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ABSTRACT

Large language model agents operate in partially observable, long-horizon settings
where obtaining supervision remains a major bottleneck. We address this by
utilizing a source of supervision overlooked in existing post-training methods:
unintended yet successful goals embedded within agent rollouts. Specifically,
we introduce Hindsight Supervised Learning (HSL), where an auxiliary LLM
reviews each completed trajectory and relabels it with all of the natural-language
goals the agent actually achieved. HSL then pairs the trajectory with its relabeled
goals and uses these pairs for additional fine-tuning. To mitigate suboptimality
in the relabeled data, HSL incorporates irrelevant-action masking and sample
reweighting. Our experiments show that HSL is flexible and compatible with
existing post-training pipelines. It improves both SFT and DPO, with larger gains
on long-horizon tasks with more diverse goal spaces. Moreover, HSL is sample-
efficient: on ALFWorld, it surpasses baselines trained on the full dataset while
using only one quarter of the ground-truth demonstrations.'

1 INTRODUCTION

Large language model (LLM) agents extend foundation models (Bommasani et al., 2021) by enabling
them to operate within interactive environments, including but not limited to autonomous web
browsing and form completion (Zheng et al., 2024), tool-augmented question answering (Zhuang
et al., 2023), software engineering (Jimenez et al., 2023), strategic decision-making in simulators and
games (Fan et al., 2022), and high-level control of embodied robots (Li et al., 2024). Such agents
are increasingly important because they bridge the gap between raw language models and practical,
interactive intelligence. However, building effective LLM agents remains a challenging task. In most
tasks, the dynamics of the underlying high-dimensional environment are complex and hidden, and
the observations available to the agent reveal only partial information about it. Even so, the agent
should plan over long horizons and choose actions whose effects are uncertain.

A variety of methods have been explored to train LLM agents, including supervised fine-tuning (SFT),
direct preference optimization (DPO) (Rafailov et al., 2023), and other reinforcement learning (RL)
techniques (Schulman et al., 2017; Liu et al., 2025). Among them, SFT is the most widely used,
but it relies heavily on expert demonstrations, which are costly to collect and often lack diversity.
More importantly, it does not fully leverage the trajectories generated by the agent itself. In contrast,
RL can, in principle, exploit such data through trial and error. However, it requires discovering
high-return trajectories before learning can proceed, which is challenging in long-horizon tasks with
sparse rewards. The difficulty is further intensified when the agent’s interaction with the environment
is restricted, for example, by safety or privacy concerns in embodied or web agents (Tur et al., 2025).

The intuition behind this work, inspired by hindsight experience replay (Andrychowicz et al.,
2017) in goal-conditioned RL, is that an LLM agent may accomplish unintended tasks regard-
less of whether it completes the instructed one. Take Figure 1 as a conceptual example. When
instructed to reach the blue flag, the agent might miss the target entirely and instead arrive at
the red flag. Alternatively, it might reach the yellow flag before eventually reaching the blue
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one. Therefore, it is feasible to relabel the agent’s trajectories with the unintended goals, such
as the red or yellow flags, and then extract such unintended achievements from the agent’s
experience, turning them into successful demonstrations that can be consolidated for learning
and performance gains. We assume that the relabeling task is easier than solving the origi-
nal task, as it can be performed after the full trajectory is collected and does not require pre-
dicting environment dynamics, which are often among the hardest aspects of LLM agent tasks.

Instead, the problem reduces to inferring which
tasks were actually accomplished by reasoning
over the observations in hindsight, a perception
and reasoning challenge that LLMs are well-suited
to handle.

In view of this, we propose Hindsight Supervised
Learning (HSL) (Figure 2). HSL uses an auxiliary
LLM to relabel agent-generated trajectories with
the goals actually achieved by the agent and fine-
tunes on these relabeled examples with SFT. Since
the original trajectories are generated under differ-
ent instructions, they may be suboptimal for the
relabeled goals. We thus introduce two additional
learning strategies, irrelevant-action masking and
relabeled demonstration reweighting. These strate-
gies help agents learn more effectively to follow
natural language instructions and reproduce suc-
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Figure 1: Toy example. Given the instruction
“Go to the blue flag”, the agent may instead reach
the red flag or visit the yellow flag along the
way. While these trajectories are incorrect or not
optimal for the original instruction, they can be
relabeled as successful demonstrations for the
goals the agent actually achieved.

Q

o4

i “

&

cessful behaviors.
In sum, our contributions are threefold:

* We propose a novel post-training method for LLM agents, Hindsight Supervised Learning (HSL),
which iteratively mines successful demonstrations by relabeling agent trajectories and fine-tunes
the agent on the relabeled data.

* Based on operational insights from our theoretical analysis, we introduce two simple yet effective
learning methods, irrelevant-action masking and sample reweighting, which are further validated
through ablation studies.

* Our experiments on ALFWorld (Shridhar et al., 2020) and WebShop (Yao et al., 2022) demonstrate
that (1) HSL is compatible with existing post-training methods such as SFT and DPO, yielding
notable improvements (e.g., by 8% — 32% success rate in ALFWorld), (2) HSL is sample-efficient.
For instance, with less than a quarter of ground-truth demonstrations, it outperforms baseline
methods trained on the full dataset.

2 RELATED WORK

2.1 LLM AGENTS

Early language agents were developed for artificial text-based interactive environments (Chevalier-
Boisvert et al., 2018), where agents follow natural language instructions to change states and achieve
goals. This shift in focus transformed NLP from static prediction to sequential decision-making. With
the rapid advancement of language models, LLM agents now operate in more realistic and complex
domains. These include embodied agents (Li et al., 2024); GUI agents (Yao et al., 2022; Zhou et al.,
2024; Xie et al., 2024); and code agents (Jimenez et al., 2023).

