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ABSTRACT

A critical step for reliable large language models (LLMs) use in healthcare is to at-
tribute predictions to their training data, akin to a medical case study. This requires
token-level precision: pinpointing not just which training examples influence a de-
cision, but which tokens within them are responsible. While influence functions
offer a principled framework for this, prior work is restricted to autoregressive
settings and relies on an implicit assumption of token independence, rendering
their identified influences unreliable. We introduce a flexible framework that in-
fers token-level influence through a latent mediation approach for general predic-
tion tasks. Our method attaches sparse autoencoders to any layer of a pretrained
LLM to learn a basis of approximately independent latent features. Unlike prior
methods where influence decomposes additively across tokens, influence com-
puted over latent features is inherently non-decomposable. To address this, we
introduce a novel method using Jacobian-vector products. Token-level influence
is obtained by propagating latent attributions back to the input space via token
activation patterns. We scale our approach using efficient inverse-Hessian ap-
proximations. Experiments on medical benchmarks show our approach identifies
sparse, interpretable sets of tokens that jointly influence predictions. Our frame-
work enhances trust and enables model auditing, generalizing to any high-stakes
domain requiring transparent and accountable decisions.

1 INTRODUCTION

The deployment of LLMs in high-stakes domains like healthcare hinges on a critical and unmet
requirement: the ability to audit a model’s reasoning by tracing its predictions directly to the evi-
dence in its training data. This need for verifiability is urgent, as LLMs are increasingly explored
for clinical tasks such as diagnostic support and treatment planning, where errors can have severe
consequences (Singhal et al., 2023; Topol, 2019). Without this capability—akin to a clinician de-
manding the source for a medical decision—LLMs remain unverifiable black boxes. Their tendency
to hallucinate (Ji et al., 2023) and their susceptibility to spurious correlations present in training data
(Oberst & Sontag, 2019) pose significant safety risks, undermining the trust required for clinical
adoption (Futoma et al., 2020; Ghassemi et al., 2021).

This fundamental need for evidence-based reasoning is not adequately addressed by prevailing inter-
pretability methods. Techniques like Chain-of-Thought prompting generate rationales that are often
post hoc justifications rather than faithful reflections of the model’s true decision process (Turpin
et al., 2023; Barez et al., 2025). Other popular approaches, such as attention visualization (Wiegr-
effe & Pinter, 2019; Jain & Wallace, 2019) or gradient-based feature attribution (Sundararajan et al.,
2017a), are limited to explaining a single forward pass of a model. They operate within the context
of a given input, providing no insight into how prior training experiences shaped the model’s fun-
damental behavioral patterns and knowledge (Feldman & Zhang, 2020). This represents a critical
limitation for clinical deployment, where the ability to pinpoint the exact training evidence behind a
prediction—not just generate plausible-sounding rationales—is essential for medical professionals
to validate the model’s logic against established knowledge, fact-check its conclusions, and ulti-
mately build the trust required for adoption in safety-critical settings.

A principled framework for addressing this question lies in influence functions (IFs), a tool from
robust statistics that explains how a model’s predictions depend on its training data (Hampel, 1974).
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This approach treats the model as an empirical entity shaped by its dataset, enabling one to trace a fi-
nal prediction back to influential training points (Koh & Liang, 2017). Recent work has successfully
scaled this approach to modern LLMs, demonstrating its potential to reveal generalization patterns
by attributing influence down to the token level (Grosse et al., 2023). However, a key limitation
persists: the IF framework assumes independence among the components of the objective (e.g., to-
kens in an autoregressive prediction task in prior work). This assumption is necessary for influence
scores to be meaningfully interpretable, as it ensures that the relative difference in influence between
components is well-defined. In practice, the tokens within LLMs are highly correlated. Thus, prior
implementations, while powerful, produce influence estimates that are theoretically unsound and
difficult to interpret (Basu & Echenique, 2020; Tsimpoukelli et al., 2021).

