, Mikhail Pavlov, Miles Wang, Mingxuan Wang,
Mira Murati, Mo Bavarian, Mostafa Rohaninejad,
Nat McAleese, Neil Chowdhury, Neil Chowdhury,
Nick Ryder, Nikolas Tezak, Noam Brown, Ofir
Nachum, Oleg Boiko, Oleg Murk, Olivia Watkins,
Patrick Chao, Paul Ashbourne, Pavel Izmailov, Pe-
ter Zhokhov, Rachel Dias, Rahul Arora, Randall
Lin, Rapha Gontijo Lopes, Raz Gaon, Reah Mi-
yara, Reimar Leike, Renny Hwang, Rhythm Garg,
Robin Brown, Roshan James, Rui Shu, Ryan Cheu,
Ryan Greene, Saachi Jain, Sam Altman, Sam Toizer,
Sam Toyer, Samuel Miserendino, Sandhini Agarwal,
Santiago Hernandez, Sasha Baker, Scott McKinney,
Scottie Yan, Shengjia Zhao, Shengli Hu, Shibani
Santurkar, Shraman Ray Chaudhuri, Shuyuan Zhang,
Siyuan Fu, Spencer Papay, Steph Lin, Suchir Balaji,
Suvansh Sanjeev, Szymon Sidor, Tal Broda, Aidan
Clark, Tao Wang, Taylor Gordon, Ted Sanders, Te-
jal Patwardhan, Thibault Sottiaux, Thomas Degry,
Thomas Dimson, Tianhao Zheng, Timur Garipov,
Tom Stasi, Trapit Bansal, Trevor Creech, Troy Peter-
son, Tyna Eloundou, Valerie Qi, Vineet Kosaraju,
Vinnie Monaco, Vitchyr Pong, VIlad Fomenko,
Weiyi Zheng, Wenda Zhou, Wes McCabe, Wojciech
Zaremba, Yann Dubois, Yinghai Lu, Yining Chen,
Young Cha, Yu Bai, Yuchen He, Yuchen Zhang, Yun-
yun Wang, Zheng Shao, and Zhuohan Li. 2024b.
Openai ol system card. Preprint, arXiv:2412.16720.

12

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. Preprint, arXiv:2203.02155.

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan
Dang, Jiahao Li, Cheng Yang, Weize Chen, Yusheng
Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu,
and Maosong Sun. 2024a. Chatdev: Communica-
tive agents for software development. Preprint,
arXiv:2307.07924.

Chen Qian, Zihao Xie, Yifei Wang, Wei Liu, Yu-
fan Dang, Zhuoyun Du, Weize Chen, Cheng Yang,
Zhiyuan Liu, and Maosong Sun. 2024b. Scaling
large-language-model-based multi-agent collabora-
tion. Preprint, arXiv:2406.07155.

Yiwei Qin, Xuefeng Li, Haoyang Zou, Yixiu Liu, Shijie
Xia, Zhen Huang, Yixin Ye, Weizhe Yuan, Hector
Liu, Yuanzhi Li, and Pengfei Liu. 2024. O1 repli-
cation journey: A strategic progress report — part 1.
Preprint, arXiv:2410.18982.

David Rein, Betty Li Hou, Asa Cooper Stickland,
Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R. Bowman. 2023.
Gpqa: A graduate-level google-proof g&a bench-
mark. Preprint, arXiv:2311.12022.

Joar Skalse, Nikolaus H. R. Howe, Dmitrii Krashenin-
nikov, and David Krueger. 2022. Defining
and characterizing reward hacking.  Preprint,
arXiv:2209.13085.

Charlie Snell, Jachoon Lee, Kelvin Xu, and Aviral Ku-
mar. 2024. Scaling llm test-time compute optimally
can be more effective than scaling model parameters.
Preprint, arXiv:2408.03314.

Gemini Team, Petko Georgiev, Ving lan Lei, Ryan
Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
Damien Vincent, Zhufeng Pan, Shibo Wang, et al.
2024. Gemini 1.5: Unlocking multimodal under-
standing across millions of tokens of context. arXiv
preprint arXiv:2403.05530.