Post-training methods for these agents follow two main approaches. Supervised fine-tuning (SFT) on
demonstrations is effective but costly and limited by coverage. Preference- and RL-based training,
such as PPO (Schulman et al., 2017; Hu et al., 2025), DPO (Rafailov et al., 2023; Song et al., 2024),
aims to improve agents with weaker supervision, yet often struggles under sparse, delayed feedback
and long horizons. To mitigate sparsity, recent approaches synthesize feedback using heuristics or
learned judges (Da et al., 2025) and conduct intensive interactions with the environment to obtain
denser intermediate rewards (Xiong et al., 2024).

By contrast, our work proposes an alternative approach: maximizing the number of successful
demonstrations through agent experiences. Nevertheless, this approach is complementary to existing
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learning algorithms, and we demonstrate that it can provide an additive improvement when combined
with different post-training methods.

Another line of research synthesizes large-scale training data with heuristics (Xu et al., 2024), some
of which also involve generating a label conditioned on agent trajectories (Murty et al., 2024; Sun
et al., 2024). While these methods assume a single goal or instruction per trajectory, we propose
to mine all achieved goals within the trajectory. More importantly, these data synthesis methods
generate training data using a different model from the target LLM agent, which is fine-tuned with
the synthesized dataset fixed. By contrast, we continually refresh the relabeled buffer with the same
target agent. This on-policy, continuously updated supervision aligns the hindsight distribution with
the agent’s evolving occupancy, improves coverage where the expert policy has support, and mitigates
the drift induced by fixed synthetic datasets. As shown in Section 3.4 and Section 4, this design both
tightens the expert—agent gap in analysis and translates to consistent empirical gains over fixed-data
synthesis baselines.

2.2 GOAL RELABELING FOR GOAL-CONDITIONED RL

The idea of goal relabeling was first proposed in hindsight experience replay (HER) for robotic
tasks (Andrychowicz et al., 2017). HER relabels episodes with goals that are actually achieved,
enabling efficient learning from sparse, binary rewards. Since then, HER has become a workhorse for
multi-goal RL and robotics. Several extensions refine how experiences are selected and weighted, such
as countering bias in relabeled experiences by applying more aggressive hindsight rewards (Lanka
& Wu, 2018), scheduling replay toward experiences closer to actual goals while maintaining diver-
sity (Fang et al., 2019), relabeling trajectories explicitly assemble success from multiple failures (Fang
et al., 2018). Later, Cideron et al. (2020) extends this idea to language-conditioned agents, learning
an instruction generator to map the reached states to text-based instructions. While this approach,
based on HER, trains the agent on the relabeled experiences with the original offline RL objective,
GCSL (Ghosh et al., 2019) instead applies supervised learning to relabeled successes.

Our work differs from prior goal-conditioned RL research using goal relabeling techniques in several
ways. First, most existing methods assume the agent has direct access to the whole state of the
environment. In contrast, we address a more complex setting where the agent only receives partial
observations, so goal relabeling must be inferred from multiple key observations. Second, methods
such as Cideron et al. (2020); Ghosh et al. (2019) typically relabel only the final goal of failed
trajectories. In contrast, we relabel all goals achieved along the trajectory, even when the instructed
goal is eventually reached. Third, while HER and its variants train agents using offline RL, we apply
SFT and propose two additional techniques to improve the agent’s optimality further. Finally, our
approach focuses on enhancing LLLM agents by leveraging the reasoning abilities of LLM for the
relabeling process.

More recently, Zhang et al. (2023) proposed rewriting queries to better align with LLM-generated
answers for BigBench reasoning tasks (Srivastava et al., 2023), such as logical deduction and word
sorting. Although the high-level idea is related, our work focuses on agentic POMDP tasks and
introduces distinct techniques.

3 METHODS

In this section, we present HSL, a new post-training method for LLM agents. We begin with
the background and problem formulation, then outline the three main stages: trajectory collection,
relabeling trajectories with an auxiliary LLM to produce successful demonstrations, and learning from
these relabeled demonstrations. We then explain the relabeling process in detail, the core component
of HSL, which consists of two steps: goal identification and action relevance labeling. Finally, we
present two additional learning techniques that further improve agent optimality, relevance-based loss
masking and relabeled demonstration reweighting.

3.1 BACKGROUND

We model an LLM agent as operating in a partially observed Markov decision process (POMDP). At
each step ¢, the environment produces an observation o, that reveals only part of the underlying state s;.
The transition from the high-dimensional s; to s;; induced by action a, is assumed to be unknown.



Under review as a conference paper at ICLR 2026

Hindsight
objective

Original
objective

Training Relabeled '\ o
Data Data ‘. d ) o> Action: go to microwave 1 Achieved goals:
9 N Trajectory Observation: The microwave 1 is closed [21
QC e ¢
UU <
Relabeling Relabslel Sotbe Action: take mug 1 from coffeemachine 1 Achieved goals:
Process % Observation: You pick up the mug 1 from the coffeemachine 1 [8]
O @
) 2 A
LLM Agent S

You are in the middle of a room. Looking quickly around you, You are a goal-inference

you see a cabinet 10, a cabinet 9, a cabinet 8, a cabinet 7, ... and assistant... Decide the

atoaster 1. vy, achieved goals in the

Your goal is to: cool some cup and put it in cabinet Q Q agent trajectory.  {
LA

Action: put mug 1 in/on fridge 1 Achieved goals:
Observation: You put the mug 1in/on the fridge 1 [ put a mug on a fridge ]

Figure 2: Left: Overview of the existing training pipeline with HSL. Right: Example of the relabeling
process. The relabeler assigns new goals to the agent’s trajectory based on the agent’s achievements.
Conditioned on the natural language instruction I, the trajectory history _1 = {(0;,a;) E;},
and the new observation oy, the agent selects an action a; that maximizes its learned conditional
distribution 7y (a¢|m¢—1,0¢, I). An evaluation metric 6(st, g) measures the distance between the
finally reached state st and the goal state g. The task is to find the best agent that reaches the goal
state: ming E,r,0(st, g). Typically, the agent is trained using offline ground-truth demonstrations.
A simple and straightforward way of learning from demonstrations is supervised fine-tuning (SFT).
In addition, one may use RL methods such as PPO (Schulman et al., 2017) and GRPO (Shao et al.,
2024) with —d (s, g) as reward.