We introduce a robust framework that infers token-level influence on test predictions via latent me-
diation, enabling more reliable influence estimation. Building on recent monosemanticity research
(Bricken et al., 2023; Templeton et al., 2024a) and disentangled representation learning (Wang et al.,
2024), our method leverages that neural networks decompose into semantically meaningful, inde-
pendent components. Our method generalizes to general prediction tasks by propagating influence
through disentangled latent spaces where features exhibit statistical independence, critical for reli-
able influence estimation. Our contributions are fourfold:

1. Unified sample- and feature-level influence: We extend influence analysis beyond the isolated-
token paradigm of prior work to model the joint influence of tokens within training sample-label
pairs. By propagating influence from latent features to input tokens through their joint activation
patterns, we attribute predictions to specific token combinations in the training data while lever-
aging monosemantic structure. Unlike methods treating neurons as atomic units, we recognize
meaningful computation occurs at interpretable feature level spanning multiple neurons.

2. Stable, independent feature extraction via enhanced sparse autoencoders (SAEs): We inte-
grate SAEs (Gao et al., 2024; Cunningham et al., 2023; Marks et al., 2024; Cong et al., 2023) aug-
mented with a dynamic k-selection process that adaptively controls sparsity during fine-tuning.
Drawing from similar ideas as in disentangled representation principles (Wang et al., 2024; Chen
et al., 2024), our method produces approximately independent latent features, improving the sta-
bility and interpretability of influence scores.

3. Scalable non-decomposable influence estimation via Jacobian-vector products (JVPs): The
shift from token-level to latent-level influence computation introduces a key challenge: unlike
in autoregressive modeling, influence over latent features is holistically interdependent and does
not admit additive decomposition. We develop a JVP-based method that propagates influence
accurately through structured nonlinear interactions, enabling efficient and stable computation.

4. Practical validation on medical data: We demonstrate the utility of our framework through
case studies on medical datasets, generating auditable links from model predictions back to train-
ing evidence and latent features. Connecting influence estimation to semantically meaningful
features provides more actionable medical AI insights than traditional neuron-level attribution.

By unifying data-level and feature-level attribution, our approach offers a principled pathway toward
transparent, trustworthy, and deployable LLMs for high-stakes domains, with additional potential for
large-scale training data auditing and diagnostics, which we further discuss in Section 5. Section 2
introduces our notation and preliminaries on IF and JVP. We then describe our method in Section 3
and evaluate its performance in Section 4. Additional related works is included in Appendix A.

2 PRELIMINARIES

Given a training dataset D = {zi = (xi, yi)}ni=1 i.i.d. drawn from an unknown distribution, with
input xi ∈ X and label yi ∈ Y . A model hθ : X → Y with parameters θ ∈ Rp is trained by
minimizing the empirical risk θ̂ = argminθ

1
n

∑n
i=1 ℓ(hθ(xi), yi), where ℓ(·, ·) is the loss function.

Influence Functions (IFs) In statistical estimation, the IF quantifies the sensitivity of an estimator
to infinitesimal perturbations in the data, under the assumption that the data are independent. This
concept extends directly to machine learning, where the high-dimensional “parameter” is the set of
weights θ̂ of a trained neural network—a complex function of the data shaped by the architecture,
loss, and optimizer. Once training is complete and the model parameters θ̂ are fixed, we can analyze
their local sensitivity to individual training samples. This is first formalized by the response function,
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θ̂ϵ,ztrain , which describes what the optimal parameters would be if we were to infinitesimally upweight
the loss (by ϵ) on a specific point ztrain = (xtrain, ytrain) in the empirical risk. This perturbed objective
is defined as:

θ̂ϵ,ztrain = argmin
θ

1

n

n∑
i=1

ℓ(hθ(xi), yi) + ϵℓ(hθ(xtrain), ytrain), (1)

where the solution at ϵ = 0 corresponds exactly to the original pre-trained parameters: θ̂0,ztrain = θ̂.
The IF measures the sensitivity of these pre-trained parameters by computing the first-order Taylor
approximation (i.e., the derivative) of the response function with respect to ϵ, at θ̂. Under standard
regularity conditions, this can be computed using the Implicit Function Theorem (Krantz & Parks,
2002). Let Hθ̂ = 1

n

∑n
i=1 ∇2

θℓ(hθ̂(xi), yi) be the Hessian of the empirical risk evaluated at θ̂, then

IFθ̂(ztrain) =
dθ̂ϵ,ztrain

dϵ

∣∣∣∣
ϵ=0

= −H−1

θ̂
∇θℓ(hθ̂(xtrain), ytrain). (2)

Influential Training Samples on Test Prediction Since IFθ̂(ztrain) is a high-dimensional vector, it
is often difficult to interpret directly. To obtain a more concrete measure, we convert this parameter-
space influence into a scalar quantity by measuring its effect on a specific model output. This is
done by projecting the influence vector onto the gradient of a chosen function, such as the loss or
the logits for a test example ztest = (xtest, ytest). Applying the Chain Rule, we can compute the scalar
influence of upweighting ztrain on the loss at ztest as follows:

I(ztrain, ztest) = −∇θℓ(hθ̂(xtest), ytest)
⊤H−1

θ̂
∇θℓ(hθ̂(xtrain), ytrain). (3)

This provides an interpretable measure to trace predictions back to influential training samples.