Khanh-Tung Tran, Dung Dao, Minh-Duong
Nguyen, Quoc-Viet Pham, Barry O’Sullivan,
and Hoang D. Nguyen. 2025. Multi-agent collab-
oration mechanisms: A survey of llms. Preprint,
arXiv:2501.06322.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Fran-
cis Song, Noah Siegel, Lisa Wang, Antonia Creswell,
Geoffrey Irving, and Irina Higgins. 2022. Solving
math word problems with process- and outcome-
based feedback. Preprint, arXiv:2211.14275.

Junlin Wang, Jue Wang, Ben Athiwaratkun, Ce Zhang,
and James Zou. 2024a. Mixture-of-agents en-
hances large language model capabilities. Preprint,
arXiv:2406.04692.


https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2307.07924
https://arxiv.org/abs/2307.07924
https://arxiv.org/abs/2307.07924
https://arxiv.org/abs/2406.07155
https://arxiv.org/abs/2406.07155
https://arxiv.org/abs/2406.07155
https://arxiv.org/abs/2406.07155
https://arxiv.org/abs/2406.07155
https://arxiv.org/abs/2410.18982
https://arxiv.org/abs/2410.18982
https://arxiv.org/abs/2410.18982
https://arxiv.org/abs/2311.12022
https://arxiv.org/abs/2311.12022
https://arxiv.org/abs/2311.12022
https://arxiv.org/abs/2209.13085
https://arxiv.org/abs/2209.13085
https://arxiv.org/abs/2209.13085
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2501.06322
https://arxiv.org/abs/2501.06322
https://arxiv.org/abs/2501.06322
https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/2406.04692
https://arxiv.org/abs/2406.04692
https://arxiv.org/abs/2406.04692

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,
Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei,
and Jirong Wen. 2024b. A survey on large language
model based autonomous agents. Frontiers of Com-
puter Science, 18(6).

Peiyi Wang, Lei Li, Zhihong Shao, R. X. Xu, Damai
Dai, Yifei Li, Deli Chen, Y. Wu, and Zhifang Sui.
2024c. Math-shepherd: Verify and reinforce 1lms
step-by-step without human annotations. Preprint,
arXiv:2312.08935.

Shuhe Wang, Shengyu Zhang, Jie Zhang, Runyi Hu,
Xiaoya Li, Tianwei Zhang, Jiwei Li, Fei Wu,
Guoyin Wang, and Eduard Hovy. 2024d. Reinforce-
ment learning enhanced llms: A survey. Preprint,
arXiv:2412.10400.

Tianlong Wang, Junzhe Chen, Xueting Han, and Jing
Bai. 2024e. Cpl: Critical plan step learning boosts
Ilm generalization in reasoning tasks. Preprint,
arXiv:2409.08642.

Xiaoxuan Wang, Ziniu Hu, Pan Lu, Yanqgiao Zhu, Jieyu
Zhang, Satyen Subramaniam, Arjun R. Loomba,
Shichang Zhang, Yizhou Sun, and Wei Wang.
2024f. Scibench: Evaluating college-level scientific
problem-solving abilities of large language models.
Preprint, arXiv:2307.10635.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2023. Self-consistency improves chain
of thought reasoning in language models. Preprint,
arXiv:2203.11171.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models. Preprint,
arXiv:2201.11903.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran
Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan
Awadallah, Ryen W White, Doug Burger, and Chi
Wang. 2023. Autogen: Enabling next-gen llm ap-
plications via multi-agent conversation. Preprint,
arXiv:2308.08155.

Zhiheng Xi, Dingwen Yang, Jixuan Huang, Jiafu Tang,
Guanyu Li, Yiwen Ding, Wei He, Boyang Hong,
Shihan Do, Wenyu Zhan, Xiao Wang, Rui Zheng,
Tao Ji, Xiaowei Shi, Yitao Zhai, Rongxiang Weng,
Jingang Wang, Xunliang Cai, Tao Gui, Zuxuan Wu,
Qi Zhang, Xipeng Qiu, Xuanjing Huang, and Yu-
Gang Jiang. 2024. Enhancing llm reasoning via cri-
tique models with test-time and training-time super-
vision. Preprint, arXiv:2411.16579.

