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ABSTRACT

While federated learning (FL) promises to preserve privacy in distributed training
of deep learning models, recent work in the image and NLP domains showed
that training updates leak private data of participating clients. At the same time,
most high-stakes applications of FL (e.g., legal and financial) use tabular data.
Compared to the NLP and image domains, reconstruction of tabular data poses
several unique challenges: (i) categorical features introduce a significantly more
difficult mixed discrete-continuous optimization problem, (ii) the mix of categori-
cal and continuous features causes high variance in the final reconstructions, and
(iii) structured data makes it difficult for the adversary to judge reconstruction
quality. In this work, we tackle these challenges and propose the first compre-
hensive reconstruction attack on tabular data, called TabLeak. TabLeak is based
on three key ingredients: (i) a softmax structural prior, implicitly converting the
mixed discrete-continuous optimization problem into an easier fully continuous
one, (ii) a way to reduce the variance of our reconstructions through a pooled
ensembling scheme exploiting the structure of tabular data, and (iii) an entropy
measure which can successfully assess reconstruction quality. Our experimental
evaluation demonstrates the effectiveness of TabLeak, reaching a state-of-the-art
on four popular tabular datasets. For instance, on the Adult dataset, we improve
attack accuracy by 10% compared to the baseline on the practically relevant batch
size of 32 and further obtain non-trivial reconstructions for batch sizes as large as
128. Our findings are important as they show that performing FL on tabular data,
which often poses high privacy risks, is highly vulnerable.

1 INTRODUCTION

Federated Learning (McMahan et al., 2016) (FL) has emerged as the most prominent approach to
training machine learning models collaboratively without requiring sensitive data of different parties
to be sent to a single centralized location. While prior work has examined privacy leakage in federated
learning in the context of computer vision (Zhu et al., 2019; Geiping et al., 2020; Yin et al., 2021)
and natural language processing (Dimitrov et al., 2022a; Gupta et al., 2022; Deng et al., 2021), many
applications of FL rely on large tabular datasets that include highly sensitive personal data such as
financial information and health status (Borisov et al., 2021; Rieke et al., 2020; Long et al., 2021).
However, no prior work has studied the issue of privacy leakage in the context of tabular data, a cause
of concern for public institutions which have recently launched a competition1 with a 1.6 mil. USD
prize to develop privacy-preserving FL solutions for fraud detection and infection risk prediction,
both being tabular datasets.

Key challenges Leakage attacks often rely on solving optimization problems whose solutions are
the desired sensitive data points. Unlike other data types, tabular data poses unique challenges to
solving these problems because: (i) the reconstruction is a solution to a mixed discrete-continuous
optimization problem, in contrast to other domains where the problem is either fully continuous or
discrete (pixels for images and tokens for text), (ii) there is high variance in the final reconstructions
because, uniquely to tabular data, discrete changes in the categorical features significantly change the
optimization trajectory, and (iii) assessing the quality of reconstructions is harder compared to images
and text - e.g. determining whether a person with given reconstructed characteristics exists is difficult.
Together, these challenges imply that it is difficult to make existing attacks work on tabular data.

1https://petsprizechallenges.com/
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Figure 1: Overview of TabLeak. Our approach transforms the optimization problem into a fully
continuous one by optimizing continuous versions of the discrete features, obtained by applying
softmax (Step 1, middle boxes), resulting in N candidate solutions (Step 1, bottom). Then, we pool
together an ensemble of N different solutions z1, z2, ..., zN obtained from the optimization to reduce
the variance of the reconstruction (Step 2). Finally, we assess the quality of the reconstruction by
computing the entropy from the feature distributions in the ensemble (Step 3).

This work In this work, we propose the first comprehensive leakage attack on tabular data
in the FL setting, addressing the previously mentioned challenges. We provide an overview
of our approach in Fig. 1, showing the reconstruction of a client’s private training data point
x = [male, 18, white], from the corresponding training update∇f received by the server. In
Step 1, we create N separate optimization problems, each assigning different initial values z01 , . . . z

0
N

to the optimization variables, representing our reconstruction of the client’s one-hot encoded data,
c(x). To address the first challenge of tabular data leakage, we transform the mixed discrete-
continuous optimization problem into a fully continuous one, by passing our current reconstructions
zt1, . . . , z

t
N through a per-feature softmax σ at every step t. Using the softmaxed data σ(zt), we take

a gradient step to minimize the reconstruction loss, which compares the received client update ∇f
with a simulated client update computed on σ(zt). In Step 2, we reduce the variance of the final
reconstruction by performing pooling over the N different solutions z1, z2, ..., zN , thus tackling the
second challenge. In Step 3, we address the challenge of assessing the fidelity of our reconstructions.
We rely on the observation that often when our proposed reconstructions z1, z2, ..., zN agree they
also match the true client data, c(x). We measure the agreement using entropy. In the example above,
we see that the features sex and age produced a low entropy distribution. Therefore we assign high
confidence to these results (green arrows). In contrast, the reconstruction of the feature race receives
a low confidence rating (orange arrow); rightfully so, as the reconstruction is incorrect.

We implemented our approach in an end-to-end attack called TabLeak and evaluated it on several
tabular datasets. Our attack is highly effective: it can obtain non-trivial reconstructions for batch sizes
as large as 128, and on many practically relevant batch sizes such as 32, it improved reconstruction
accuracy by up to 10% compared to the baseline. Overall, our findings show that FL is highly
vulnerable when applied to tabular data.

Main contributions Our main contributions are:

• Novel insights enabling efficient attacks on FL with tabular data: using softmax to make the
optimization problem fully continuous, ensembling to reduce the variance, and entropy to
assess the reconstructions.

• An implementation of our approach into an end-to-end tool called TabLeak.

• Extensive experimental evaluation, demonstrating effectiveness of TabLeak at reconstructing
sensitive client data on several popular tabular datasets.
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2 BACKGROUND AND RELATED WORK

In this section, we provide the necessary technical background for our work, introduce the notation
used throughout the paper, and present the related work in this field.

Federated Learning Federated Learning (FL) is a training protocol developed to facilitate the
distributed training of a parametric model while preserving the privacy of the data at source (McMahan
et al., 2016). Formally, we have a parametric function fθ, where θ ∈ Θ are the (network) parameters
and fθ : X → Y . Given a dataset as the union of private datasets of clients S =

⋃K
k=1 Sk, we now

wish to find a θ∗ ∈ Θ such that:

θ∗ = argmin
θ∈Θ

1

N

∑
(xi,yi)∈S

L(fθ(xi), yi), (1)

in a distributed manner, i.e. without collecting the dataset S in a central database. McMahan et al.
(2016) propose two training algorithms: FedSGD (a similar algorithm was also proposed by Shokri &
Shmatikov (2015)) and FedAvg, that allow for the distributed training of fθ, while keeping the data
partitions Sk at client sources. The two protocols differ in how the clients compute their local updates
in each step of training. In FedSGD, each client calculates the update gradient with respect to a
randomly selected batch of their own data and shares the resulting gradient with the server. In FedAvg,
the clients conduct a few epochs of local training on their own data before sharing their resulting
parameters with the server. After the server has received the gradients/parameters from the clients,
it aggregates them, updates the model, and broadcasts it to the clients. In each case, this process is
repeated until convergence, where FedAvg usually requires fewer rounds of communication.

Data Leakage Attacks Although FL was designed with the goal of preserving the privacy of clients’
data, recent work has uncovered substantial vulnerabilities. Melis et al. (2019) first presented how one
can infer certain properties of the clients’ private data in FL. Later, Zhu et al. (2019) demonstrated
that an honest but curious server can use the current state of the model and the client gradients to
reconstruct the clients’ data, breaking the main privacy promise of Federated Learning (FL). Under
this threat model, there has been extensive research on designing tailored attacks for images (Geiping
et al., 2020; Geng et al., 2021; Huang et al., 2021; Jin et al., 2021; Balunović et al., 2021; Yin et al.,
2021; Zhao et al., 2020; Jeon et al., 2021; Dimitrov et al., 2022b) and natural language (Deng et al.,
2021; Dimitrov et al., 2022a; Gupta et al., 2022). However, no prior work has comprehensively dealt
with tabular data, despite its significance in real-world high-stakes applications (Borisov et al., 2021).
Some works also consider a threat scenario where the malicious server is allowed to change the model
or the updates communicated to the clients (Wen et al., 2022; Fowl et al., 2021); but in this work we
focus on the honest-but-curious setting.

In training with FedSGD, given the model fθ at an iteration t and the gradient ∇θ L(fθ(x), y) of
some client, we solve the following optimization problem to retrieve the client’s private data:

x̂, ŷ = argmin
(x′,y′)∈X×Y

E(∇θ L(fθ(x), y),∇θ L(fθ(x′), y′)) + λR(x′). (2)

Where in Eq. (2) we denote the gradient matching loss as E andR is an optional regularizer for the
reconstruction. The work of Zhu et al. (2019) used the mean square error for E , on which Geiping
et al. (2020) improved using the cosine similarity loss. Zhao et al. (2020) first demonstrated that
the private labels y can be estimated before solving Eq. (2), reducing the complexity of Eq. (2) and
improving the attack results. Their method was later extended to batches by Yin et al. (2021) and
refined by Geng et al. (2021). Eq. (2) is typically solved using continuous optimization tools such as
L-BFGS (Liu & Nocedal, 1989) and Adam (Kingma & Ba, 2014). Although analytical approaches
exist, they do not generalize to batches with more than a single data point (Zhu & Blaschko, 2020).

