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ABSTRACT

Protein-protein binding affinity underlies complex stability, selectivity, and ther-
apeutic action, yet experimental measurement is low-throughput. Although a
number of deep learning models are now end-to-end differentiable, they gen-
erally lack interpretable attributions, whereas traditional topology-based affin-
ity predictors rely on non-differentiable persistent diagrams or barcodes. We
present TopoScorer, a lightweight, interpretable, end-to-end–trainable affinity
scorer that can act as a loss or reward to steer generative and discriminative pro-
tein models; across protein and mutation affinity benchmarks, it delivers perfor-
mance comparable to state-of-the-art methods and, when integrated into a modern
antibody-design workflow, improves affinity-related metrics of generated candi-
dates. The core component of TopoScorer is Specter(Spectral Topology Encoder),
a topology-driven, multi-channel, multi-scale differentiable feature extractor for
protein–protein interfaces that converts full-atom coordinates into topo-spectral
representations via Persistent Topological Hyperdigraph Laplacians (PTHLs) and
differentiable spectral descriptors, preserving physicochemical-role–aware cues
alongside 3D topological structure to yield compact, interpretable features suit-
able for learning.

1 INTRODUCTION

Protein–protein binding affinity underlies complex stability and selectivity in immune recognition
and drug action. It is a key quantity for understanding pathway regulation, predicting mutation ef-
fects, and guiding molecular design. Experimental assays such as isothermal titration calorimetry
(Velazquez-Campoy & Freire, 2006) and surface plasmon resonance(Rich & Myszka, 2000) mea-
sure thermodynamic or kinetic parameters directly, but they are low-throughput and costly, limiting
coverage of the large sequence and conformational spaces needed for modern design–validation cy-
cles. Physics-based energy models—including force-field scoring, MM/GBSA (Genheden & Ryde,
2015), FEP (Wang et al., 2015), and docking rescoring (Trott & Olson, 2010)—implemented in
mature toolchains such as PyRosetta(Chaudhury et al., 2010) and FoldX (Delgado et al., 2019;
Schymkowitz et al., 2005) are interpretable, but they are sensitive to sampling and parameter choices,
and expensive to run at scale.

Deep learning has become the dominant paradigm for protein–protein binding affinity prediction,
delivering state-of-the-art accuracy and throughput(Cai et al., 2024)(Jin et al., 2023)(Shan et al.,
2022; Yu et al., 2024; Yue et al., 2025)(Luo et al., 2023). Learning-based methods span supervised
structural models (Luo et al., 2023; Jiménez et al., 2018; Li et al., 2021), unsupervised energy-
shaped models (Jin et al., 2023), flow-based models (Luo et al., 2023), surface based models(Mallet
et al., 2025; Song et al., 2024; Banerjee et al., 2025) and sequence language models(Meier et al.,
2021b; Hsu et al., 2022a). Despite their strong empirical performance, most models still face limita-
tions common to deep learning in structural biology, including limited interpretability of the learned
features and high training costs at scale(Luo et al., 2023)(Cai et al., 2024). Moreover, mainstream
protein generation and design models simply do not optimize binding affinity—affinity is absent
from their objectives, so no gradient signal is available to shape the formation of high-affinity com-
plexes.

To address these gaps, TopoScorer—a lightweight, interpretable, end-to-end-trainable affinity
scorer that predicts binding affinity directly from full-atom protein coordinates, enabling end-to-
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end training while preserving interpretability. TopoScorer is built on Specter, a topology-driven,
multichannel-encoded, differentiable PPI feature extractor, and a lightweight predictor network.
Seeking interpretability rather than another black-box scorer, we anchor the method in the de-
terminants of affinity—namely, the interface’s three-dimensional geometry and its heterogeneous
physicochemical environment (electrostatics, hydrophobicity, hydrogen bonding, steric effects). A
useful representation must therefore capture both the 3D topological structures and multi-channel
physicochemical cues in a unified form, which is non-trivial in practice. Persistant Topological Hy-
perdigraph Laplacians(PTHLs)(Chen et al., 2024; 2023) is an effective topological representation
that excel at capturing multiscale topological features of 3D structures, yet their non-differentiability
impedes end-to-end learning. In this work, we applies multi-scale soft filtrations to extract cross-
protein PTHLs and further obtain topological spectral features with differentiable spectral descrip-
tors (e.g.,Laplacian eigenvalue statistics). To capture both geometric and chemical cues at the inter-
face, we use a multi-channel design that preserves physicochemical-role–aware features—charge,
hydrophobicity, and hydrogen-bond donor/acceptor patterns, leading to a general topological spec-
tral features extractor that transforms protein–protein interfaces into multi-scale, multi-channel fea-
tures suitable for downstream machine-learning models of affinity.

We validate TopoScorer on proteins and mutations affinity benchmarks and integrate it into a state-
of-the-art antibody design workflow, where it significantly improves affinity-related metrics of the
generated candidates. In summary, Our research makes the following contributions:

• TopoScorer, a light, interpretable PPI binding-affinity predictor built on multi-channel,
multi-scale topological–spectral features.

• Specter(Spectral Topology Encoder), a differentiable feature extractor for protein-protein
interfaces, encoding both structural and physicochemical information.

• We present, to our knowledge, the first demonstration that a differentiable deep-learning
affinity predictor can directly steer a generative antibody design model, improving se-
quence–structure co-design and supplying a reliable, scalable training signal that drives
the generation of higher-affinity complexes.

2 RELATED WORK

2.1 PROTEIN-PROTEIN BINDING AFFINITY PREDICTION

Accurate prediction of protein-protein binding (PPB) affinity is critical for screening protein
therapeutics. Traditional interfacial contact analysis and surface property calculations are time-
consuming and lack of accuracy. Classical structure-based baselines and modern deep models span
a coherent spectrum. PRODIGY(Xue et al., 2016) estimates PPI affinity from interfacial contacts
and surface descriptors and remains a strong structural reference. DeepSite(Jiménez et al., 2017)
localizes pockets on voxelized protein maps, while KDEEP(Jiménez et al., 2018) and subsequent
work(Stepniewska-Dziubińska et al., 2018) validate grid CNNs for affinity prediction on PDBbind.
Moving beyond voxels, atomistic GNNs(Li et al., 2021) encode distances, angles, and pairwise re-
lations to capture nonlocal interactions. Complementing supervised models, DSMBind(Jin et al.,
2023) learns SE(3)-equivariant generative energy signals in an unsupervised manner results across
various PPI tasks. As for protein mutation effects, DDGPred(Shan et al., 2022; Yu et al., 2024; Yue
et al., 2025) provides an end-to-end framework for ∆∆G and is widely used for mutational rank-
ing in antibody optimization; GearBind(Cai et al., 2024) is a pretrainable geometric graph neural
network for protein-protein binding affinity change prediction; Pi-SAGE(Banerjee et al., 2025) is
a permutation-invariant, surface-aware graph encoder that learns residue-level surface tokens from
protein structure and augments an all-atom GNN like GearBind with explicit, context-aware surface
features; in parallel, RDE-Network leverages side-chain rotamer density to capture conformational
entropy/flexibility and transfer to PPI ∆∆G prediction (Luo et al., 2023). Pre-trained protein lan-
guage models such as ESM-1v (Meier et al., 2021a) and ESM-IF (Hsu et al., 2022b) can be finetuned
for affinity prediction, but their training on monomeric sequences limits their ability to capture in-
formation from critical ”hotspot” residues that largely determine binding. Concurrently, advances
in structure prediction—exemplified by AlphaFold-Multimer (Evans et al., 2021b), AlphaFold 3
(Abramson et al., 2024), and Boltz-2 (Passaro et al., 2025)—have improved complex modeling;
their confidence scores are often used as rough proxies for binding affinity. Notably, among these
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methods only Boltz-2 is designed to predict an affinity score directly, and it currently supports only
limited-length ligands. For interpretability, DeepAffinity proposed a sequence-based representation
for affinity (Karimi et al., 2019), and ANTIPASTI(Michalewicz et al., 2024) delivers an interpretable
antibody–antigen affinity predictor, but not directly applicable to generic PPIs. Reviews of protein
structural modeling and design underscore the need for physically grounded, interpretable models
that integrate structure with machine learning to predict generic PPIs (Gao et al., 2020; Casadio
et al., 2022; Omar et al., 2023; Ding et al., 2022).

2.2 TOPOLOGICAL DEEP LEARNING

Early work in Topological Data Analysis(TDA) established filtrations and persistence to track
the birth–death of homology classes, represented by barcodes diagrams and persistence dia-
grams(Carlsson, 2009), providing robust global structure and broad cross-modal applicability and
remain resilient to noise. Topological deep learning integrates algebraic-topological structure into
neural models so they can represent and learn higher-order, multiscale, shape-aware patterns be-
yond pairwise relations, yielding strong performance across diverse tasks(Som et al., 2018; Rein-
inghaus et al., 2015; Singh et al., 2008). TopologyNet (Cang & Wei, 2017) pioneered the use of
element-specific persistent homology (ESPH) to extract multichannel topological signatures from
biomolecular structure and feed them to CNNs for property/affinity prediction. TopoNetTree(Cang
& Wei, 2017) is a classic persistent-homology model that combines ESPH with CNNs, which starts
from topological representations and relies on Betti-number–based persistent homology barcodes
as features. Chen et al.(Chen et al., 2023) introduce persistent hyperdigraph homology and the
persistent hyperdigraph Laplacians (PTHLs). TopoFormer(Chen et al., 2024) integrates PTHLs-
derived, element-specific multiscale topological sequences with a Transformer encoder, converting
3D protein–ligand structures into NLP-admissible tokens and achieving strong structure-to-sequence
prediction performance on protein-ligand docking, screening and scoring tasks. Our differentiable
topological–spectral features build on this line by enabling gradient flow from spectral/topological
statistics back to coordinates, and we further introduce a PPI-specific channel encoding scheme that
organizes interfacial atoms/physicochemical roles to better capture recognition-relevant geometry.