Fengli Xu, Qianyue Hao, Zefang Zong, Jingwei Wang,
Yunke Zhang, Jingyi Wang, Xiaochong Lan, Jiahui
Gong, Tianjian Ouyang, Fanjin Meng, Chenyang
Shao, Yuwei Yan, Qinglong Yang, Yiwen Song, Si-
jian Ren, Xinyuan Hu, Yu Li, Jie Feng, Chen Gao,

13

and Yong Li. 2025. Towards large reasoning models:
A survey of reinforced reasoning with large language
models. Preprint, arXiv:2501.09686.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. 2024. Qwen2. 5 tech-
nical report. arXiv preprint arXiv:2412.15115.

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue,
Yuxiao Dong, and Jie Tang. 2024. Rest-mcts*: Llm
self-training via process reward guided tree search.
Preprint, arXiv:2406.03816.

Guibin Zhang, Yanwei Yue, Xiangguo Sun, Guancheng
Wan, Miao Yu, Junfeng Fang, Kun Wang, Tianlong
Chen, and Dawei Cheng. 2025a. G-designer: Ar-
chitecting multi-agent communication topologies via
graph neural networks. Preprint, arXiv:2410.11782.

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen
Zhang, Runji Lin, Bowen Yu, Dayiheng Liu, Jin-
gren Zhou, and Junyang Lin. 2025b. The lessons of
developing process reward models in mathematical
reasoning. arXiv preprint arXiv:2501.07301.

Mingchen Zhuge, Wenyi Wang, Louis Kirsch,
Francesco Faccio, Dmitrii Khizbullin, and Jiirgen
Schmidhuber. 2024. Language agents as optimizable
graphs. Preprint, arXiv:2402.16823.


https://doi.org/10.1007/s11704-024-40231-1
https://doi.org/10.1007/s11704-024-40231-1
https://doi.org/10.1007/s11704-024-40231-1
https://arxiv.org/abs/2312.08935
https://arxiv.org/abs/2312.08935
https://arxiv.org/abs/2312.08935
https://arxiv.org/abs/2412.10400
https://arxiv.org/abs/2412.10400
https://arxiv.org/abs/2412.10400
https://arxiv.org/abs/2409.08642
https://arxiv.org/abs/2409.08642
https://arxiv.org/abs/2409.08642
https://arxiv.org/abs/2307.10635
https://arxiv.org/abs/2307.10635
https://arxiv.org/abs/2307.10635
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2411.16579
https://arxiv.org/abs/2411.16579
https://arxiv.org/abs/2411.16579
https://arxiv.org/abs/2411.16579
https://arxiv.org/abs/2411.16579
https://arxiv.org/abs/2501.09686
https://arxiv.org/abs/2501.09686
https://arxiv.org/abs/2501.09686
https://arxiv.org/abs/2501.09686
https://arxiv.org/abs/2501.09686
https://arxiv.org/abs/2406.03816
https://arxiv.org/abs/2406.03816
https://arxiv.org/abs/2406.03816
https://arxiv.org/abs/2410.11782
https://arxiv.org/abs/2410.11782
https://arxiv.org/abs/2410.11782
https://arxiv.org/abs/2410.11782
https://arxiv.org/abs/2410.11782
https://arxiv.org/abs/2402.16823
https://arxiv.org/abs/2402.16823
https://arxiv.org/abs/2402.16823

A Appendix

A.1 Related work on LLM Reasoning Policy

Reward model is usually combined with different reasoning policies to enhance its effect such as majority
voting (Wang et al., 2023), Chain of Thought (COT) (Wei et al., 2023) and Monte Carlo Tree Search
(MCTS) (Browne et al., 2012). OmegaPRM (Luo et al., 2024) enhances reasoning with a divide-and-
conquer MCTS strategy. ReST-MCTS (Zhang et al., 2024) refines reasoning traces using inferred stepwise
rewards. RethinkMCTS (Li et al., 2024a) improves code generation by leveraging execution feedback. In
contrast, Critical Plan Step Learning (Wang et al., 2024¢e) employs hierarchical MCTS to generalize across
reasoning tasks. Additionally, AlphaMath (Chen et al., 2024a) and TS-LLM (Feng et al., 2024) enhance

reasoning by incorporating a value model and iterative tree search, with TS-LLM further leveraging an
AlphaZero-like framework and policy distillation.