Depending on the data domain, distinct tailored alterations to Eq. (2) have been proposed in the
literature, e.g., using the total variation regularizer for images (Geiping et al., 2020) and exploiting pre-
trained language models in language tasks (Dimitrov et al., 2022a; Gupta et al., 2022). These mostly
non-transferable domain-specific solutions are necessary as each domain poses unique challenges.
Our work is first to identify and tackle the key challenges to data leakage in the tabular domain.
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Mixed Type Tabular Data Mixed type tabular data is a data type commonly used in health,
economic and social sciences, which entail high-stakes privacy-critical applications (Borisov et al.,
2021). Here, data is collected in a table of feature columns, mostly human-interpretable, e.g., age,
nationality, and occupation of an individual. We formalize tabular data as follows. Let x ∈ X be
one line of data, containing discrete or categorical features and continuous or numerical features.
Let X contain K discrete feature columns and L continuous feature columns, i.e. X = D1 ×D2 ×
· · · × DK × U1 × · · · × UL, where Di ⊂ N with cardinality |Di| = Di and Ui ⊂ R. For the purpose
of deep neural network training, the categorical features are often encoded in a numerical vector.
We denote the encoded data batch or line as c(x), where we preserve the continuous features and
encode the categorical features by a one-hot encoding. The one-hot encoding of the i-th discrete
feature xD

i is a vector cDi (x) of length Di that has a one at the position marking the encoded
category, while all other entries are zeros. We obtain the represented category by taking the argmax
of cDi (x) (projection to obtain x). Using the described encoding, one line of data x ∈ X translates to:
c(x) =

[
cD1 (x), cD2 (x), . . . , cDK(x), xC

1 , . . . , x
C
L

]
, containing d := L+

∑K
i=1 Di entries.

3 TABULAR LEAKAGE

In this section, we briefly summarize the key challenges in tabular leakage and present our solution to
these challenges in the subsequent subsections and our end-to-end attack.

Key Challenges We now list the three key challenges that we address in our work: (i) the presence
of both categorical and continuous features in tabular data require the attacker to solve a significantly
harder mixed discrete-continuous optimization problem (addressed in Sec. 3.1), (ii) the large distance
in the encodings of the categorical features introduces high variance in the leakage problem (addressed
in Sec. 3.2), and (iii) in contrast to images and text, it is hard for an adversary to assess the quality of
the reconstructed data in the tabular domain, as most reconstructions may be projected to credible
input data points (we address this via an uncertainty quantification scheme in Sec. 3.3).

3.1 THE SOFTMAX STRUCTURAL PRIOR

We now discuss our solution to challenge (i) – we introduce the softmax structural prior, which turns
the hard mixed discrete-continuous optimization problem into a fully continuous one. This drastically
reduces its complexity, while still facilitating the recovery of correct discrete structures.

To start, notice that the recovery of one-hot encodings can be enforced by ensuring that all entries of
the recovered vector are either zero or one, and exactly one of the entries equals to one. However,
these constraints enforce integer properties, i.e. they are non-differentiable and can not be used
in combination with the powerful continuous optimization tools used for gradient leakage attacks.
Relaxing the integer constraint by allowing the reconstructed entries to take real values in [0, 1],
we are still left with a constrained optimization problem not well suited for popular continuous
optimization tools, such as Adam (Kingma & Ba, 2014). Therefore, we are looking for a method that
can implicitly enforce the constraints introduced above.

Let z ∈ Rd be our approximate intermediate solution for the true one-hot encoded data c(x) at some
optimization step. Then, we are looking for a differentiable function σ : RDi → [0, 1], such that:

Di∑
j=1

σ(zDi )[j] = 1 and σ(zDi )[j] ∈ [0, 1] ∀j ∈ Di. (3)

Notice that the two conditions in Eq. (3) can be fulfilled by applying a softmax to zDi , i.e. define:

σ(zDi )[j] :=
exp(zDi [j])∑Di

k=1 exp(zDi [k])
∀j ∈ Di. (4)

Note that it is easy to show that Eq. (4) fulfills both conditions in Eq. (3) and that it is differentiable.
Putting this together, in each round of optimization we will have the following approximation of the
true data point: c(x) ≈ σ(z) =

[
σ(zD1 ), . . . , σ(zDK), zC1 , . . . , zCL

]
. In order to preserve notational

simplicity, we write σ(z) to mean the application of softmax to each group of entries representing a
given categorical variable separately.
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3.2 POOLED ENSEMBLING

As mentioned earlier, the mix of categorical and continuous features introduces further variance in
the difficult reconstruction problem which already has multiple local minima and high sensitivity to
initialization (Zhu & Blaschko, 2020) (challenge (ii)). Concretely, as the one-hot encodings of the
categorical features are orthogonal to each other, a change in the encoded category can drastically
change the optimization trajectory. We alleviate this problem by adapting an established method
of variance reduction in noisy processes (Hastie et al., 2009), i.e. we run independent optimization
processes with different initializations and ensemble their results through feature-wise pooling.

Note that the features in tabular data are tied to a certain position in the recovered data vector,
thereby we can combine independent reconstructions to obtain an improved and more robust final
estimate of the true data by applying feature-wise pooling. Formally, we run N independent rounds
of optimization with i.i.d. initializations recovering potentially different reconstructions {σ(zj)}Nj=1.
Then, we obtain a final estimate of the true encoded data, denoted as σD

i (ẑ), by pooling them:

σD
i (ẑ) = pool

({
σ(zDji)

}N
j=1

)
∀i ∈ [K] and ẑCi = pool

({
(zCji)

}N
j=1

)
∀i ∈ [L]. (5)

Where the pool(·) operation can be any permutation invariant mapping that maps to the same structure
as its inputs. In our attack, we use median pooling for both continuous and categorical features.

Figure 2: Maximum similarity matching of a sam-
ple from the collection of reconstructions to the
best-loss sample x̂best.

Notice that because a batch-gradient is invariant
to permutations of the datapoints in the corre-
sponding batch, when reconstructing from such
a gradient we may retrieve the batch-points in
a different order at every optimization instance.
Hence, we need to reorder each batch such that
their lines match to each other, and only then we
can conduct the pooling. We reorder by first se-
lecting the sample that produced the best recon-
struction loss at the end of optimization ẑbest,
with projection x̂best. Then, we match the lines of every other sample in the collection with respect
to x̂best. Concretely, we calculate the similarity (described in detail in Sec. 4) between each pair of
lines of x̂best and another sample x̂i in the collection and find the maximum similarity reordering of
the lines with the help of bipartite matching solved by the Hungarian algorithm (Kuhn, 1955). This
process is depicted in Fig. 2. Repeating this for each sample, we reorder the entire collection with
respect to the best-loss sample, effectively reversing the permutation differences in the independent
reconstructions. Therefore, after this process we can directly apply feature-wise pooling for each line
over the collection.

3.3 ENTROPY-BASED UNCERTAINTY ESTIMATION

We now address challenge (iii) above. To recap, it is significantly harder for an adversary to assess
the quality of an obtained reconstruction when it comes to tabular data, as almost any reconstruction
may constitute a credible data point when projected back to mixed discrete-continuous space. Note
that this challenge does not arise as prominently in the image (or text) domain, because by looking at
a picture one can easily judge if it is just noise or an actual image. To address this issue, we propose
to estimate the reconstruction uncertainty by looking at the level of agreement over a certain feature
for different reconstructions. Concretely, given a collection of reconstructions as in Sec. 3.2, we can
observe the distribution of each feature over the reconstructions. Intuitively, if this distribution is
"peaky", i.e. concentrates the mass heavily on a certain value, then we can assume that the feature
has been reconstructed correctly, whereas if there is high disagreement between the reconstructed
samples, we can assume that this feature’s recovered final value should not be trusted. We can
quantify this by measuring the entropy of the feature distributions induced by the recovered samples.

Categorical Features Let p(x̂D
i )m := 1

N Countj(x̂D
ji = m) be the relative frequency of projected

reconstructions of the i-th discrete feature of value m in the ensemble. Then, we can calculate
the normalized entropy of the feature as H̄D

i = −1
log |Di|

∑Di

m=1 p(x̂
D
i )m log p(x̂D

i )m. Note that
the normalization allows for comparing features with supports of different size, i.e. it ensures that
H̄D

i ∈ [0, 1], as 0 ≤ H(k) ≤ log |K| for any discrete random variable k ∈ K of finite support.
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Algorithm 1 Our combined attack against training by FedSGD

1: function SINGLEINVERSION(Neural Network: fθ, Client Gradient: ∇θ L(fθ(c(x)), y), Recon-
structed Labels: ŷ, Initial Reconstruction: z0i , Iterations: T , N. of Discrete Features: K)

2: for t in 1, 2, . . . , T do
3: for k in 1, 2, . . . ,K do
4: σ(zDik)← SOFTMAX(zDik)
5: end for
6: zt+1

i ← zti − η∇zECS(∇θ L(fθ(c(x)), y),∇θ L(fθ(σ(zti)), ŷ))
7: end for
8: return zTi
9: end function

10:
11: function TABLEAK(Neural Network: fθ, Client Gradient: ∇θ L(fθ(c(x)), y), Reconstructed

Labels: ŷ, Ensemble Size: N , Iterations: T , N. of Discrete Features: K)
12:

{
z0i
}N
i=1
∼ U[0,1]d

13: for i in 1, 2, . . . , N do
14: zTi ← SINGLEINVERSION(fθ,∇θ L(fθ(c(x)), y), ŷ, z0i , T , K)
15: end for
16: ẑbest ← argminzT

j
ECS(∇θ L(fθ(c(x)), y),∇θ L(fθ(σ(zTj )), ŷ))

17: σ(ẑ)← MATCHANDPOOL(
{
σ(zTi )

}N
i=1

, σ(ẑbest))

18: H̄D, HC ← CALCULATEENTROPY(
{
σ(zTi )

}N
i=1

)
19: x̂← PROJECT(σ(ẑ))
20: return x̂, H̄D, HC

21: end function

Continuous Features In case of the continuous features, we calculate the entropy assuming that
errors of the reconstructed samples follow a Gaussian distribution. As such, we first estimate the
sample variance σ̂2

i for the i-th continuous feature and then plug it in to calculate the entropy of the
corresponding Gaussian: HC

i = 1
2 + 1

2 log 2πσ̂2
i . As this approach is universal over all continuous

features, it is enough to simply scale the features themselves to make their entropy comparable. For
example, this can be achieved by working only with standardized features.

