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Abstract

Autonomous robots typically need to construct representations of their surround-
ings and adapt their motions to the geometry of their environment. Here, we tackle
the problem of constructing a policy model for collision-free motion generation,
consistent with the environment, from a single input RGB image. Extracting 3D
structures from a single image often involves monocular depth estimation. De-
velopments in depth estimation have given rise to large pre-trained models such
as DepthAnything. However, using outputs of these models for downstream mo-
tion generation is challenging due to frustum-shaped errors that arise. Instead, we
propose a framework known as Video-Generation Environment Representation
(VGER), which leverages the advances of large-scale video generation models to
generate a moving camera video conditioned on the input image. Frames of this
video, which form a multiview dataset, are then input into a pre-trained 3D foun-
dation model to produce a dense point cloud. We then introduce a multi-scale
noise approach to train an implicit representation of the environment structure and
build a motion generation model that complies with the geometry of the represen-
tation. We extensively evaluate VGER over a diverse set of indoor and outdoor
environments. We demonstrate its ability to produce smooth motions that account
for the captured geometry of a scene, all from a single RGB input image.

1 Introduction

Autonomous robots operating in unstructured environments maintain a representation of their sur-
roundings to enable reliable motion planning. Building complex environment representations gener-
ally requires large sets of images [1–3], and often depth measurements [4, 5]. In this work, we push
the boundaries of data efficiency by constructing both a scene representation for collision avoid-
ance and a downstream motion generation model from a single RGB image, by leveraging recent
advances in pre-trained video generation and 3D foundation models.

A common strategy for recovering 3D structure from a single image is to estimate per-pixel depth.
Recent advances have yielded powerful monocular depth estimators, most notably DepthAnything.
However, the depth maps they produce often exhibit frustum-shaped artifacts at object boundaries,
rendering them unsuitable for collision avoidance. To overcome these limitations, we introduce
Video-generation Environment Representation (VGER), which sidesteps direct monocular depth
prediction by conditioning a large, pre-trained video model on the input image to generate a se-
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(a) Input image (b) DepthAnything-V2 image (l) and structure (r) (c) VGER
Figure 1: (a): Single original image used to construct the environment; (b): Predictions by
DepthAnything-V2 [9]. Predicted depth image of the left, and extracted structure on the right. We
observed errors that are frustum-shaped “tails” in the extracted structure; (c): Our proposed VGER
does not suffer from these errors, and completes regions blocked from the original view. These arti-
facts in free space make it impossible to use the representation for motion generation.

quence of consistent novel views. We then apply a 3D foundation model such as DUSt3R [6] to fuse
these views into a dense representation that faithfully captures scene geometry.

Beyond representation, our primary contribution lies in coupling the structure extracted from the sin-
gle input image with a structured motion-generation framework. We integrate our reconstruction into
motion generation by deriving an implicit unsigned distance field from the 3D foundation model’s
output. We do so efficiently via multi-scale perturbations. By sampling perturbations of point posi-
tions at varying noise scales and contrasting them against the dense output, we recover an implicit,
unsigned distance field that defines a continuous distance function over the workspace. From this,
we construct a smoothly varying metric field that encodes proximity to obstacles. Finally, we em-
bed this environment-dependent metric field into a motion policy framework, in a similar manner
to Riemannian Motion Policies [7] and Diffeomorphic Templates [8], in which the environment-
induced metric modulates a nominal dynamical system. The result is a policy that generates motion
and is modelled by a non-linear dynamical system that adapts fluidly to the reconstructed geometry,
producing smooth, collision-free trajectories directly from a single input image.

Concretely, our technical contributions within VGER include,

1. A pipeline that harnesses pretrained video synthesis and 3D foundation models to generate
multi-view videos from a single RGB image, producing dense, artifact-free reconstructions
that overcome the limitations of monocular depth estimators;

2. A multi-scale noise-contrastive denoising approach to extract a globally detailed implicit
unsigned distance field directly from the generated output;

3. A novel metric-modulated motion generation framework that embeds the implicit repre-
sentation into a metric field that is dependent on the environment. This ensures that any
nominal dynamical system coupled with the obstacle-induced curvature metric field will
yield smooth, collision-free trajectories in real time.