3 METHODS

3.1 DIFFERENTIABLE TOPOLOGICAL FEATURES EXTRACTION

Hypergraph-Induced Cross-Protein Distance Matrices Given a protein–protein complex with
proteins A and B, we denote the heavy atom coordinates by XA = {xu}u∈VA and XB =
{xv}v∈VB . We partition XA and XB into physicochemical-role–aware classes G1, . . . , GN (Table
6) and, within each channel, designate as putative interface atoms those whose minimum distance
to any atom in the opposite protein falls below a cutoff rc.

For a cross-chain channel pair (i, j) with i ∈ CA and j ∈ CB , the vertex set is VA
i ⊎ VB

j with
coordinates XA = {xu}u∈VA and XB = {xv}v∈VB . A (directed) hypergraphH = (V, E) consists
of vertices V and oriented k-hyperedges e = (v0→· · ·→ vk) (k ≥ 1), i.e., ordered (k+1)-tuples of
distinct vertices; reversing order flips orientation. We quantify geometry via a cross-protein distance
function:

DAB ∈ R|VA
i |×|VB

j |, DAB
uv = ∥xu − xv∥2,

and define a unified pairwise distance

d(p, q) =

{
∥xp − xq∥2, p ∈ VA

i , q ∈ VB
j or p ∈ VB

j , q ∈ VA
i ,

d̄, otherwise,

where d̄ := maxu∈VA
i , v∈VB

j
DAB

uv + ε (a large finite constant) so that intra-protein pairs are effec-
tively “far.”

Soft Filtration to Persistent Topological Hyperdigraph Laplacians Over radii {rt}Tt=1 (dis-
tance filtration), replace hard cut-offs with the smooth gate

κτ (d; rt) = σ
(rt − d

τ

)
, σ(z) =

1

1 + e−z
, τ > 0,
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Figure 1: Overview of differentiable topological spectral feature extractor Specter in TopoScorer,
diffusion model finetuning pipeline and structure of binding affinity predictor.

which is differentiable in the coordinates and converges to a hard threshold as τ → 0+. At each
scale rt, build a weighted directed hypergraph H(i,j)(rt) on the disjoint union VA

i ⊎ VB
j . For an

oriented k-hyperedge e = (v0→· · ·→ vk), assign a weight using only cross-protein pairs,

we(rt) =
∏

{p,q}∈X (e)

κτ

(
d(p, q); rt

)
, X (e) =

{
{p, q} ⊂ {v0, . . . , vk} : p ∈ VA

i , q ∈ VB
j

}
.

so that intra-protein proximities are excluded by construction. Let Ck(rt) be the real vector space of
k-chains (formal sums of oriented k-hyperedges) and define the signed boundary map on generators
by

∂k(rt) (v0→· · ·→ vk) =

k∑
m=0

(−1)m
(
v0→· · ·v̂m· · ·→ vk

)
,

where v̂m denotes omission with the induced orientation. Equip Ck(rt) with the weight-aware inner
product ⟨e, e′⟩k = eTWk(rt)e

′ with Wk(rt) = Diag{we(rt)} and write Bk for the signed incidence
matrix of ∂k(rt). With these inner products, the matrix of the Hilbert adjoint ∂∗

k(rt) is

∂∗
k(rt) = Wk(rt)

−1 B⊤
k Wk−1(rt).

The k-th Hodge Laplacian on chains is

L
(i,j)
k (rt) = ∂∗

k(rt) ∂k(rt) + ∂k+1(rt) ∂
∗
k+1(rt) = W−1

k B⊤
kWk−1Bk + Bk+1 W

−1
k+1B

⊤
k+1 Wk,
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which is self-adjoint with respect to ⟨·, ·⟩k and positive semidefinite. Its kernel encodes k-order
harmonic (topological) features, while the positive spectrum captures geometric organization at scale
rt. Varying t yields a differentiable, multi-scale family {L(i,j)

k (rt)} that summarizes cross-chain
interaction topology under a soft filtration.

Differentiable topo–spectral features. Given a symmetric positive semidefinite Laplacian L ∈
Rn×n, we summarize its topology with a six-tuple of differentiable spectral statistics of its eigen-
values. We only differentiate through eigenvalues (not eigenvectors) and use a small diagonal shift
εI with a fallback schedule to handle near-singular/ill-conditioned cases. We then form several
Laplacian eigenvalue statistics as spectral features.

A smooth surrogate of max(λi) by log-sum-exp is λsoft
max = τ log

∑
i exp(λi/τ), with τ > 0.

Sum of eigenvalues equals to trace of the Laplacian, that is, λsoft
sum = tr(Ls).

Zero count is approximated by counting“near-zero” eigenvalues via a Gaussian kernel centered at 0
with bandwidth σ0 > 0, that is, λsoft

zeros =
∑

i exp
[
−

(
λi

σ0+ϵ

)2]
.

A soft mask onto the positive spectrum assigns larger weights to eigenvalues farther from zero and
normalizes them, that is, wi = 1− exp

[
− ( λi

σ0+ϵ )
2
]

and w̃i =
wi∑

j wj + ϵ
.

The mean on the positive spectrum is the corresponding weighted average, λsoft
mean,+ =

∑
i w̃i λi.

A weighted soft minimum over the positive spectrum uses a negative log-sum-exp with temperature
τ > 0, that is, λsoft

min,+ = − τ log
∑

i exp(−λi/τ) w̃i.

Note that ε > 0 is a small numerical constant for stability. The parameters ϵ, σ0 control the zero-
tolerance window; τ tunes the softness of softmax/softmin (larger τ indicates closer to hard ex-
tremum). For numerical stability and differentiability, we applied a Gaussian gate around λ = 0,
which provides a smooth surrogate for the connected components and yields soft weights wi for the
positive spectrum, with denominators clamped by ϵ. And we replace hard max /min with log-sum-
exp softmax/softmin (temperature τ ), optionally weighted by the positive-spectrum mask.

The standard deviation on the positive spectrum is computed from moments, but with a Huberized
square-root to avoid gradient blow-ups at zero variance, which equals 0 at x = 0 and has bounded
gradient 1/(2δ), that is, var+ =

∑
i w̃i λ

2
i − µ2

+, δ = ρ s, s = mean(|λ|) (no grad), λsoft
std,+ =√

var+ + δ2 − δ, where ρ scales the smoothing radius δ to the spectrum magnitude.

These safety techniques remove non-smooth operations, keep gradients well-behaved at zero/near-
zero eigenvalues, and make the topo–spectral summary fully differentiable and efficient enough for
end-to-end training, addressing a central challenge in topological deep learning.

Finally, we output

f(L) =
[
λsoft
zeros, λ

soft
max, λ

soft
sum, λ

soft
mean,+, λ

soft
std,+, λ

soft
min,+

]
∈ R6.

In practice, we compute f per filtration scale and average (or learnable-weight) across scales; chan-
nels for different physicochemical roles are processed in parallel and concatenated.

3.2 MULTI-CHANNEL ENCODING OF PHYSICOCHEMICAL INTERACTIONS

To capture heterogeneous interaction modes at PPIs without hand-crafted heuristics, we encode each
interface as a multi-channel graph built from role-aware atom types. Concretely, for each chain we
map Atom37 names to eleven physicochemical-role–aware classes G1, . . . , G11 (see Table.6 for
illustrations), separating backbone donors/acceptors, aliphatic vs. aromatic carbons, basic nitrogens,
carboxylate oxygens, hydroxyl oxygens, and sulfur atoms. This taxonomy isolates physicochemical
roles that dominate PPIs (hydrogen bonding, salt bridges, hydrophobic packing, π–π, cation–π, and
S-mediated contacts), preventing signal cancellation that often occurs in single-channel encodings.

Given interacting proteins A and B, we construct cross-protein channel pairs P = {(i, j) : i ∈
GA, j ∈ GB} (default: full Cartesian product). This multi-channel view (i) factorizes interaction
types at the graph level to yield cleaner spectral signatures, (ii) preserves interpretability by aligning
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salient channels with biophysical modes, and (iii) in design settings leverages the Atom37 coupling
between atom names/geometry and residue identity, so gradients on Atom37-level features can in-
form sequence updates.

In practice, we use attention to capture salient cross-channel interactions and learnable channel
weights to select/amplify task-relevant types. When only Atom37 names are available, a physico-
chemical–role–aware partition offers simple rules and clear semantics, serving as a standard prepro-
cessing step for PPI interface representation and spectral–topological learning.

3.3 BINDING AFFINITY PREDICTION MODEL

Model Architecture TopoScorer performs binding affinity prediction from multi-scale topologi-
cal spectral features of the protein interface, denoted x. Let x ∈ RB×M×S×C , where M denotes
the per-scale statistic types, S is the number of thresholded scales in ascending order, and C is the
physicochemical channels. The model treats the multi-scale features as a length-S sequence. It
first applies SENets(Li et al., 2017) over the C channels to improves channel interdependencies,
highlighting those most informative for the current sample. It then adopts a hybrid representation
combining a low-rank bilinear projection with a residual full projection. The main branch maps
C → dmid and then aggregates along M to produce a dmodel-dimensional token embedding, while
the auxiliary branch flattens M×C and maps directly to dmodel; the two are combined through a
learnable small gate, so training begins along the low-rank path and gradually unlocks the resid-
ual capacity. The resulting scale tokens are equipped with learnable positional encodings and fed
into a stack of Transformer encoder blocks (multi-head self-attention and feed-forward layers) to
model cross-scale dependencies. After encoding, a LayerNorm and pooling (CLS pooling or mean
pooling) are applied, followed by a two-layer MLP to output a scalar affinity score. The structural
diagram of the model is shown in Fig.1. Detailed illustrations of modules in Appendix A.6.

