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Abstract

We introduce AIHWKIT-Lightning, a new toolkit designed for efficient and scal-
able hardware-aware training of large neural networks deployed on Analog In-
Memory Computing (AIMC)-based hardware. The toolkit prioritizes speed and
ease of use, addressing the limitations of existing frameworks in training Large
Language Models (LLMs) with billions of parameters. AIHWKIT-Lightning
leverages dedicated GPU kernels and a streamlined implementation, achieving
up to 3.7× faster training at lower memory consumption compared to state-
of-the-art toolkits. Benefiting from the increased scalability, we demonstrate
near-iso-accuracy on the GLUE benchmark using a RoBERTa model trained on
11B tokens. The toolkit is publicly available at https://github.com/IBM/
aihwkit-lightning.

1 Introduction

An emerging non-von Neumann computing paradigm that has gained traction in recent years is
in-memory computing utilizing Non Volatile Memory (NVM) devices [1–4], often referred to as
Analog In-Memory Computing (AIMC). AIMC-based accelerators exploit the inherent properties
of NVM devices and the principles of circuit laws to execute Matrix-Vector Multiplication (MVM)
operations directly within the memory arrays where the weights are stored. This approach elimi-
nates the need for loading weights from memory and requires only the movement and buffering of
activations. As a result, AIMC-based heterogeneous computing architectures are set to provide 10×
to 140× higher energy efficiency [5], at competitive throughput, compared to modern GPUs.

Doing computation in the analog domain has the downside of being imprecise due to various sources
of noise such as drift [6] and programming noise [7]. For neural networks to retain high accuracy
when deployed on AIMC-based hardware, networks must be trained in a Hardware-Aware (HWA)
manner to enhance their robustness. HWA training is a commonly used method [8, 9] to fine-tune
pre-trained models while applying various non-idealities to the model during forward propagation.
Many different types of networks trained for a variety of tasks using HWA training have been shown
to have little to no drop when deployed on real AIMC hardware [10–12].
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Over the past few years, the number of parameters in neural networks have exploded. With every
released model almost certainly surpassing the 1B parameter threshold, using currently available
toolkits, training these models in a HWA manner has become increasingly challenging. In this
paper, we present AIHWKIT-Lightning, a fast and scalable toolkit for applying HWA training to
large neural networks. Our contributions can be summarized as follows:

• We show AIHWKIT-Lightning outperforms existing toolkits in terms of speed and memory
consumption across several benchmarks, including isolated layer performance and end-to-
end training time;

• With the help of dedicated GPU kernels, we demonstrate a training speedup of up to 3.7×
over existing toolkits when the layers are split into smaller computational tiles;

• Finally, we show that by scaling HWA training up to more than 10B tokens, we achieve
iso-accuracy on the GLUE benchmark using the RoBERTa model.

AIHWKIT-Lightning is publicly available at https://github.com/IBM/aihwkit-lightning.

2 Related Work

There exist many AIMC simulation frameworks/toolkits [13–17], each one with a different focus on
functionalities such as on-chip inference simulation, HWA training, or simulated on-chip training.
As outlined in [14], the libraries currently supporting HWA training are the AIHWKIT [13] and
NeuroSIM [15]. The AIHWKIT is amongst the most popular toolkits for simulating inference and
training of deep neural networks for AIMC hardware. It is primarily written in Python, CUDA, and
C++, and builds upon the PyTorch framework. NeuroSIM is a framework that mostly focuses on
performance estimation. Additionally, it supports the simulation of non-ideal device- and circuit-
characteristics during inference and training, and hence, can be used to predict accuracy [15]. The
HWA training capability of NeuroSIM is limited and does not offer as much configurability as
AIHWKIT.