A.2 Model Performance

1 GPT-3.5-Turbo [ Gemini-2.0-Flash [ DeepSeek-V3
[ GPT-4o0 [ Qwen2.5-Max

B )] [ee
o o O

Accuracy (%)

N
o

Math SciBench

Figure 6: Performance of different models on our selected Math and SciBench dataset subproblems.

A.3 Case Study

Complex Task Synthesis

sub-question-0:

{
"problem”: "The sum of two numbers is 15. Four times the smaller number is 6@ less than
— twice the larger number. What is the larger number?”,
"level”: "Level 5",
"type": "Prealgebra”,
"question_id": "Prealgebra 1762.json",
"answer_number"”: 20.0,
"g_vals": 15.0,

}7

sub-question-1:
{

"problem”: "Determine the largest possible integer $n$ such that $942!$ is divisible by
— $15*n$.",
"level”: "Level 5",
"type": "Number Theory”,
"question_id": "Number Theory 43.json”,
"answer_number"”: 233.0,
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"g_vals": 942.0,
}’

sub-question-2:

{
"problem”: "Let $(a_1, a_2, \\dots, a_n)$ be a sequence of positive real numbers, such
— that\n\\[\\sum_{i = 1}*n a_i = 96, \\quad \\sum_{i = 1}*n a_i*2 = 144, \\quad \\sum_{i
— = 1}*n a_i*3 = 216.\\1Find the sum of all possible values of $n.$",
"level”: "Level 5",
"type": "Intermediate Algebra”,
"question_id": "Intermediate Algebra 2022.json"”,
"answer_number”: 64.0,
"g_vals": 96.0,

}Y

first we choose three quesitons and then randomly generate the dag.
for example:

"dag": {
"0": [1,
"1 [

0,
2
]y
"2": [
}’

so the complex promblem graph is like:
the question @ depend on 1 result and the question 2 depend on 1 results.
then we mask a variable in question 1 and 2. they need to be caculused by their parents' answer.

when finish after all the questions, there will be a combined. need output the product of
— Answer[@]xAnswer[1]*Answer[2].

for this case:

The following is a complex question composed of multiple sub-questions:\n\nDetermine the
< largest possible integer $n$ such that $942.0!$ is divisible by $15*n$.. The answer is
— recorded as Answer[1]\n\n

The sum of two numbers is UNK_0(a constant calculated by adding the sum of Answer[1] to the
number (-218.00). ). Four times the smaller number is 60 less than twice the larger number.
What is the larger number?. The answer is recorded as Answer[@]\n\n

Ly

Let $(a_1, a_2, \\dots, a_n)$ be a sequence of positive real numbers, such that\n\\[\\sum_{i =
1}*n a_i = UNK_2(a constant calculated by adding the sum of Answer[1] to the number
(-137.00). ), \\quad \\sum_{i = 1}*n a_i*2 = 144, \\quad \\sum_{i = 1}*n a_i*3 = 216.\\]
Find the sum of all possible values of $n.$. The answer is recorded as Answer[2]\n\n

ree

Please use the answers to the above questions to perform the following calculations:\nPlease
< calculate the value of Answer[@]*Answer[1]xAnswer[2]. Conclude the answer by stating 'The
— answer is therefore \\boxed{[ANSWER]}.'

the plan:
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'[{"task_id": "1", "dependent_task_ids": [], "instruction”: "Determine the largest possible

Answer[@]xAnswer[1]*xAnswer[2]. Conclude the answer by stating \'The answer is therefore
\\\\boxed{ [ANSWERT}.\"'"3}]"'

— integer $n$ such that $942.0!$ is divisible by $15*n$.. The answer is recorded as

— Answer[1]"}, {"task_id": "2", "dependent_task_ids": ["1"], "instruction”: "The sum of two
< numbers is UNK_0(a constant calculated by adding the sum of Answer[1] to the number

— (-218.00). ). Four times the smaller number is 60 less than twice the larger number. What
< 1is the larger number?. The answer is recorded as Answer[0]"}, {"task_id": "3",

— "dependent_task_ids": ["1"], "instruction”: "Let $(a_1, a_2, \\\\dots, a_n)$ be a sequence
<« of positive real numbers, such that\\n\\\\[\\\\sum_{i = 1}*n a_i = UNK_2(a constant

« calculated by adding the sum of Answer[1] to the number (-137.00). ), \\\\quad \\\\sum_{i =
— 13}*n a_i*2 = 144, \\\\quad \\\\sum_{i = 1}*n a_i*3 = 216.\\\\] Find the sum of all possible
— values of $n.$. The answer is recorded as Answer[2]"}, {"task_id": "4",

— "dependent_task_ids": [1, 2, 3], "instruction”: "Please calculate the value of

an

oy

Figure 7: An easy task with 3 subtasks in SciBench.