2 Related Work

Pre-trained Models to Recover 3D Structure RGB Images: Estimating the structure within a
single RGB image typically requires the estimation of depth, i.e. monocular depth estimation. Ad-
vances in deep learning have lead to large pre-trained models capable of predicting a depth im-
age given an RGB input. Well-known models include Marigold [10], DepthAnything [11], and its
follow-up model DepthAnything-V2 [9]. However, extracting structure from learned depth esti-
mates can often lead to artifacts. Our proposed VGER differs in that it seeks to generate an image
sequence from the single input image, and extract the structure that jointly appears.

Recovering 3D structure from a set of images is another well-known problem known as structure-
from-motion [12]. Classical methods, such as COLMAP [13], produce relatively sparse represen-
tations. Modern advances in deep learning have led to transformer models capable of efficiently
constructing highly dense 3D representations in a single feed-forward pass, including DUSt3R [6],
MASt3R [14] and Visual Geometry Grounded Transformers (VGGT) [15]. These models typically
act as 3D foundation models, which are large pre-trained models, intended as plug-and-play modules
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(a) Input Image (b) Frames of generated input-conditioned video (c) 3D structure
Figure 3: Examples of extracting a 3D structure of an outdoor bench (top) and indoor office envi-
ronment (bottom) from input images. Input images are shown in subfigure (a). We leverage a video
generator, conditional on the images, to generate videos, with frames shown in subfigure (b). These
are then subsequently used to construct 3D structures via foundation models, without any frustum-
shaped artifacts, shown in subfigure (c).

for downstream tasks. These 3D foundation models have found use in a variety of robot perception
and calibration problems [16].

Video Generation Models: A recent wave of deep learning–based general video generators spans
unconditional, text-to-video, and image-to-video synthesis. Early GAN-based methods (StyleGAN-
V [17]) gave way to diffusion and transformer systems: Video Diffusion Models [18] produce high-
quality clips, and MagicVideo [19] extends diffusion priors for text-driven generation. Many recent
advances in this field have focused on the controllability of the camera motions in the video gen-
erator, these include GEN3C [20] and ViewCrafter[21], and SEVA [22]. Particularly, in this work,
we leverage a recent video generator Stable Virtual Camera (Seva) [22], which can condition on an
image as well as a camera trajectory to generate a video that follows the trajectory in the scene of
the image.

Reactive Motion Generation: Our work is the first to apply structures and representations produced
by 3D foundation models for reactive motion generation. Relevant frameworks, including Rieman-
nian Motion Policies [7] and Geometric Fabrics [23, 24], to generate motion creatively generally
approach the generation from a planning perspective and require the assumption of a pre-defined sur-
face, or a completely known environment constructed from simple shape primitives. Other robotics
focused representations may require depth [25] or velocity measurements [26]. There has been some
effort to extend from representing environments to meshes instead of pre-designed primitives [27].
However, there is a clear disconnect between the literature on scene representation and motion gen-
eration. To bridge this gap, Our method is unique in extracting both a representation of the structure
and a subsequent motion generation model from a single RGB image.

3 Video generation Environment Representation: Structure Extraction to
Motion Generation From a Single Image

Figure 2: Pipeline of VGER.