3.2 FRAMEWORK OF HINDSIGHT SUPERVISED LEARNING

In general, our proposed HSL framework adds a parallel branch with three key steps: trajectory
collection, relabeling, and learning. This branch can be combined with arbitrary existing training
pipelines, including SFT and DPO. We describe each step below.

Trajectory collection. At each training step, we sample b goals expressed in natural-language
instructions I ~ Dy, from the training set. The agent then rolls out by following I through
interaction with the environment. Specifically, the agent selects an action a; ~ mg(a|rt—1, 0¢, I) and
receives the next observation o;41. This process continues until the task terminates or the maximum
step limit 7" is reached. We then collect trajectories (77, 0*), including the final observation o*, for
relabeling.

Relabeling process. We use an auxiliary LLM M to revisit each collected trajectory and identify
the actual K goals (K < T'), represented as instructions {I7, ..., I} }, that the agent successfully
achieved. From these, we extract pairs of relabeled instructions and their corresponding trajectories
(I, ") as successful demonstrations. The relabeling process is described in detail in Section 3.3.
The resulting demonstrations are stored in a dynamic buffer D’ of size N.

Learning from relabeled demonstrations. We improve the LLM agents with the relabeled demon-
strations. At each optimization step, we randomly sample a batch of relabeled demonstrations from
D’ and calculate £‘;SL. To further improve agent optimality, we propose two techniques: irrelevant
action masking and demonstration reweighting. We detail both of them and the concrete loss function
LS on Section 3.4.

This HSL training pipeline on the relabeled demonstrations D’ can be combined with a wide range of
existing post-training methods, including SFT and DPO, on Dy,;,. Notably, the relabeling process
avoids reliance on any ground-truth actions or reward signal, allowing it to operate in an almost
unsupervised manner.

3.3 RELABELING FOR SUCCESSFUL DEMONSTRATIONS IN HINDSIGHT

Next, we provide a detailed explanation of the relabeling process, which is the core component of
HSL. It consists of two steps: goal identification and action relevance labeling.

Goal identification. While it is hard to foresee which goals will be achieved after an action ay,
reasoning from the resulting observation 0,11 makes the task more manageable. Typically, os1
reveals whether a; had any effect on the environment and, if so, what that effect was. One can also
infer the long-term impact of a; by examining subsequent observations.
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We therefore employ an external LLM M to revisit each trajectory and infer a running list of achieved

goals represented as instructions Z' = I7, ..., I along the trajectory. Although M could be trained
or adapted for this task, we instead rely on its zero-shot reasoning ability and prompt it to infer the
achieved goals in one pass: {I1, ..., I} } = M (77, 0%), where inst denotes the system prompt

(provided in Appendix C) describing the space of valid goals, and o* is the final observation.

Figure 2 (right) illustrates a concrete example: the agent has missed the original goal cool some
cup and put in cabinet, but achieved an uninstructed one put a mug in a fridge. In some cases, the
agent may have multiple achievements during the trial, which can be independent of one another.
If the agent fails to achieve any meaningful goal in 77, we discard the trajectory. We then extract
each pair of a relabeled goal and its corresponding trajectory segment (7 .1 1) as a successful

demonstration, where S(I},) is the step where I}, is newly accomplished.

Action relevance labeling. Since the trajectory 7(;;) is originally collected for instruction I, some
actions in 7g(;;) may be irrelevant to achieving the relabeled goal I'k. For each pair (75(1;), I1.),
we reuse M to infer a label z,¢1,... 5( ) for each action a,, in 75 ) indicating its relevance to
I 2150 = Mretevance (TS (k)> 0S(k)+1, I},), Where relevance is the system prompt shown in
Appendix C. The inferred 21.g(x) is subsequently used to train the LLM agents with the relabeled
demonstrations.

While existing hindsight generation in RL mostly relabels a single goal on the failed trajec-
tory (Cideron et al., 2020; Ghosh et al., 2019), our relabeling model M identifies all valid instructions
achieved in 7. This design is motivated by two reasons. First, even in successful trajectories, the
agent may accomplish additional tasks at intermediate steps. We find that the LLM agent benefits
from learning these uninstructed tasks. Second, HSL is less dependent on explicit reward signals,
which are often noisy or difficult to obtain in LLM agent tasks such as web-based agents.

At the end of relabeling, we extract each triplet of (Tg(), [, fos 21 s(k)) and append it to the relabeled
demonstration buffer D’.

3.4 THEORETICAL ANALYSIS AND LEARNING TECHNIQUES

We would like to analyze how learning from the relabeled demonstrations bridges the gap between
the LLM agent and the optimal (expert) policy 7*. We define the hindsight expert induced by agent
trajectories and the relabeling model M as:

tT:Bl Pro,lo, =0,7-1=h,a; = a, Sy (I') = t]

23;701 Prﬂ'ﬂ [Ot =0,Tt—1 = h’ SM(I/) = t}

my(a|h,o0,I") = , (D

recall that Sy, (I’) = ¢ denotes that the first timestep I’ is achieved at ¢. Accordingly, we define
K g as the occupancy coverage ratio of 7* and 7y, and § g as the discrepancy between 7* and 7y

Ren S 5?2%% €1,00); 08 =Ero,n)mp,- [ |7 | 70, 1) = 7*(- [ 7,0, D)][ ],

where p is the occupancy measure of 7 over (7,0, I).

Our target is to minimize the following discrepancy between agent my and optimal policy 7*:
AO) 2 E(ropympy, |70l | 7.0,1) = 7*(- | 7,0,1)||] -

Theorem 1 (Upper Bound of Expert-Agent Discrepancy). Under the setup above,

AB) < Eironmpn. | Dru(r (- 7,0.1) [ mo(- | 7,0,1)) |

2
+ CrKkEpen \/% E(T’O’I’)NPWH |:DKL(7TH(' ‘ T, 0, I/) ||7‘(‘9(. ‘ T,O,[’)) :| + Crig.

where Cp = 2(T — 1).