Influential Tokens on Test Prediction in Autoregressive Tasks In autoregressive tasks, the loss
function decomposes additively across tokens, which enables the direct computation of token-level
influence. This additive structure permits the gradient and Hessian in the influence function to be
similarly decomposed, allowing the influence of individual training tokens to be derived explicitly.
Let {x1, · · · , xT } to denote the T tokens in xtrain. Then, Eq. (3) can be rewritten as

I(ztrain, ztest) = −∇θℓ(hθ̂(xtest), ytest)
⊤H−1

θ̂
∇θ

1

T

T∑
t=1

ℓ(hθ̂(xt), yt). (4)

Thus, the per-token influence score is defined as (Grosse et al., 2023):

It(ztrain, ztest) = −∇θℓ(hθ̂(xtest), ytest)
⊤H−1

θ̂

1

T
∇θℓ(hθ̂(xt), yt). (5)

Remark 2.1 (Problems with Existing Per-Token Influence). However, the decomposition in Eq. (5)
is restricted to an autoregressive task and implicitly assumes that the tokens in each training sample
are independent. This is violated in text, as tokens are highly correlated. Consequently, the influence
score for a token captures not only its own effect but also the confounded effects of correlated tokens
in its context. This entanglement breaks the core interpretation of the score as measuring the isolated
effect of a single token, rendering the estimates unreliable. To address this, we propose augmenting
the LLM with modified SAEs (Section 3), which enable influence estimation in a structured latent
space where these dependencies can be better controlled.

Jacobian-Vector Products This is a key technical tool that we use. Given a function F : Rn →
Rm and a direction v ∈ Rn, the JVP at x ∈ Rn is the directional derivative of F at x along v:

JVP(F, x, v) =
d

dε
F (x+ εv)

∣∣∣∣
ε=0

= JF (x) v, (6)

where JF (x) is the Jacobian of F at x. Intuitively, it answers the question: “If I nudge the input by
an infinitesimal step εv, how does the output change to first order?”

Modern automatic differentiation libraries (e.g., PyTorch, JAX, TensorFlow) can compute JVPs
directly without materializing the full Jacobian. Instead, they propagate the perturbation v forward
through each primitive operation (forward-mode AD), making JVPs scalable to high-dimensional
functions such as deep neural networks.

3
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Figure 1: Framework overview. Traditional influence functions operate in the input space, as-
suming token independence and decomposable losses. Our method introduces a sparse autoencoder
at an intermediate layer, splitting the model into upstream and downstream parts. Influence is then
computed at the representation level using JVPs, enabling stable per-feature attributions and linking
test predictions to interpretable sparse features.

3 METHODOLOGY

We now detail our framework that infers token-level influence on test predictions via a latent me-
diation approach, enabling more reliable influence estimation for general prediction tasks. This
section presents the core components of our approach: 1) augmenting LLMs with SAEs to obtain
more interpretable latent representations (Section 3.1), 2) computing influence scores over these la-
tent features rather than directly on input tokens (Section 3.2), and 3) efficiently implementing this
computation via Jacobian-vector products (Section 3.3) while maintaining the ability to propagate
attributions back to the input space. Figure 1 provides an overview of the complete framework.

3.1 AUGMENTING LLM WITH SPARSE AUTOENCODERS FOR INDEPENDENT FEATURES

We follow Bricken et al. (2023) and Gao et al. (2024) to define a sparse autoencoder that maps input
xl ∈ Rd at layer l into a sparse latent code r ∈ Rh through

r = σ(Wenc(x
l − bpre) + benc), (7)

x̃l = Wdecr + bpre, (8)

where Wenc ∈ Rh×d, benc ∈ Rh, Wdec ∈ Rd×h, and bpre ∈ Rd. The nonlinearity σ(·) is ReLU in
classical settings (Bricken et al., 2023) and TopK in modern settings (Gao et al., 2024).
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However, we observe that these activation functions still lead to training instability and persistent
dead latents across various sparsity regimes. To mitigate this, we introduce a Dynamic TopK acti-
vation function, which gradually increases sparsity constraints during training rather than imposing
them abruptly at initialization. This approach gradually squeezes information into k-sparse autoen-
coder, promoting more stable optimization and consistently meaningful latent feature learning.