3.4 FINETUNING ANDIBODY DESIGN MODEL WITH TOPOSCORER

We finetune an antibody design model IgGM(Wang et al., 2025) on antibody–antigen complexes
curated from SAbDab(Dunbar et al., 2014). Given an antigen sequence and an antibody sequence
(with possibly incomplete CDRs), the base model jointly generates sequence and 3D structure via
a diffusion process (Fig. 1). For each training example with ground-truth coordinates X , we sam-
ple a timestep t and corrupt the antibody coordinates to obtain Xt, and optionally mask CDRs in
the sequence. The model then denoises (Xt,masked seq) to produce a prediction X̂ and an up-
dated antibody sequence; full-atom coordinates are recovered by side-chain packing from X̂ . We
delineate the protein–protein interface on X̂ and compute multi-channel, multi-scale topological–
spectral features as in Secs. 3.1 and 3.2. A frozen TopoScorer maps these features to an affinity score
that serves as a training reward. The overall objective combines standard structure/sequence losses
with this affinity reward, encouraging geometrically accurate and higher-affinity designs. Detailed
settings and a step-by-step training routine are provided in the Appendix A.5.

4 EXPERIMENTS

4.1 PREDICTING BINDING AFFINITY OF PPI

We evaluated our affinity predictor on the PPB-Affinity test set using the score − log10 KD (larger
is better; Fig. 2(h)) and compared it with representative baselines: physics/energy–function meth-
ods (PyRosetta (Chaudhury et al., 2010) and FoldX Delgado et al. (2019)), a sequence-based model
(ESM-1v (Meier et al., 2021a)), an unsupervised, SE(3)-equivariant generative energy model (DSM-
Bind (Jin et al., 2023)), a structure-conditioned inverse-folding model (ESM-IF (Hsu et al., 2022b)),
and a 3D structure–based interface predictor (PRODIGY (Xue et al., 2016)). To avoid interface-
similarity–induced data leakage, we follow the recommendation of Bushuiev et al. and use the
PPIRef tool to identify near-duplicate interfaces, defined as test interfaces that have at least one
training interface with iDist distance less than 0.04; we then remove all such potential leakage cases
from the test set. As summarized in Table 1, our method attains state-of-the-art Spearman and
Pearson across all models on the leakage-filtered test set.
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Table 1: Affinity, single-mutation, and multi-mutation performance (Spearman/Pearson). A dash
indicates an unavailable metric. Bold indicates best performance, underline indicates second best.

Method Affinity Prediction Single-mutation Multi-mutations

Spearman Pearson Spearman Pearson Spearman Pearson

PyRosetta 0.1856 0.1954 0.3422 0.3285 0.2927 0.2258
FoldX 0.3295 0.3008 0.4355 0.4586 0.3734 0.3241
ESM-1v 0.1034 0.0876 0.1524 0.1921 0.1512 0.1736
ESM-IF 0.0530 0.0244 0.1116 0.1047 0.1697 0.0700
PRODIGY 0.1549 0.1277 0.3233 0.2902 0.3421 0.3236
DSMBind 0.3072 0.3269 0.3530 0.3261 0.3673 0.2954
DDGPred — — 0.5522 0.5303 0.4585 0.5638
RDE-Network — — 0.5127 0.6067 0.5397 0.6108
GearBind — — 0.5014 0.5496 0.5470 0.5616
TopoNetTree — — 0.5185 0.5508 — —
TopoScorer 0.3848 0.3804 0.5876 0.5615 0.5704 0.5652

To further validate performance, we trained our model on SKEMPI 2.0 and evaluated on test set
curated from the single-mutation subset and the multi-mutation subset of SKEMPI 2.0, with the
same procedure of preventing data leakage as decribed above. All test-set complexes are strictly
disjoint from the training data: no complex appearing in the test set is present in the training set. In
addition to the above baselines, we included the current state-of-the-art end-to-end predictors DDG-
Pred(Shan et al., 2022), the pretrained flow model RDE-Network(Luo et al., 2023) , all atom based
graph model GearBind(Cai et al., 2024) and a previous persistent homology based model TopoNet-
Tree(Wang et al., 2020). As shown in Table1, Our approach reached state-of-the-art Spearman
correlations and second best Pearson on single-mutation and multi-mutation subsets. The strong
Spearman indicates our superior ranking ability. Prior evaluations of Boltz-2(Passaro et al., 2025)
show that affinity prediction performance varies markedly across assays and can be confounded
by errors in predicted structures, limited generalization to unseen protein families, and sensitivity to
out-of-distribution small molecules; under such variability, ranking accuracy (Spearman) is typically
the more robust indicator of practical utility. Notably, The competing RDE-Network relies on large
pretrained components (about 133M + 63M parameters), whereas our model has only ∼ 43M pa-
rameters while keeping interpretability. These results show that our lightweight model attains strong
ranking performance and comparable prediction accuracy, indicating that the proposed topological
feature extraction effectively captures information relevant to binding affinity. We measured the
inference time per sample on the single-mutation task, using the same CPU(Fig 2(k)). TopoScorer
achieves fast and stable inference time(5.01± 0.1ms per sample) among compared models. DSM-
Bind is also computationally efficient, but its predictive accuracy on our benchmarks is substantially
lower than TopoScorer, so it does not offer the same balance of speed and reliability.Taken together,
TopoScorer strikes a rare and favorable balance between predictive accuracy, parameter efficiency,
and inference speed, which is not achieved by the other methods we compare against. More details
in AppendixA.7 and A.6.

4.2 TOPOSCORER-GUIDED FINE-TUNING IMPROVES ANTIBODY SEQUENCE–STRUCTURE
CO-DESIGN

To assess the impact of introducing TopoScorer as a differentiable interface affinity signal, we used
IgGM(Wang et al., 2025), which is a antibody sequences and structures co-design model, as the base
model and constructed a held-out test set of 763 protein–protein complexes from SAbDab released
after December 30, 2023 (thereby ensuring no overlap with the data used to train the base model).
We then compared the TopoScorer-fine-tuned model against the baseline IgGM with the authors’
publicly released weights. The results are summarized in Table 2.

In the structure-only setting, the fine-tuned model delivers a clear lift in interface quality: DockQ
increases by 20.8% and SR(DockQ > 0.23) rises by 31.24%. In sequence–structure co-design,
DockQ again trends upward across splits (on the order of ∼ 20% on average), with an average re-
duction of approximately 4% outside the H2 split and a larger decrease when all CDRs are masked.
In general, the addition of TopoScorer steers the optimization towards more plausible interface
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Table 2: Sequence and structure co-design of antibodies for specific antigen. Arrows indicate direc-
tionality: higher is better (↑), lower is better (↓). SR=% with DockQ>0.23; Bold indicates better
performance.

Model CDR AAR↑ RMSD(Cα)↓ DockQ↑ SR(%)↑

w/ Topo

Struct. / 2.1807 0.1754(+20.88%) 27.26(+31.24%)
H1 0.3934 2.2876 0.1492(+101.9%) 21.90(+5.44%)
H2 0.3925 2.2902 0.1439(+1.91%) 20.17(+1.15%)
H3 0.3833 2.3153 0.1232(+0.735%) 14.08(-1.745%)
L1 0.3561 2.4109 0.0992 (+3.766%) 12.78(+6.589%)
L2 0.3568 2.4102 0.1078(+19.12%) 12.85(-35.56%)
L3 0.3564 2.3851 0.1000(+2.56%) 13.43(-1.395%)
All 0.3408 2.3943 0.0787(6.495%) 8.30(+10.08%)

Base

Struct. / 2.3371 0.1451 20.77
H1 0.5320 2.3026 0.0739 20.77
H2 0.3916 2.2959 0.1412 19.94
H3 0.0469 2.3284 0.1223 14.33
L1 0.7329 2.4469 0.0956 11.99
L2 0.3343 2.4313 0.0905 19.94
L3 0.2844 2.4237 0.0975 13.62
All 0.3256 2.4384 0.0739 7.54

geometry while markedly improving recoverability at the most challenging site (H3); when the
topology–geometry objective conflicts with native-sequence matching, AAR may drop (e.g., H1,
L1), reflecting the trade-off of “better interface” vs. “closer-to-native sequence.”

4.3 INTERPRETABILITY ANALYSIS

To probe how spatial scale, channel, and spectral statistics shape affinity prediction, we computed
heatmaps of output gradients along these axes. In the scale axis (Fig. 2(a)), attribution peaks at
∼3.5–4.0 Å, coinciding with the first percolation of the interface contact graph where spectral sum-
maries are most perturbed. Across spectral descriptors (Fig. 2(b)), the sum of eigenvalues dominates,
implicating total interfacial connectivity as the primary driver. Cross-channel maps (Fig. 2(c)) show
side-chain features consistently outweighing backbone terms; Lys/Arg cationic nitrogens act as hubs
with broad coupling, highlighting side-chain–mediated cation anchoring as a key determinant.

