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Abstract

Anomaly detection in industrial sensor data is challenging as sensor readings are
frequently affected by routine operations, leading to sudden changes that may not
indicate actual issues. This makes it difficult to distinguish between normal and
anomalous behavior. With a few expert-labeled anomalies, we aim to leverage these
sparse labels to improve sensor anomaly detection. Besides the issue of limited
labels, since these labels are collected from heterogeneous sensors across different
machines, we need a framework that can learn general anomaly patterns across
sensors and then adapt to the unique behavior of each individual sensor. In this
paper, we propose a weakly-supervised multi-sensor anomaly detection (WMAD)
framework that leverages deep networks, including foundation models, to construct
a data-enclosing hypersphere, effectively separating normal from anomalous time
windows. By incorporating two-level importance sampling and meta-learning,
WMAD effectively handles both label sparsity and sensor heterogeneity. The
experiment shows that our method outperforms state-of-art competing methods on
both a large proprietary industrial amperage dataset spanning over 700K hours of
time-series data from Amazon and a public telemetry dataset.

1 Introduction

One of the key challenges in industrial sensor anomaly detection is the presence of irregular sensor
readings, as sensor readings are frequently affected by machine operating conditions and routine
maintenance events. These external factors often lead to sudden fluctuations in sensor data—such
as drops or spikes—that may not necessarily indicate actual issues with equipment. At the same
time, during maintenance activities, technicians create a limited set of high-quality, manually labeled
anomalies on some sensors. How to effectively leverage these sparse labeled anomalies to improve
anomaly detection across different sensors is the key problem we aim to solve. Since sensors deployed
across machines and under varying conditions produce diverse patterns, models trained from scratch
may struggle to learn robust representations. To address this, we explore using time-series foundation
models to enhance anomaly detection performance.

Prior to this work, there were several lines of research exploring using limited labeled anomalies to
enhance detection. One line of research focuses on mapping input data into a representation space
that separates normal from anomalous samples [1, 2]. Another direction involves directly optimizing
anomaly scores in an end-to-end manner [3–5]. Additionally, some approaches reformulate the
problem as a classification task, minimizing cross-entropy loss [6]. The majority of these works are
developed for computer vision tasks, with relatively limited work in multi-sensor time-series anomaly
detection. Meanwhile, recent advancements in time-series foundation models—such as TimeGPT
[7], Lag-Llama [8], GTT [9], TimesFM [10], and Chronos [11]—have shown strong performance in
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tasks like zero-shot forecasting. Nevertheless, adapting these models to anomaly detection remains
a largely unexplored field, with only a few initial works exploring this problem [12]. Adapting
these models for weakly-supervised anomaly detection with heterogeneous sensors remains an open
research question.

In this paper, we introduce a weakly-supervised multi-sensor anomaly detection framework (WMAD)
that learns a deep neural network to construct a data-enclosing hypersphere, which can effectively
distinguish normal from anomalous time windows. The framework employs two-level importance
sampling and meta-learning techniques to handle both the sparsity of anomalies and the heterogeneity
of sensor data. We evaluate both backbone networks trained from scratch and those fine-tuned from
pre-trained foundation models. Our approach achieves promising performance on a large industrial
amperage dataset as well as on a public telemetry dataset, outperforming a range of baselines. The
code is available at https://github.com/ZLHe0/WMAD-Sensor-Anomaly-Detection.

2 Methods

2.1 Problem Statement

We address the problem of multi-sensor, univariate time-series anomaly detection. Assume that we
have K independent sensors, where each sensor collects a time series Z(k) = {z(k)t }t∈[Tk], with
k ∈ [K] and Tk is the time length recorded by the kth sensor. Our objective is to detect time windows
in Z(k) that exhibit persistent anomalous behavior. To achieve this, we transform the original time
series into h-length moving time windows X (k) = {x(k)

t = (z
(k)
t , z

(k)
t+1, . . . , z

(k)
t+h−1)}t∈[Tk−h+1] and

aim to assign a single anomaly label y(k)t ∈ {0, 1} to each window x
(k)
t . One challenge in this setting

is the extremely limited number of labeled anomalous windows, denoted as A(k) = {t : y(k)t = 1},
compared to the vast number of unlabeled windows, denoted as U (k) = {t : y(k)t = 0}. In fact, for
many sensors we have |A(k)| = 0, meaning that there are no labeled anomalies. This scarcity of
labeled anomalies necessitates a strategy to gain global knowledge from the data across all K sensors.