3 Background and Motivation

Recent publications of large scale integrated AIMC chips, using Phase Change Memory (PCM) [10,
18], Resisitive RAM (ReRAM) [12, 19, 20], or Flash [21], have demonstrated the viability of AIMC
technology. Because of the cost and time involved in designing and fabricating chips, current sys-
tems often have a weight capacity of less than 50M weights. However, using simulations, the de-
ployment of larger networks can be investigated. Recent works investigate the robustness of models
such as BERT and RoBERTa [9, 22]. Still, training and evaluation of Large Language Models
(LLMs) with more than 1B parameters has remained unexplored, mostly due to the computational
demands and complexity of these networks.

Even with many GPUs working in parallel, training LLMs on billions of tokens is extremely com-
pute intensive. Although current toolkits, such as NeuroSIM or AIHWKIT, support a wide array of
features, HWA training of LLMs is, as we show in this paper, too inefficient for large-scale training.
In the following section, we present AIHWKIT-Lightning, a complementary toolkit to AIHWKIT,
with a refined focus on efficient and scalable HWA training.

4 AIHWKIT-Lightning

AIHWKIT-Lightning is designed to complement AIHWKIT by prioritizing ease-of-use and to
accelerate HWA training. By using AIHWKIT-Lightning, users can train their models in a
scalable fashion. For further evaluation, users can convert their model to AIHWKIT and
use its rich inference simulation infrastructure. To make it easy for users to profit from
the improved performance of AIHWKIT-Lightning, we structured the codebase similar to that
of AIHWKIT. As a result, most training scripts using the AIHWKIT can be converted to
AIHWKIT-Lightning by changing only the import statements from from aihwkit.X import Y
to from aihwkit_lightning.X import Y.

By eliminating support for on-chip training and inference with different hardware models, our code
is leaner, and the number of features available in the Resistive Processing Unit (RPU) configuration
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– which is used to configure hardware and training related parameters – is drastically reduced. This
simplifies the user-experience and reduces the number of pitfalls related to choosing the wrong
setting. In the next section, we explain the HWA training features of AIHWKIT-Lightning in more
detail.

HW-Aware Training Features

The elementary layer of AIHWKIT-Lightning is the AnalogLinear layer, implementing the simple
MVM operation y = x ·WT . In the following, we use W:,i to refer to the i−th column of
W. Using this notation, the i−th output yi can be written as yi = xTW:,i. To understand how
the implementations of most HWA training features in AIHWKIT-Lightning differ from the ones
in the AIHWKIT, it is important to also introduce the notion of normalized weights and inputs.
In the AIHWKIT, the linear operation is performed using normalized inputs and weights ynorm =
xnorm ·WT

norm, where

xnorm = x/βinp. quant

W:,i norm =

{
W:,i/β

W
i if WeightRemapType.CHANNELWISE_SYMMETRIC

W:,i/β
W if WeightRemapType.LAYERWISE_SYMMETRIC

.

Here, βinp. quant is a scalar used for normalizing the input to a configurable input bound and βW is
a scalar or vector used for normalizing the weights per tensor or column, respectively. Because all
of the necessary HWA training features can be realized without explicitly normalizing the weights
and inputs, these conversions have been omitted in AIHWKIT-Lightning, resulting in a significant
speedup of the AnalogLinear layer.

Clipping. When a HWA trained model is deployed on analog hardware using NVM devices, weights
are mapped to conductance values and programmed into the NVM devices of the crossbar. Ensuring
a tight weight distribution during training generally reduces the amount of programming noise and
makes the mapping easier. During training, every weight tensor associated with an AnalogLayer is
updated after every step of the optimizer, as described in Eq. 1.

W∗
:,i ← clamp(W:,i,−ζi, ζi) (1)

ζi =

{
α · std(W:,i) if WeightClipType.LAYER_GAUSSIAN_PER_CHANNEL
α · std(W) if WeightClipType.LAYER_GAUSSIAN

Here, α is a tuneable hyperparameter that is typically set between 2.0 and 3.5. In AIH-
WKIT, clipping is implemented in a similar fashion, with the key difference that only the
WeightClipType.LAYER_GAUSSIAN option exists. Per column clipping can be realized by nor-
malizing the weights per column using the WeightRemapType.