Focusing on the most salient feature—the maximum eigenvalue, we analyzed and compared the re-
sulting topological spectral signatures for the 1ACB wild type and its two point mutants(Fig.2(d)).
Substituting L38 from leucine (L) to aspartate (D) or glutamate (E) replaces a hydrophobic side chain
with a carboxylate, disrupting packing and adding acceptor oxygens. For cross-protein carboxylate-
oxygen neighbors (Fig.2(e)), the wildtype exhibits a later onset and lower step-like PTHL/Laplacian
curve, indicating a sparser, less connected like-charge subgraph. The aspartate/glutamate mutants
rise earlier and higher, consistent with increased repulsive carboxylate oxygens contacts; accord-
ingly, the spectral sum grow and connected components merge sooner, matching the affinity drop.
The mutations also introduce an anionic partner for receptor N+ groups, so carboxylate oxy-
gen–cationic nitrogen neighbors appear at smaller thresholds and increase rapidly(Fig.2(f)). Glu-
tamate has one extra methylene relative to aspartate, giving greater reach and flexibility to satisfy
favorable carboxylate oxygen–cationic nitrogen geometry; thus the glutamate mutant is highest, the
aspartate mutant lower, and the wild type lowest (the wild type lacks this anionic site). Neverthe-
less, the net affinity still decreases, because pocket disruption and geometric penalties outweigh the
salt-bridge gains. In the wild type, leucine at position 38 forms a hydrophobic pocket that seats
and orients lysine/arginine side chains, yielding more cationic nitrogen-aliphatic carbon neighbors
and a higher curve(Fig.2(g)). Converting leucine to aspartate or glutamate weakens this pocket; but
glutamate’s extra methylene acts as a hydrophobic spacer that extends the negative charge outward
while retaining nearby aliphatic contacts, making the glutamate curve closer to the wild type in the
cationic nitrogen-aliphatic carbon motif. More results shown in Appendix Fig.3 and 4. We provide
additional case studies in Appendix A.8.3.
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Figure 2: (a) Heatmap of filters. (b) Heatmap of spectral features. (c) Heatmp of physicochemical
channels. (d) Structures of 1ACB and mutants residues 37–39 (pink: wild type ligand chain I; green:
mutant L38D ligand chain I; blue: mutant L38E ligand chain I; light purple: receptor chain E). (e)
λsum between receptor carboxylate oxygens and ligand carboxylate oxygens. (f) λsum between
receptor cationic nitrogens and ligand carboxylate oxygens. (g) λsum between receptor cationic
nitrogens and ligand aliphatic carbons . (h) Performance of TopoScorer on PPB-Affinity. (i) Results
of Ablation Studies. (j) Comparison of topo-spectral features obtained by soft and hard extraction.
(k) Results of inference time comparison(in log scale).

4.4 ABLATION STUDIES

4.4.1 EFFECTS OF PHYSICOCHEMICAL MULTI-CHANNEL ENCODING

To assess the effectiveness of our physicochemical cross-channel encoding in TopoScorer, we
compared it with two baselines: (i) a single-channel variant that computes topological spectra
from all PPI atoms in one channel; and (ii) an element-wise variant that partitions PPI atoms
into {(C), (N), (O), (S), (C,N), (C,O), (C, S), (N,O), (N, S), (O,S), (C,N,O, S)} and computes
topological spectra features for all pairwise combinations; and (iii) an bond-count variant that counts
the number of interfacial contacts (“bonds”) between the corresponding atom groups. As shown in
Fig.2(i), under identical training/testing protocols, our cross-channel encoding attains Spearman’s
ρ = 0.3848 and Pearson’s r = 0.3804, outperforming the single-channel model (0.0783/0.1431),
the element-wise model (0.2147/0.1773) and the bond-count model(0.209/0.1252). We attribute
these gains to the explicit modeling of inter-channel physicochemical interactions—e.g., hydropho-
bic–polar, donor–acceptor, and cation–π contacts—and the ability to adaptively reweight infor-
mative channels; in contrast, the single-channel baseline collapses interaction structure, and the
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element-wise grouping—though stronger—ignores residue-level roles and thus cannot fully capture
functional interactions.

4.4.2 EFFECTS OF SOFT-THRESHOLDING AND APPROXIMATE STATISTICAL ANALYSIS

We compare the spectral features produced by our differentiable topological spectral feature extrac-
tion with those obtained using existing non-differentiable methods(eg. used in (Chen et al., 2024))
(see Fig. 2(j)). The traditional pipeline computes spectra by exact counting of eigenvalue–based
statistics, whereas our differentiable formulation can be regarded as a smooth approximation to it.
Empirically, the curves for the maximum, sum, and variance of non-zero entries closely track the
traditional results. The zero count and the mean of non-zero entries show offsets in magnitude but
capture the same overall trends. The minimum of non-zero entries exhibits the largest discrepancy:
the discrete method fluctuates markedly, while our differentiable features change more smoothly.

We additionally trained an affinity prediction model using topological spectral features obtained
with the hard-threshold (non-differentiable) pipeline to evaluate the impact of the approximation
introduced by our differentiable spectral-statistics analysis. As shown in Fig. 2(i), the differentiable
approximation yields results comparable to the traditional exact method; any potential error does not
adversely affect affinity prediction, likely because the error distributions in the training and test sets
are similar and largely cancel out, and the non-zero-mean features with the largest errors constitute
only a small fraction of the predictions(Fig 2).

5 CONCLUSIONS

In this work, we introduced TopoScorer, a lightweight and interpretable affinity scorer that is fully
differentiable and can be used as a loss or reward to steer generative protein models. It is com-
primised of Specter, a differentiable, multi-channel, multi-scale topo-spectral features extractor for
protein–protein interfaces (PPIs). Across two public benchmarks, TopoScorer delivers performance
comparable to state-of-the-art methods, and ablations highlight the contribution of our topo-spectral
features. When integrated to finetune a state-of-the-art antibody design model, TopoScorer improves
metrics of the generated candidates. We further provide interpretability analyses that link the learned
spectral statistics to physicochemical properties of interfaces.
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Augustin Žı́dek, Rishi Bates, Samuel Blackwell, Jason Yim, Olaf Ronneberger, Sebastian Boden-
stein, Michal Zielinski, Alex Bridgland, Anna Potapenko, Alexander I. Cowen-Rivers, Pushmeet
Kohli, Kathryn Tunyasuvunakool, Rishub Jain, Ellen Clancy, Amar Shah Kohli, John Jumper,
and Demis Hassabis. Protein complex prediction with alphafold-multimer. bioRxiv, 2021b. doi:
10.1101/2021.10.04.463034. URL https://www.biorxiv.org/content/10.1101/
2021.10.04.463034.

11

https://arxiv.org/abs/2310.18515
https://arxiv.org/abs/2310.18515
https://arxiv.org/abs/2404.10457
https://arxiv.org/abs/2404.10457
https://doi.org/10.1038/s41467-024-51563-8
https://doi.org/10.1090/S0273-0979-09-01249-X
https://doi.org/10.1090/S0273-0979-09-01249-X
https://doi.org/10.1002/wcms.1618
https://doi.org/10.1002/wcms.1618
https://www.aimsciences.org/article/doi/10.3934/fods.2023010
https://www.aimsciences.org/article/doi/10.3934/fods.2023010
https://doi.org/10.1093/bib/bbac102
https://doi.org/10.1093/bib/bbac102
https://www.biorxiv.org/content/10.1101/2021.10.04.463034
https://www.biorxiv.org/content/10.1101/2021.10.04.463034


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Wenhao Gao, Sai Pooja Mahajan, Jeremias Sulam, and Jeffrey J. Gray. Deep learning in protein
structural modeling and design. Patterns, 1(9):100142, 2020. doi: 10.1016/j.patter.2020.100142.

Samuel Genheden and Ulf Ryde. The mm/pbsa and mm/gbsa methods to estimate ligand-binding
affinities. Expert Opinion on Drug Discovery, 10(5):449–461, 2015. doi: 10.1517/17460441.
2015.1032936.

Chloe Hsu, Robert Verkuil, Jason Liu, Zeming Lin, Brian Hie, Tom Sercu, Adam Lerer, and Alexan-
der Rives. Learning inverse folding from millions of predicted structures. In Proceedings of the
39th International Conference on Machine Learning (ICML), volume 162 of Proceedings of Ma-
chine Learning Research, pp. 8946–8970. PMLR, 2022a.

Chloe Hsu, Robert Verkuil, Jason Liu, Zeming Lin, Brian Hie, Tom Sercu, Adam Lerer, and
Alexander Rives. Learning inverse folding from millions of predicted structures. In Kama-
lika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato
(eds.), Proceedings of the 39th International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pp. 8946–8970. PMLR, 17–23 Jul 2022b. URL
https://proceedings.mlr.press/v162/hsu22a.html.
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A APPENDIX

A.1 USAGE OF LLMS

In this work, we used ChatGPT-5 (OpenAI) to assist with writing guidance and language polishing.

A.2 TOPOLOGICAL BASICS

Graphs. A (simple) graph G = (V,E) consists of a finite vertex set V and an edge set E ⊆
{{u, v} : u, v ∈ V, u ̸= v}; edges connect unordered pairs of distinct vertices. Variants include
directed graphs, where E ⊆ V ×V consists of ordered pairs, and weighted graphs, where each edge
e carries a weight we > 0. With a fixed ordering of vertices, the adjacency matrix A ∈ R|V |×|V |

has entries Auv = wuv (or 1 in the unweighted case) when {u, v} ∈ E; the degree matrix is
D = diag(d(v)) with d(v) =

∑
u Avu. The (combinatorial) graph Laplacian is L = D − A, a

symmetric positive semidefinite operator whose kernel encodes connected components.

Hypergraphs. A hypergraph H = (V, E) generalizes a graph by allowing each hyperedge e ∈ E
to be an arbitrary nonempty subset e ⊆ V of any cardinality. When all hyperedges share the same
size k+1, H is called (k+1)-uniform. Weighted hypergraphs assign a positive weight we to each
e, and directed hypergraphs may specify ordered hyperedges (e.g., e = (S → T ) with disjoint
source/target vertex sets). A convenient linear-algebraic representation uses the vertex–hyperedge
incidence matrix H ∈ {0, 1}|V |×|E| with Hve = 1 iff v ∈ e, together with diagonal degree matrices
DV = diag

(
d(v)

)
and DE = diag

(
|e|

)
, and an optional weight matrix W = diag(we). These

ingredients yield normalized diffusion operators such as Lsym = I − D
−1/2
V HWD−1

E H⊤D
−1/2
V ,

which reduce to the graph Laplacian when every hyperedge has size two. In applications, hyper-
graphs model higher-order (multiway) relations that cannot be expressed as pairwise edges; com-
mon reductions to graphs include the clique (flag) expansion, which replaces each hyperedge by a
clique on its vertices, and the star expansion, which forms a bipartite graph between V and E via H .