2.2 Weakly-supervised Multi-sensor Anomaly Detection (WMAD)

We now introduce WMAD, a framework designed to leverage sparse labeled anomalies for multi-
sensor anomaly detection. Using importance sampling and meta-learning, WMAD learns an adaptive
hypersphere to separate normal and anomalous data in different sensors with minimal labeled data.

Hypersphere Learning with Pre-trained Representation. To incorporate labeled anomalies, we
adopt a semi-supervised anomaly detection (SAD) framework [2]. For each sensor, our objective is to
learn a neural network, ϕ(·;W), to construct a data-enclosing hypersphere that effectively separates
normal from anomalous data:

min
W=W0+∆W
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Here, ϕ(x
(k)
i ;W) = ϕ(x

(k)
i ;W0 + ∆W) represents the mapping from the input space to the

embedding space, with the weights W initialized from a pre-trained network, W0, and further
optimized as W0 + ∆W . c is the hypersphere center, which is computed as the average of all
representations from the first forward pass through the pre-trained network. The first term in (1) sums
over the unlabeled (mostly normal) data points, aiming to minimize their representation’s distance to
the center c of the hypersphere. The second term focuses on the labeled anomalous points indexed
by A, maximizing their representation’s distance to the center. The weighting term η represents
the relative importance of the anomalous class and is incorporated using importance sampling. By
learning such a hypersphere, we create a compact representation that clearly distinguishes normal
and abnormal data. During inference, data mapped far from the center c are considered anomalous.

Importance Sampling and Meta-Learning. In such a weakly supervised setting, one key challenge
is the sparsity of labeled anomalies. Many sensors may lack any labeled anomalies, and the labeled
anomalies that do exist may be from sensors with very different normal patterns. Therefore, it’s
necessary to develop a training paradigm that produces a generalizable global model that can capture
the global knowledge about anomalies and pass it to different sensors. To address this, we implement a
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two-level sampling strategy and a meta-learning paradigm for the WMAD model training. Specifically,
we modify (1) into the following objective:

min
W=W0+∆W

∑
k∼ps︸︷︷︸

sensor-level

∑
i∼ps,w︸ ︷︷ ︸

window-level

[∥∥∥ϕ[x(k)
i ;W − αGradk(W)︸ ︷︷ ︸

adaptation

]− c
∥∥∥2·[I(i∈U(k))−I(i∈A(k))]

]
. (2)

The sensor-level sampling prioritizes sensors with labeled anomalies by assigning them higher
probabilities to those sensors during training. Within each sampled sensor, the window-level sampling
further emphasizes windows containing labeled anomalies, ensuring that the model allocates sufficient
focus on the sparse labels rather than diluting them across numerous unsupervised sensors.

To enhance generalization across diverse sensors, we integrate Model-Agnostic Meta-Learning
(MAML) [13] into the training process to construct a highly generalizable global model ϕ. For each
sensor sampled via the sensor-level strategy, a support set of windows is selected using window-level
sampling. The model then adapts to the sensor-specific patterns through gradient updates, modifying
its parameters to W − αGradk(W). A separate query set from the same sensor evaluates the
adapted model by calculating the loss on unseen data, simulating testing conditions. This loss is
then used to update the global model, aggregating insights across sensors iteratively. During testing,
the global model undergoes a similar fine-tuning process, where a small amount of data from a new
sensor is used to adapt the global model to the specific conditions of that sensor. The resulting local
models, enriched with the knowledge gained from the global model, are better equipped to recognize
anomalies while also being finely tuned to the normal patterns of their respective sensors.