Note that as the categorical and the continuous features are fundamentally different from an infor-
mation theoretic perspective, we have no robust means to combine them in a way that would allow
for equal treatment. Therefore, when assessing the credibility of recovered features, we will always
distinguish between categorical and continuous features.

3.4 COMBINED ATTACK

Now we provide the description of our end-to-end attack, TabLeak. Following Geiping et al. (2020),
we use the cosine similarity loss as our reconstruction loss, defined as:

ECS(∇θt L(fθt(c(x)), y),∇θt L(fθt(σ(z)), ŷ)), with ECS(l, g) := 1− ⟨l, g⟩
∥l∥2 ∥g∥2

, (6)

where (x, y) are the true data, ŷ are the labels reconstructed beforehand, and we optimize for z. Our
algorithm is shown in Alg. 1. First, we reconstruct the labels using the label reconstruction method of
Geng et al. (2021) and provide them as an input to our attack. Then, we initialize N independent
dummy samples for an ensemble of size N (Line 12). Starting from each initial sample we optimize
independently (Line 13-15) via the SINGLEINVERSION function. In each optimization step, we
apply the softmax structural prior of Sec. 3.1, and let the optimizer differentiate through it (Line 4).
After the optimization processes have converged or have reached the maximum number of allowed
iterations T , we identify the sample ẑbest producing the best reconstruction loss (Line 16). Using
this sample, we match and median pool to obtain the final encoded reconstruction σ(ẑ) in Line 17
as described in Sec. 3.2. Finally, we return the projected reconstruction x̂ and the corresponding
feature-entropies H̄D and HC , quantifying the uncertainty in the reconstruction.
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4 EXPERIMENTAL EVALUATION

In this section, we first detail the evaluation metric we used to assess the obtained reconstructions. We
then briefly explain our experimental setup. Next, we evaluate our attack in various settings against
baseline methods, establishing a new state-of-the-art. Finally, we demonstrate the effectiveness of
our entropy-based uncertainty quantification method.

Evaluation Metric As no prior work on tabular data leakage exists, we propose our metric for
measuring the accuracy of tabular reconstruction, inspired by the 0-1 loss, allowing the joint treatment
of categorical and continuous features. For a reconstruction x̂, we define the accuracy metric as:

accuracy(x, x̂) :=
1

K + L

(
K∑
i=1

I{xD
i = x̂D

i }+
L∑

i=1

I{x̂C
i ∈ [xC

i − ϵi, x
C
i + ϵi]}

)
, (7)

where x is the ground truth and {ϵi}Li=1 are constants determining how close the reconstructed
continuous features have to be to the original value in order to be considered successfully leaked. We
provide more details on our metric in App. A and experiments with additional metrics in App. C.3.

Baselines We consider two main baselines: (i) Random Baseline does not use the gradient updates
and simply randomly samples reconstructions from the per-feature marginals of the input dataset.
Due to the structure of tabular datasets, we can easily estimate the marginal distribution of each
feature. For the categorical features this can be done by simple counting, and for the continuous
features we do it by defining a binning scheme with 100 equally spaced bins between the lower and
upper bounds of the feature. Although this baseline is usually not realizable in practice (as it assumes
prior knowledge of the marginals), it helps us calibrate our metric as performing below this baseline
signals that there is no information being extracted from the client updates. Note that because both
the selection of a batch and the random baseline represent sampling from the (approximate) data
generating distribution, the random baseline monotonously increases in accuracy with growing batch
size, (ii) Cosine Baseline is based on the work of Geiping et al. (2020), who established a strong
attack for images. We transfer their attack to tabular data by removing the total variation prior used
for images. Note that in the case of most competitive attacks on image and text, when removing
the domain specific elements, they reduce to this baseline, therefore it is a reasonable choice for
benchmarking a new domain.

Experimental Setup For all attacks, we use the Adam optimizer (Kingma & Ba, 2014) with
learning rate 0.06 for 1 500 iterations and without a learning rate schedule to perform the optimization
in Alg. 1. In line with Geiping et al. (2020), we modify the update step of the optimizer by reducing
the update gradient to its element-wise sign. The neural network we attack is a fully connected neural
network with two hidden layers of 100 neurons each. We conducted our experiments on four popular
mixed-type tabular binary classification datasets, the Adult census dataset (Dua & Graff, 2017), the
German Credit dataset (Dua & Graff, 2017), the Lawschool Admission dataset (Wightman, 2017),
and the Health Heritage dataset from Kaggle2. Due to the space constraints, here we report only our
results on the Adult dataset, and refer the reader to App. D for full results on all four datasets. Finally,
for all reported numbers below, we attack a neural network at initialization and estimate the mean
and standard deviation of each reported metric on 50 different batches. For experiments with varying
network sizes and attacks against provable defenses, please see App. C. For further details on the
experimental setup of each experiment, we refer the reader to App. B

General Results against FedSGD In Tab. 1 we present the results of our strong attack TabLeak
against FedSGD training, together with two ablation experiments, each time removing either the
pooling (no pooling) or the softmax component (no softmax). We compare our results to the baselines
introduced above, on batch sizes 8, 16, 32, 64, and 128, once assuming knowledge of the true labels
(top) and once using labels reconstructed by the method of Geng et al. (2021) (bottom). Notice that
the noisy label reconstruction only influences the results for lower batch sizes, and manifests itself
mostly in higher variance in the results. It is also worth to note that for batch size 8 (and lower, see
App. D) all attacks can recover almost all the data, exposing a trivial vulnerability of FL on tabular

2Source: https://www.kaggle.com/c/hhp
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Table 1: The mean inversion accuracy [%] and standard deviation of different methods over varying
batch sizes with given true labels (True y) and with reconstructed labels (Rec. ŷ) on the Adult dataset.

Label Batch TabLeak TabLeak TabLeak Cosine Random
Size (no pooling) (no softmax)

True y

8 95.1± 9.2 93.9± 10.2 92.9± 6.5 91.1± 7.3 53.9± 4.4
16 89.5± 7.6 84.5± 9.9 80.5± 4.3 75.0± 5.2 55.1± 3.9
32 77.6± 4.8 72.4± 4.6 70.8± 3.2 66.6± 3.5 58.0± 2.9
64 71.2± 2.8 66.2± 2.8 66.9± 2.7 62.5± 3.1 59.0± 3.2
128 68.8± 1.3 64.1± 1.4 64.0± 2.1 59.5± 2.1 61.2± 3.1

Rec. ŷ

8 86.9± 11.6 84.6± 13.4 85.8± 9.9 83.3± 9.7 53.9± 4.4
16 82.4± 8.4 78.3± 9.0 77.7± 4.1 73.0± 3.5 55.1± 3.9
32 75.3± 4.8 70.6± 4.3 70.2± 3.2 66.3± 3.4 58.0± 2.9
64 70.4± 3.2 65.9± 3.6 66.8± 2.6 63.1± 3.2 59.0± 3.2
128 68.7± 1.3 64.4± 1.5 63.8± 2.1 59.5± 2.1 61.2± 3.1

data. In case of larger batch sizes, even up to 128, TabLeak can recover a significant portion of the
client’s private data, well above random guessing, while the baseline Cosine attack fails to do so,
demonstrating the necessity of a domain tailored attack. In a later paragraph, we show how we can
further improve our reconstruction on this batch size and extract subsets of features with > 90%
accuracy using the entropy. Further, the results on the ablation attacks demonstrate the effectiveness
of each attack component, both providing a non-trivial improvement over the baseline attack that is
preserved when combined in our strongest attack. Demonstrating generalization beyond Adult, we
include our results on the German Credit, Lawschool Admissions, and Health Heritage datasets in
App. D.1, where we also outperform the Cosine baseline attack by at least 10% on batch size 32 on
each dataset.
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Figure 3: The inversion accuracy on the Adult
dataset over varying batch size separated for
discrete (D) and continuous (C) features.

Categorical vs. Continuous Features An interest-
ing effect of having mixed type features in the data
is that the reconstruction success clearly differs by
feature type. As we can observe in Fig. 3, the contin-
uous features produce an up to 30% lower accuracy
than the categorical features for the same batch size.
We suggest that this is due to the nature of categori-
cal features and how they are encoded. While trying
to match the gradients by optimizing the reconstruc-
tion, having the correct categorical features will have
a much greater effect on the gradient alignment, as
when encoded, they take up the majority of the data
vector. Also, when reconstructing a one-hot encoded
categorical feature, we only have to be able to retrieve
the location of the maximum in a vector of length Di,
whereas for the successful reconstruction of a contin-
uous feature we have to retrieve its value correctly
up to a small error. Therefore, especially when the
optimization process is aware of the structure of the encoding scheme (e.g., by using the softmax
structural prior), categorical features are much easier to reconstruct. This poses a critical privacy risk
in tabular federated learning, as sensitive features are often categorical, e.g., gender or race.