Appendix C provides the detailed proof. The key takeaways of Theorem 1 are as follows. The upper
bound on the discrepancy between 7y and 7* decreases when we apply SFT to both ground-truth
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demonstrations (first term) and relabeled demonstrations (second term). The gap shrinks further as
the occupancy coverage and the optimality of 7z improve. In practice, this can be achieved by using
a stronger relabeling model and, more importantly, by continually updating the relabeled buffer D’ so
that 7y is constructed on-policy. As the agent succeeds more often, p.,, concentrates its mass where
px+ has mass. We also prove a corollary in Appendix E showing that SFT on relabeled demonstrations
strictly tightens the expert—agent discrepancy (Equation (2)). Guided by these insights, we train on
relabeled demonstrations with SFT and introduce two simple, effective learning techniques.

Demonstration reweighting. Some instructions I’ are inherently easier and thus appear dispropor-
tionately in D’, which may bias the agent toward solving only trivial tasks, leading to a bad coverage
k. To mitigate this issue, we sample demonstrations d € D’ with a weight wy that prioritizes learning
from trajectories that solve more difficult tasks more optimally. Concretely, wy is calculated by:
wy = (%Z)a - ng, where ng is the number of actions associated with the relevance label z,, = 1, and
Ty is the total number of actions in d. The ratio % reflects how optimally the task is solved, while
nq serves as a proxy for task difficulty. The hyperparameter o balances these two factors.

Irrelevant action masking. Because the original trajectories are collected under instructions different
from the relabeled I’, naively applying SFT on all actions in each trajectory may imitate a sub-optimal
hindsight expert with large § . Therefore, we mask out the loss for actions labeled irrelevant (z; = 0).
And hence, the training objective on relabeled demonstrations is defined as:

T
’ ].
ﬁg = Ed'=(7’,[’,z)~D’ P(d/) . T t_zl —Z¢ log Pg(at"rt_l, O¢, I/)‘| 5 (3)
where P(d') = —~wa__ Suggested by Theorem 1, we further incorporate the SFT loss on

2aep’ Wa®
ground-truth demonstrations using a mixture weight A, and thus the resulting learning objective is:

L[g—lSL _ /\125" +(1- )\)Ed:(TJ)NDtmin

T

1

TZ—lOgPQ(QtTt—hOtvI)] . )
t=1

Similar to many existing methods of post-training LLM agents (Song et al., 2024), HSL requires
ground-truth demonstrations for stable learning. However, as we will show later in the experiment,
HSL is sample efficient and achieves performance that matches or exceeds baseline methods while
using much less Dyin-

4 EXPERIMENT
4.1 SETUP

Tasks and Evaluation Metrics. We evaluate on two well-adopted agentic benchmarks with different
levels of task diversity. ALFWorld (Shridhar et al., 2020) is an embodied agent benchmark in which
the LLM agent navigates rooms and completes household tasks to satisfy a natural language goal
(e.g., “put some vase in safe”). The evaluation set consists of a seen split (new tasks within scenes
present in the training set) and an unseen split (rooms or layouts absent from the training set). A
task is considered successful only if all goal conditions are met. Following Song et al. (2024), we
report the average Success Rate. WebShop (Yao et al., 2022) is a web agent benchmark in which an
agent follows a natural language instruction to navigate a simulated e-commerce site and purchase a
product. Each episode ends upon purchase and returns a dense reward r € [0, 1] based on the type
matching, the coverage of the requested attributes/options, and the price constraint. We report Task
Score (100x average reward). While ALFWorld features longer horizons (7' = 40), a diverse set of
valid goals, and multiple achievable goals per episode, WebShop comprises a single task type where
each trajectory (7' = 10) can achieve only one goal. We thus expect HSL to yield larger gains on
ALFWorld, whereas WebShop serves to test its robustness in a much narrower task space.

Implementation. We employ Llama-3.2-1B (Dubey et al., 2024) as an agent model and Llama-
3.3-70B (Dubey et al., 2024) as a relabeling model. We set A = 0.3 and « = 0.8, and maintain the
relabeled dataset D’ as a queue of size 100. After each optimization step, HSL collects and relabels
b = 18 trajectories, which are appended to D’ while the oldest entries are removed once the limit is
reached. Additional implementation details are provided in Appendix F.
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Baselines. We evaluate HSL as an add-on to SFT and Exploration-based Trajectory Optimization
(ETO) (Song et al., 2024). SFT fine-tunes the agent model on ground-truth demonstrations from
the original datasets, while ETO applies DPO (Rafailov et al., 2023) to agent tasks, using ground-
truth demos as preferred samples and agent-generated failures as dispreferred samples. We also
include SELFIMIT (Shi et al., 2023), which fine-tunes the agent on its own successful trajectories. To
demonstrate that the gains stem from our relabeling approach rather than merely using a powerful
external LLM, we include baseline methods that also use Llama-3.3-70B. Concretely, REACT (Yao
et al., 2023) directly applies Llama-3.3-70B for reasoning and action selection. BEHAVIORCLONE
uses Llama-3.3-70B to synthesize demonstrations and then fine-tunes the agent on the union of
ground-truth and synthetic data, following Zeng et al. (2024). BAGEL (Murty et al., 2024) is an
offline data synthesis method that generates trajectories with the agent and uses Llama-3.3-70B to
label and filter them; subsequently, the agent is fine-tuned on the synthesized and ground-truth data.

4.2 MAIN RESULTS

Table 1 presents the performance of our proposed HSL and prior related methods on ALFWorld and
WebShop. HSL improves both SFT and DPO significantly and consistently with much larger gains
on ALFWorld, which involves longer tasks and a larger set of valid goals than WebShop. Although
REACT and BEHAVIORCLONE use the external LLM (Llama-3.3-70B) to enhance the agent, they
perform substantially worse than SFT+HSL, validating our claim that predicting actions for an
agentic task itself is more challenging than relabeling. BAGEL also improves SFT on ALFWorld
but still underperforms compared to SFT+HSL, showing the importance of continuously updating
the relabeled demonstrations for the target agent during training. This finding echoes our analysis
in Section 3.4, which suggests that the relabeling process can benefit from the evolved agent.
Finally, SELFIMIT fails to improve upon SFT, underscoring the importance of mining all successful
demonstrations, even for uninstructed goals.