To ensure that learned sparse latent features align with domain-specific knowledge in high-stakes
applications (e.g., medical data analysis), we jointly train the sparse autoencoder and fine-tune the
model on the domain-specific dataset. Thus, our full objective function combines the reconstruction
loss, sparsity penalty, and task-specific loss into a unified optimization goal:

LSAE(r) = ∥xl − x̃l∥2 + λ1∥r∥1 + λ2
1

n

n∑
i=1

ℓ(hθ(xi), yi). (9)

Let rj be the activation of feature j, forming the basis for our feature-level influence analysis.
Remark 3.1 (SAE for Improved Influence Estimation). Classical influence functions assume in-
dependent samples, an assumption broken by token-level representations, where strong sequential
correlations invalidate estimates. SAEs, by contrast, induce a latent representation comprised of
approximately independent features,1 each corresponding to a semantically meaningful concept.
While these features are not strictly independent, their distributions are regularized toward com-
parable sparsity patterns—significantly closer to the independent structure assumptions underlying
influence estimation. This alignment makes SAE-based latents far more suitable for influence score
interpretation than raw token-level attribution, where strong sequential dependencies violate core re-
quirements of the influence framework. Although influence functions technically require features to
be identically distributed for comparable scaling across components, this represents a second-order
concern. We expect SAEs to produce latent representations with more comparable distribution scales
than raw tokens, thereby providing more reliable influence estimates.

3.2 INFLUENCE FUNCTIONS ON LATENT REPRESENTATION

Classical influence functions applied directly to correlated text tokens (Eq. (5)) are problematic
due to strong sequential dependencies. To address this, we compute influence on latent features
rather than raw tokens. As illustarated in Figure 1, we split the model parameters into two parts:
θ = (θ1, θ2), where θ1 maps a raw text input sequence x into an intermediate representation r =
hθ1(x), and θ2 maps r to the final prediction, hθ(x) = hθ2(hθ1(x)). Thus, the inputs to the influence
function are the intermediate representations r, rather than input tokens.

Let rtrain = hθ1(xtrain) and rtest = hθ1(xtest) denote the latent representation of xtrain and xtest,
respectively. Define the corresponding latent-space data points as zrtrain = (rtrain, ytrain) and zrtest =
(rtest, ytest). The representation-level influence function is defined as:

I(zrtrain, z
r
test) = −∇θ2ℓ(hθ2(rtest), ytest)

⊤H−1
θ2

∇θ2ℓ(hθ2(rtrain), ytrain). (10)

Since θ1 can be viewed as a deterministic projection, Eq. (10) equivalently quantifies the influence
of the intermediate representation on the test point, denoted, Ir(zrtrain, ztest), and satisfies:

Ir(zrtrain, ztest) = I(zrtrain, (hθ1(xtest), ytest) = I(zrtrain, z
r
test). (11)

A key distinction emerges here: both ztest and zrtest refer to the full test sequence, and influence is
measured via its total loss. This is in contrast with Eq. (5) (Grosse et al., 2023). Now, by map-
ping these influential features back to the specific words that activate them, our explanations more
faithfully capture the model’s internal reasoning—moving beyond isolated token attributions toward
coherent, feature-driven interpretability.

3.3 JACOBIAN-VECTOR PRODUCTS FOR NON-DECOMPOSABLE LOSSES

As noted in Remark 2.1, the additive decomposition in Eq. (5) fails for general prediction tasks,
where gradients are defined only at the sequence level. We propose a JVP-based method that enables
attribution of influence in non-decomposable settings. We demonstrate its use by quantifying how
intermediate representations (and their associated training labels) influence test predictions.