Federated Averaging In training with FedAvg (McMahan et al., 2016) participating clients conduct
local training of several updates before communicating their new parameters to the server. Note
that the more local updates are conducted by the clients, the harder a reconstruction attack becomes,
making leakage attacks against FedAvg more challenging. Although this training method is of
significantly higher practical importance than FedSGD, most prior work does not evaluate against
it. Building upon the work of Dimitrov et al. (2022b) (for details please see App. B and the work
of Dimitrov et al. (2022b)), we evaluate our combined attack and the cosine baseline in the setting
of Federated Averaging. We present our results of retrieving a client dataset of size 32 over varying
number of local batches and epochs on the Adult dataset in Tab. 2, while assuming full knowledge
of the true labels. We observe that while our combined attack significantly outperforms the random

8
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Table 2: Mean and standard deviation of the inversion accuracy [%] on FedAvg with local dataset
sizes of 32 on the Adult dataset. The accuracy of the random baseline for 32 datapoints is 58.0± 2.9.

TabLeak Cosine

n. batches 1 epoch 5 epochs 10 epochs 1 epoch 5 epochs 10 epochs

1 77.4± 4.5 71.1± 2.9 67.6± 3.7 65.2± 2.7 56.1± 4.1 53.2± 4.2
2 75.7± 5.0 71.7± 3.9 67.7± 4.2 64.8± 3.3 56.4± 4.8 56.2± 4.8
4 75.9± 4.4 71.0± 3.2 67.4± 3.4 64.8± 3.4 58.7± 4.6 56.6± 5.0

Table 3: The mean accuracy [%] and entropies with the corresponding standard deviations over batch
sizes of the categorical (top) and continuous (bottom) features.

Batch Size

8 16 32 64 128

Acc. 98.5± 5.6 97.2± 4.3 91.0± 4.4 83.2± 3.6 78.5± 1.8
H̄D 0.15± 0.13 0.26± 0.11 0.40± 0.06 0.48± 0.04 0.53± 0.03

Acc. 90.9± 14.7 78.8± 13.5 59.2± 6.9 55.1± 3.0 55.7± 2.0
HC −1.11± 0.95 −0.11± 0.63 0.77± 0.30 1.21± 0.19 1.48± 0.10

baseline of 58.0% accuracy even up to 40 local updates, the baseline attack fails to consistently do so
whenever the local training is longer than one epoch. As FedAvg with tabular data is of high practical
relevance, our results which highlight its vulnerability are concerning. We show further details for
the experimental setup and results on other datasets in App. B and App. D, respectively.

Table 4: The mean accuracy [%] and the share of
data [%] in each entropy bucket for batch size 128
on the Adult dataset.

Entropy Categorical Features

Bucket Accuracy [%] Data [%]

0.0-0.2 95.7 8.1
0.2-0.4 90.5 23.4
0.4-0.6 79.8 27.7
0.6-0.8 69.8 29.2
0.8-1.0 61.2 11.6

Overall 78.5 100

Random 73.8 100

Assessing Reconstructions via Entropy We
now investigate how an adversary can use the en-
tropy (introduced in Sec. 3.3) to assess the qual-
ity of their reconstructions. In Tab. 3 we show
the mean and standard deviation of the accuracy
and the entropy of both the discrete and the con-
tinuous features over increasing batch sizes af-
ter reconstructing with TabLeak (ensemble size
30). We observe an increase in the mean entropy
over the increasing batch sizes, corresponding to
accuracy decrease in the reconstructed batches.
Hence, an attacker can understand the global
effectiveness of their attack by looking at the
retrieved entropies, without having to compare
their results to the ground truth.

We now look at a single batch of size 128 and put each categorical feature into a bucket based on
their reconstruction entropy after attacking with TabLeak (ensemble size 30). In Tab. 4 we present
our results, showing that features falling into lower entropy buckets (0.0-0.2 and 0.2-0.4) inside a
batch are significantly more accurately reconstructed (> 90%) than the overall batch (78.5%). Note
that this bucketing can be done without the knowledge of the ground-truth, yet the adversary can
concretely identify the high-fidelity features in their noisy reconstruction. This shows that even
for reconstructions of large batches that seem to contain little-to-no information (close to random
baseline), an adversary can still extract subsets of the data with high accuracy. Tables containing both
feature types on all four datasets can be found in App. D.4, providing analogous conclusions.

5 CONCLUSION

In this work we presented TabLeak, the first data leakage attack on tabular data in the setting of
federated learning (FL), obtaining state-of-the-art results against both popular FL training protocols
in the tabular domain. As tabular data is ubiquitous in privacy critical high-stakes applications,
our results raise important concerns regarding practical systems currently using FL. Therefore, we
advocate for further research on advancing defenses necessary to mitigate such privacy leaks.

9
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6 ETHICS STATEMENT

As tabular data is often used in high-stakes applications and may contain sensitive data of natural
or legal persons, confidential treatment is critical. This work presents an attack algorithm in the
tabular data domain that enables an FL server to steal the private data of its clients in industry-relevant
scenarios, deeming such applications potentially unsafe.

We believe that exposing vulnerabilities of both recently proposed and widely adopted systems,
where privacy is a concern, can benefit the development of adequate safety mechanisms against
malicious actors. In particular, this view is shared by the governmental institutions of the United
States of America and the United Kingdom that jointly supported the launch of a competition
(https://petsprizechallenges.com/) aimed at advancing the privacy of FL in the tabular
domain, encouraging the participation of both teams developing defenses and attacks. Also, as our
experiments in App. C.1 show, existing techniques can help mitigate the privacy threat, hence we
encourage practitioners to make use of them.

7 REPRODUCIBILITY STATEMENT

We publish all of our code and provide it to the reviewers in an anonymized form on the openreview
discussion forum. Alongside the code, we provide a detailed README file with instructions on how
to run all of our experiments presented in Sec. 4 and our additional experiments presented in App. C.
To allow better reproducibility, our code presets random seeds to the chosen constant 42. Further, all
of our reported numbers are statistics of 50 independent repeated experiments, and wherever possible,
we report standard deviations. Finally, our hyperparameters and information about the hardware on
which we ran our experiments are provided in App. B.
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Table 6: Dataset specifications.

Features Discrete Features Continuous Features Encoded Features Data Points

Adult 14 8 6 105 45 222
German 20 13 7 63 1 000
Lawschool 7 5 2 39 96 584
Health Heritage 17 6 11 110 218 415

A ACCURACY METRIC

To ease the understanding, we start by repeating our accuracy metric here, where we measure the
reconstruction accuracy between the retrieved sample x̂ and the ground truth x as:

accuracy(x, x̂) :=
1

K + L

(
K∑
i=1

I{xD
i = x̂D

i }+
L∑

i=1

I{x̂C
i ∈ [xC

i − ϵi, x
C
i + ϵi]}

)
. (8)

Note that the binary treatment of continuous features in our accuracy metric enables the combined
measurement of the accuracy on both the discrete and the continuous features. From an intuitive point
of view, this measure closely resembles how one would judge the correctness of numerical guesses.
For example, guessing the age of a 25 year old, one would deem the guess good if it is within 3 to 4
years of the true value, but the guesses 65 and 87 would be both qualitatively incorrect. In order to
facilitate scalability of our experiments, we chose the {ϵi}Li=1 error-tolerance-bounds based on the
global standard deviation if the given continuous feature σC

i and multiplied it by a constant, concretely,
we used ϵi = 0.319σC

i for all our experiments. Note that Pr[µ−0.319σ < x < µ+0.319σ] ≈ 0.25
for a Gaussian random variable x with mean µ and variance σ2. For our metric this means that
assuming Gaussian zero-mean error in the reconstruction around the true value, we accept our
reconstruction as privacy leakage as long as we fall into the 25% error-probability range around
the correct value. In Tab. 5 we list the tolerance bounds ϵi for the continuous features of the Adult
dataset produced by this method. We would like to remark here, that we fixed our metric parameters
before conducting any experiments, and did not adjust them based on any obtained results. Note also
that in App. C we provide results where the continuous feature reconstruction accuracy is measured
using the commonly used regression metric of root mean squared error (RMSE), where TabLeak
also achieves the best results, signaling that the success of our method is independent of our chosen
metric.

Table 5: Resulting tolerance bounds on the Adult dataset when using ϵi = 0.319σC
i , as used by us

for our experiments.

feature age fnlwgt education-num capital-gain capital-loss hours-per-week

tolerance 4.2 33699 0.8 2395 129 3.8

B FURTHER EXPERIMENTAL DETAILS

Here we give an extended description to our experimental details provided in Sec. 4, additionally
we provide the specifications of each used dataset in Tab. 6. For all attacks, we use the Adam
optimizer (Kingma & Ba, 2014) with learning rate 0.06 for 1 500 iterations and without a learning
rate schedule. We chose the learning rate based on our experiments on the baseline attack where it
performed best. In line with Geiping et al. (2020), we modify the update step of the optimizer by
reducing the update gradient to its element-wise sign. We attack a fully connected neural network
with two hidden layers of 100 neurons each at initialization. However, we provide a network-size
ablation in Fig. 8, where we evaluate our attack against the baseline method for 5 different network
architectures. For each reported metric we conduct 50 independent runs on 50 different batches to
estimate their statistics. For all FedSGD experiments we clamp the continuous features to their valid
ranges before measuring the reconstruction accuracy, both for our attacks and the baseline methods.
We ran each of our experiments on single cores of Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz.
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Federated Averaging Experiments For experiments on attacking the FedAvg training algorithm,
we fix the clients’ local dataset size at 32 and conduct an attack after local training with learning
rate 0.01 on the initialized network described above. We use the FedAvg attack-framework of
Dimitrov et al. (2022b), where for each local training epoch we initialize an independent mini-
dataset matching the size of the client dataset, and simulate the local training of the client. At
each reconstruction update, we use the mean squared error between the different epoch data means
(Dinv = ℓ2 and g = mean in Dimitrov et al. (2022b)) as the permutation invariant epoch prior required
by the framework, ensuring the consistency of the reconstructed dataset. For the full technical
details, please refer to the manuscript of Dimitrov et al. (2022b). For choosing the prior parameter
λinv, we conduct line-search on each setup and attack method pair individually on the parameters
[0.0, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001], and pick the ones providing the best results. Further, to reduce
computational overhead, we reduce the ensemble size of TabLeak from 30 to 15 for these experiments
on all datasets.