Here, we elaborate on the technical de-
tails of the VGER method. This includes:
leveraging pre-trained video generators to
extract a structure conditional on the in-
put image (section 3.1); the construction
of an implicit model via multi-scale noise
contrastive samples (section 3.2); generat-
ing motion from an environment-dependent
metric field (section 3.3), giving collision-
free motion. An overview of the workflow
is shown in fig. 2.
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3.1 Structure Extraction from Single Image with Pre-trained Video Generators

We circumvent the direct prediction of any depth information from the input image, thereby avoiding
frustum-shaped artifacts that are characteristic. Instead, we leverage modern video generators to
synthesize a sequence of images of the camera moving, conditional on the input image. These
images are then passed into a 3D foundation model, such as DUSt3R [6], to produce a dense point
cloud. We use the pre-trained video generation model, Stable Virtual Camera (Seva) [22]. Seva is
a 1.3 billion parameter diffusion model, using a stable diffusion 2.1 backbone [28]. It produces a
sequence of output images {I1, I2, . . . , In}, conditional on the input image I0 and a trajectory of
camera poses {T1, . . . , Tn}, where n is a pre-determined image sequence length. Despite the video
generator not constructing an explicit 3D representation, Seva is trained on videos that maintain both
photometric and geometric consistency across frames. As a result, the generated image sequences
maintain geometry and temporal consistency.

Figure 4: We leverage DUSt3R [6], which
can produce 3D structures from sets of 2D
images, and filter based on confidence maps.

The generated images, along with the conditioned
input image, are then all inputted into the 3D foun-
dation model, DUSt3R [6]. DUSt3R is a fully data-
driven system built around a large vision transformer
[29]. It produces dense 3D point-maps along with
per-pixel confidence and depth estimates, and then
uses these to recover relative camera poses and a
fully consistent 3D reconstruction. Because it learns
correspondences end-to-end rather than relying on
hand-crafted features, it can accurately estimate pose
even when the two views have very little visual over-
lap. After filtering away the points with low confi-
dence, we recover a dataset of dense cloud of N 3D

points {pi, ci}Ni=1, where pi ∈ R3 gives the 3D coordinates and ci gives the RGB colors of the point.
Next, we seek to construct a continuous implicit representation of the environment from the point
cloud. This implicit model enables smooth geometry reconstruction and supports downstream tasks
such as collision avoidance and motion generation.

3.2 Multi-scale Noise Contrastive Implicit Model

Reactive motions generated in the environment are influenced by distances to the nearest surface in
the environment. Here, VGER converts the point-based output from the 3D foundation model into a
smoothly varying function that captures the distance to the nearest surface in the scene. This implicit
function is modelled by a neural network fθ : R3 → R that approximates the unsigned distance to a
surface captured in our point cloud P = {pi}Ni=1. Our training procedure optimizes a loss:

L = Lfit + αsurfLsurf + αeikLeik. (1)

This loss combines: (i) regression to ground-truth distances at query points, (ii) a surface consistency
term enforcing a zero level-set at the surface, and (iii) an Eikonal regularizer to encourage unit
gradient norm. Linear weightings are denoted as αsurf and αeik. Next, we elaborate on this construct
of each loss term.

Multi-Scale Noise Negative Querying: To train a model to recover distances both on and near the
surface, we generate negative samples by perturbing points drawn from the surface with Gaussian
noise at multiple scales. Concretely, at each iteration we first sample a batch of raw surface points
{pi}Ni=1 uniformly from P . Around each pi, we add a zero-mean Gaussian noise εj whose standard
deviation σj is itself drawn from a log-uniform distribution:

uj ∼ Uniform
(
ln(σmin), ln(σmax)

)
, σj = exp(uj), εj ∼ N (0, σ2

j I), p̂i,j = pi + εj .

Here, p̂i,j denotes a query point that is perturbed off the surface point pi with a noise εj , and σmin

and σmax give boundaries of the standard deviation of the noise. Sampling σj on a log scale ensures
that the network sees perturbations ranging from extremely fine to coarse (one-tenth of the bounding
radius) distances. This multi-scale scheme serves two purposes: Local surface fidelity: Small σj

focuses the loss on points extremely close to the true surface, improving pointwise accuracy and
helping the zero level set align precisely with P; Robust gradient learning: Larger σj forces the
model to estimate distances further from the surface, ensuring that the predicted gradient field ∇fθ
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remains informative and prevents collapse to trivial solutions. Next, we compute the true unsigned
distance efficiently via a KD-tree, and construct a mean squared error loss to learn a continuous
distance representation:

d(p̂) = min
p∈P

∥p̂− p∥, Lfit = MSE( fθ(p̂i,j), d(p̂i,j)).

