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Abstract

Instruction tuning (IT) is crucial to tailoring large language models (LLMs) towards
human-centric interactions. Recent advancements have shown that the careful
selection of a small, high-quality subset of IT data can significantly enhance the
performance of LLMs. Despite this, common approaches often rely on additional
models or data, which increases costs and limits widespread adoption. In this work,
we propose a novel approach, termed SelectIT, that capitalizes on the foundational
capabilities of the LLM itself. Specifically, we exploit the intrinsic uncertainty
present in LLMs to more effectively select high-quality IT data, without the need
for extra resources. Furthermore, we introduce a curated IT dataset, the Selective
Alpaca, created by applying SelectIT to the Alpaca-GPT4 dataset. Empirical
results demonstrate that IT using Selective Alpaca leads to substantial model ability
enhancement. The robustness of SelectIT has also been corroborated in various
foundation models and domain-specific tasks. Our findings suggest that longer
and more computationally intensive IT data may serve as superior sources of IT,
offering valuable insights for future research in this area. Data, code, and scripts
are freely available at https://github.com/Blue-Raincoat/SelectIT.
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Figure 1: Existing advanced data selection
strategies rely heavily on external models or
data; however, SelectIT effectively overcomes
this limitation.

Large language models (LLMs) have attracted much
attention due to their impressive capabilities in
following instructions and solving intricate prob-
lems (Touvron et al., 2023b,a; Achiam et al., 2023;
Penedo et al., 2023). A crucial aspect of enhanc-
ing LLMs’ performance is instruction tuning (IT),
which involves the supervised adjustment of LLMs
using pairs of instructional data, essential for re-
fining the models’ ability to accurately respond
to human instructions. Recent groundbreaking re-
search, such as the LIMA (Zhou et al., 2023), high-
lights the critical importance of instructional data
quality over quantity. Contrary to the approach
of merely increasing the dataset size, a carefully
selected, smaller dataset of higher quality can sig-
nificantly improve LLMs’ performance.
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Despite the development of various high-quality data selection methods, they often depend on external
resources, limiting wider implementation. External Model: Chen et al. (2024); Liu et al. (2023)
propose the employment of closed-source LLMs to evaluate or rank IT data. To circumvent the
closed-source limitations, Li et al. (2023a,b); Kung et al. (2023) recommend fine-tuning open-source
LLMs, which requires more computational resources. External Data: Cao et al. (2023) split all mixed
data into several bins and fully trained the models to evaluate different indicators of high-quality IT
data. Despite these advancements, the challenge of precise and efficient high-quality data selection
without external resources remains unresolved.

In this paper, we introduce SelectIT, a novel approach designed to enhance IT data selection by fully
leveraging the foundation model itself, eliminating the need for external resources. SelectIT employs
different grain uncertainty of LLMs: token, sentence, and model, which can effectually improve the
accuracy of IT data selection. We first use the foundation model itself to rate the IT data from 1 to K
based on the uncertainty of various tokens. Next, we use sentence-level uncertainty to improve the
rating process by exploiting the effect of different prompts on LLMs. At a higher model level, we
utilize the uncertainty between different LLMs, enabling a collaborative decision-making process for
IT data selection. By applying SelectIT to the original Alpaca, we curate a compact and superior IT
dataset, termed Selective Alpaca.

Experimental results show that SelectIT outperforms existing high-quality data selection methods,
improving LLM’s performance on the open-instruct benchmark (Wang et al., 2024). Further analysis
reveals that SelectIT can effectively discard abnormal data and tends to select longer and more
computationally intensive IT data. The primary contributions of SelectIT are as follows:

• We propose SelectIT, a novel IT data selection method which exploits the uncertainty of
LLMs without using additional resources.

• We introduce a curated IT dataset, Selective Alpaca, by selecting the high-quality IT data
from the Alpaca-GPT4 dataset.

• SelectIT can substantially improve the performance of LLMs across a variety of foundation
models and domain-specific tasks.

• Our analysis suggests that longer and more computationally intensive IT data may be more
effective, offering a new perspective on the characteristics of optimal IT data.