C FURTHER EXPERIMENTS

In this subsection, we present three further experiments:

• Results of attacking neural networks defended using differentially private noisy gradients in
App. C.1.

• Ablation study on the impacts of the neural network’s size on the reconstruction difficulty in
App. C.2.

• Measuring the Root Mean Squared Error (RMSE) of the reconstruction of continuous
features in App. C.3.

C.1 ATTACK AGAINST GAUSSIAN DP

Differential privacy (DP) has recently gained popularity, as a way to prevent privacy violations in
FL (Abadi et al., 2016; Zhu et al., 2019). Unlike, empirical defenses which are often broken by
specifically crafted adversaries (Balunović et al., 2021), DP provides guarantees on the amount
of data leaked by a FL model, in terms of the magnitude of random noise the clients add to their
gradients prior to sharing them with the server (Abadi et al., 2016; Zhu et al., 2019). Naturally,
DP methods balance privacy concerns with the accuracy of the produced model, since bigger noise
results in worse models that are more private. In this subsection, we evaluate TabLeak, and the
Cosine baseline against DP defended gradient updates, where zero-mean Gaussian noise is added
with standard deviations 0.001, 0.01, and 0.1 to the client gradients. We present our results on the
Adult, German Credit, Lawschool Admissions, and Health Heritage datasets in Fig. 4, Fig. 5, Fig. 6,
and Fig. 7, respectively. Although both methods are affected by the defense, our method consistently
produces better reconstructions than the baseline method. However, for high noise level (standard
deviation = 0.1) and larger batch size both attacks break, advocating for the use of DP defenses in
tabular FL to prevent the high vulnerability exposed by this work.
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(b) standard deviation = 0.01
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(c) standard deviation = 0.1

Figure 4: Mean and standard deviation accuracy [%] curves over batch size at varying Gaussian noise
level σ added to the client gradients for differential privacy on the Adult dataset.

1 2 4 8 16 32 64 128
Batchsize (log scale)

30

40

50

60

70

80

90

100

Re
co

ns
tru

ct
io

n 
Ac

cu
ra

cy
 [%

]

Random
Cosine
TabLeak

(a) standard deviation = 0.001
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(b) standard deviation = 0.01
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(c) standard deviation = 0.1

Figure 5: Mean and standard deviation accuracy [%] curves over batch size at varying Gaussian noise
level σ added to the client gradients for differential privacy on the German Credit dataset.
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(b) standard deviation = 0.01
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(c) standard deviation = 0.1

Figure 6: Mean and standard deviation accuracy [%] curves over batch size at varying Gaussian noise
level σ added to the client gradients for differential privacy on the Lawschool Admissions dataset.
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(a) standard deviation = 0.001
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(b) standard deviation = 0.01
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(c) standard deviation = 0.1

Figure 7: Mean and standard deviation accuracy [%] curves over batch size at varying Gaussian noise
level σ added to the client gradients for differential privacy on the Health Heritage dataset.

C.2 VARYING NETWORK SIZE

To understand the effect the choice of the network has on the obtained reconstruction results, we
defined 4 additional fully connected networks, two smaller, and two bigger ones to evaluate TabLeak
on. As a simple linear model is often a good baseline for tabular data, we add it also to the range of
attacked models. Concretely, we examined the following six models for our attack:

• Linear: a linear classification network: fW (c(x)) = σ(Wc(x) + b),
• NN 1: a single hidden layer neural network with 50 neurons,
• NN 2: a single hidden layer neural network with 100 neurons,
• NN 3: a neural network with two hidden layers of 100 neurons each (network used in main

body),
• NN 4: a neural network with three hidden layers of 200 neurons each,
• NN 5: a three hidden layer neural network with 400 neurons in each layer.

We attack the above networks, aiming to reconstruct a batch of size 32. We plot the accuracy of
TabLeak and the cosine baseline as a function of the number of parameters in the network in Fig. 8
for all four datasets. We can observe that with increasing number of parameters in the network, the
reconstruction accuracy significantly increases on all datasets, and rather surprisingly, allowing for
near perfect reconstruction of a batch as large as 32 in some cases. Observe that on both ends of
the presented parameter scale the differences between the methods degrade, i.e. they either both
converge to near-perfect reconstruction (large networks) or to random guessing (small networks).
Therefore, the choice of our network for conducting the experiments was instructive in examining the
differences between the methods.

Additionally, to better understand the relevance of the models examined here, we train them on each
of the datasets for 50 epochs and observe their behavior through monitoring their performance on a
secluded test set of each dataset. We do this for 5 different initializations of each model, and report
the mean and the standard deviation of the test accuracy at each training epoch for each model. Note
that we do not train the models using any FL protocol, merely, this experiment serves to give a better
understanding between the relation of the given dataset and the model used, putting also the attack
success data in better perspective. For training, we use the Adam Kingma & Ba (2014) optimizer
and batch size 256 for each of the datasets, except for the German Credit dataset, where we train
with batch size 64 due to its small size. We provide all test accuracy curves over training in Fig. 9.
From the accuracy curves we can observe that most large models that are easy to attack tend to
overfit quickly to the data, indicating a heavily overparameterized regime. Additionally, in Tab. 7 we
provide the peak mean test accuracies per dataset and model, effectively corresponding to a ’perfect’
early-stopping. The linear model could appear to be an overall good choice, as it is very hard to
attack and shows good stability during training, however, it does not achieve competitive performance
on most datasets. In Tab. 7 the non-linear models always outperform the linear model, and achieve
comparable performance across themselves in this ideal setting, where overfitting can be prevented
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(a) Adult: d = 105
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(b) German Credit: d = 63
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(c) Lawschool Admissions: d = 39
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(d) Health Heritage: d = 110

Figure 8: Mean attack accuracy curves with standard deviation for batch size 32 over varying network
size (measured in number of parameters, #Params, log scale) on all four datasets with d number
of features after encoding. We mark the network we used for our other experiments with a dashed
vertical line. From left to right we have the following models: Linear, NN 1, NN 2, NN 3, NN 4, and
NN5.

Table 7: Mean and standard deviation of the peak test accuracy of each of the examined 6 models on
the four discussed datasets over training.

Linear Layout 1 Layout 2 Layout 3 Layout 4 Layout 5

Adult 84.7± 0.1 84.9± 0.1 85.0± 0.1 84.8± 0.1 84.8± 0.1 84.7± 0.1
German 73.0± 1.4 80.0± 1.1 79.5± 0.6 80.9± 0.7 78.9± 1.0 79.4± 1.8
Lawschool 87.4± 0.0 89.6± 0.1 89.8± 0.0 90.0± 0.1 89.8± 0.1 89.8± 0.1
Health Heritage 80.9± 0.0 81.2± 0.1 81.2± 0.0 81.2± 0.1 81.2± 0.1 81.1± 0.1

by monitoring on the test data3. Conclusively, simpler non-linear models shall be pursued for FL
on tabular data, as they are less prone to overfitting and provide better protection from data leakage
attacks.

3In practice a proxy metric would be necessary to achieve early-stopping, such as monitoring the performance
on a separate validation set split from the training data
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(c) Lawschool Admissions
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(d) Health Heritage

Figure 9: Mean test and standard deviation of the test accuracy over epochs during five independent
runs of training for each examined model on all four datasets. For our experiments elsewhere we
used the network corresponding to Layout 3, marked in red here.
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Figure 10: The mean and standard deviation of the Root Mean Square Error (RMSE) of the recon-
structions of the continuous features on all four datasets over batch sizes.

C.3 CONTINUOUS FEATURE RECONSTRUCTION MEASURED BY RMSE

In order to examine the potential influence of our choice of reconstruction metric on the obtained
results, we further measured the reconstruction quality of continuous features on the widely used
Root Mean Squared Error (RMSE) metric as well. Concretely, we calculate the RMSE between the
L continuous features of our reconstruction x̂C and the ground truth x in a batch of size n as:

RMSE(xC , x̂C) =
1

L

L∑
i=1

√√√√ 1

n

n∑
j=1

(xC
ij − x̂C

ij)
2. (9)

As our results in Fig. 10 demonstrate, TabLeak achieves significantly lower RMSE than the Cosine
baseline on large batch sizes, for all four datasets examined. This indicates that the strong results
obtained by TabLeak in the rest of the paper are not a consequence of our evaluation metric.
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Table 8: The mean inversion accuracy [%] and standard deviation of different methods over varying
batch sizes with given true labels (top) and with reconstructed labels (bottom) on the Adult dataset.