ALFWorld

Method WebShop
seen | unseen
REACT (Yao et al., 2023) 33.57 | 20.90 48.37
BEHAVIORCLONE (Zeng et al., 2024) | 83.57 | 88.81 65.19
BAGEL (Murty et al., 2024) 84.29 | 91.79 62.18
SELFIMIT (Shi et al., 2023) 84.29 | 76.87 58.37
SFT 82.14 | 78.36 63.81
DPO (Song et al., 2024) 85.71 | 82.84 69.54
SFT+HSL (Ours) 93.57 | 97.76 66.97
DPO+HSL (Ours) 92.86 | 94.78 70.52

Table 1: Performance on ALFWorld and WebShop.

Sample efficiency. To assess the sample efficiency of HSL, we evaluate how the number of ground-
truth demonstrations affects the performance of HSL and the post-training baselines on ALFWorld and
WebShop. As shown in Figure 3, adding HSL to either SFT and DPO consistently and substantially
increases success rates on ALFWorld, given the same ground-truth data budget as the SFT and
DPO baselines. Notably, the improvement is particularly larger in the Unseen split, where HSL
nearly doubles SFT at 800 demonstrations and doubles DPO at 1,600 demonstrations. This again
highlights that HSL facilitates generalization. More importantly, HSL, which uses less than one
quarter of the ground-truth data, surpasses SFT-only or DPO-only models trained on the full dataset.
For example, DPO+HSL reaches 92.5% with just 800 ground-truth demonstrations on ALFWorld
(Unseen), whereas DPO attains only 82.8% even with more than 3,200 ones. On WebShop, the
improvements are smaller but follow trends similar to those in ALFWorld across data sizes and
baselines. This suggests that HSL is particularly effective for open-ended tasks with diverse goal
types, such as ALFWorld, where agents are more likely to “accidentally” accomplish uninstructed
tasks and therefore benefit more from relabeling.

4.3 ABLATION STUDIES

We conduct ablation studies to quantify the contribution of each component and technique in HSL.
In particular, we evaluate RELABELFAILURE, which only relabels the final achieved goal on failed
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Figure 3: Sample efficiency of HSL with different post-training methods.

trajectories and resembles existing hindsight generation methods in the RL literature (Cideron et al.,
2020; Ghosh et al., 2019); UNIWEIGHT, which samples relabeled demonstrations uniformly without
any reweighting; and NOMASK, which do not apply the action-irrelevant masking.

Figure 4 presents all variants, including the complete model SFT+HSL trained with different numbers
of ground truth demonstrations on ALFWorld. Removing any component reduces performance,
though the drop from removing demonstration reweighting (UNIWEIGHT) is smaller in the Seen split.
In the Unseen split, UNIWEIGHT is markedly worse, which suggests that increasing expert—hindsight
occupancy coverage in Theorem 1 facilitates generalization. With the fewest ground truth demon-
strations, NOMASK shows the most significant decline, likely because a weaker base agent executes
many back and forth actions within a trial, for example repeatedly visiting a receptacle, which are not
helpful for the relabeled goal. This highlights the need for a stronger hindsight expert who proposes
more optimal actions. RELABELFAILURE is consistently and substantially worse than the full model.
In particular, it does not benefit from additional ground truth demonstrations, mainly because a more
potent base agent trained with more demonstrations produces fewer failed trajectories. It verifies our
decision to leverage all the intermediate goals that have been achieved.

4.4 ANALYSIS: UNDERSTANDING THE EFFECTIVENESS AND LIMITATIONS OF HSL

To gain a deeper understanding of the
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the most augmented goal in the relabeled
set is put, and the agent correspondingly
achieves perfect performance on put. For clean, heat, and cool, the proportions in the relabeled
data are close to those in the ground truth, and the agent achieves success rates above 80%. In contrast,
examine and put—-two are underrepresented in the relabeled demos. While put and put-two
appear at similar rates in the ground truth, the relabeled demos contain roughly twice as many put
as put-two. Moreover, examine accounts for less than 5% of the relabeled set. This pattern
likely arises because put is a subtask of put-two, and examine is the most long-tailed goal
in the training data (under 10%), such that the agent rarely achieves it by chance. As a result, the
agent trained with the relabeled demos records its lowest success on examine at 54.85%, and its
performance on put —two lags notably behind put.
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Figure 4: Ablation studies on ALFWorld.
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Example of Relabeled Demonstrations (Correct) E le of Relabeled D rations (Incorrect)
Relabeled Goal: put a clean cloth in toilet Relabeled Goal: put a cool tomato in fridge
Step 3 Step 30
Action: take cloth 2 from countertop 2 Action: take tomato 1 from countertop 1
: You pick up the cloth 2 from the : You pick up the tomato 1 from
countertop 2. the countertop 1.
Relevant to Goal: True Relevant to Goal: True
Step 5 Step 31
Action: clean cloth 2 with sinkbasin 1 Action: go to fridge 1
: You clean the cloth 2 using : The fridge 1 is open. In it,
the sinkbasin 1. you see a plate 2, and a potato 3.
Relevant to Goal: True Relevant to Goal: True
Step 7 (the last step) Step 32 (the last step
Action: put cloth 2 in/on toilet 1 Action: cool tomato 1 with fridge 1
: You put the cloth 2 in/on the : You cool the tomato 1 using
toilet 1. the fridge 1.
Relevant to Goal: True Relevant to Goal: True

Figure 6: Two examples (correct and incorrect) of relabeled demonstrations in ALFWorld. Each
shows agent trajectories with the corresponding outputs (relabeled goals and action relevance) by the
relabeler. In the right example, the relabeler makes a mistake: the agent cools a tomato but never
places it in the fridge, so only a subtask of the relabeled goal is satisfied.