Simplicial Complex A simplicial complex provides a parsimonious, algebraically tractable repre-
sentation of geometric structure by assembling “simple pieces” (simplices) into a topological space.
Formally, a k-simplex is the convex hull of k+1 affinely independent vertices (abstractly, a (k+1)-
subset of a vertex set), with faces given by all vertex-subsets; an (abstract) simplicial complex K on
vertex set V is a family of finite subsets of V that is closed under taking subsets, and its dimension is
dimK = maxσ∈K(|σ| − 1). Equipped with orientations, simplices generate chain groups Ck with
boundary operators ∂k : Ck → Ck−1, yielding homology groups Hk that quantify k-dimensional
holes (components, cycles, voids). In practice, complexes are built from data via metric or combina-
torial rules and then organized into a filtration ∅ = Kt0 ⊆ Kt1 ⊆ · · · ⊆ Ktm over a scale parameter
t, enabling multiscale analysis and persistent homology.

Constructing Simplicial Complexes Simplicial complexes provide combinatorial surrogates of
metric or geometric data and are typically organized into filtrations to support multiscale analysis via
persistent homology. Among the standard constructions, the Vietoris–Rips (VR) complex offers the
most accessible entry point: at scale r > 0, one builds a graph on the data with edges between points
at distance ≤ r and then takes its flag (clique) completion; equivalently, a k-simplex belongs to
VR(X; r) precisely when all pairwise distances among its vertices are at most r. Because it depends
only on pairwise distances, VR does not require coordinates and is straightforward to implement
from k-NN or radius graphs. Its chief limitation is combinatorial growth in high dimensions, which
practitioners mitigate by truncating to low homological degrees (e.g., k = 0, 1, 2) and by relying on
the filtration {VR(X; r) }r≥0 rather than any single threshold.

A more geometrically faithful alternative is the Čech complex. Fixing radius r/2, one places closed
balls around each point and inserts a simplex whenever the corresponding balls have a nonempty
common intersection. The nerve theorem guarantees that Čech(X; r) is homotopy equivalent to
the union of these balls, so the complex closely reflects the topology of the offset shape. In Eu-
clidean settings, the Čech and VR filtrations are interleaved (with constants depending on the ambi-
ent metric), which justifies using the computationally cheaper VR filtration while retaining stability
guarantees for persistence. When coordinates are available and geometric sharpness matters, Alpha
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complexes refine this picture through Delaunay geometry: a simplex enters the complex when its
circumscribed empty ball (or, in the weighted case, power ball) has radius at most r/2. The result-
ing Alpha filtration tends to be smaller and more parsimonious than VR at comparable scales and
is particularly effective for shapes with meaningful cavities and tunnels, such as molecular surfaces,
where weighted variants incorporate atom-specific radii.

For very large data sets, Witness and Lazy Witness complexes trade exactness for scalability by
introducing a small landmark set L ⊂ X and using the remaining points as witnesses to certify
simplices on L. A simplex is admitted when some witness is sufficiently close to all of its vertices
under a chosen proximity rule; the lazy variant first constructs witnessed edges and then takes the flag
completion for higher-dimensional simplices. This sparsification preserves the global topological
signal with far fewer vertices, provided landmarks are selected judiciously (e.g., max–min sampling
or k-means centers) and proximity parameters are tuned to data scale.

Across these constructions, the common practice is to form a filtration {Kr}r≥0 by increasing the
scale parameter and to summarize multiscale topology using barcodes or persistence diagrams. In
applications, VR is the default choice when only distances are available or when ease of implemen-
tation is paramount; Čech is preferred when recovering the topology of offsets is critical; Alpha
excels when coordinate accuracy and geometric features (voids, tunnels) drive the analysis, espe-
cially with weighted variants; and Witness complexes enable exploratory or large-scale TDA under
tight memory and time budgets, all while remaining compatible with stable persistent homology
pipelines.

A.3 TOPOLOGICAL HYPERGRAPHS AND PTHLS

From hypergraphs to topology. While incidence-based Laplacians encode diffusion on V , they
do not, by themselves, expose higher-order “holes” (cycles, voids) created by multi-way relations.
A topological hypergraph endows H with an algebraic-topological structure by organizing hyper-
edges into graded families and equipping them with orientations so that boundary and coboundary
operators can be defined. Concretely, fix an integer kmax ≥ 1 and define k-cells as oriented (k+1)-
element hyperedges. Write Ck for the real vector space spanned by all oriented k-cells, and assemble
linear boundary maps

∂k : Ck −→ Ck−1, ∂k(v0, . . . , vk) =

k∑
i=0

(−1)i[v0, . . . , v̂i, . . . , vk],

whenever all faces on the right-hand side are present as (k−1)-cells. This yields a chain complex

· · · ∂k+1−−−−→ Ck
∂k−−→ Ck−1

∂k−1−−−−→ · · · ∂1−−→ C0, ∂k ◦ ∂k+1 = 0,

and therefore homology groups Hk that quantify k-dimensional voids generated by multi-way in-
teractions. In matrix form, take Bk to be the signed incidence matrix of ∂k after fixing an ordering
of k- and (k−1)-cells. With positive diagonal weight matrices Wk on k-cells one obtains the Hodge
hypergraph Laplacians

Lk = B⊤
k Wk−1Bk + Bk+1Wk+1B

⊤
k+1,

whose kernel Lk is isomorphic to the k-th homology (the space of harmonic k-forms), while nonzero
spectra capture “gradient” and “curl” energies of k-signals. This construction mirrors the simplicial
Hodge theory but keeps the modeling focus on hyperedges rather than requiring a full clique com-
pletion.

From boundary/coboundary to the Hodge Laplacian. Let K be a finite oriented simplicial com-
plex. Fix an ordering of k-simplices and write Ck(K;R) for the k-chain space with the usual bound-
ary maps

∂k : Ck −→ Ck−1, ∂k ◦ ∂k+1 = 0.

In coordinates, ∂k is represented by the signed incidence matrix Bk (rows index (k−1)-simplices,
columns index k-simplices). The k-cochain space is Ck = Hom(Ck,R), and the coboundary
∂k : Ck → Ck+1 is the algebraic adjoint of ∂k+1, hence in the standard bases

∂k = B⊤
k+1.
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To turn adjoints into matrices, equip each Ck with an inner product ⟨·, ·⟩k induced by a symmetric
positive definite matrix Wk (often diagonal, encoding k-cell weights): for α, β ∈ Ck ≃ Rnk ,

⟨α, β⟩k = α⊤Wk β.

The adjoint ∂∗k : Ck+1 → Ck is defined by ⟨∂kα, β⟩k+1 = ⟨α, ∂∗kβ⟩k for all α, β. In matrices this
becomes

(B⊤
k+1α)

⊤Wk+1β = α⊤Wk (∂
∗
kβ) ∀α, β =⇒ ∂∗k = W−1

k Bk+1 Wk+1.

Similarly, ∂k−1 = B⊤
k and ∂∗k−1 =,W−1

k−1BkWk. The (combinatorial) k-Hodge Laplacian acting
on k-cochains is

∆k = ∂k∂
∗
k + ∂∗k+1∂k+1.

Substituting the matrices and simplifying yields the explicit weighted form

∆k = B⊤
k W−1

k−1 Bk Wk + W−1
k Bk+1 Wk+1 B

⊤
k+1 (self-adjoint w.r.t. ⟨·, ·⟩k).

When one prefers a symmetric matrix under the Euclidean inner product, it is convenient to conju-
gate by W

1/2
k and work with

Lk = W
1/2
k ∆k W

−1/2
k =

(
W

1/2
k B⊤

kW
−1
k−1BkW

1/2
k

)︸ ︷︷ ︸
“lower” part (∂k−1∂∗k−1)

+
(
W

−1/2
k Bk+1Wk+1B

⊤
k+1W

−1/2
k

)︸ ︷︷ ︸
“upper” part (∂∗k∂k)

,

which is symmetric positive semidefinite in the usual sense and unitarily similar to ∆k.

Unweighted special case. If Wk = I for all k (orthonormal bases of cochains), then ∂∗k = Bk+1

and
∆k = B⊤

kBk + Bk+1B
⊤
k+1 (standard combinatorial Hodge Laplacian).

In either weighted or unweighted form, the Hodge decomposition follows: ker∆k
∼= Hk(K;R)

(harmonic k-cochains represent cohomology), while the ranges of ∂k−1 and ∂∗k are orthogonal and
encode “gradient” and “curl” subspaces of k-signals. These identities arise directly from ∂k∂k+1 =
0 and the definitions of adjoints with respect to the chosen inner products.

Geometric filtrations and persistence. To probe topology across scales, equip each hyperedge
with a filtration value via a data-driven rule, for instance

we(r) =
∏

(p,q)∈pairs×(e)

κτ

(
d(p, q); r

)
, κτ (d; r) = σ

(
r − d

τ

)
,

where d(·, ·) is a metric on embedded vertices, σ is a smooth step (e.g., logistic), r is a scale,
and τ > 0 controls softness. Increasing r generates a nested family of topological hypergraphs
with boundary matrices Bk and Hodge Laplacians Lk(r). The matrix Bk is the signed incidence
(boundary) matrix of the oriented simplicial complex (or the precomputed “super–complex”). First
enumerate all candidate k-simplices σ = [v0, . . . , vk] with a fixed orientation (e.g., vertices in as-
cending index order), and all (k−1)-simplices τ . Its entries record face relations with alternating
signs:

(Bk)τ,σ =

{
(−1)i, if τ = σ \ {vi} for some i ∈ {0, . . . , k},
0, otherwise.

In the soft–boundary setup, this Bk is constructed once from a radius upper bound (or the union of
complexes over multiple radii) and kept fixed; the scale dependence is carried by diagonal member-
ship/weight matrices rather than by changing Bk itself.