1To promote orthogonality, we also experimented with adding an orthogonality constraint to the objective
in Eq. (9). However, since it led to only negligible performance gains, we ultimately excluded this term.
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Neuron-Level Influence via Perturbation Analysis Consider an intermediate activation h(l) ∈
Rdl at layer l, which may correspond to the output of an attention head, MLP block, or residual
stream in a transformer (Elhage et al., 2021). Mechanistic interpretability studies have shown that
such representations often encode semantically meaningful features causally linked to final predic-
tions (Wang et al., 2023; Meng et al., 2022). To attribute influence to individual neurons within the
latent representation rtrain (corresponding to h(l)), we analyze the effect of infinitesimal perturba-
tions. Let θ1 = {θ : θ<l} and θ2 = {θ : θ>l} be the collection of parameters before and after layer
l, respectively. Recall that rtrain = hθ1(xtrain) is produced by parameters θ1.

Eq. (11) indicates that the influence score requires two gradient terms. The first term, gtest =
∇θ2ℓ(hθ1(xtest), ytest), can be computed via standard backpropagation since it involves the complete
forward pass. Let r(j)train be the j-th entry contained in rtrain. The challenge lies in the second term:
computing ∇θ2ℓ(hθ2(rtrain), ytrain) at the individual neuron level (i.e., evaluated at r(j)train). We address
this by introducing an infinitesimal perturbation ε to the j-th neuron of the latent representation and
examining how this affects the parameter gradient:

Definition 3.2 (Neuron-Level Influence). The influence score evaluated at r(j)train is defined as:

Ir
j (z

r
train, ztest) = −g⊤testH

−1
θ2

d

dε
(∇θ2ℓ(hθ2(rtrain + εej), ytrain))

∣∣∣∣
ε=0

. (12)

This formulation quantifies how an infinitesimal perturbation to a neuron propagates through the
network to influence predictions, with the sign convention ensuring that positive influence corre-
sponds to improved train–test gradient alignment. From a mechanistic interpretability standpoint, it
provides a causal, influence-based measure of each neuron’s contribution, sharply contrasting with
correlational metrics like activation magnitude (Koh & Liang, 2017; Geiger et al., 2021).

Jacobian-Vector Product Formulation The derivative term in Eq. (12) can be computed effi-
ciently using JVPs, available in modern automatic differentiation frameworks (Baydin et al., 2018).
This enables scalable influence estimation for large architectures, including transformers, without
materializing full Jacobians. Let G(r) = ∇θ2ℓ(hθ2(r), ytrain) denote the gradient of the loss with
respect to downstream parameters θ2, viewed as a function of an intermediate representation r. By
the definition of JVP (Eq. (6)),

d

dε
G(rtrain + εej)

∣∣∣∣
ε=0

= JG(rtrain) ej , (13)

which extracts the j-th column of the Jacobian JG(rtrain).

Thus, the JVP JG(rtrain)ej quantifies the effect of perturbing neuron j on the downstream gradient.
This provides a principled measure of sensitivity at the representation level, efficiently computable
in forward mode, and naturally extends gradient-based interpretability (Simonyan et al., 2014; Sun-
dararajan et al., 2017b) while connecting to monosemantic features discovered by sparse autoen-
coders (Bricken et al., 2023).

4 EXPERIMENTS

We evaluate our framework on domain-specific classification and QA tasks (e.g., MedQA), focusing
on three axes: (i) visualizing how a given test sample is explained by training examples and sparse
features; (ii) interpreting individual neurons via joint inspection of activations and influence; (iii)
quantifying independence of sparse features versus tokens.

Activation–Influence Visualization We conduct experiments with GPT-2. At a chosen layer l,
we instrument the transformer with an SAE trained on hidden states h(l), yielding sparse codes
r(l) ∈ Rh. Representation-level influence is then computed as described in Section 3.

For each test sequence ztest, we construct an influence matrix Mtest ∈ R|D|×h capturing the influence
scores between all training examples in the dataset D = {zi = (xi, yi)}ni=1 and each sparse feature.
In parallel, we record the activation map Atrain ∈ RL×|D|×h, where L is the maximum sequence
length. Atrain is collected by running a forward pass over all training sequences and extracting
layer-l activations. To obtain word-level attributions, we combine activations with influence scores.
Specifically, for token j in training sequence i and neuron k, we define:

6
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Definition 4.1 (Neuron-level Token Intensity). The intensity of the j-th token in training sequence
i with respect to neuron k: Intensity(i, j, k) = Mtest(i, k)×Atrain(i, j, k).