2.3 Adapting Foundation Models for WMAD

To initialize the weights W0 for WMAD framework (2), we consider two primary approaches. The first
approach involves training an autoencoder from scratch on the dataset and then using the encoder part
of the network as the initialization. The second approach is to use pre-trained time-series foundation
models, which provide highly generalizable representation that could both enhance the learning
performance and avoiding the need for training from scratch. To serve as the backbone model for
our weakly supervised WMAD method, the pre-trained model should have an encoder structure and
fully open-sourced model weights. Recently there are some pioneering efforts in building time-series
foundation models including TimeGPT [7], Lag-Llama [8], GTT [9], and TimesFM [10] and Chronos
[11]. Among these, the General Time Transformer (GTT) meets these criteria. GTT is an open-source
transformer-based model pre-trained on a dataset of 200M high-quality time series samples. GTT
exhibits excellent zero-shot time series forecasting performance on various benchmark datasets. For
our application, we adopt the entire architecture of the largest available GTT version, GTT-small with
22M parameters as the initial weight configuration, W0 for our WMAD framework. The final layer of
GTT, originally designed for forecasting, is fine-tuned specifically for the WMAD objective. Further
details on the fine-tuning process are discussed in Appendix A.

3 Experiments

We evaluate WMAD with two different backbones: WMAD-GTT, which uses the pre-trained General
Time Transformer (GTT) model, and WMAD-AE, which uses an autoencoder (AE) trained from
scratch. We evaluate our method against several baselines, which include unsupervised counterparts
of the proposed method and other strategies for adapting the GTT foundation model to the task.
AE is a deep CNN autoencoder that reconstructs input data from a compressed latent space, with
reconstruction error serving as the anomaly measure. SVDD-GTT fine-tunes GTT in an unsupervised,
one-class setting [14], and is essentially the unsupervised version of WMAD-GTT, where no labeled
anomalies are incorporated. FLOS-GTT fine-tunes the final layer of GTT as an imbalanced binary
classifier [4], using focal loss to emphasize the minority class and increase sensitivity to anomalies.
DevNet-GTT fine-tunes GTT for few-shot anomaly scoring [3], assigning higher anomaly scores to
data points deviating from normal patterns. We evaluate the performance of these methods on two
real-world sensor anomaly detection tasks, as detailed in Table 1. For each method, we report the
number of true positives (TP), false positives (FP), precision, and recall. Additionally, we compute
the F0.5 score to emphasize precision over recall, as minimizing false alarms is critical to avoid
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unnecessary resource allocation. Additional experiment details, including model implementation,
anomaly thresholding, and evaluation metrics can be found in Appendix A.

Table 1: Dataset Information. "# Labels" refers to the total number of labeled anomalies for training.
Dataset Type # Sensors Sampling Rate Total Series Length # Labels
Amperage Proprietary 330 15 minutes 728,640 hours 5
Telemetry Public 82 1 minute 8,274 hours 5

Dataset Information. As shown in Table 1, the Amperage dataset is a proprietary industrial dataset
collected from an Amazon fulfillment center, consisting of data from 330 sensors spanning over
700,000 total hours, monitoring the amperage in VFD motors. It includes high-quality, manually
labeled anomalies linked to equipment breakdowns, with performance evaluated based on the work
orders generated within the specified time range. The Telemetry dataset is a public dataset derived
from the NASA telemetry dataset [15], comprising 82 sensors covering over 8,000 total hours.
Expert-labeled anomalies validated by engineers are provided.

Evaluation Results. The performance comparison across different methods is shown in Table
2. We begin by analyzing the results on the amperage dataset, where WMAD-GTT, the proposed
weakly-supervised anomaly detection model based on a foundation model, achieved the highest
precision at 0.580, a 22.9% improvement over the autoencoder-based model, WMAD-AE, and a
38.3% improvement over the next best weak-supervised baselines. In industrial anomaly detection,
precision is typically prioritized over recall to minimize false alarms, making WMAD-GTT particularly
favorable. Despite a slight drop in recall (0.103 for WMAD-GTT vs. 0.111 for WMAD-AE), WMAD-
GTT maintained a strong F0.5 score due to its precision. Notably, WMAD-GTT excelled in detecting
critical breakdown events (Damaged and Intfail), outperforming other models in these categories.
When labeled anomalies were not incorporated, performance dropped significantly: from WMAD-
GTT to SVDD-GTT, the F0.5 score decreased by 64.8%, and from WMAD-AE to AE, it dropped by
66.4%. This underscores the value of leveraging sparse labeled anomalies to improve both precision
and recall. Results on the telemetry dataset followed a similar pattern, with WMAD-GTT achieving
the highest precision at 0.722, surpassing all competing methods. It also maintained the highest F0.5
score of 0.383. Overall, WMAD-based methods uniformly outperformed other models, particularly in
scenarios where precision is critical.