One can compute persistent homology on the induced chain complex or summarize spectra
{λi(Lk(r))}r, obtaining stable multiscale descriptors. The soft kernel κτ makes Bk(r) and Lk(r)
differentiable in r and in the underlying coordinates, enabling end-to-end learning with topological
regularizers or losses.
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Relations to clique/star expansions. Common graph reductions of a hypergraph—clique (flag)
expansion and star expansion—map every hyperedge to a clique on V or to a bipartite star between
V and E , after which one applies graph or simplicial homology. Although convenient, these expan-
sions can introduce dense spurious high-order simplices and blur the combinatorics of the original
multi-way relation. Topological hypergraphs, by contrast, keep k-cells exactly where k+1-wise in-
teractions are modeled, yielding leaner chain groups and more faithful Bk matrices, which often
improves interpretability and computational efficiency for k ≥ 2.

Directed and weighted variants. Many applications require orientation beyond sign conventions.
A directed hypergraph allows ordered hyperedges e = (S → T ) with disjoint source/target vertex
sets. One extends the chain complex by declaring 1-cells to be ordered pairs and higher cells to
be ordered tuples, then defining ∂k by alternating sums that respect direction. Weights can encode
frequency, confidence, or physical strength; incorporating them in Wk preserves the Hodge decom-
position and yields anisotropic diffusion on k-signals. When vertices carry coordinates or attributes,
mixed weights Wk(θ) can be learned jointly with downstream objectives.

A.4 GEOMETRIC MEANINGS OF PTHLS SPECTRA STATISTICS

Zero count of eigen values Zero count of eigen values approximates the dimension of the har-
monic subspace kerL

(i,j)
k (rt), i.e., the k-order “holes/cycles” (Betti number surrogate) in the di-

rected hypergraph at scale rt. For k = 0 this corresponds to the number of cross-protein connected
components; for k ≥ 1 it reflects higher-order cycle-like interaction patterns among (k+1)-tuples
across the interface.

Smallest positive eigenvalue Smallest positive eigenvalue measures the spectral gap above the
harmonic space, i.e., the “cohomological connectivity” of k-order structures. Larger gaps imply
more robust k-order coupling and fewer near-harmonic defects.

Sum, mean and Variance Sum, mean and Variance of non-zero eigen values summarize the over-
all “oscillation energy” and its spread at order k. For k = 0, sum of eigenvalues equals the total
(weighted) degree and tracks aggregate interfacial proximity. For k ≥ 1, the moments encode how
strongly k-faces are bounded by (k−1)-faces and how they bound (k+1)-faces (through ∂k and
∂k+1), reflecting the stiffness and heterogeneity of higher-order organization.

Maximum eigenvalue Controls the worst-case curvature of k-order diffusions/regularizers on the
hypergraph, bounding step sizes in gradient flows and indicating the strongest local constraints at
order k.

A.5 FINETUNING PROCEDURE WITH TOPOSCORER

We finetune an antibody design model IgGMWang et al. (2025) on 13,013 antibody–antigen com-
plexes curated from SAbDab(Dunbar et al., 2014). We use samples before 2023-06-30 for training,
samples from 2023-06-30 to 2023-12-30 for validation, samples after 2023-12-30 for testing. To
reduce redundancy, antibody sequences in the training set are clustered by CD-HIT(Li & Godzik,
2006) at 95% sequence identity, yielding 3,815 sequence clusters. The trainer samples uniformly
across clusters. We finetune the base model for three epochs on 8×A100 GPUs. The entire finetun-
ing procedure is summarized in Algorithm. 1.

We also apply sequence and structure losses as follows:

Frame-Aligned Point Error (FAPE). FAPE measures pointwise discrepancies after aligning both
prediction and ground truth in each residue’s local rigid frame, making it insensitive to global rigid
motions:

Lfape =
1

N

∑
i

∑
a∈N (i)

min
(
τ,

∥∥Fi(x̂a)− Fi(xa)
∥∥),

where Fi transforms coordinates into residue i’s local frame, N (i) is a neighborhood (e.g.,
backbone/side-chain points), and τ is a truncation radius.
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Algorithm 1: Finetuning procedure with TopoScorer

Input: Antigen sequence sAg; antibody sequence sAb (CDR may be incomplete); GT antibody
backbone XAb

bb ∈RL×3; GT full-atom X; noise schedule {αt, σt}; CDR masker Mk;
packer P; model fθ; interface extractor I; channel selectors {Πc}Cc=1; radii setR; soft
kernel κτ

Output: Loss L for backpropagation
Sample t ∼ p(t), ε ∼ N (0, I), k ∼ CDR choice
Backbone noising and CDR masking: XAb

bb,t ← αtX
Ab
bb + σtε, s̃Ab ←Mk(s

Ab)

Denoise: (X̂bb, ŝ
Ab)← fθ(s

Ag, s̃Ab, XAb
bb,t, t)

Sidechain packing: X̂ ← P(X̂bb, ŝ
Ab)

Interface extraction: X̂PPI ← I(X̂)
for c = 1 . . . C do

AAg
c ← Πc(X̂

Ag
PPI); AAb

c ← Πc(X̂
Ab
PPI)

Dc ← pairwise dist(AAg
c , AAb

c )
for r ∈ R do

W
(r)
c ← κτ (Dc; r)

L
(r)
c ← PTHL(W (r)

c )

ϕ
(r)
c ← SpecStats(L(r)

0,c)

Φ← concat
(
{ϕ(r)

c }c,r
)
; A← AffinityPred(Φ)

L ← Lfape(X, X̂) + Lmse(X, X̂) + Llddt(X, X̂) + Lsrcv(X, X̂) + Lviol(X̂)− A

Local Distance Difference Test (lDDT) loss. lDDT assesses preservation of local pairwise dis-
tances within tolerance thresholds; we minimize 1− lDDT:

LDDT(x̂, x) =
1

|P|
∑

(i,j)∈P

1

4

∑
δ∈{0.5,1,2,4} Å

1
(∣∣∥x̂i−x̂j∥−∥xi−xj∥

∣∣ < δ
)
, Llddt = 1−LDDT.

Violation loss. Similar to AlphaFold2 Jumper et al. (2021), we introduce penalty terms for (i) in-
correct peptide bond length and bond angles, and (ii) steric clashes between non-bonded atoms. For
multimer structure prediction, we do not penalize the bond length and angle between the last residue
in the heavy chain and the first residue in the light chain, since there is no peptide bond between
them. In addition, following AlphaFold-Multimer Evans et al. (2021a), we normalize the steric-
clash penalty by the number of non-bonded atom pairs that are in clash to stabilize optimization.
The overall loss is

Lviol = Lbond-length + Lbond-angle + Lclash. (1)

Here, Lbond-length penalizes deviations of predicted peptide bond lengths from their canonical tar-
gets, Lbond-angle penalizes deviations of backbone bond angles, and Lclash penalizes steric overlaps
between non-bonded atom pairs, with the clash term normalized by the number of clashing pairs.

Amino-acid Sequence Recovery Loss (Lsrcv). To supervise the model to recover the amino-acid
identity si at each design/masked position i, we formulate a 20-way classification over the standard
amino acids. The representation at position i is linearly projected to class probabilities {pci}20c=1, and
the objective is the cross-entropy loss:

Lsrcv = − 1

Ldesign

20∑
c=1

pci log yci , (2)

where pci denotes the predicted probability of class c at position i, yci is the one-hot ground-truth label
(yc

⋆

i = 1 for the true class c⋆ and 0 otherwise), and Ldesign is the set of design/masked positions over
which the loss is averaged.
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Mean squared error (MSE). For continuous supervision (e.g., affinity, energies, spectral statis-
tics), we use MSE:

Lmse =
1

N

L∑
n=1

(
x̂n − xn

)2
.

Total objective. The training objective is a weighted sum of the above components:

Ltotal = Lfape + Llddt + 0.02Lviol + Lsrcv + 4Lmse − Laffinity

A.6 BIND AFFINITY PREDICTION MODEL

Squeeze-and-Excitation (SE) for Topological–Spectral Features. We use squeeze-and-
excitation (SE) channel attention to adaptively reweight multi-channel topological–spectral fea-
tures before prediction or reward computation. Given a feature tensor X ∈ RB×C×D1×···×Dm ,
SE first performs a permutation-invariant squeeze by global averaging over non-channel axes to
obtain z ∈ RB×C . An excitation MLP with bottleneck ratio r then produces per-channel gates
s = σ

(
W2 ϕ(W1z)

)
∈ (0, 1)B×C , which rescale the original channels via X̃:,c,· = s:,c X:,c,· (typ-

ically within a residual path for stability). This content-dependent modulation introduces negli-
gible overhead (≈ 2C2/r parameters) yet provides global, sample-specific channel importances.
For topological–spectral inputs, SE is advantageous because it mitigates signal cancellation across
signed statistics and filtration scales, adapts to variability in interface size and composition, and
preserves the symmetry properties of spectral summaries through invariant pooling. Practically, we
apply SE before collapsing scales so the gate sees full multi-scale context, and for any signed statis-
tic x we use a sign-split representation (x+, x−) to allow independent modulation of positive and
negative evidence. When the downstream scorer is kept frozen during fine-tuning, this reweighting
helps align intermediate representations with the scorer’s preferred basis, improving robustness and
affinity correlation with minimal architectural complexity.