The implicit model fθ is represented by a neural network, that incorporates SIREN activation layers
[30]. That is, each hidden layer applies a periodic activation:

h(l) = sin
(
ω0 (W

(l) h(l−1) + b(l))
)
, l = 1, . . . , L.

Here, h(l−1) is the input to layer l, W (l) ∈ Rnl×nl−1 and b(l) ∈ Rnl are the learned weights and
biases, and ω0 > 0 is a fixed frequency scale controlling the periodicity. By fitting parameters in the
frequency domain, these activation layers enable fθ to capture finer details with higher frequency.

Surface Consistency and Eikonal Regularization: To ensure that our representation has a priori
structure of fθ(pi) = 0 and ∥∇fθ(xi)∥ = 1, we provide additional regularization. For each training
iteration, let Bs denote the minibatch of surface points and Bq the full minibatch of query points.
To align the network’s zero level-set with the input surface, and to encourage ∥∇fθ(x)∥ = 1 almost
everywhere. We add a surface loss Lsurf and a Eikonal loss Leik, given by

Lsurf =
1

|Bs|
∑
p∈Bs

∣∣fθ(p)∣∣, Leik =
1

|Bq|
∑
p̂∈Bq

(
∥∇xfθ(p̂)∥2 − 1

)2
. (2)

Together, these terms ensure exact surface interpolation and a well-conditioned gradient field, which
promotes accurate normal estimation and stable mesh extraction.

Connection to Diffusion Models: Multi-scale denoising has proven crucial for sharpening implicit
energy-based representations by teaching models to recover fine details at varying noise levels. In
particular, frameworks such as denoising score matching [31] and score-based diffusion models [32]
denoise data corrupted at multiple noise scales to learn a noise-conditional score

sθ(x, σ) ≈ ∇x log pσ(x), (3)

where pσ is the data distribution corrupted by Gaussian noise of scale σ. By sampling σ log-
uniformly over several orders of magnitude, these methods capture both high-frequency surface
details (small σ) and global structure (large σ). Analogously, the multi-scale noise in VGER trains
the implicit distance field fθ to denoise points at various distances from the surface, effectively
learning a landscape whose gradient aligns with the true distance gradient. This mirrors the reverse
diffusion process, where successive denoising steps refine a sample towards the data manifold. Our
incorporation of an Eikonal term Leik further ensures that ∥∇fθ∥ = 1, enforcing the learned field
into a distance metric and yielding sharp, artifact-free reconstructions.

3.3 Motion Generation in Constructed Environment via Continuous Metric Fields

Generating motion is central to enabling robots to interact with their surroundings. Here we outline
how we can leverage the environment representations extracted from a single image to shape robot
motions. We model robot policies as a dynamical system that is influenced by an environment-
dependent metric field.

Robot Policies as a Dynamical System: We take a reactive dynamical systems approach, enabling
motion at arbitrary initial positions in the environment. Similar to many of the reactive methods
introduced in [7, 8], we model the task-space motion of a robot as an autonomous dynamical system,
where trajectories can be obtained via numerical integration,

ẋ(t) = g(x(t)), x(t) = x0 +

∫ t

0

g(x(s))ds, (4)

where x(t) give the task-space coordinates of the motion, g : R3 → R3 is the dynamics, x0 is the
initial condition for the trajectory, integrated for time t. For robot manipulators, where the Jacobian
of the robot forward kinematics is known, we can further pull the dynamical system into the robot’s
configuration space by multiplying with the pseudoinverse of the Jacobian, as is done in [8].
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(a) input (b) DA-V2 (c) Our reconstructed 3D representation and trajectories
Figure 5: With a single example input image, shown in (a), of a stone model in an indoor environ-
ment, VGER can build a 3D representation of the scene. It does not suffer from incomplete surfaces
like the results from DepthAnything-V2, shown in (b)). It can also facilitate downstream motion
trajectory generation. Two trajectories, colored in red and blue, smoothly avoiding the obstacle, are
shown in (c).