Table 2: Performance comparison across different methods. Methods with (U) denote unsupervised
learning approaches. For the Telemetry dataset, reported values represent the mean and standard
deviation (subscript) over 10 replicates. The best performer is highlighted in bold.

Dataset Metric Category WMAD-GTT WMAD-AE FLOS-GTT DevNet-GTT SVDD-GTT(U) AE(U)
Damaged 43 40 9 19 8 11
Intfail 28 26 5 9 2 9

TP Others 38 51 4 46 17 5
Amperage Total 109 117 18 74 27 25

FP 79 131 25 258 26 36
Precision 0.580 0.472 0.419 0.223 0.509 0.410
Recall 0.103 0.111 0.017 0.070 0.025 0.024
F0.5 0.301 0.286 0.073 0.155 0.106 0.096

Precision 0.7220.076 0.5500.087 0.1240.007 0.3370.044 0.4600.077 0.4560.104
Telemetry Recall 0.1370.016 0.1520.040 0.2340.017 0.3220.035 0.1180.019 0.0920.037

F0.5 0.3830.022 0.3580.070 0.1370.007 0.3330.041 0.2890.040 0.2460.058

Case Studies and Embedding Analysis. We present case studies demonstrating WMAD’s effective-
ness in detecting anomalies in noisy amperage data, and an embedding analysis showing its ability to
produce informative latent representations for anomaly diagnosis. Full details are in Appendix B.

4 Conclusion

In this paper, we proposed WMAD, an anomaly detection framework designed to handle label sparsity
and sensor heterogeneity in industrial datasets. By incorporating two-level importance sampling
and meta-learning and leveraging the power of foundation models, WMAD achieved promising
performance on both industrial amperage and public telemetry datasets.
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A Additional Experiment Details

Data Preprocessing and Sampling. For each of the 330 sensors in the Amperage dataset, the
raw time series data is aggregated into 15-minute intervals using the median of all sensor readings
within each interval. The data is then segmented into sliding time windows of size 256 with stride
1. This window size is chosen as it’s large enough to capture essential temporal patterns in the
amperage data, providing enough context for distinguishing between normal and anomalous behavior,
while also being short enough to avoid diluting anomalous patterns. We then apply median-MAD
normalization, where each value is normalized by subtracting the median and dividing by the mean
absolute deviation (MAD). This is followed by a scaled sigmoid transformation to map the data
between -1 and 1. The use of median-MAD combined with the scaled sigmoid ensures that the
processed data remains centered around zero, offering robustness against frequent jumps and drops
in sensor data caused by routine maintenance and operational events. Median and MAD values are
computed during training and saved for consistent preprocessing during inference. Missing data is
interpolated using the median of the previous 256 time points.

In addition to the basic preprocessing, a two-level importance sampling strategy is employed to
make sure that the model is trained on a balanced representation of normal and anomalous data and
facilitate meta-training. Following the meta-learning training paradigm [13], we create 2,000 tasks
for training by first sampling 2,000 sensors with replacements from the pool of 330 sensors. The
sampling probability is set to 0.2 for anomalous sensors and 0.8 for normal sensors. For each sampled
sensor, we then perform a second level of sampling, drawing 20 windows (shots) for adaptation and
30 windows (queries) for task loss calculation and model backpropagation. If the sensor contains
anomalous windows, the sampling ratio of anomalous to normal windows is 1:9. For DevNet-GTT
and FLOS-GTT, this ratio is 1:1 following the set up of the original paper [4]. This same process is
applied to the Telemetry dataset, with a few differences: the window size is 128 instead of 256, the
sampling rate is 1 minute rather than 15, and 1,000 tasks are sampled for training.