Analog Optimizer. Similar to the AIHWKIT, any optimizer can be cast to an analog optimizer:

AnalogOptimizer(AdamW, model.analog_layers(), model.parameters(), lr=lr)

Unlike in the AIHWKIT, we also pass an iterator over the analog layers to the optimizer. This
allows us to place a step_post_hook on the optimizer which iterates through the analog layers
and applies clipping to the weights after every parameter update. This way, the AnalogContext
parameter, required in the AIHWKIT, can be omitted.

Noise Injection. Besides guaranteeing a tight weight distribution, noise injection is also critical for
achieving high accuracy when deploying neural networks on AIMC-based hardware [8]. AIHWKIT-
Lightning supports two main sources of noise: weight and output noise. Weight noise is injected
only during the forward pass. When backpropagating the gradients to the previous layer, noise-free
weights are used. Weight noise is applied relative to the per column or per-tensor absolute maximum
of the weight (see Eq. 2). The magnitude of the noise can be controlled with a scalar γ. Typical
values of γ lie between 0.02 and 0.1.
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Wnoisy
:,i ←W:,i + ηi (2)

ηi =


γweight · max(abs(W:,i)) · τ if WeightModifierType.ADD_NORMAL_PER_CHANNEL
γweight · max(abs(W)) · τ if WeightModifierType.ADD_NORMAL
where τ ∼ N (0, I)

Noise injected into the outputs can be modeled according to Eq. 3, where γout is again a scalar
controlling the relative amount of output noise injected. Note that the output noise is also relative to
the input range, βinp. quant, for a specific layer.

ynoisy
:,i ← y:,i + κi (3)

κi =


γout · βinp. quant · max(abs(W:,i)) · τ if forward.out_noise.out_noise_per_channel
γout · βinp. quant · max(abs(W)) · τ else
where τ ∼ N (0, I)

In contrast to AIHWKIT, noise samples are scaled relative to the inputs and weights, instead of
explicitly normalizing the inputs and weights. As a result, AIHWKIT-Lightning requires the user to
explicitly choose between the per column and per tensor mode, while this choice is made implicitly
in the AIHWKIT by setting the WeightRemapType.

Weight Quantization. Although most AIMC architectures do not suffer from conventional weight
quantization noise, it can still be helpful to represent weights using only a few bits. As shown in
Eq. 4, symmetric quantization can be performed again per column or per tensor by choosing either
the WeightModifierType.DISCRETIZE_PER_CHANNEL or WeightModifierType.DISCRETIZE
option in the RPU configuration, respectively.

Wquant
:,i ←

βweight quant
i

2weight bits−1 − 1
· ⌊(W:,i) ·

2weight bits−1 − 1

βweight quant
i

⌉ (4)

βweight quant
i =

{
max(abs(W:,i)) if WeightModifierType.DISCRETIZE_PER_CHANNEL
max(abs(W)) if WeightModifierType.DISCRETIZE

In order to obtain quantized weights that are still robust to noise, one can also com-
bine weight quantization with noise injection (see Eq. 2) by choosing the modes
WeightModifierType.DISCRETIZE_ADD_NORMAL{_PER_CHANNEL}.

Input Quantization. In most AIMC-based heterogeneous architectures, Digital to Analog Con-
verters (DACs) convert quantized inputs to voltage pulses that are then applied to the crossbar.
AIHWKIT-Lightning supports symmetric static input quantization using learnable input ranges.
Here static means that, at inference time, the input ranges are fixed and can not be adapted per
input, as this would be too computationally expensive. Input quantization is performed according to
Eq. 5.

xquant ← βinp. quant

2input bits−1 − 1
· ⌊clamp(x,−βinp. quant, βinp. quant) · 2

input bits−1 − 1

βinp. quant ⌉ (5)

Similar to the AIHWKIT, we define a custom gradient for the input ranges. Given a scalar loss
function L and the derivative w.r.t. the quantized input, ∇xquantL, we can write the scalar derivative
of L w.r.t. the input range βinp. quant as

∂L
∂βinp. quant = βinp. quant ·

(∑
(∇xL)x≥βinp. quant −

∑
(∇xL)x≤−βinp. quant + τdecay1{pnot clip ≥ Tnot clip}

)
.