Hybrid Projections We adopt a hybrid representation that combines a low-rank bilinear projec-
tion with a residual full projection to capture cross-channel interactions without incurring quadratic
cost while preserving full expressivity. Given two feature vectors a ∈ Rp and b ∈ Rq (e.g., anti-
gen/antibody, scale/statistic), a full bilinear map uses a⊤Wb with W ∈ Rp×q . We approximate W
by rank-r factors U ∈ Rp×r, V ∈ Rq×r and define

hbil = Φ
(
(U⊤a)⊙ (V ⊤b)

)
∈ Rd,

where ⊙ is elementwise product and Φ : Rr → Rd is a small MLP or linear head. In parallel, a
residual full projection aggregates first-order information,

hres = Waa + Wbb + b0, Wa ∈ Rd×p, Wb ∈ Rd×q,

and the hybrid feature is h = hres+hbil. This design captures second-order interactions through the
low-rank bilinear branch with O(r(p + q)) parameters while the residual branch ensures gradient
flow, stabilizes training, and recovers full linear expressivity when interactions are weak. In practice
we use small r (e.g., 8–64), apply normalization before the branches, and optionally gate the bilinear
term with a sigmoid or softplus scalar to prevent dominance early in training.

Transformers We employ a Transformer(Vaswani et al., 2017) with multi-head self-attention to
aggregate and mix information across channels, scales, and interface regions. Self-attention provides
content-adaptive weighting among tokens, enabling the model to capture long-range dependencies
and nonlocal couplings that are difficult for fixed receptive-field operators. Multi-head attention
decomposes this process into parallel subspaces, so distinct heads can specialize in complemen-
tary interaction patterns (e.g., hydrophobic vs. polar cues, short- vs. long-range scales, or antigen
vs. antibody roles), improving expressivity without incurring a prohibitive parameter cost. In our
setting, representing topological–spectral descriptors as a set of tokens (across channel pairs and
filtration radii) allows the Transformer to (i) perform permutation-invariant set aggregation with
learned, data-dependent weights; (ii) selectively emphasize salient channels and scales while sup-
pressing distracting ones, mitigating signal cancellation; and (iii) fuse heterogeneous cues through
cross-token mixing that is more flexible than hard-coded pooling. Relative positional or geometric
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encodings (e.g., functions of inter-token scale gaps or interface geometry) can be injected to guide
attention with physically meaningful priors. Combined with SE reweighting and the hybrid bilin-
ear–residual projection, the Transformer serves as a versatile, interpretable aggregator that boosts
downstream affinity correlation and stability with modest computational overhead.

Training Details Binding affinity prediction model of TopoScorer is trained on PPB-Affinity(Liu
et al., 2024) Dataset—the largest publicly available dataset of protein–protein binding affinities.
From its PDBbind v2020(Liu et al., 2015), SAbDab(Dunbar et al., 2014), and Affinity Benchmark
v5.5(Vreven et al., 2015) components, we preprocess entries by splitting each complex into indi-
vidual protein-protein interfaces according to the participating chain identifiers; interfaces derived
from the same PDB entry share the same affinity label. After duplicate removal, this yields 4,818 la-
beled interfaces. For SKEMPI v2.0, we use FoldX to construct mutant complex structures from the
corresponding wild-type templates, guided by the annotated mutation sites. We adopt the reported
KD as the affinity measurement and convert it to a regression target via the standard transformation
− logKD. For each interface, we extract multi-scale topological spectral features from the atomic
coordinates and train the model to predict affinity from these features using mean-squared error
(MSE) as training loss. We reserve 474 interfaces released after June 30, 2018 as a held-out test set,
split the remainder into training and validation sets at a 7:3 ratio. To prevent potential data leak from
similar interfaces, we adopted the interface-similarity protocol recommended in (Bushuiev et al.,
2024b). Concretely, following Bushuiev et al. (Bushuiev et al., 2024a), we extracted PPI interfaces
for all complexes using 6 Å heavy-atom contacts between the two partners (as in PPIRef) and em-
bedded all interfaces with the iDist algorithm and, for each test interface, computed its iDist distance
to all training interfaces. We identified near-duplicates as test interfaces having at least one training
interface with iDist distance less than 0.04, which is reported to correspond to near-duplicate 6 Å in-
terfaces. Finally, we removed these near-duplicate test entries (i.e., potential leaks) and re-evaluated
all baselines and TopoScorer on the resulting leakage-controlled benchmark. After data leak filter,
there are 351 remaining complex. The model was trained on 4 A800 GPUs for roughly two days
until either reaching the maximum number of iterations or the validation loss stops decreasing; the
final model is selected by the best validation performance.

For mutation task, we trained TopoScorer with data from SKEMPI v2.0. We generate structures of
mutations by FoldX(BuildModel) and obtained 5550 mutation complexes with affinity labels. Our
single and multiple mutations test sets are curated from commonly used benchmark S1131(Xiong
et al., 2017) and M1707(Zhang et al., 2020) using the same method as above to prevent data leak,
containing 1067 and 782 complexes, respectively. We split the training set into training and valida-
tion sets at a 7:3 ratio, and train on 4 A800 GPUs for 6 hours on 4 A800 GPUs. Parameter settings
for affinity prediction model and for PTHL feature extraction are in Table. 3 and Table.4

Table 3: Hyperparameters and defaults for AffinityScaleTransformer.
Hyperparameter Meaning Default
m number of statistics channels across scales 6
c number of element channels 143
d model token embedding width 384
d mid intermediate width in factorized projection 192
depth number of Transformer blocks 6
nhead attention heads per block 8
mlp ratio MLP expansion ratio in blocks 4.0
dropout global dropout rate 0.10
max len maximum sequence length for positional encoding 256
use cls token prepend a [CLS] token? True
learning rate base learning rate 8e− 5
seed random seed 12345
warmup steps warmup steps 0.1
max steps max training step 10000
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Table 4: Hyperparameters for PTHLs feature extraction.
Name Type Default Meaning / Notes

device torch.device None Computation device (e.g., cuda:0 or
cpu).

dtype torch.dtype torch.float32 Floating precision for kernels and spectra.
eps float 1×10−7 Numerical jitter for stability (e.g., inverses,

norms).
sigma zero float 1×10−5 Width of soft zero-indicator; smaller ⇒

sharper near zero.
tau float 0.05 Temperature for soft-min/max (and soft

gates); smaller ⇒ closer to hard extremum.
alpha float 0.01 Å Threshold softness (in Å); smaller ⇒

closer to a hard distance threshold.
consider field float 10 Å Neighborhood selection radius: include

atoms whose distance to any atom in the
opposite protein is < this value.

dis cut off float 10 Å Maximum filtration radius (upper bound of
the distance threshold sweep).

interval float 0.1 Å Filtration step size (increment of the
distance threshold).

A.7 BASELINE MODELS

Rosetta We used the Rosetta molecular modeling suite via its Python interface(Chaudhury et al.,
2010). All SKEMPI2 complex structures were first minimized with the relax protocol. Mu-
tants were then generated using the Cartesian-space mutation workflow cartesian ddg under the
ref2015 cart energy function (Rosetta v2023.49). For each protein coomplex, interfacial bind-
ing energies were estimated with InterfaceAnalyzer metrics (dG separated and dSASAx100).
For mutation effect evaluation, the mutation-induced change in binding free energy was computed
as∆∆Gbind = ∆Gbind(mutant)−∆Gbind(wild type). This pipeline provides a standard, reproducible
Rosetta estimate of mutation effects on protein–protein affinity.

FoldX FoldX(Delgado et al., 2019; Schymkowitz et al., 2005) is a fast, empirical energy func-
tion for proteins that explicitly models van der Waals, hydrogen bonding, electrostatics, solva-
tion/hydrophobic effects, and entropic terms (e.g., side–chain and backbone contributions). In our
setup, each SKEMPI complex was first standardized with RepairPDB, after which mutant struc-
tures were generated using BuildModel. Binding energies for wild type and mutants were then
evaluated with AnalyseComplex, and the mutation-induced change in binding free energy was
reported as ∆∆Gbind = ∆Gbind(mutant) − ∆Gbind(wild type). This pipeline provides a rapid and
robust baseline for high-throughput mutation scoring and interface optimization with FoldX.

ESM-1v ESM-1v(Meier et al., 2021a) is a sequence-only protein language model trained at scale
and used for zero-shot variant effect prediction: given a wild-type sequence, it assigns likelihoods
to single or multiple substitutions and scores functional impact via log-likelihood (or log-odds)
differences without task-specific supervision (Meier et al., 2021a). As a general-purpose, structure-
agnostic baseline, ESM-1v has proved competitive across diverse mutational assays and comple-
ments structure-conditioned design models by providing fast, alignment-free estimates of mutational
tolerance.

ESM-IF ESM-IF(Hsu et al., 2022b) is a structure-conditioned protein language model that, given
a protein backbone, predicts sequences compatible with that structure and assigns conditional log-
likelihoods to any provided sequence. In design and evaluation settings, it can thus generate or
rescore candidates (including interface binders). In our use, we compute per-residue conditional
log-likelihoods on the wild type and mutant backbones and aggregate their differences over mutated
(or interfacial) sites as a proxy signal for affinity or ∆∆Gbind.
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PRODIGY PRODIGY(Xue et al., 2016) is a structure-based baseline for predicting protein–
protein binding affinity from a given complex structure . It uses simple, interpretable interfacial
descriptors—principally the number and types of interfacial contacts plus noninteracting surface
(NIS) properties—within a linear model to estimate affinity (typically reported as ∆G in kcal/mol
or converted to KD at standard temperature). Inputs are the 3D coordinates of a docked or experi-
mentally determined complex; no training or fine-tuning is required at inference. In our experiments,
we use PRODIGY “as is” to score predicted complexes as a classical baseline. Typical limitations
include sensitivity to interface delineation and pose quality (e.g., suboptimal docking poses or in-
complete interfaces), and the method is not differentiable, so it cannot provide gradients to upstream
generative models.

DSMBind DSMBind(Jin et al., 2023) adopts an energy-based, SE(3)-equivariant denoising score-
matching framework to learn a continuous “energy landscape” (score field) over protein–protein
interactions without explicit supervision on binding energies. The learned score provides a versatile
signal for ranking affinity, assessing docked poses, and guiding binder (e.g., nanobody) design; we
use its energy/score outputs to compare mutants and complexes.