Hyperparameter Setups and Training Details. We adopt two types of background networks for the
WMAD framework: a CNN-based architecture trained from scratch and the General Time Transformer
(GTT), an encoder-based pre-trained model. While we also experimented with LSTM architectures,
CNNs outperformed them due to their ability to handle the frequent fluctuations present in amperage
sensor data.

The CNN autoencoder consists of an encoder with two Conv1D layers (8 and 4 filters, kernel size 5,
stride 2), followed by a fully connected layer that maps the flattened output to a latent vector. The
decoder mirrors this with ConvTranspose1D layers for upsampling and reconstruction. The encoder
part of this autoencoder is used for the WMAD framework, referred to as WMAD-AE, and is further
trained for the anomaly detection task. We evaluated various filter sizes and configurations, and found
that this specific architecture offered the most robust and efficient performance for the sensor data.
For the WMAD-GTT model, we leverage the GTT foundation model, which consists of six encoder
layers, each with multi-head self-attention (eight heads). The model’s final embedding size is 512,
and the original forecasting head, which produces a 64-dimensional output, is fine-tuned to minimize
the WMAD objective (2). The entire GTT architecture is adopted, with only the final layer fine-tuned.
The GTT architecture is also employed for the SVDD-GTT, DevNet-GTT, and FLOS-GTT baselines,
with each model differing in how the final layer is fine-tuned. SVDD-GTT fine-tunes the last layer
in a similar manner to WMAD but without utilizing labeled anomalies. DevNet-GTT fine-tunes the
final layer to build an anomaly scoring network. The confidence margin is set to be 0.01 to adapt to
the scale of time series data. The Gaussian prior-based reference scores, originally used in DevNet,
were replaced by original scores to mitigate training instability observed in time-series data. The rest
of the setup is the same as the original paper. FLOS-GTT uses a focal loss-based cross-entropy to
fine-tune the last layer, transforming the GTT into a classifier. The focal loss parameters were set to
α = 0.1, aligning with the first-level sampling ratio in our framework, and γ = 2, balancing the focus
between minority (anomalous) and majority (normal) classes [4].

For all models on the Amperage dataset, we used the Adam optimizer with MAML training paradigm
[13], training the model on sampled tasks for 50 epochs. The weight dess was set to 10−6, with a
meta-adapting learning rate of 0.01 and a learning rate of 0.001. For the telemetry dataset, the same
configuration was applied except that the model was trained for 20 epochs. Testing different epoch
settings showed minimal effect on the final performance. All methods were implemented in PyTorch,
except for the GTT foundation model, which was pre-trained in TensorFlow.
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Anomaly Detection and Evaluation Procedure. For the amperage dataset, anomaly scores from the
previous month’s data for each sensor are first calculated, with the 99th quantile of the Gaussian tail set
as the testing data anomaly threshold. An alarm is triggered if a sensor’s anomaly score exceeds this
threshold for 36 consecutive time windows (9 hours). The detected anomalous intervals are compared
against work orders created within the same month for each sensor. Anomalies occurring within a
window of 10 days prior to or 3 days after a work order are considered true positives; otherwise, they
are marked as false positives. Any work orders without corresponding raised anomalies in the defined
time frame are regarded as false negatives. Precision, recall and F0.5 scores are calculated based
on these true positive and false positive rates. The evaluation is conducted monthly and results are
aggregated over three months. For the telemetry dataset, the anomaly threshold is determined using
the provided training set and subsequently applied to the test set for each channel. We observe that
models fine-tuned from foundation models, such as WMAD-GTT, tend to be more conservative in their
predictions compared to models trained from scratch, such as WMAD-AE. For a better comparison
between the two, we control WMAD-GTT and WMAD-AE to achieve a comparable level of recall for
a comparison of their precision. This results in a threshold at the 95th quantile for all models trained
from scratch and at the 85th for all fine-tuned foundation models. In addition to relative thresholding,
to enhance the robustness of anomaly detection across all methods, we impose an absolute score
threshold by requiring detected anomalies to exceed the 25th quantile of all collected scores. An
alarm is triggered if a sensor’s anomaly score exceeds this threshold for 30 consecutive time windows
(30 minutes). A true positive is defined as an anomaly detected up to 5 hours before the labeled
anomalous interval or overlapping with it. Evaluation metrics are similarly calculated.