Label Batch TabLeak TabLeak TabLeak Cosine Random
Size (no pooling) (no softmax)

True y

1 99.4± 2.8 99.1± 4.4 100.0± 0.0 100.0± 0.0 43.3± 11.8
2 99.2± 5.5 99.1± 6.5 99.9± 1.0 97.6± 6.9 47.1± 7.9
4 98.0± 4.5 96.6± 7.5 98.9± 4.0 96.4± 7.2 49.8± 4.9
8 95.1± 9.2 93.9± 10.2 92.9± 6.5 91.1± 7.3 53.9± 4.4
16 89.5± 7.6 84.5± 9.9 80.5± 4.3 75.0± 5.2 55.1± 3.9
32 77.6± 4.8 72.4± 4.6 70.8± 3.2 66.6± 3.5 58.0± 2.9
64 71.2± 2.8 66.2± 2.8 66.9± 2.7 62.5± 3.1 59.0± 3.2
128 68.8± 1.3 64.1± 1.4 64.0± 2.1 59.5± 2.1 61.2± 3.1

Rec. ŷ

1 99.4± 2.8 99.3± 3.6 100.0± 0.0 100.0± 0.0 43.3± 11.8
2 98.2± 8.9 98.1± 9.1 98.6± 7.5 95.9± 11.5 47.1± 7.9
4 89.5± 13.8 88.0± 15.2 90.0± 13.0 87.9± 13.7 49.8± 4.9
8 86.9± 11.6 84.6± 13.4 85.8± 9.9 83.3± 9.7 53.9± 4.4
16 82.4± 8.4 78.3± 9.0 77.7± 4.1 73.0± 3.5 55.1± 3.9
32 75.3± 4.8 70.6± 4.3 70.2± 3.2 66.3± 3.4 58.0± 2.9
64 70.4± 3.2 65.9± 3.6 66.8± 2.6 63.1± 3.2 59.0± 3.2
128 68.7± 1.3 64.4± 1.5 63.8± 2.1 59.5± 2.1 61.2± 3.1

D ALL MAIN RESULTS

In this subsection, we include all the results presented in the main part of this paper for the Adult
dataset alongside with the corresponding additional results on the German Credit, Lawschool Admis-
sions, and the Health Heritage datasets.

D.1 FULL FEDSGD RESULTS ON ALL DATASETS

In Tab. 8, Tab. 9, Tab. 10, and Tab. 11 we provide the full attack results of our method compared to
the Cosine and random baselines on the Adult, German Credit, Lawschool Admissions, and Health
Heritage datasets, respectively. Looking at the results for all datasets, we can confirm the observations
made in Sec. 4, i.e. (i) the lower batch sizes are vulnerable to any non-trivial attack, (ii) not knowing
the ground truth labels does not significantly disadvantage the attacker for larger batch sizes, and (iii)
TabLeak provides a strong improvement over the baselines for practically relevant batch sizes over
all datasets examined.

D.2 CATEGORICAL VS. CONTINUOUS FEATURES ON ALL DATASETS

In Fig. 11, we compare the reconstruction accuracy of the continuous and the discrete features on all
four datasets. We confirm our observations, shown in Fig. 3 in the main text, that a strong dichotomy
between continuous and discrete feature reconstruction accuracy exists on all 4 datasets.

D.3 FEDERATED AVERAGING RESULTS ON ALL DATASETS

In Tab. 12, Tab. 13, Tab. 14, and Tab. 15 we present our results on attacking the clients in FedAvg
training on the Adult, German Credit, Lawschool Submissions, and Health Heritage datasets, respec-
tively. We described the details of the experiment in App. B above. Confirming our conclusions drawn
in the main part of this manuscript, we observe that TabLeak achieves non-trivial reconstruction
accuracy over all settings and even for large numbers of updates, while the baseline attack often fails
to outperform random guessing, when the number of local updates is increased.
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Table 9: The mean inversion accuracy [%] and standard deviation of different methods over varying
batch sizes with given true labels (top) and with reconstructed labels (bottom) on the German Credit
dataset.

Label Batch TabLeak TabLeak TabLeak Cosine Random
Size (no pooling) (no softmax)

True y

1 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 43.9± 9.8
2 100.0± 0.0 100.0± 0.0 99.9± 0.7 98.0± 7.1 45.1± 6.6
4 99.9± 0.4 99.2± 3.6 99.5± 1.2 97.8± 6.0 50.3± 4.5
8 99.7± 1.1 99.1± 2.2 98.2± 2.5 96.1± 5.2 51.8± 3.2
16 95.9± 3.4 94.0± 4.3 84.1± 3.4 79.3± 4.4 54.5± 3.0
32 83.6± 2.9 79.4± 3.1 72.1± 1.9 69.7± 2.2 56.8± 2.2
64 73.0± 1.3 70.8± 1.4 68.9± 1.4 66.6± 1.8 59.4± 1.9
128 71.3± 0.8 69.1± 0.8 67.4± 1.5 64.5± 1.5 61.0± 2.1

Rec. ŷ

1 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 43.9± 9.8
2 100.0± 0.0 99.5± 3.5 99.9± 0.7 98.8± 5.2 45.1± 6.6
4 99.6± 2.6 99.5± 2.9 99.2± 3.0 97.4± 6.4 50.3± 4.5
8 97.2± 6.1 96.8± 6.8 96.0± 6.2 94.8± 6.5 51.8± 3.2
16 91.7± 6.5 90.0± 7.3 82.3± 4.6 77.9± 4.6 54.5± 3.0
32 81.5± 3.4 77.6± 2.8 71.5± 2.0 69.1± 2.1 56.8± 2.2
64 72.9± 1.4 70.5± 1.4 68.6± 1.3 66.5± 1.7 59.4± 1.9
128 71.1± 0.9 69.1± 0.7 67.1± 1.6 64.4± 1.6 61.0± 2.1

Table 10: The mean inversion accuracy [%] and standard deviation of different methods over varying
batch sizes with given true labels (top) and with reconstructed labels (bottom) on the Lawschool
Admissions dataset.

Label Batch TabLeak TabLeak TabLeak Cosine Random
Size (no pooling) (no softmax)

True y

1 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 38.9± 14.6
2 100.0± 0.0 100.0± 0.0 99.9± 1.0 96.3± 10.4 38.4± 11.5
4 100.0± 0.0 100.0± 0.0 99.7± 1.2 97.6± 6.9 43.2± 7.2
8 98.7± 3.8 98.8± 3.7 96.0± 5.0 94.5± 5.8 49.4± 4.6
16 94.8± 5.6 93.5± 6.5 81.1± 4.5 77.3± 5.5 53.0± 3.1
32 84.8± 3.9 82.4± 4.1 73.3± 2.8 71.0± 2.8 57.6± 2.3
64 78.2± 2.0 76.6± 2.0 73.0± 2.1 71.7± 2.2 60.4± 2.2
128 77.3± 1.2 76.0± 1.1 73.7± 2.6 71.8± 2.7 63.4± 1.5

Rec. ŷ

1 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 38.9± 14.6
2 99.1± 6.0 99.3± 5.0 98.7± 7.1 95.9± 12.0 38.4± 11.5
4 99.6± 3.0 99.0± 4.9 98.7± 6.3 96.8± 8.5 43.2± 7.2
8 95.9± 7.8 95.3± 8.3 93.4± 7.2 91.9± 7.9 49.4± 4.6
16 91.2± 7.3 89.1± 8.3 80.5± 4.7 77.4± 5.4 53.0± 3.1
32 83.2± 4.1 80.9± 4.3 72.7± 2.2 71.0± 2.0 57.6± 2.3
64 77.2± 2.4 76.0± 2.2 72.7± 2.1 71.5± 2.4 60.4± 2.2
128 77.1± 1.2 75.9± 1.3 73.9± 2.7 71.8± 2.8 63.4± 1.5
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Table 11: The mean inversion accuracy [%] and standard deviation of different methods over varying
batch sizes with given true labels (top) and with reconstructed labels (bottom) on the Health Heritage
dataset.

Label Batch TabLeak TabLeak TabLeak Cosine Random
Size (no pooling) (no softmax)

True y

1 99.8± 1.6 99.8± 1.6 99.8± 1.6 99.8± 1.6 34.8± 13.1
2 97.7± 8.3 97.2± 10.2 98.6± 3.3 97.9± 5.6 36.9± 9.8
4 98.2± 6.5 96.1± 9.8 97.8± 4.2 95.6± 8.1 37.0± 5.3
8 96.0± 8.2 94.2± 10.5 89.2± 9.1 86.2± 9.0 39.2± 3.8
16 86.1± 8.8 80.6± 9.9 67.8± 4.8 63.6± 5.5 41.4± 3.7
32 70.0± 4.5 64.7± 3.9 61.4± 4.0 57.7± 4.1 43.4± 2.8
64 64.7± 2.8 59.6± 2.7 61.5± 4.3 57.4± 4.7 45.0± 3.7
128 63.0± 1.4 57.9± 1.6 59.9± 5.0 55.6± 4.8 46.8± 3.2

Rec. ŷ

1 99.8± 1.6 99.9± 0.8 99.8± 1.6 99.6± 2.5 34.8± 13.1
2 95.4± 13.6 94.8± 15.1 95.2± 13.6 92.5± 16.9 36.9± 9.8
4 86.6± 20.2 84.7± 22.0 84.7± 20.8 83.5± 20.7 37.0± 5.3
8 82.4± 15.6 80.5± 16.3 77.3± 13.3 74.5± 13.8 39.2± 3.8
16 75.9± 12.4 71.4± 11.4 64.8± 7.6 60.9± 6.3 41.4± 3.7
32 64.8± 5.7 60.8± 4.7 59.8± 3.8 56.9± 4.0 43.4± 2.8
64 62.6± 2.6 59.6± 2.6 60.9± 4.0 57.7± 4.7 45.0± 3.7
128 62.7± 1.6 59.2± 1.6 59.6± 5.1 55.7± 5.0 46.8± 3.2

Table 12: Mean and standard deviation of the inversion accuracy [%] with local dataset size of 32
in FedAvg training on the Adult dataset. The accuracy of the random baseline for 32 datapoints is
58.0± 2.9.