DDGPred DDGPred(Shan et al., 2022) denotes supervised deep regressors for mutation-induced
changes in protein–protein binding free energy, typically trained on curated ∆∆G datasets. In-
puts combine complex structures with localized geometric/energetic descriptors around the mutation
site, and the model outputs ∆∆Gbind for single or multiple point mutations. We include a repre-
sentative DDGPred implementation as a learning-based baseline alongside physics-based methods
(Rosetta/FoldX).

RDE-Network RDE-Network(Luo et al., 2023) is built upon a Rotamer Density Estimator that
learns side-chain rotamer distributions in an unsupervised manner to capture conformational flex-
ibility and entropic effects. Downstream networks map these RDE-derived features to ∆∆Gbind,
leveraging changes in conformational freedom to explain mutation impacts while reducing reliance
on labeled free-energy data.

TopoNetTree TopoNetTree(Cang & Wei, 2017) is a classic persistent-homology model that com-
bines ESPH with CNNs. It starts from topological representations, TopologyNet relies on Betti-
number–based persistent homology barcodes as features. It constructs multi-scale topological de-
scriptors around the mutation site using persistent homology and feeds these handcrafted features
into a tree-based regression model to predict ∆∆G.

GearBind GearBind(Cai et al., 2024) is a pretrainable geometric graph neural network for protein-
protein binding affinity change (∆∆G) prediction. It is pretrained on CATH using contrastive
learning and fine-tuned on SKEMPI with a regression loss. Here we provide the inference code
of GearBind.

A.8 ADDITIONAL EXPERIMENTS

A.8.1 STREE TEST OF TOPOSCORER’S SENSITIVITY

In addition to using FoldX for mutant structures, we have explicitly stress-tested TopoScorer’s sen-
sitivity to coordinate perturbations. Concretely, for all complexes in our test set of binding affinity
prediction, we added isotropic coordinate noise of different magnitudes (0.1–1.0 Å) to the atomic
coordinates and recomputed the predicted binding affinity. We then measured the mean relative
change in the predictions across all mutants; the results are summarized in Table 5.

These results show that TopoScorer is highly stable under realistic levels of structural noise: small
perturbations (≤ 0.5 Å) induce less than 5% change on average, and even sizeable perturbations
on the order of 1.0 Å (comparable to typical AF-style backbone deviations) only lead to ≈ 10%
variations, indicating that TopoScorer’s conclusions are robust to moderate coordinate jitter and
side-chain positioning noise.
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Figure 3: Sum of eigenvalues of PTHLs between ligand glutamate/aspartate carboxylate oxygens
and each receptor channel.

Figure 4: Sum of eigenvalues of PTHLs between ligand aliphatic side-chain carbon and each recep-
tor channel.

A.8.2 BOND COUNT FEATURE ANALYSIS

Fig 5 visualizes the bond count curves for 1ACB and the two LI38 variants (LI38D and LI38E)
across several interaction channels. For each system, the bond count increases with the distance
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Table 5: Sensitivity of TopoScorer to isotropic coordinate noise on the binding-affinity test set.
Values report the mean relative change in predicted affinity across all mutants.

Noise level (Å) Mean change (%)

0.1 1.13
0.2 3.95
0.5 4.56
1.0 10.76

Figure 5: Bond count diagram between carboxylate O - carboxylate O , cationic N - carboxylate O,
and cationic N - aliphatic C of 1ACB and its mutants.

threshold, qualitatively mirroring the monotonic trend we observe for our spectral topological fea-
ture λsum. However, the bond count curves are clearly much noisier: the trajectories for wild type
and the two mutants frequently cross, and small local fluctuations in contact number obscure a
consistent ordering between variants. In contrast, λsum aggregates information from the full Lapla-
cian spectrum of each interaction graph, capturing the overall strength and organization of contacts
rather than just their raw counts. As a result, the λsum curves are smoother, show fewer crossings,
and separate the three complexes more robustly across scales. This reduced noise and improved
discriminability help explain why models based on simple bond count features underperform those
built on our spectral topological descriptors.

A.8.3 MORE INTERPRETABILITY CASE STUDIES

As shown in Fig 6, we analysed the zero–eigenvalue count of the element-specific graph Laplacian,
which reports the number of connected components in each interaction subgraph as the distance
threshold increases. In Fig 6(b), which corresponds to the anion–anion subgraph between recep-
tor carboxylate oxygens and ligand carboxylate oxygens, the wild type exhibits the largest zero
counts across all radii, while the E79A and E79A K80A mutants show progressively lower curves.
This indicates that the wild-type interface contains multiple disjoint anionic clusters around E79,
reflecting a highly fragmented and electrostatically frustrated acidic patch; removal of E79 col-
lapses parts of this network and topologically simplifies the anionic environment, in line with the
observed increase in affinity. Fig 6(c), which tracks the cation–anion subgraph between receptor
nitrogens and ligand carboxylate oxygens, shows a similar pattern: the wild type has the highest
number of connected components, suggesting an over-structured but fragmented Lys–Asp/Glu net-
work (“electrostatic cage”), whereas the mutants display fewer components, consistent with pruning
of suboptimal or partially desolvated salt-bridge configurations while retaining the most productive
ones. Finally, in Fig 6(d) , corresponding to interactions between receptor aliphatic carbons and
ligand cationic nitrogens, shows only subtle shifts but again follows the affinity trend: the double
mutant displays a modest reduction in zero counts relative to the wild type, consistent with replacing
K80 by alanine and thereby converting a heterogeneous hydrophobic–cationic environment into a
more homogeneous hydrophobic patch. Overall, the downward shifts in the Laplacian zero counts
indicate a topological simplification of problematic anionic and cationic subnetworks, which corre-
lates with relief of electrostatic frustration and the stepwise gain in binding affinity from wild type
to E79A and to the E79A K80A double mutant.

As shown in Fig 7, for the three spectral channels that show the clearest correlation with the experi-
mental affinities curves consistently follow the order wild type > R167K > R167N across distance
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Figure 6: (a) Structures of 1A22 and mutants residues 78–80 (green: wild type ligand chain B; pink:
mutant E79A ligand chain B; blue: mutant E79A K80A ligand chain B; light purple: receptor chain
E). (b) Zero count between receptor carboxylate oxygens and ligand carboxylate oxygens. (c) Zero
count between receptor cationic nitrogens and ligand carboxylate oxygens. (d) Zero count between
receptor aliphatic carbons and ligand cationic nitrogens.

Figure 7: (a) Structures of 1A22 and mutants residues 166–168 (green: wild type ligand chain B;
pink: mutant R167K ligand chain A; blue: mutant R167N ligand chain A; light purple: receptor
chain E). (b) λsum between receptor aliphatic carbons and ligand cationic nitrogens. (c) λsum

between receptor cationic nitrogens and ligand cationic nitrogens. (d) λsum between receptor amide
nitrogens and ligand cationic nitrogens.

thresholds. Fig. 7(b) corresponds to the protein aliphatic carbon–ligand cationic nitrogen channel,
reporting how well the positively charged group on the ligand is embedded in a hydrophobic shell;
the larger λsum values for the wild type indicate a more extensive and coherent hydrophobic–cationic
packing environment than in either mutant. Fig. 7(c) captures the protein cationic nitrogen–ligand
cationic nitrogen channel and reflects the organization of the interfacial cationic network. Here again
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Class Atoms (Atom37 names) Physicochemical meaning

G1 N Backbone amide N; H-bond donor; defines
peptide directionality.

G2 CA, C Backbone α-carbon and carbonyl C; main-chain
scaffold and geometry.

G3 O Backbone carbonyl O; H-bond acceptor; drives
secondary-structure H-bonds.

G4 CB, CG1, CG2, CD, CE, CG, CD1,
CD2

Aliphatic side-chain C; hydrophobic packing,
shape complementarity, van der Waals contacts.

G5 CE1, CE2, CE3, CZ, CZ2, CZ3, CH2 Aromatic/conjugated ring C (Phe/Tyr/Trp/His);
π-stacking, cation–π, polarizability.

G6 OD1, OD2 Aspartate carboxylate O; negatively charged; salt
bridges to lysine/arginine; H-bond acceptor.

G7 OE1, OE2 Glutamate carboxylate O (longer reach than
Asp); negatively charged; salt bridges; H-bond
acceptor.

G8 OG, OH, OG1 Serine/threonine/tyrosine hydroxyl O;
donor/acceptor; interfacial polarity.

G9 NE, NH1, NH2, NZ Cationic N (arginine guanidinium
NE/NH1/NH2; lysine NZ); salt bridges; H-bond
donor.

G10 ND2, NE2, ND1, NE1 Amide/imidazole N (asparagine ND2, glutamine
NE2, histidine ND1/NE2, tryptophan NE1);
pH-dependent donor/acceptor (His), polar
contacts.

G11 SE, SD Chalcogen in selenomethionine (SE) and sulfur
in methionine (SD); soft, polarizable;
thioether/selenoether contacts.

Table 6: Atom37 groups (G1–G11) by physicochemical role.

the wild type shows the strongest spectral signature, consistent with a more structured positive-
charge network that helps position and stabilize the ligand, while R167K and especially R167N
progressively disrupt this network. Finally, Fig. 7(d) corresponds to the protein amide nitrogen–
ligand cationic nitrogen channel, highlighting a polar scaffold that supports the ligand’s charged
group; the monotonic decrease of λsum from wild type to R167K to R167N suggests a stepwise
loss of this polar support. Together, these three indices indicate that mutations at R167 primarily
weaken a cooperative hydrophobic–cationic–polar interaction network at the interface, in line with
the observed reduction in binding affinity.

A.9 PHYSICOCHEMICAL-ROLE–AWARE CLASSES

Physicochemical-role–aware classes partitions and explanations are presented in Table 6.
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