Environment Influence as a Metric Field: We propose a principled framework for shaping motion
generation based on task-driven Riemannian metrics derived from the upstream distance function
fθ, such that the reactive behaviours like collision-avoidance and surface following emerge. Given
an nominal base dynamical system gbase(x), we define a metric-modulated motion as

ẋ = G(x)−1gbase(x), and G(x) ∈ S++. (5)

Here, gbase is the dynamics that governs the initial motion pattern without considering the environ-
ment. This could be defined as a simple attractor to a goal coordinate or a dynamical system learned
from data [33, 34]. G(x) is a Riemannian metric that is positive definite (S++) and varies smoothly
throughout the environment, constructed from fθ. This metric-based modulation can be interpreted
as solving, at every point x, a local quadratic program,

ẋ = arg min
v∈R3

{1

2
v⊤G(x)v − v⊤gbase(x)

}
. (6)

Thus, the metric shaping procedure can be viewed equivalently as solving a structured QP at every
point in state space, where the metric G(x) defines the local cost geometry. Importantly, by modu-
lating G(x), we influence both the preferred directions of motion and the associated effort, enabling
smooth reactive collision avoidance.

Figure 6: Constructed metric field
stretches and warps a base dynamical sys-
tem gbase(x) with flows (left), to produce
the flows G(x)−1gbase(x) which avoid
colliding into the black surface (right).

Our goal is now to construct a Riemannian metric field
to induce smooth collision avoidance behavior around
surfaces represented by a learned unsigned distance
function fθ : R3 → R≥0, where fθ(x) approximates
the distance from a point x ∈ R3 to the closest point on
the surface. To penalize motion toward the surface, we
construct the collision avoidance metric as

G(x) = I + fblow(x)u(x)u(x)
⊤, (7)

where I is the 3 × 3 identity matrix. Here, define a
blow-up scaling factor fblow and denote a unit surface
normal u(x), where,

fblow(x) =
k

(fθ(x) + ϵ)4
exp(−βfθ(x)), u(x) =

∇fθ(x)

∥∇fθ(x)∥
. (8)

Here, k > 0 controls the penalty strength, ϵ > 0 ensures numerical stability near the surface, and
β > 0 induces exponential decay away from the surface. Direct inversion of the metric G at every
control step would incur a full 3 × 3 matrix solve. Instead, we exploit the fact that G is a rank-one
update of the identity and apply the Sherman–Morrison formula [35] to eq. (5):(

I + αuu⊤)−1
= I − α

1 + α
uu⊤ ⇐⇒ ẋ =

[
I − fblow(x)

1 + fblow(x)
u(x)u(x)⊤

]
gbase(x). (9)

As the trajectory approaches a surface, that is fθ(x) → 0, the metric sharply penalizes motion
aligned with the surface normal, naturally steering trajectories tangentially to the surface without
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Figure 7: Qualitative evaluations of the complex 3D environment scenes (from top to bottom: gar-
den, bench, indoor, table respectively) each extracted from a single image with our VGER relative
to the baseline, DepthAnything-V2 and DUSt3R/ VGGT models with a single image input. We ob-
serve that not only does VGER fill in gaps occluded in the single image, but also altogether avoids
the frustum-shaped noise artifacts, which are particularly prominent in the garden and bench images.

requiring hard constraints. The construction is smooth and fully differentiable, making it well-suited
for reactive online motion generation. We illustrate the effect of a metric field steering the vector
field away from the normal of the surface in fig. 6, on a toy problem. Here, we observe that the
illustrated base vector field (shown in the left), after applying the effect of the metric field, smoothly
warps around the black surface.