This construction links test predictions to both the influence of sparse features and the activations
of specific training tokens. We report both the sign (positive or negative contribution) and the mag-
nitude (strength of attribution) of these intensity scores. We made a website interaction dashboard
that contains the results and we take very few samples out for analysis and walk through due to the
large size of full analysis.

4.1 NEURON-ATTRIBUTED INFLUENCE VISUALIZATION ON AUTOREGRESSIVE TASK

Figure 2: The visualization of an activation influence score of a given test sample, the word-level
intensity score of each training sequence, attributed by neurons. In the top right corner, the +/- mark
shows whether the influence is positive or negative. The intensity of the color shows the intensity
of the word. Under each word, mark the corresponding activated neuron. We deployed GPT-2on a
private Symptoms-Diagnosis dataset for small-scale verification.

We begin with a qualitative case study to demonstrate how influence can be decomposed into word
and neuron-level contributions in an autoregressive task: generating the text following the keyword
“Diagnosis.” Figure 2 illustrates one test case from a private Symptoms–Diagnosis dataset, analyzed
with GPT-2 using our representation-level influence framework for proof of concept.

Setup Each panel in Figure 2 corresponds to a single training sequence. The sign in the top-right
corner indicates whether the sequence exerts a positive (helpful) or negative (harmful) influence
on the test loss. Within a sequence, tokens are shaded by their signed intensity, defined in Defi-
nition 4.1. Neurons driving these activations are annotated below each token, with consistent IDs
across sequences so that feature reuse can be tracked. This decomposition is enabled by JVPs, which
allow us to attribute the downstream training gradient to individual latent features.

Case study analysis The input test sequence describes a patient presenting with severe back pain,
fever, weakness, bitter taste, dizziness, abdominal pain, and myalgia, with the diagnostic hypothesis
noted as “dizziness r/o malaria, hypocalcemia, hypokalemia”. Our goal is to identify which training
examples and sparse neurons provide the strongest support or contradiction for this test case.

Training Sequence 1 emphasizes fever and headache, highlighted strongly through neurons N4 and
N34. Although “headache” is not explicitly present in the test input, fever is shared, suggesting that
this sequence contributes positively through partial symptom overlap.

Training Sequence 6 highlights malaria directly, with neurons N11 and N8 driving strong activa-
tions. Since the test diagnosis explicitly considers “r/o malaria,” this alignment indicates a positive

7
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influence: training cases where malaria co-occurs with similar upstream symptoms reinforce the
diagnostic hypothesis.

Training Sequences 2-4 demonstrate negative or ambiguous contributions. For example, Sequence
2 highlights “parasite” and “tropics” as negative contributors via neuron N27. These terms may
activate spurious correlations inconsistent with the current diagnostic hypothesis, pulling the model
away from malaria as an explanation for dizziness. Similarly, Sequence 4 highlights irrelevant terms
such as “cough” and “gastritis”, mediated by negative neurons (N27, N28).

Training Sequence 5 illustrates a mixed case: “vomiting” and “anemia” are emphasized, symptoms
that may co-occur with malaria but are absent from the test description. Here, neurons N28 and N8
activate moderately, yielding a weaker, more ambiguous influence signal.

Observations Across sequences, we identify several consistent patterns:

1. Salient symptom alignment. Tokens such as fever, weakness, and dizziness repeatedly emerge
as hubs of positive influence, concentrated on a small set of neurons (e.g., N11, N29).

2. Diagnostic anchoring. Direct matches on diagnosis tokens (e.g., “malaria”) yield the strongest
influence, indicating that the model leverages both symptom overlap and diagnostic terms.

3. Negative confounders. Tokens irrelevant to the test case (e.g., “parasite”, “cough”) nonetheless
elicit activations that act as negative influence, showing that the model actively downweights
contradictory evidence.

4. Neuron stability. Certain neurons (N27/29 consistently negative/positive) recur across many se-
quences, pointing to stable latent axes that reliably separate supportive vs contradictory features.

This visualization shows that our framework not only recovers sequence-level influence but also
decomposes it into interpretable neuron and token level contributions. The resulting patterns reveal
sparse, semantically coherent features that repeatedly support/oppose predictions, thereby exposing
why particular training examples are helpful or harmful for a given test case. This provides a unified
framework that explains how training data shapes model behavior through interpretable latent fea-
tures while uncovering semantically coherent influence patterns without architectural modifications.