0
Prealgebra

1
NumberTheory

2
Intermediate
Algebra

Figure 8: Corresponding DAG.

A4 Prompt

Prompt of Agents in the Pool

[gpt-40_1]

model = gpt-4o

role = MechanicsExpert

prompt = You are a highly knowledgeable mechanics expert in a multi-agent system. You are given
a sub-task related to classical mechanics, statics, dynamics, kinematics, or fluid
mechanics. First, read and understand the previous questions and answers from other agents.
Identify the variables that have already been solved and ensure consistency with their
results. Then, systematically break down your sub-task, applying relevant physical laws
such as Newton’s laws, conservation principles, or motion equations. Justify your
reasoning, verify unit consistency, and cross-check with previous agent outputs before
providing a well-explained solution.

rrregnd

[gpt-40_2]
model = gpt-4o
role = ElectromagnetismExpert
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prompt = You are an expert in electromagnetism within a multi-agent system. You are assigned a
sub-task related to electric fields, magnetic fields, circuit analysis, or electromagnetic
waves. First, read and understand the previous questions and answers from other agents,
extract solved variables, and ensure logical consistency. Apply fundamental principles such
as Maxwell’s equations, Gauss’s law, or Faraday’s law to solve your sub-task systematically.
Clearly outline your steps, justify the assumptions, and verify that your solution aligns
with previous agents' work. If discrepancies arise, propose possible resolutions.

rrregd

[gpt-40_3]

model = gpt-4o

role = Thermodynamics&0pticsExpert

prompt = You are an expert in thermodynamics and optics in a multi-agent system. Your role is
to solve a specific sub-task while ensuring coherence with previous agents' results. First,

an
< read and understand the previous discussions, extract solved variables, and align your

< approach with existing solutions. Apply principles such as the first and second laws of

< thermodynamics, heat transfer models, or optical laws (e.g., Snell’s law, diffraction, and
< wave optics). Provide a detailed step-by-step solution, justify calculations, and validate
< numerical consistency with prior agent outputs. If uncertainties arise, suggest possible
« clarifications.

[gpt-40_4]

model = gpt-4o

role = InorganicChemistryExpert

prompt = You are an inorganic chemistry expert operating in a multi-agent system. Your sub-task
may involve chemical bonding, periodic trends, reaction mechanisms, or coordination
chemistry. Carefully review the previous questions and answers, identify already
determined variables, and ensure consistency with past calculations. Apply relevant
chemical principles to analyze and solve your assigned problem step by step. Provide
balanced chemical equations, validate reaction feasibility, and explain your reasoning
clearly. If your results depend on prior agents’ outputs, verify their correctness and
suggest refinements if necessary.

grreeld

[gpt-40_5]

model = gpt-4o

role = OrganicChemistryExpert

prompt = You are an organic chemistry expert in a multi-agent system, responsible for solving a
< sub-task related to molecular structures, reaction mechanisms, or synthetic pathways.

— First, review previous discussions, extract key solved variables, and ensure consistency
< with prior agent responses. Then, apply organic chemistry principles such as resonance

— effects, nucleophilic-electrophilic interactions, and reaction kinetics to derive a

< precise solution. Provide clear mechanistic explanations, reaction diagrams if necessary,
— and cross-check results to maintain logical coherence within the system.

Figure 9: The prompt of agents in the pool.

Prompt of the Task Plan Generator

nnn

You are an AI assistant specialized in generating structured prompts for domain-specific
< experts in a multi-agent system.

*xTask: *x

Given a subquestion, analyze its domain, required expertise, and problem complexity. Then,

< generate a structured prompt that precisely describes the expert’s role in solving the

< problem. The generated prompt will be used for vector-based similarity matching to select
< the most appropriate agent from an agent pool.