TabLeak Cosine

n. batches 1 epoch 5 epochs 10 epochs 1 epoch 5 epochs 10 epochs

1 77.4± 4.5 71.1± 2.9 67.6± 3.7 65.2± 2.7 56.1± 4.1 53.2± 4.2
2 75.7± 5.0 71.7± 3.9 67.7± 4.2 64.8± 3.3 56.4± 4.8 56.2± 4.8
4 75.9± 4.4 71.0± 3.2 67.4± 3.4 64.8± 3.4 58.7± 4.6 56.6± 5.0

Table 13: Mean and standard deviation of the inversion accuracy [%] with local dataset size of 32
in FedAvg training on the German Credit dataset. The accuracy of the random baseline for 32
datapoints is 56.9± 2.1.

TabLeak Cosine

n. batches 1 epoch 5 epochs 10 epochs 1 epoch 5 epochs 10 epochs

1 95.2± 3.8 87.9± 6.2 83.4± 4.6 78.2± 4.6 65.4± 6.2 62.5± 6.1
2 95.5± 3.9 88.2± 5.2 84.0± 6.6 78.3± 5.8 68.8± 6.6 63.4± 4.8
4 95.6± 3.6 85.5± 6.0 81.0± 6.1 79.2± 4.9 67.4± 4.8 62.6± 6.5

Table 14: Mean and standard deviation of the inversion accuracy [%] with local dataset size of 32 in
FedAvg training on the Lawschool Admissions dataset. The accuracy of the random baseline for 32
datapoints is 57.8± 2.3.

TabLeak Cosine

n. batches 1 epoch 5 epochs 10 epochs 1 epoch 5 epochs 10 epochs

1 85.6± 3.8 83.3± 2.9 80.7± 4.1 72.2± 2.6 68.1± 3.1 65.2± 2.8
2 86.0± 3.8 83.0± 3.2 79.8± 3.5 72.5± 1.9 68.3± 4.4 66.2± 2.8
4 85.8± 3.5 81.7± 3.8 79.3± 4.3 72.5± 2.4 69.4± 3.9 67.9± 3.8
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(c) Lawschool Admissions
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(d) Health Heritage

Figure 11: Mean reconstruction accuracy curves with corresponding standard deviations over varying
batch size, separately for the discrete and the continuous features on all four datasets.

Table 15: Mean and standard deviation of the inversion accuracy [%] with local dataset size of 32
in FedAvg training on the Health Heritage dataset. The accuracy of the random baseline for 32
datapoints is 43.4± 3.5.

TabLeak Cosine

n. batches 1 epoch 5 epochs 10 epochs 1 epoch 5 epochs 10 epochs

1 68.5± 5.0 62.2± 3.5 57.4± 3.0 53.8± 5.5 41.4± 3.6 41.1± 3.4
2 68.1± 4.9 62.4± 4.1 57.0± 2.8 52.4± 5.7 43.4± 4.28 44.4± 4.3
4 67.3± 5.8 62.0± 3.5 57.0± 3.0 52.5± 6.6 43.4± 5.7 44.8± 4.4
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Table 16: The mean accuracy [%] and entropies with the corresponding standard deviations over
batch sizes of the categorical and the continuous features on the Adult dataset.

Discrete Continuous

Accuracy Entropy Accuracy Entropy

1 100.0± 0.0 0.01± 0.04 98.7± 6.5 −3.1± 0.26
2 99.5± 3.5 0.01± 0.06 98.8± 8.2 −2.82± 0.57
4 99.5± 1.4 0.08± 0.11 95.8± 9.9 −1.89± 0.99
8 98.5± 5.6 0.15± 0.13 90.9± 14.7 −1.11± 0.95
16 97.2± 4.3 0.26± 0.11 78.8± 13.5 −0.11± 0.63
32 91.0± 4.4 0.40± 0.06 59.2± 6.9 0.77± 0.30
64 83.2± 3.6 0.48± 0.04 55.1± 3.0 1.21± 0.19
128 78.5± 1.8 0.53± 0.03 55.7± 2.0 1.48± 0.10

Table 17: The mean accuracy [%] and entropies with the corresponding standard deviations over
batch sizes of the categorical and the continuous features on the German Credit dataset.

Discrete Continuous

Accuracy Entropy Accuracy Entropy

1 100.0± 0.0 0.00± 0.01 100.0± 0.0 −3.10± 0.18
2 100.0± 0.0 0.03± 0.05 100.0± 0.0 −2.41± 0.97
4 100.0± 0.0 0.07± 0.05 99.8± 1.1 −1.66± 0.80
8 100.0± 0.0 0.10± 0.07 99.1± 3.1 −1.38± 0.54
16 99.5± 1.4 0.25± 0.07 89.1± 8.1 −0.35± 0.22
32 93.0± 2.1 0.43± 0.04 66.0± 4.9 0.60± 0.13
64 81.9± 1.8 0.56± 0.02 57.5± 2.2 1.08± 0.06
128 78.2± 1.1 0.59± 0.02 58.4± 1.7 1.30± 0.05

D.4 FULL RESULTS ON ENTROPY ON ALL DATASETS

In Tab. 16, Tab. 17, Tab. 18, and Tab. 19 we provide the mean and standard deviation of the
reconstruction accuracy and the entropy of the continuous and the categorical features over increasing
batch size for attacking with TabLeak on the four datasets. In support of Sec. 4, we can observe on
all datasets a trend of increasing entropy over decreasing reconstruction accuracy as the batch size is
increased; and as such providing a signal to the attacker about their overall reconstruction success.

To generalize our results on the local information contained in the entropy, we show the mean
reconstruction accuracy of both the discrete and the continuous features with respect to bucketing
them based on their entropy in a batch of size 128 in Tab. 20, Tab. 21, Tab. 22, and Tab. 23 for all
four datasets, respectively. We can see that with the help of this bucketing, we can identify subsets of
the reconstructed features that have been retrieved with a (sometimes significantly e.g., up to 24%)
higher accuracy than the overall batch.
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Table 18: The mean accuracy [%] and entropies with the corresponding standard deviations over
batch sizes of the categorical and the continuous features on the Lawschool Admissions dataset.

Discrete Continuous

Accuracy Entropy Accuracy Entropy

1 100.0± 0.0 0.01± 0.03 100.0± 0.0 −3.28± 0.29
2 100.0± 0.0 0.02± 0.05 100.0± 0.0 −2.85± 0.87
4 100.0± 0.0 0.03± 0.04 100.0± 0.0 −2.45± 0.78
8 99.8± 1.1 0.11± 0.10 96.4± 11.1 −1.77± 0.62
16 98.1± 2.8 0.24± 0.11 87.1± 13.4 −0.65± 0.49
32 93.4± 3.0 0.41± 0.08 65.1± 8.0 0.18± 0.20
64 87.0± 2.4 0.55± 0.05 57.7± 4.8 0.78± 0.12
128 83.5± 1.5 0.60± 0.03 62.6± 3.4 1.07± 0.11

Table 19: The mean accuracy [%] and entropies with the corresponding standard deviations over
batch sizes of the categorical and the continuous features on the Health Heritage dataset.

Discrete Continuous

Accuracy Entropy Accuracy Entropy

1 100.0± 0.0 0.02± 0.05 99.6± 2.5 −2.97± 0.33
2 100.0± 0.0 0.05± 0.09 96.5± 12.9 −2.55± 0.80
4 99.7± 1.8 0.08± 0.10 97.5± 9.0 −1.71± 0.79
8 99.1± 3.7 0.13± 0.11 94.3± 11.3 −1.06± 0.64
16 96.6± 7.5 0.26± 0.10 80.2± 11.2 −0.11± 0.42
32 85.1± 6.4 0.43± 0.06 61.7± 3.8 0.72± 0.23
64 73.1± 4.7 0.52± 0.03 59.6± 2.5 1.13± 0.20
128 66.1± 2.4 0.57± 0.02 60.7± 1.6 1.44± 0.13

Table 20: The mean accuracy [%] and the share of data [%] in each entropy bucket for batch size 128
on the Adult dataset.

Entropy Categorical Features Entropy Continuous Features

Bucket Accuracy [%] Data [%] Bucket Accuracy [%] Data [%]

0.0-0.2 95.7 8.1 ∞-0.72 72.7 1.2
0.2-0.4 90.5 23.4 0.72-1.16 65.5 13.6
0.4-0.6 79.8 27.7 1.16-1.6 56.4 50
0.6-0.8 69.8 29.2 1.6-2.04 51.1 32.4
0.8-1.0 61.2 11.6 2.04-∞ 41.8 2.9

Overall 78.5 100 Overall 55.7 100

Random 73.8 100 Random 44.4 100

25



Under review as a conference paper at ICLR 2023

Table 21: The mean accuracy [%] and the share of data [%] in each entropy bucket for batch size 128
on the German Credit dataset.