4.2 NEURON-ATTRIBUTED INFLUENCE VISUALIZATION ON CASUAL GENERATION

Figure 3: The test sequence we query on.

We further test our framework on the MedQA causal generation task, which requires generating the
correct option from the input query.

Case study analysis The input test sequence (Figure 3) describes a 35-year-old woman with a pos-
itive anti-centromere antibody test, asking which of several clinical features would not be expected.
The correct answer is “D: Hypercoagulable state”. This provides a challenging setting where the
model must connect immunological markers with systemic sclerosis features while excluding dis-
tractors. The corresponding partial result is shown in Figure 4.

Among the retrieved training sequences, we highlight three representative cases:

Training Sequence 8 emphasizes clinical features such as dementia, hypertension, and right
ankle fracture. Tokens like “acetaminophen” and “morphine” are activated by neurons M16
and M11 with positive polarity, but these features are largely irrelevant to the current autoim-
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Figure 4: Similar to Figure 2, we deployed GPT-2on a more generalized dataset MedQA.

mune/immunology context. The influence here is thus weak and noisy, showing how unrelated
symptom clusters can dilute attribution.

Training Sequence 74 is strongly aligned with the test case: words such as antibodies, immune, and
pathogen are highlighted by neuron N42, which carries a strong positive influence. This overlap
reflects the immunological domain of the test case, anchoring the decision on relevant biomedical
features. The visualization shows concentrated activation on immune-related terms, suggesting that
the model reuses stable “immune response” neurons across contexts.

Training Sequence 95 highlights terms like diagnose, sickle cell disease, and painful crises, medi-
ated primarily by neuron N11 with negative polarity. Although these are clear medical features, they
represent a different disease context (hematology rather than autoimmune disease). The negative
contribution indicates that the model correctly downweights evidence from sickle cell related cases
when reasoning about anti-centromere antibodies.
Observations. From this visualization, we draw several insights:

1. Domain alignment. Positive influence concentrates on immunology-related training cases, with
stable neurons (e.g., N42) capturing antibody and immune system terminology.

2. Filtering confounders. Consistent across datasets.
3. Sparse concentration. Only a handful of neurons (N42, N11, M16) carry most of the influence

mass, supporting the view that sparse latent axes serve as interpretable mediators of attribution.
4. Consistency across context. Neurons encoding immune features appear across multiple se-

quences and consistently act as positive contributors, suggesting robust latent semantics.

The MedQA visualization confirms that our method can surface domain-relevant training support,
while also identifying negatively influential confounders (e.g., sickle-cell disease). Influence is me-
diated by a small, stable set of neurons, reinforcing the interpretability and sparsity of our approach.
Due to limitation of space, more results will be demonstrated in supplementary materials.

5 DISCUSSION AND CONCLUSION

Our framework extends influence functions beyond training–test attribution to reveal why examples
matter, via sparse latent features, offering a dual view that exposes supportive versus harmful train-
ing evidence. While these initial results, based on a GPT-2model, demonstrate a key implication
for data quality control—showing that harmful influence often arises from spurious examples—
their scope is necessarily constrained. Implementing this framework on larger-scale LLMs like
LLaMA-3.1-1Bis a compelling future direction, but remains beyond the current computational
scope. Therefore, these findings should be viewed as a promising proof-of-concept, pointing toward
a practical pathway for dataset refinement that warrants further validation at scale.

9
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APPENDIX

A RELATED WORKS

Interpretability in LLM Interpretability methods range from black-box approaches like pertur-
bation and sensitivity analysis (Casalicchio et al., 2018; Ribeiro et al., 2016; Covert et al., 2021;
Warstadt et al., 2020), to gradient-based attribution methods (Smilkov et al., 2017; Sundararajan
et al., 2017a; Bach et al., 2015; Shrikumar et al., 2017; Selvaraju et al., 2016; Bilodeau et al., 2024),
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and concept-based representations probing (Belinkov, 2022; Kornblith et al., 2019; Bansal et al.,
2021; Burns et al., 2023; Zou et al., 2023; Arditi et al., 2024). More recent work in mechanistic in-
terpretability focuses on reverse-engineering internal model structures through circuit analysis (Olah
et al., 2018; Elhage et al., 2021; 2022b), and feature discovery (Bricken et al., 2023; Sharkey, 2022;
Cunningham et al., 2023; Deng et al., 2023). In addition to monosemanticity and disentanglement,
this line of work has enabled analyses of motifs like induction heads or copy suppression (Olsson
et al., 2022; McDougall et al., 2023; Cammarata et al., 2020; 2021), universality (Chan et al., 2023;
Gurnee et al., 2023; Marchetti et al., 2023), and emergent world models (Li et al., 2023; Nanda,
2023; Ivanitskiy et al., 2023; Karvonen, 2024; Shanahan et al., 2023; janus, 2022). Unlike these
approaches, which often prioritize global model understanding, our method emphasizes actionable,
testable attributions tailored for high-stakes domains like healthcare, where rapid fact-checking and
validation of model decisions are critical for reliability and trust.