(6)

Where τdecay is a decay hyperparameter that tightens the input range when the percentage of elements
that did not get clipped, pnot clip, exceeds a user-definable threshold, Tnot clip, which is typically set
to 95%. The subscripts x ≥ βinp. quant and x ≤ −βinp. quant indicate positions where the input was
above or below the input range, respectively, and the sum is taken over all the elements that fulfil
this condition.

Output Quantization. When voltages are applied to the wordlines of the crossbar, current flows
through the NVM devices and accumulates along the bitlines. The resulting current then flows into
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Analog to Digital Converters (ADCs), where it is integrated for a certain period of time. We assume
ADCs have a fixed current range, and hence, can be modelled using static quantization with fixed
output bounds shared across all tiles [23], as shown in Eq. 7.

yquant
i ← clamp(

βadc quant
i

2adc bits−1 − 1
· ⌊yi ·

2adc bits−1 − 1

βadc quant
i

⌉,−βadc quant
i ,βadc quant

i ) (7)

βadc quant
i =

{
λadc · βinp. quant · max(abs(W:,i)) if WeightClipType.CHANNELWISE_SYMMETRIC
λadc · βinp. quant · max(abs(W)) if WeightClipType.LAYERWISE_SYMMETRIC

Tiling. The tiles in AIMC-based heterogeneous architectures are often smaller than most neural
network layers. Therefore, MVMs with larger layers are executed across different tiles, and the
partial results are accumulated using digital processing units. Training models with weight matrices
tiled along the input dimension allows for more fine-grained input ranges and reduces the negative
impact of weight outliers.

In the AIHWKIT, tiles are implemented as separate objects that, together, make up one analog
module. When evaluating the module, separate MVM calls are invoked on the tiles and the results
are aggregated.

AIHWKIT-Lightning leverages Triton [24] to hide the tiled computation of the analog linear layer
in the blockwise nature of the matrix-matrix multiplication kernel. For an illustration, see Appendix
Fig. 2. Using this approach, memory movement between DRAM and SRAM is drastically reduced,
resulting in a significant decrease in latency.
The Triton mode can be activated by setting the environment variable AIHWKIT_USE_TRITON.

5 Results

All benchmarks presented in the following sections were obtained following best practices for
benchmarking in PyTorch and Triton. For all benchmarks, we used an NVIDIA V100 GPU with
32GB of VRAM.

We observed that HWA training using NeuroSIM is roughly two times slower than AIHWKIT. This
is in line with previous work comparing the two frameworks [25]. We will therefore limit most of
our comparisons in this section to AIHWKIT, but include a layer-level comparison in Fig. 1.

Benchmarking Single Layers. First, we compare the latency of the AnalogLinear layer between
AIHWKIT and AIHWKIT-Lightning for different HWA training configurations. More precisely, we
measure the time it takes to do one training step, which includes one forward pass, one backward
pass, and one optimizer step. We report the average latency over squared matrix dimensions ranging
from 128 to 2’048 and a batch size of 512. For every HWA training configuration, we report the
latency normalized w.r.t. the overall maximum latency. As a reference, we also show the time it
takes to perform the operations using a standard PyTorch linear layer (see the dotted line in Fig.
1a). We show that AIHWKIT-Lightning consistently outperforms AIHWKIT and NeuroSIM for a
variety of different HWA training settings.