Entropy Categorical Features Entropy Continuous Features

Bucket Accuracy [%] Data [%] Bucket Accuracy [%] Data [%]

0.0-0.2 98.1 7.4 ∞-0.72 55.7 1.2
0.2-0.4 92.5 15.3 0.72-1.16 62.3 28.1
0.4-0.6 83.3 22.2 1.16-1.6 57.7 56.4
0.6-0.8 71.6 33.7 1.6-2.04 53.4 13.2
0.8-1.0 66.0 21.3 2.04-∞ 48.2 0.2

Overall 78.2 100 Overall 58.4 100

Random 73.5 100 Random 37.8 100

Table 22: The mean accuracy [%] and the share of data [%] in each entropy bucket for batch size 128
on the Lawschool Admissions dataset.

Entropy Categorical Features Entropy Continuous Features

Bucket Accuracy [%] Data [%] Bucket Accuracy [%] Data [%]

0.0-0.2 95.5 3.4 ∞-0.72 69.5 20.7
0.2-0.4 92.1 14.2 0.72-1.16 63.3 35.1
0.4-0.6 88.0 32.7 1.16-1.6 60.1 32.9
0.6-0.8 81.2 30.4 1.6-2.04 55.5 10.8
0.8-1.0 70.7 19.3 2.04-∞ 54.1 0.5

Overall 83.5 100 Overall 62.6 100

Random 81.1 100 Random 19.1 100

Table 23: The mean accuracy [%] and the share of data [%] in each entropy bucket for batch size 128
on the Health Heritage dataset.

Entropy Categorical Features Entropy Continuous Features

Bucket Accuracy [%] Data [%] Bucket Accuracy [%] Data [%]

0.0-0.2 90.7 6.2 ∞-0.72 69.1 1.1
0.2-0.4 84.7 22.1 0.72-1.16 65.6 17.0
0.4-0.6 70.5 21.2 1.16-1.6 61.8 52.9
0.6-0.8 54.8 32.3 1.6-2.04 55.9 26.5
0.8-1.0 50.3 18.4 2.04-∞ 49.4 2.5

Overall 66.1 100 Overall 60.7 100

Random 69.8 100 Random 34.2 100
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E STUDYING POOLING

In this subsection, we present three further experiments on justifying and understanding our choices
in pooling:

• Experiments on synthetic datasets for understanding the motivation for pooling in App. E.1.

• Ablation study on understanding the impact of the number of samples N on the performance
of TabLeak in App. E.2.

• Comparison of using mean and median pooling on TabLeak in App. E.3.

E.1 VARIANCE STUDY

A unique challenge (challenge (ii)) of tabular data leakage is that the mix of discrete and continuous
features introduces further variance in the final reconstructions. As a solution to this challenge, we
propose to produce N independent reconstructions of the same batch, and ensemble them using the
pooling scheme described in Sec. 3.2. In this subsection, we provide empirical evidence for the
subject of challenge (ii) and the effectiveness of our proposed solution to it.

Experimental Setup We create 6 synthetic binary classification datasets, each with 10 features,
however of varying modality. Concretely; we have the following setups:

• Synthetic dataset with 0 discrete and 10 continuous columns,

• Synthetic dataset with 2 discrete and 8 continuous columns,

• Synthetic dataset with 4 discrete and 6 continuous columns,

• Synthetic dataset with 6 discrete and 4 continuous columns,

• Synthetic dataset with 8 discrete and 2 continuous columns,

• Synthetic dataset with 10 discrete and 0 continuous columns.

The continuous features are Gaussians with means between 0 and 5, and standard deviations between
1 and 3. The discrete features have domain sizes between 2 and 6, and the probabilities are drawn
randomly. On each of these datasets we sample 50 batches of size 32 and reconstruct them using
TabLeak (no pooling) starting from 30 different initializations in the same experimental setup
elaborated in Sec. 4 and in App. B. We then proceed to calculate the standard deviation of the
accuracy for each of the 50 batches over their 30 independent reconstructions, providing us 50
statistically independent data points for understanding the variance in the non-pooled reconstruction
problem. Further, from the 30 independent reconstructions of each batch, we build 6 independent
mini-ensembles of size 5 and conduct median pooling on them (essentially, TabLeak with N = 5).
We then measure the standard deviation of the error for each of the 50 batches over the 6 obtained
pooled reconstructions, obtaining 50 independent data points for analyzing the variance of pooled
reconstruction.

Results We present the results of the experiment in Fig. 12; additionally to measuring the same-
batch reconstruction accuracy standard deviation for all features together, we also present the resulting
measurements when only considering the discrete and the continuous features, respectively. The
figures are organized such that the x-axis begins with the synthetic dataset consisting only of
continuous features and progresses to the right by decreasing the number of continuous and increasing
the number of discrete features at each step by 2. Roughly speaking, the very left column of the
figures is similar to data leakage in the image domain, where all features are continuous, and the very
right relates to data leakage in the text domain, containing only discrete features. Looking at Fig. 12a,
we observe that the mean same-batch STD is indeed higher for datasets consisting of mixed types,
providing empirical evidence underlining the second challenge of tabular data leakage. Further, it can
be clearly seen that pooling, even with a small ensemble of just 5 samples, decisively decreases the
variance of the reconstruction problem, providing strong justification for using pooling in the tabular
setting. Finally, from Fig. 12b and Fig. 12c we gain interesting insight in the underlying dynamics of
the interplay between discrete and continuous features at reconstruction. Concretely, we observe that
as the presence of a given modality is decreasing and its place is taken up by the other, the recovery
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(b) Discrete Accuracy STD
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(c) Continuous Accuracy STD

Figure 12: Mean same-batch reconstruction accuracy standard deviation and 90% confidence interval
at batch size 32 estimated from 50 independent batches over synthetic datasets with varying number
of discrete (D.) and continuous (C.) features.

Table 24: Reconstruction accuracy [%] and standard deviation of TabLeak on batch size 32 over the
size of the ensemble N used for pooling.

N = 1 5 10 15 20 25 30

Adult 71.8± 4.6 75.1± 4.6 76.5± 4.6 76.5± 4.8 77.1± 4.7 77.0± 4.7 77.4± 4.8
German 79.0± 3.0 81.6± 2.9 82.6± 2.9 82.9± 2.9 83.2± 2.8 83.4± 2.8 83.6± 2.7
Lawschool 82.3± 4.0 84.4± 3.7 84.7± 4.1 85.2± 3.9 85.1± 3.9 85.3± 4.0 85.3± 4.0
Health Heritage 64.6± 4.2 67.5± 4.3 69.1± 4.4 69.1± 4.5 69.7± 4.5 69.5± 4.3 70.1± 4.0

of this modality becomes increasingly noisier. Much in line with the observations on the difference
in the recovery success between discrete and continuous features, these results also argue for future
work to pursue methods that decrease the disparity between the two different feature types in the
mixed setting.

E.2 THE IMPACT OF THE NUMBER OF SAMPLES N

In Tab. 24 we present the results of an ablation study we conducted on TabLeak at batch size 32 to
understand the impact of the size of the ensemble N on the performance of the attack. We observed
that with increasing N the performance of the attack gets steadily better, albeit, producing diminishing
returns, showing signs of saturation on some datasets after N = 25. Note that this behavior is
expected, and suggests using the largest N that is not yet computationally prohibitive. We chose
N = 30 for all our experiments with TabLeak (unless explicitly stated otherwise); this allowed us to
conduct large-scale experiments while still extracting good performance from TabLeak.

E.3 CHOICE OF THE POOLING FUNCTION

We compare TabLeak using median pooling to TabLeak with mean pooling in Tab. 25 over the
four datasets. As we can observe, in most cases both methods produce similar results, hence the
effectiveness of TabLeak is not to be attributed solely to the chosen pooling method. However, as
median pooling demonstrates to provide a slight edge in some cases, we opt for using median pooling
in our main experiments with TabLeak.
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batch TabLeak TabLeak
size (median) (mean)

1 99.4± 2.8 99.4± 2.8
2 99.2± 5.5 99.3± 5.0
4 98.0± 4.5 97.7± 5.3
8 95.1± 9.2 94.8± 9.0
16 89.4± 7.6 88.9± 7.7
32 77.6± 4.8 77.1± 4.7
64 71.2± 2.8 71.7± 2.8
128 68.8± 1.3 69.4± 1.4

(a) Adult

batch TabLeak TabLeak
size (median) (mean)

1 100.0± 0.0 100.0± 0.0
2 100.0± 0.0 100.0± 0.0
4 99.9± 0.4 99.9± 0.4
8 99.7± 1.1 99.6± 1.1
16 95.9± 3.4 95.6± 3.3
32 83.6± 2.9 83.1± 3.0
64 73.0± 1.3 72.6± 1.3
128 71.3± 0.8 70.8± 0.9

(b) German Credit

batch TabLeak TabLeak
size (median) (mean)

1 100.0± 0.0 100.0± 0.0
2 100.0± 0.0 100.0± 0.0
4 100.0± 0.0 100.0± 0.0
8 98.7± 3.8 98.8± 3.4
16 94.8± 5.6 94.6± 5.4
32 84.8± 3.9 84.7± 3.9
64 78.2± 2.0 78.2± 2.2
128 77.3± 1.2 77.5± 1.2

(c) Lawschool Admissions

batch TabLeak TabLeak
size (median) (mean)

1 99.8± 1.6 99.8± 1.6
2 97.7± 8.3 97.4± 9.0
4 98.2± 6.5 98.0± 6.7
8 96.0± 8.2 95.6± 8.6
16 86.1± 8.8 84.9± 9.3
32 70.0± 4.5 69.7± 4.4
64 64.7± 2.8 64.8± 2.9
128 63.0± 1.4 63.6± 1.5

(d) Health Heritage

Table 25: Mean and standard deviation of the inversion accuracy [%] using TabLeak with either
median or mean pooling, assuming full knowledge of the true labels.
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