We further assess the quality of the relabeled data. We randomly sample 50 relabeled demonstrations
and manually verify their labels. Of these, 46 are correct, yielding an accuracy of 92%, which helps
explain the strong performance of the HSL-trained LLM agent. Notably, the relabeling is performed
in a zero-shot setting, yet it is substantially more accurate than predicting actions with in-context
examples (REACT). This observation further supports our hypothesis that relabeling trajectories in
hindsight is easier than executing the task itself. Two illustrative cases are shown in Figure 6.

Takeaways. Taken together with our theoretical (Section 3.4) and empirical results, these findings
indicate that HSL narrows the gap between the agent and the expert policy in a sample-efficient
manner by transforming noisy agent trajectories into high-quality demonstrations from a hindsight
expert. Nevertheless, the magnitude of the improvement depends on the hindsight expert’s optimality
and coverage, as well as task characteristics such as diversity and the number of tasks per trajectory.

5 CONCLUSION

We present Hindsight Supervised Learning (HSL), an sample-efficient learning framework that
relabels agent trajectories with goals actually achieved and learns from these relabeled demonstrations.
By incorporating irrelevant-action masking and reweighting, HSL enhances both the coverage
and quality of relabeled data. Comprehensive experiments on popular embodied and web agent
benchmarks, ALFWorld and WebShop, show that HSL consistently boosts SFT and DPO while
reducing reliance on ground-truth demonstrations. These findings highlight the value of treating
unintended achievements as useful supervision and open a path toward more data-efficient, self-
improving LLM agents.
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A LANGUAGE MODEL USAGE STATEMENT

During the preparation of the manuscript, we have used LLM to polish the draft and fix grammar
issues. LLM did not participate in the ideation of the project, such as problem formulation and
methodology.

B LIMITATIONS

Limitations of the Proposed Method. Our method, in its current form, uses an external LLM for
zero-shot relabeling without fine-tuning, so it depends on the reasoning ability of powerful models.
This design lets us leverage state-of-the-art proprietary LLMs, and our experiments show that using
them for relabeling yields markedly better final performance than asking the same models to solve the
tasks directly. For more complex tasks, however, the relabeling model may require further adaptation
and optimization. Jointly learning the relabeling model and the LLM agent is left for future work.

Second, we label each action in a trajectory as either relevant or not to the relabeled goal, which
assumes a black-and-white notion of relevance. In complex settings an action can be relevant yet
suboptimal for the goal. For example, purchasing multiple items one by one is less efficient than
placing them all in a cart and paying once. A more fine-grained notion of relevance may therefore
be needed, which would entail fine-tuning the relabeling model in a role akin to a reward or value
function.

Third, as shown in the experiments, although our demonstration reweighting improves agent per-
formance and many goal types are well represented in the relabeled demonstrations, the resulting
distribution does not fully match the goal-type distribution in the original dataset. Our method chiefly
exploits exploration in a sample-efficient way, so further work is needed to increase both the diversity
and the depth of exploration.

Last, although the relabeling process and learning from relabeled demonstrations are unsupervised
or self-supervised, HSL still requires ground truth demonstrations to stabilize training by aligning
the agent’s support with the expert’s. This limitation is shared by many other post-training methods.
Future work should develop stronger exploration strategies that enable HSL without any ground truth
demonstrations.

Limitations of Experiments. We use Llama-3 as the base LLM agent and evaluate on two standard
agentic benchmarks, ALFWorld and WebShop. Although we conduct comprehensive ablations and
analyses, we do not cover stronger base LLMs or additional agentic tasks. It is mainly due to the
limit of time and computational resource as well as lack of task-specific ground-truth demonstrations.
For many GUI-agent benchmarks, for instance, either an interactive environment or ground-truth
demonstrations are missing. When they are available, the environments are often resource-intensive
to set up.

Second, as discussed in the experiments, the gains from HSL are smaller for short-horizon tasks with
a narrow goal space. We expect larger benefits in more open-ended settings with diverse goals, where
LLM agents must adapt to broader task distributions.

C PROMPTS FOR RELABELING PROCESS

Figure 7 and Figure 9 are goal relabeling prompt for ALFWorld and WebShop, respectively. Figure 8
and Figure 10 are action relevance labeling prompt for ALFWorld and Webshop.

D PROOF OF THEOREM 1

Preliminaries and notation. For simplicity of notation, we let z; = (731, 0¢). a policy 7 specifies

a conditional action distribution 7(a | 2, I). We use total variation distance TV (p, q) = 3lp — |1

and KL-divergence Dk1,(pllq) = [plog £ to measure distance between action distributions. We
assume a prior distribution p(I) over instructions and a finite horizon 7" (the maximum number of
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steps in each episode). The finite-horizon occupancy (joint measure over (z, I)) of 7 is
1 T
mwnémmf;$m=mﬂ- )

The hindsight expert induced by a relabeled goal I’ and the trajectories generated by LLM agent 7y is
32_01 Pr., [xt =z, a=a, Sy(I') = t]
tT:_ol Prr, [z; =2, Su(I') =]

where Sy (I') is the first time step at which I’ becomes newly satisfied according to the relabeling
model M. We assume every (z,I) pair that the optimal expert policy can visit with nonzero
probability is also covered by the hindsight expert, and define the expert-hindsight occupancy
coverage ratio

P> (.’L’ ) I )

A
ES Pl 0) e 11, 00). 7
Rpen = max e € (L oo) @

ma(a|z I') =

; (6

The agent—expert discrepancy is
A(G) £ E(a:,I)Np,,G |:TV(7T9( | Z, I): 7T*(' | z, I))] . (8)

A finite-horizon simulation inequality and the constant C'r. We measure occupancy mismatch
using the following inequality, which is a finite-horizon version of standard error propagation bounds
in imitation learning.