Tiled Layers. Next, we compare the performance between AIHWKIT, AIHWKIT-Lightning, and
the Triton mode of AIHWKIT-Lightning (denoted “Triton”) for the same sequence of operations
as before. This time, we leave the HWA training setting fixed (we use clipping, weight noise, and
input range learning) and vary the square matrix dimensions between 1’024 and 4’608. We again
use a batch size of 512. Fig. 1 compares the normalized latency between AIHWKIT, AIHWKIT-
Lightning, and AIHWKIT-Lightning using the Triton mode. For the non-tiled MVM, AIHWKIT-
Lightning consistently outperforms AIHWKIT and the Triton mode is the fastest up to a layer size
of 2’048. When the layer is tiled across the input dimension (here a maximum input size of 512),
we see that the Triton kernel significantly outperforms AIHWKIT and AIHWKIT-Lightning with
the Triton mode turned off.

Benchmarking End-to-End Training. Although benchmarking individual components, such as in-
dividual layers, is more indicative of the true speedup AIHWKIT-Lightning yields over AIHKWIT,
it is also important to consider a real-world setting where users would optimize training hyperpa-
rameters, such as the batch size or the number of gradient accumulation steps.

5



Figure 1: a. Single layer comparison between AIHWKIT-Lightning, AIHWKIT, and NeuroSIM. b.
Non-tiled vs. tiled MVM comparison. c. End-to-end training time comparison.

We measured the time to pre-train the T5-large model with 770M parameters on WikiText-103.
For this benchmark we also used a combination of clipping, weight noise injection and input range
learning. Note that because of the reduced memory footprint of AIHWKIT-Lightning, we were able
to increase the batch size compared to AIHWKIT from one to two, giving us an additional training
speedup. For a more thorough investigation of the memory consumption, see Appendix B. Fig.
1c shows the training time comparison between AIHWKIT, AIHWKIT-Lightning, and AIHWKIT-
Lightning using the Triton mode for non-tiled and tiled AnalogLinear layers. The training times
are normalized against the highest training time for tiled AnalogLinear layers. We find that for
non-tiled layers, AIHWKIT-Lightning and AIHWKIT-Lightning with the Triton mode outperform
AIHWKIT by 1.72×. When using the tiled AnalogLinear layer, the Triton mode yields a speedup
of 3.7× over AIHWKIT, training 1.5× faster than the AIHWKIT implementation using non-tiled
AnalogLinear layers. When pre-training T5-large on WikiText-103 using 8 V100 GPUs in parallel,
AIHWKIT-Lightning takes 34.1 hours, while AIHWKIT takes 58.8 hours, which is a difference of
more than a day.

Using AIHWKIT-Lightning, we were also able to train Phi-3-Mini [26] (3.8B parameters) on 1B
tokens in under 6 hours using 96 V100 GPUs. Because of the increased memory fragmentation,
training Phi-3-Mini using AIHWKIT resulted in an out-of-memory exception.

Accuracy Study. Using this more scalable approach of HWA training, we can perform HWA train-
ing on more data. We demonstrate this by HWA training RoBERTa [27] on 11B tokens using the
conventional masked language modeling objective. We performed distributed data parallel training
on 8 NVIDIA V100 GPUs for 35 hours. After repeating part of the pre-training phase in a HWA
manner, we further finetuned the model for each GLUE task. When HWA training is introduced
only during the finetuning stage, average performance is off by 2.71% compared to the FP16 model.
By doing HWA training on more data, we can close this gap to 0.74%. For further information, see
Appendix B.
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6 Conclusion

We presented AIHWKIT-Lightning, a toolkit for scalable HWA training of large neural networks.
By using dedicated GPU kernels for HWA training, we demonstrated a speedup of up to 3.7× over
the current state-of-the-art toolkit. While we have demonstrated training of LLMs with up to 3.8B
parameters, training larger LLMs might require further optimizations such as more optimized GPU
kernels or faster alternatives to some HWA training features. We believe that AIHWKIT-Lightning
enables researchers to perform HWA training at scale, and hope that this contribution opens up new
insights into the robustness of larger models, such as LLMs.
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A Memory Consumption and Fragmentation