4 Empirical Evaluations

To evaluate the robustness and quality of our proposed Video-generation Environment Represen-
tation (VGER) along with the produced motion trajectories, we collect sets of 10 images in both
outdoor and indoor scenes. These include the complex multi-object scenes Garden, Bench, Table,
and Indoor, along with the more object-centric Stone and Cabinet scenes. For the evaluation of the
quality of the performance of VGER and benchmark models, we extract the structure from a single
image. We use the entire set of ten images, passed to DUSt3R, to construct a representation that
we then consider to be the ground truth. Implementation details in our experiments are provided in
section A1.

4.1 VGER Avoids Frustum Noise and Extracts Structure Accurately

We compare VGER with a single input image against a suite of strong baselines. In our setup, we
uniformly sample 10 frames from the generated video to extract out our structure for VGER. These
include: DepthAnything-v2 [9]: a state-of-the-art monocular depth estimation foundation model;
VGGT with a single image [15]: a recent 3D foundation model which can handle a single input
image. We only pass a single image to generate the 3D representation; DUSt3R with a single
image [6]: a widely used 3D foundation model, we again only input a single image to generate the
3D representation; GEN3C [20] and ViewCrafter [21]: These are contemporary controllable video
generators, which we then extract 3D structure from to obtain the representation.

To evaluate the quality of the extracted scene representation, we rescale the environments to the
interval [−1, 1] and align the extracted scene representations with the ground truth representation
built with the entire set of images using iterative closest point [36]. Then, we compute the Chamfer
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Garden Bench Table Office Stone Cabinet

DepthAnythingV2 0.222 0.033 0.065 0.065 0.259 0.148
VGGT (single image) 0.109 0.068 0.094 0.062 0.296 0.121
DUSt3R (single image) 0.266 0.049 0.045 0.054 0.283 0.090
GEN3C [20] 0.060 0.016 0.060 0.049 0.104 0.066
ViewCrafter [21] 0.086 0.028 0.066 0.057 0.178 0.075
VGER (Ours) 0.075 0.029 0.030 0.047 0.096 0.044

Figure 8: (Left) Before computing distances, structure from one image by VGER (green) vs. ground-
truth (red) are aligned. (Right) We report normalized Chamfer distances on different scene cate-
gories. Lower is better.

Distance [37] between the point clouds of the ground truth and extracted structure. For two point
clouds P1 and P2, this is defined as,

DChamfer(P1, P2) =
1

|P1|
∑
x∈P1

min
y∈P2

∥∥x− y
∥∥
2
+

1

|P2|
∑
y∈P2

min
x∈P1

∥∥y − x
∥∥
2
. (10)

Figure 9: Single-image extraction leaves oc-
cluded regions incomplete, VGER reliably re-
constructs them. Left: Top: DepthAnything-
V2; bottom: VGER.; Right: Trajectories ap-
proaching the cabinet from the occluded back-
side, avoiding collision to reach the green goal.

The qualitative results are presented in fig. 8. Ad-
ditionally, we illustrate an example alignment of
the structure of the indoor environment extracted
from a single image with VGER overlaid with
a structure extracted via a 3D foundation model
using all of the images collected. The Cham-
fer distances are subsequently computed between
the aligned structures to obtain our quantitative
results. We observe that VGER outperforms all
the baseline methods consistently. Qualitatively,
we observed that by using video generators, con-
ditional on the input image, VGER subjects our
structures to greater multi-view consistency. As
a result, the frustum-shaped noise artifacts that
appear in free space no longer appear in our ob-

tained structure. Additionally, the video generator successfully estimates much of the geometry
occluded from a single image, resulting in more geometrically accurate representations. This is
particularly prominent in the complex Bench and Table scenes shown in rows 2 and 4 in fig. 7.

Figure 10: Left: Input image; Middle: Com-
parisons do not reconstruct unseen areas; Right:
VGER reconstructs geometrically-consistent de-
tails in unseen regions, such as under the table.