Sparse Autoencoders and Independent Features SAEs learn disentangled, interpretable features
via sparsity constraints (e.g., L1 penalty), promoting statistical independence in latent representa-
tions. This approach builds upon a long history of seeking independent data components, includ-
ing classical linear methods like Principal Component Analysis (PCA) (Jolliffe & Cadima, 2016)
and Independent Component Analysis (ICA) (Hyvärinen, 2013), as well as nonlinear probabilistic
frameworks like Variational Autoencoders (VAEs) (Kingma & Welling, 2014). However, SAEs of-
fer a uniquely transparent and deterministic pathway to feature learning that balances sparsity and
reconstruction fidelity. They are widely used for mechanistic interpretability in LLMs (Cunning-
ham et al., 2023; Bricken et al., 2023; Templeton et al., 2024b; Marks et al., 2024), with variants
including k-sparse SAEs (Makhzani & Frey, 2013), gated and JumpReLU SAEs (Rajamanoharan
et al., 2024), and TopK methods (Gao et al., 2024; Bussmann et al., 2024). Beyond language, SAEs
extend to multimodal domains Surkov et al. (2025), radiology and medical imaging (Abdulaal et al.,
2024), and reinforcement learning alignment (Yin et al., 2024), demonstrating versatility across
tasks. Recent work shows that transcoders (which approximate dense MLP behavior via wider,
sparsely-activating networks) often match or exceed SAEs in interpretability and fidelity (Dunefsky
et al., 2024). Extending our framework to handle independent logits from a transcoder is promising
but beyond the scope of this work.

Monosemanticity and Disentanglement The pursuit of monosemantic features, where neurons
respond to single coherent concepts, represents a major focus in interpretability research. This ef-
fort addresses the phenomenon of polysemanticity, explained through the superposition hypothesis
(Olah et al., 2018; Elhage et al., 2021; 2023; Scherlis et al., 2023; Henighan et al., 2023). Solutions
include both architectural modifications such as k-sparse autoencoders (Makhzani & Frey, 2013),
softmax linear units (Elhage et al., 2022a; Rajamanoharan et al., 2024), as well as post-hoc methods
like SAEs (Bricken et al., 2023; Sharkey, 2022; Cunningham et al., 2023; Deng et al., 2023). Stud-
ies have examined the linearity of representations (Nanda, 2022; Engels et al., 2024; O’Mahony
et al., 2023; Hendel et al., 2023; Todd et al., 2023; Hernandez et al., 2023; Chanin et al., 2023;
Tigges et al., 2024; Arditi et al., 2024), identified counterexamples such as circular features (En-
gels et al., 2024) and non-linear perspectives (Black et al., 2022). Geometry-aware analyses show
structured organization (Park et al., 2024), and scaling studies (Templeton et al., 2024b) suggest
disentanglement improves with model size. While these works aim for complete monosemanticity,
our approach uses SAEs to obtain approximately independent features specifically to enable more
reliable influence estimation, prioritizing practical interpretability over full disentanglement.

B LLM USAGE

LLMs were used in preparing this manuscript. Their use was limited to minor editorial polishing of
wording and style. All conceptual development, methodology, and results are original and are fully
described in the paper.

C REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our results. All methods are described in
detail in Section 3, including the formulation of representation-level influence, the use of Jacobian
vector products, and integration with sparse autoencoders. Experimental setups, datasets, and model
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checkpoints are documented in Section 4. Visualizations (Figures 2, 4) are generated through scripts
will be released as part of our anonymous code submission as supplementary material and will
release it publicly upon publication.
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