Lemma 1 (finite-horizon simulation inequality). For any policies y, v and measurable g : X x T —
[0,1],

B, [9] —E,.[g]| < Cr E(I’I)NPV{TV(M(- |2, 1), v(- | z, 1))}, Cr=2(T-1). 9

Proof sketch. Let dt (- | I') denote the law of X, under 7. A standard coupling/perturbation argument
(cf. the finite-horizon analyses in Ross & Bagnell (2010); Ross et al. (2011)) yields, for each ¢t > 1,

t—1

TV DA 1 1)) < 30 By g TV((C | X0, D00 | X, 1))

s=1

Averaging over t = 1,..., T, multiplying by p() and symmetrizing gives equation 9 with C'r =

2(T —1). O
Proof of Theorem 1. Let f(z,I) £ TV(my(- | @,1),7*(- | z,1)) € [0,1]. Add and subtract
E,,. [f]:
AW) = By [f) + (Ep,, /]~ E,.11]). (10)
Applying Lemma 1 to g = f, (u,v) = (w9, 7*),
A(0) < E,.[f] + CrE, .[TV(m,7)]. (11)
Use the triangle inequality,
TV('/T(?;’/T*) < TV(T(%T(H) + TV(,]THa’n—*)a (12)
and denote 6 = E,, [TV (7s,7*)]. Then
A(0) < E,.[f] + CTE, .[TV(rg,71)] + Cr 5. (13)
Change measure using coverage equation 7:
EPW*[TV(’TF(;,T(H)] S KRE«H EPWH[TV(’]T(;,’/TH)]. (14)
Apply Pinsker inequality and Jensen’s inequality:
E,..[f] = Ep, [TV(mo,7%)] < \/3E,..[Die(m*|ms)], (15)
By, [TV (70, 71)] < \/3E,., [Dxe(malmo)]. (16)
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Combining equation 13—equation 16 yields:

A®) < /3Bty [Dre (|2, 1) | 7ol | 2,1))]

(17)
+ Cr HE(—H\/% ]E(LI)Np,rH[DKL(TrH(' | I,[) || 7T9(' | I,I))] + Cr 5E

Finally, \/y < y + i for y > 0 converts the first term to a linear KL, and the additive constant
(independent of #) can be absorbed, giving the bound in Theorem 1:

A(0) < B 1ymp,. [Dxu(m*||T0)] + Cr kpen \/% E(z,1)~p,, [PxL(TH|T0)] + Cr 5. (18)
[ |

E COROLLARY TO THEOREM 1: HSL STRICTLY TIGHTENS THE
DISCREPANCY BOUND

Let

LE(0) = B nep,. [Dxu(r* (- |2, 1) || 7o(- | 2, 1))],
and

Ly = E@nyep,, [Dxi(mu (|2, 1) || mo(- | 2,1))],
and define

(&% = OTKE<—H \/g, B(G) £ EE(G) + Ot\/ﬁ]—[ + CTaE
By Theorem 1 (Eq. equation 2), for all § we have A(9) < B(6).

A linear surrogate for training. The square-root term admits a standard Young-type relaxation:
for any € > 0,

2
av/Ly < ;“—5 + gﬁH. (19)

Hence minimizing L (6) + L with § = ¢/2 minimizes an additive upper bound on B(6) up to a
f-independent constant.

Corollary 1 (Strict dominance at equal expert fit). Fix 61,05 with Lg(01) = Lg(02). If L (01) <
Ly (02), then B(61) < B(62) and consequently

A(Gl) < B(@l) < B(Gg)

In words: among policies that fit the expert demonstrations equally well, the one that additionally fits
the relabeled demonstrations achieves a strictly tighter upper bound on the expert—agent discrepancy.

Proof. The map u > /u is strictly increasing on [0,00), so B(01) — B(62) = a(y/Lu(61) —

VL (0:)) <O0. O

F IMPLEMENTATION DETAILS

We employed Llama3.2-1b (Dubey et al., 2024) ? as the agent model and Llama3.3-70b * as the
relabeling model. Following Song et al. (2024), we adopted the same hyperparameters, setting the
learning rate to 2 X 105, the batch size to 32, and using the AdamW optimizer (Loshchilov & Hutter,
2017). All fine-tuning runs lasted for 3 epochs. Because HSL naturally incorporates SFT, we first
trained Llama3.2-1b on ground-truth demonstrations with SFT, then fine-tuned it with the objective
in Equation (4) to obtain SFT+HSL. For DPO+HSL, we followed the same approach of ETO for
combining SFT and DPO objectives (Song et al., 2024): we first fine-tuned the agent with HSL,
then continued fine-tuning with DPO. All fine-tuning experiments used 8 NVIDIA A100 GPUs and
completed within one day.

https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct
Shttps://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
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Goal inference prompt for ALFWorld

You are a goal-inference assistant for AlfWorld. Given a sequence of Actions and Observations, track the
agent’s Location and Inventory after each step, then derive and record any goals from the templates below
that have been completed. A trajectory may achieve multiple goals or none.

1. After each Action/Observation pair:
(1) update the agent’s Location and Inventory. Invalid actions (e.g., using or dropping an object
the agent doesn’t have) leave both unchanged. You should determine if the action has any effect
based on the given Observation!
(2) Then check whether any of the goal templates have been satisfied by the agent’s actions up to
that point. When a goal is achieved, add it to the running list of Reached goal values and keep
that list for subsequent steps.
(3) Do not summarise or skip any steps, even if the observation is identical to previous ones.

2. Hide all object IDs; refer to objects and receptacles only by their type names (e.g. “mug”, “knife”,
“drawer”), never by numeric or alphanumeric identifiers.

3. Inventory format: list each inventory item by type, repeating names for duplicates (e.g. [mug,
knife, knife]).

4. At the end, output Final goal: followed by the list of all goals achieved (e.g. [goalA, goalB]). If
no goals were achieved, set Final goal: to a brief description of the agent’s behaviour.

Allowed goal templates (with their intended behaviours):

* put a [object] in [receptacle] / put some [object] on [receptacle] - Pick & Place: - the agent must
find an object of the desired type, pick it up, find the correct location to place it, and put it down
there.