Here, we also highlight VGER’s ability to deal
with obstructions in fig. 9, where VGER can
reconstruct the occluded backside of a cabinet.
This enables motion trajectories and the correct
collision-avoidance behaviour of even when ap-
proaching the cabinet from the back, which was
not observed from the input image. A more in-
tricate level of detail in regions that are hidden
from the input image can also be seen in fig. 10.
Here, by leveraging the large amounts of video
data used to train the video generator model,
VGER is able to accurately capture the geometry of the reverse side of the table surface, as well
as the structure under the table, hidden from the input image view. We observe that this cannot be
captured by the alternative comparison methods, and are left with gaps in obstructed regions.

4.2 Trajectories from Motion Policies Built on Constructed Representations

Next, we assess how VGER improves downstream motion generation. Using the approach out-
lined in section 3.3, we generate trajectories with implicit distance models derived from VGER,
DepthAnything-V2 (DA-V2), and our ground-truth geometry. Our metric-field-based motion policy
yields smooth trajectories, exemplified in the table scene (fig. 11), and we can compute per-step
velocities in under 1ms. To quantify alignment with true motion, we integrate collision-free paths
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Figure 11: VGER enables smooth collision-free motion. Here, two trajectories (red and blue) warp
over benches and around the leg of the table to reach the goal (green).

Figure 12: The extracted structure provided by VGER, sampling different numbers of frames from
the generated video.

to a designated goal and measure the Discrete Fréchet Distance (DFD) [38], normalized by the
Euclidean distance from start to goal. As shown in fig. 13c, lower DFD values indicate closer agree-
ment with the ground-truth trajectories. Across all test scenes, VGER-based structures consistently
outperform DA-V2, with particularly large gains in indoor, cabinet, and stone environments. This
advantage arises because alternative methods introduce frustum-shaped noise artifacts in free space,
which “funnel” the motion into occluded regions (see fig. 13a). By contrast, VGER completes ob-
structed areas without spurious artifacts, guiding trajectories correctly around the backside of the
cabinet. Further examples in the complex indoor and garden scenes (fig. 13b) demonstrate that
VGER-driven policies smoothly avoid collisions with the table surface and elegantly skirt around
the plant and curb, respectively.

4.3 Ablation: Frames of Generated Video Used for Structure Extraction

Table 1: Performance of VGER with var-
ious images sampled on the table scene.

# Images 3 5 7 10 15

Dist. (×10−2) 4.2 3.1 3.3 3.0 2.9

The key to VGER’s performance is its ability to lever-
age frames of videos generated from a large pre-trained
model. When extracting the structure from the video,
it can be unnecessarily resource-intensive to use every
frame in the video, and we can uniformly subsample
frames instead. In our results reported, we subsample
10 images. Here, we conduct an ablation study over the number images sampled from the video.
We report results on the table scene using 3, 5, 7, 10, 15 images, computing the normalized Cham-
fer distance between the extracted structure and the ground truth after alignment. We observe that,
beyond 5 images, the performance of VGER is robust to the number of frames extracted from the
generated video. Images of the structures extracted for number of images sampled are in fig. 12.

5 Limitations

Figure 14: Left: The input image; Right: Gen-
erated frame contains hallucinated structure out-
lined in red that does not match the setting.

The VGER pipeline exploits pre-trained video
generators as foundation models for reconstruc-
tion and motion generation. In practice, these
models synthesize geometry well within the cam-
era’s field of view but may “hallucinate” when ex-
trapolating beyond the observed frustum. As the
spatial distance from the original image capture
region increases, so too does the uncertainty. An
example of hallucinations in the generated video
is illustrated in fig. 14. Future avenues of research
to extend VGER can incorporate mechanisms to track extrapolated regions far outside the spatial re-
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(a) Cabinet, Left: DA-V2; Right: VGER. (b) VGER trajectory examples.