**Prompt Format:xx
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"You are a [Expert Typel, highly skilled in [Specific Knowledge Areas]. Your task is to analyze
the problem by first reviewing previously solved variables and solutions from other agents
in the multi-agent system. Apply domain-specific knowledge to reason rigorously and
provide a well-structured, logically sound answer. If calculations are required, show all
steps. If problem decomposition is needed, outline a systematic approach. Ensure
consistency with previous solutions in the multi-agent system and resolve any
discrepancies when necessary. Your role is to assist in solving complex reasoning problems
with precision and alignment with the broader system.”

rreergrrpys

*xInstructions for Prompt Generation:*x*
1. xxExpert Type Selection*x: Identify the most relevant expert type (e.g., MechanicsExpert,

< AlgebraExpert, ThermodynamicsExpert).
2. **xSpecific Knowledge Areas**: Define the precise knowledge fields required to solve the

< problem.
3. **Problem Scope & Complexity*x: Determine whether the problem requires deep theoretical

< knowledge, numerical computation, or practical modeling.

*%0Qutput: **
Provide only the generated prompt without additional explanations.

nnn

Figure 10: The prompt of the task plan generator.

A.5 Agent Selection Visualization

The agent selection distribution during the testing phase of Scibench-MAS-Easy reveals that Gemini-2.0-
Flash-Exp and Qwen2.5-Max were the most frequently selected models after training.

Agent Selection Distribution

gemini-2.0-flash-exp_OrganicChemistryExpert gemini-2.0-flash-exp_MechanicsExpert

gemini-2.0-flash-exp_Probability&StatisticsExpert gwen2.5-max_Thermodynamics&OpticsExpert

gemini-2.0-flash-exp_GeometryExpert

gwen2.5-max_ElectromagnetismExpert

Figure 11: Testing stage on the easy-level tasks in Scibench-MAS.
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Agent Selection Distribution

qwen2.5-max_Thermodynamics&OpticsExpert

gemini-2.0-flash-exp_Probability&StatisticsExpert gemini-2.0-flash-exp_MechanicsExpert

gemini-2.0-flash-exp_GeometryExpert gemini-2.0-flash-exp_OrganicChemistryExpert

qwen2.5-max_ElectromagnetismExpert

Figure 12: Testing stage on the hard-level tasks in Scibench-MAS.

A.6 Hyperparameters

During both training and testing, a set of weighted factors and constraints guide agent selection, al-
lowing for dynamic adjustments. Specifically, similarity_weight = 0.6 regulates the influence of
subproblem-agent similarity, reputation_weight = 1.0 balances agent selection based on past perfor-
mance, and cost_weight = 1.0 accounts for computational overhead. A THRESHOLD = 0.6 establishes
the similarity cutoff for specialized handling of certain subproblems, while EXPLORATION_CONST = 0.3
encourages periodic assignments to underutilized agents. During testing, hyperparameters can be adjusted
to fine-tune the selection process—modifying similarity_weight and THRESHOLD controls the search
scope, adjusting reputation_weight increases the weight of agent reputation in scoring, and tweaking
cost_weight alters the impact of computational overhead, enabling a flexible trade-off between efficiency
and performance. Finally, TOP_K = 3 restricts the number of candidate agents per subproblem, balancing
exploration and efficiency in the selection process.

Agent Selection Count

gemini-2.0-flash-exp_GeometryExpert

gwen2.5-max_ElectromagnetismExpert

gwen2.5-max_Thermodynamics&OpticsExpert

gemini-2.0-flash-exp_Probability&StatisticsExpert

gemini-2.0-flash-exp_OrganicChemistryExpert

gemini-2.0-flash-exp_MechanicsExpert

claude-3-5-sonnet-20241022_AlgebraExpert

t T T T T T T T
0 25 50 75 100 125 150 175
Count

Figure 13: Testing stage on the medium-level tasks in Scibench-MAS using reputation_weight 1.
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Agent Selection Count

gemini-2.0-flash-exp_GeometryExpert

gemini-2.0-flash-exp_Probability&StatisticsExpert
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Figure 14: Testing stage on the medium-level tasks in Scibench-MAS using reputation_weight 2.
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Figure 15: Testing stage on the medium-level tasks in Scibench-MAS without training.
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