¢ look at [object] under the [lamp] / examine the [object] with the [lamp] - Examine in Light: - the
agent must find an object of the desired type, locate and turn on a light source with the desired
object in-hand

¢ put a clean [object] in [receptacle] / clean some [object] and put it in [receptacle] - Clean & Place:
the agent must find an object of the desired type, pick it up, go to a sink or a basin, wash the
object by turning on the faucet, then find the correct location to place it, and put it down there.

¢ put a hot [object] in [receptacle] / heat some [object] and put it in [receptacle] - Heat & Place:
the agent must find an object of the desired type, pick it up, go to a microwave, heat the object
turning on the microwave, then find the correct location to place it, and put it down there.

* put a cool [object] in [receptacle] / cool some [object] and put it in [receptacle] - Cool & Place:
the agent must find an object of the desired type, pick it up, go to a fridge, put the object inside
the fridge and cool it, then find the correct location to place it, and put it down there.

* put two [object] in [receptacle] / find two [object] and put them in [receptacle] - Pick Two &
Place: the agent must find an object of the desired type, pick it up, find the correct location to
place it, put it down there, then look for another object of the desired type, pick it up, return to
previous location, and put it down there with the other object.

Output format (exactly): Return a single JSON list. Each element of the list should be a JSON object with
the following structure for each step:

{
"step": <number>,
"action": "<action>",
"observation": "<observation>",
"reasoning": "<analyze whether the action has any effect based
on the given observation, if yes what is that>",
"location": "<location>",
"inventory": ["<item>", "<item>", ...],
"reached_goals": ["<goalA>", "<goalB>", ...]

}

- v

Figure 7: Goal inference prompt for ALFWorld
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Action relevance labeling prompt for ALFWorld

You are a step-relevance classifier for AlfWorld. Given a goal and a sequence of actions, observations, with
location and inventory derived by a model, decide for each step whether it is necessary to achieving the goal.
A step is “relevant” if it is a necessary prerequisite or directly advances toward the goal; actions that involve
the wrong objects, revisit unrelated locations, or otherwise do not help achieve the goal are “irrelevant”.
Some goals may require exploration in the early stage to find the relevant objects, and intermediate tasks
such as heating, cooling, cleaning, examining, or finding an object. For each step, provide a brief chain of
thought to explain how you judged the step relevant or irrelevant. Do not summarise or skip any steps, even
if the observation is identical to previous ones.

Output format (exactly): Return a single JSON array. For each step, output an object with these fields:

"step": <number>,

"action": "<provided action>",

"observation": "<provided observation>",

"location": "<provided location>",

"inventory": ["<item>", ],

"reasoning": "<analyze the effect and function of the action,
then analyze whether it's necessary to achieving the goal>"
"is_relevant_to_goal": "yes" | "no",

Figure 8: Action relevance labeling prompt for ALFWorld
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Goal inference prompt for WebShop

You are a goal-inference assistant for Webshop. Given a full trajectory with Actions (search or click) and
Observations (page text, system message), infer what user’s intended and also succesfully purchased:

* product (str) - generic product type; ignore brand/manufacturer and DON’T copy the full title.
Prefer the head noun from category/title

attributes (list) - short descriptive phrases from title/description; not clickable (e.g., [“portable”,
“mid-century style”]). NOT brand.

options clicked (dict) - the literal option texts the agent clicked on this product, in click order (e.g.,
<size> | <color> | <quantity>). Do not invent labels or pairs; just copy the clicked option strings.

* quantity (strlnull) - the chosen quantity if it was explicitly clicked; otherwise 1.
e price (number) - the price of the selected product/variant

Derive procedure:
1. Extract the exact ‘query‘ string(s) from search actions.

2. Derive ‘selected’ (extracting ‘product’, ‘attributes‘, ‘options‘, ‘quantity‘, and ‘price‘) from clicks
+ final product page. Note: clicking an non-existing product select nothing!

3. ‘selected price‘: copy the exact per-item price number shown on the final product page after the
last option click. If it’s a range, copy the upper bound.

4. ‘query satisfaction (compare ‘query‘ vs ‘selected’). verify that all requirements in the ‘query‘ are
satisfied by ‘selected‘; Spot any contradiction.

5. Derive ‘purchase success* based on purchase completion: purchase success = true only if Obser-
vations confirm a terminal purchase action took effect.

Output format (exactly): Return a single JSON array. For each step, output an object with these fields:

( 3

'query': <extract the exact queries from search actions>,

'selected': <product type| attributes... | options_clicked...
| quantity | price>,
'selected_price': <number>,

'reasoning': <brief analysis of whether ALL query requirements
are satisfied and any contradictions>,

'query_satisfaction': True | False

'purchase_success': True | False,

Figure 9: Goal inference prompt for WebShop
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Action relevance labeling prompt for WebShop

You are a step-relevance classifier for WebShop. Input:
* ‘target intention‘ (JSON): the shopping intention.

* ‘trajectory‘: ordered steps; each step has:
- ‘Action‘: the web action by user.
- ‘Observation‘: the observsation returned by the web server after the action.
- ‘current intention‘ (JSON): intention inferred up to this step.

Decide per step (in hindsight) whether or not: (1) Did ‘current intention‘ change vs the previous step?
Summarize the delta; else none. (2) If no change: was the action needed for the eventual purchase path?
Needed = removing it would break what actually led to purchase. Not needed = no observable effect, dead
ends later abandoned, toggles undone before use, unrelated clicks, no-ops.

Judge ONLY from observation-confirmed effects + the provided state. Do not skip steps.
Rules

¢ Use only observation-confirmed effects and the provided state.
¢ Judge every step; don’t skip.
* ‘relevance‘ = yes iff (1) intention changed or (2) action was needed.

Output format (exactly): Return a single JSON array; one object per step:

"step": <number>,

"action": "<exact provided action>",

"intention_delta": "<concise diff or 'none'>",
"needed_for_purchase": "<explain whether the action is necessary
to the purchase behavior>",

"relevance": "yes" | "no"

Figure 10: Action relevance labeling prompt for WebShop
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