Ours DA-V2

Bench 0.087 0.098
Garden 0.232 0.245
Indoor 0.111 0.203
Table 0.211 0.245
Cabinet 0.127 0.322
Stone 0.109 0.190

(c) Normalized DFD.
Figure 13: (a) Frustum-shaped noise artifacts often introduce local minima in the motion objec-
tive. We compare trajectories generated using DepthAnything-V2 (DA-V2) versus VGER: because
VGER completes the cabinet’s backside without spurious artifacts, it successfully navigates to the
goal. (b) Sample paths on VGER-derived structures smoothly traverse along the table surface (in-
door) and curve around a plant (garden), reaching their targets without collision. (c) The normalized
Discrete Fréchet distances between trajectories generated with VGER and DA-V2 structures.

gion captured by the input image, assign uncertainty estimates and integrate the confidence-levels
within the downstream motion policies.

6 Conclusion

In this paper, we tackle the problem of building an environment representation that enables motion
generation from a single image. Here, we have present Video-generation Environment Represen-
tation (VGER), a framework that leverages pre-trained video synthesis and 3D foundation models
to recover dense scene geometry from a single RGB image, without frustum-shaped artifacts. By
applying a multi-scale noise contrastive sampling procedure to the 3D reconstruction, we extract
an implicit unsigned distance field that smoothly encodes obstacle proximity across the workspace.
Embedding this field into a metric-modulated motion framework yields a motion policy, modelled
by a non-linear dynamical system capable of producing collision-free trajectories directly from a
single viewpoint. Extensive evaluations demonstrate that VGER consistently outperforms state-of-
the-art baselines, avoiding frustum-shaped artifacts and smoothly navigating complex indoor and
outdoor scenes. This drives the broader impact of a future where robots can be actively deployed in
open environments, enabling a safer workplace in the future.
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Appendix

A1 Implementation Details

We run our experiments on a standard desktop with an Intel i9 CPU and an NVIDIA RTX 4090 GPU
with 24GB VRAM. We use all the standard hyper-parameters in the Seva and DUSt3R foundation
models used in our pipeline. Here list all the hyper-parameters used for the reconstruction and
motion policies construction of our VGER method in table A1.

Implicit Model Multi-Scale Sampling Network for Implicit Model Motion Policy Blow-up

αsurf 0.5 Layers 3 k 20
αeik 0.1 Width 256 β 100
σmin 0.0025 ω0 25 ϵ 10−8

σmax 0.1 Training Epochs per LR 2000
|P| 10000 Learning rates (LRs) 3e-4, 1e-4, 5e-5, 1e-5
|Bs| 5000

Table A1: VGER hyperparameters at a glance.

A2 Additional Visualizations of Reconstructions

Here we provide additional visualizations of the structures extracted from VGER along with base-
lines. These are provided in fig. A1. Additionally, here we provide visualizations for our ablation

Figure A1: The extracted structures from our method, baselines, and ground truth, along with the
single input image, for the table, bench, garden, indoor, cabinet, and stone environments.

experiment, and observe the structure extracted via VGER when the number of frames that we use
from the generated video differ.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main contributions of our proposed task and method are introduced in
both abstract and introduction sections.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have a limitations section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: No theoretical results is presented in this paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, we detail the implementation details in both the experimental section,
and more in detail in the appendices.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: Though code has not been released during the review, the authors commit to
releasing code with a camera-ready version of this manuscript.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All hyper-parameters used to reproduce the results are provided in the appen-
dices.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The metrics used are clearly defined in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The resources used in our experiments are clearly stated in the implementa-
tion details in the appendices.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors reviewed the code and have no concerns.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We highlight the application of VGER to robotics, and emphasize how this
will lead to a more automated future with safer workplaces.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The authors see no potential risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: They are properly cited and licenses are respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

18

paperswithcode.com/datasets


• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification: No new asset is released at the review stage.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: No crowdsourcing experiments and research with human subjects are in-
volved.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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