B Additional Experiment Results

Case Study of WMAD Detections. Figure 1 presents case studies of amperage sensor data anomaly
detection using the WMAD-GTT model. Both Figure 1a and 1b consist of three sub-figures, each illus-
trating different aspects of the detection result. In the top sub-figure of each, we show the processed
sensor data, the reconstructed data from the autoencoder (AE) model, and the labeled anomalous
time intervals, marked in red. The middle sub-figure visualizes the autoencoder reconstruction error,
where each time point represents the error between the original sensor data and the reconstructed
data. The bottom sub-figure shows the WMAD anomaly scores, where each score corresponds to the
window ending at that time point, and the window length is of 256 time points.

In Figure 1a, we observe that the autoencoder fails to capture the labeled anomalous patterns
effectively, as it does not exhibit high reconstruction error for the actual anomalous time window.
Instead, it generates high errors in response to sudden drops and spikes in the sensor data, likely
caused by routine maintenance events or changes in the working conditions, such as equipment
shutdowns, restarts, or load shifts. To improve the performance of the autoencoder, one may consider
addressing these fluctuations using pre-processing steps to remove outliers. However, such patterns
are pervasive in the amperage dataset and exhibit diverse forms, making them difficult to isolate.
Additionally, pre-processing could diminish important anomaly patterns and make the model more
susceptible to outliers. By contrast, WMAD can directly work on raw sensor data and detect the
switch in amperage patterns, raising alarms aligned with the labeled anomaly.

A similar observation can be made from Figure 1b. While the autoencoder produces high recon-
struction errors for abrupt drops in amperage, which are unrelated to breakdown events, the WMAD
model accurately identifies the rise in amperage indicative of a breakdown and raises the alarm
accordingly. This demonstrates the WMAD model’s ability to integrate sparse labeled anomalies to
enhance detection precision, even in noisy industrial sensor data.

Embedding Analysis of WMAD Representations. In Figure 2, we present an analysis of the
learned latent space by our WMAD-AE model to investigate the potential clustering of anomalous
data representation. The figure shows a 2D scatter plot of the latent representations, obtained by
applying T-SNE for dimensionality reduction on the high-dimensional embeddings produced by the
WMAD model. Points represent anomalous time windows from six different sensors, each assigned a
distinct color. For each sensor, five anomalous windows are sampled, resulting in six sets of colored
points. In the figure, we highlight three distinct clusters in the latent space. Each cluster corresponds
to a specific type of anomalous pattern, which is further described through images adjacent to the
clusters.
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In the bottom-left cluster, two sensors are grouped together, both exhibiting a pattern of sharp jumps
followed by periodic drops in amperage, which is related to a missing belt issue. Similarly, the central
cluster corresponds to two sensors showing a sharp jump followed by stabilized amperage, associated
with cracked belts and belt replacements. The top-right cluster includes two sensors characterized by a
gradual rise in amperage, indicative of operational issues. This analysis reveals that the WMAD model
not only distinguishes between normal and anomalous data in the latent space but also enables the
clustering of different types of anomalies. This clustering capability facilitates anomaly diagnosis, as
newly detected anomalies can be compared to previously labeled anomalies with known root causes.
By mapping new anomalies to similar past events, the model can aid in diagnosing underlying issues,
extending beyond simple anomaly detection. This represents an advantage of WMAD framework
over scoring or classification-based approaches, which do not typically produce such meaningful
representations for further interpretation.

(a) Shifts in amperage patterns. (b) Rise in baseline amperage levels.

Figure 1: Case studies illustrating the detection performance of the WMAD-GTT model compared to
the AE model on amperage sensor data. Each figure contains three sub-figures: the processed sensor
data with labeled anomalies, the AE reconstruction error, and the WMAD anomaly score.

8



Figure 2: Visualization of the latent representation learned by the WMAD-AE model, where the
high-dimensional representation is reduced to two dimensions using T-SNE. Each colored point
represents the representation of an anomalous time window from one of six different sensors. The six
different colors correspond to the six sensors. Clusters of similar anomalies are highlighted.
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