The AIHWKIT requires memory allocation of some additional tensors such as scales which normal-
ize weights. When converting a model to an analog model, more allocations occur with a smaller
mean allocation size. For example, converting RoBERTa to an analog model in AIHWKIT triggers
576 memory allocations with an average allocation size of 1.13MB. In comparison, AIHWKIT-
Lightning only triggers 502 allocations with an average size of 1.3MB. One can see that, although
both frameworks roughly allocate the same amount of memory (∼650MB), AIHWKIT-Lightning
leads to less memory fragmentation. In a tiled setting, this effect is more pronounced, as the AI-
HWKIT creates a separate object for every tile. For a maximum input size of 512, the AIHWKIT
now triggers 1308 allocations with an average size of only 0.5MB. The result of increased fragmen-
tation is that, despite sufficient memory capacity, larger models can not be loaded into using the
AIHWKIT.

During the forward and backward pass, the AIHWKIT consumes approximately 1.2×more memory
compared to AIHWKIT-Lightning, as depictred in Fig. 1. To perform this comparison, we used a
linear layer of size 4′096× 4′096 and an input with a batch size of 4′096.

Appendix Figure 1: Comparison of memory consumption during forward and backward pass. Every
colored bar shows the lifetime of one allocated tensor. a. Trace for the AIHWKIT. b. Trace for
AIHWKIT-Lightning.
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B Accuracy Study

We use the following HWA training features. We clip the weights to α = 2.5 standard deviations,
quantize the inputs to 8 bits, and learn the input ranges, and we inject noise of magnitude γweight =
0.023 into the weights. The clipping and the noise injection is done per tensor, and not per column.
During evaluation, we fix the input ranges for input quantization and simulate programming noise
introduced when programming target conductances into the NVM devices of the crossbars. The
noise model was obtained from the IBM HERMES Project Chip [10]. Appendix Table 1 shows the
results on every GLUE task. Evaluations using the noise model were repeated five times.

Appendix Table 1: Comparison of model performance on the GLUE benchmark with different HWA
training procedures.

Model RTE QQP QNLI CoLA MRPC STSB SST2 MNLIm Avg
Evaluated in FP16

Pre-trained
model 78.34 91.72 92.81 62.19 89.46 90.92 94.72 87.82 85.98

Evaluated with hardware noise model and INT8 static input quantization
HW-Aware
(only finetuning)

73.61 ±
2.01

91.29 ±
0.05

92.12 ±
0.21

51.71 ±
2.01

87.01 ±
0.51

90.04 ±
0.15

93.89 ±
0.35

86.53 ±
0.16 83.27

HW-Aware
(pre-training +
finetuning)

74.87 ±
0.51

91.42 ±
0.42

92.41 ±
0.17

62.48 ±
1.03

88.33 ±
1.17

90.52 ±
0.18

94.70 ±
0.35

87.21 ±
0.07 85.24

C Tiling

The general matrix multiply algorithm can be implemented in a block-wise fashion using Triton
(https://triton-lang.org/main/index.html). Here, the elementary operations do not op-
erate on single elements, but rather on blocks of data. At the heart of the algorithm is a loop that
iteratively loads the input and weight blocks along the hidden dimension, performs the block-wise
dot product, and accumulates the result in a buffer, which is then written to the output tensor. In
the case of a tiled AnalogLinear layer, input and weight blocks belong to different tiles. When
iterating over the hidden input dimension, input blocks are loaded. After determining to which tile
the block belongs to, input scaling and quantization using the tiles’ input ranges are applied. The dot
product with the corresponding weight block is then written in a per tile accumulator block. After
the row-column-loop completes, every per tile accumulator contains the correct per tile MVM result.
At that stage, ADC quantization and output noise can be applied and the per tile accumulators can
be combined into the final block that is written to the output tensor. This procedure is illustrated in
Fig 2.

Appendix Figure 2: Illustration of the Triton kernel implementing the tiled analog linear layer.

12

https://triton-lang.org/main/index.html

	Introduction
	Related Work
	Background and Motivation
	AIHWKIT-Lightning
	Results
	Conclusion
	Memory Consumption and Fragmentation
	Accuracy Study
	Tiling