2 Related Work

Instruction Tuning Dataset Recent empirical research highlights the substantial benefits of fine-
tuning LLMs on specialized datasets containing instructions and responses, significantly enhancing
their generalization capabilities and responsiveness to new questions (Chung et al., 2022; Longpre
et al., 2023; Honovich et al., 2022; Sun et al., 2023). FLAN (Wei et al., 2022a) reformulates
traditional natural language processing tasks as instructions formats, thereby improving model
performance. Alpaca (Taori et al., 2023; Peng et al., 2023a) exemplifies the effectiveness of merging
a select set of manual instruction seeds with advanced LLMs, like text-davinci-003 or GPT-4,
to compile a comprehensive dataset. Similarly, Vicuna (Chiang et al., 2023) leverages 70,000
conversations from ChatGPT interactions, benefiting from the diverse data types and structures
within these dialogues. WizardLM (Xu et al., 2023) introduces a novel approach by using LLMs
to automatically generate open-domain instructions of varying complexities, achieving controlled
instructional difficulty variation. However, LIMA (Zhou et al., 2023) demonstrates that only 1K
high-quality IT data can match or exceed the performance of LLMs fine-tuned on larger IT datasets,
presenting a promising direction for future research.

Instruction Data Selection The recognition of IT data quality’s superiority over quantity in the
context of IT is well-established, yet the efficient and precise identification of high-quality data
continues to be a challenging frontier for research. One straightforward approach is utilizing the
closed-source advanced LLMs for IT data evaluation and selection (Chen et al., 2024; Liu et al.,
2023). To circumvent the constraints associated with closed-source, existing research opt to fine-tune
LLMs directly to select high-quality IT data (Li et al., 2023b; Kung et al., 2023). Li et al. (2023c);
Gururangan et al. (2020); Chen et al. (2023a); Cao et al. (2023) use pre-defined notions of useful data
or other IT datasets to develop a data quality assessment framework. Li et al. (2023a) propose training
a specialized model and utilizing two unique, condition-based losses on this for a comprehensive IT
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Figure 2: Overall framework of SelectIT. In Token-level Self-Reflection, we employ the foundation
model to rate the IT data from 1 to K. In Sentence-level Self-Reflection, we leverage the uncertainty
of varied prompts on LLMs to enhance the rating process. In Model-level Self-Reflection, we harness
uncertainty among different LLMs to facilitate a collaborative decision-making process in selecting
IT data. Finally, different levels of self-reflection are reasonably combined into SelectIT, which can
effectively select high-quality IT data without relying on additional resources.

data selection. Wu et al. (2023) explore where data selection is informed by the similarity of samples
within the embedding space of a fine-tuned model. N-gram features (Xie et al., 2023) or model
gradients (Xia et al., 2024; Han et al., 2023) are also important features for selecting high-quality
data in fine-tuned LLMs. However, the methods described above depend, to varying degrees, on
supplementary datasets, the use of closed-source models, or open-source models that have been
specially fine-tuned, which results in increased consumption of resources and potentially limits the
broader impact.

3 Our SelectIT Method

Utilizing advanced LLMs for the sample evaluation is a widely adopted approach in the IT data
selection (Chen et al., 2024; Li et al., 2023b; Liu et al., 2023). Given an IT dataset D containing a
sample S = (input X , response Y ), a designated rating prompt RP , and the foundation LLMs M , the
goal is to leverage both RP and S to prompt M to assign an evaluation Score to the sample S on a
scale from 1 to K. A higher score typically signifies superior IT data Quality.

Quality ∝ Score ∈ [1,K] = M(RP, S) (1)

While existing methods (Chen et al., 2024; Cao et al., 2023) are adept at identifying high-quality
samples, they often over-rely on external resources. To address these challenges, we introduce
SelectIT, a strategy that capitalizes on the internal uncertainty of LLMs to efficiently select high-
quality IT data. SelectIT incorporates three grains of sample evaluation modules: token, sentence,
and model-level self-reflections, which effectively improve the reliability of IT data selection. The
comprehensive framework of SelectIT is depicted in Figure 2.
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3.1 Token-level Self-Reflection

Numerous studies have demonstrated that foundation models exhibit robust capabilities for next-token
prediction during their pre-training phase (Touvron et al., 2023b,a). Yet, this predictive strength is
frequently underutilized in evaluating IT data quality. In SelectIT, we adopt a similar idea to evaluate
IT data. Specifically, we calculate the next-token probability (from 1 to K) based on the rating
prompt RP and sample S. The score token with the highest probability is then considered as the
sample’s quality.

Sbase = argmax
k∈{1,...,K}

P ′
k, P

′
k =

(
Pk∑K
j=1 Pj

)
(2)

where Pk and P ′
k mean the probability and normalized probability of token k.

The probability distribution among score tokens reflects the internal uncertainty of LLMs on sample
evaluation. The higher P ′

Sbase , the more confidence of LLMs, which is not well exploited in
Equation 2. To capture this subtle difference, we introduce the token-level self-reflection (Token-R),
which uses the distribution between tokens that reflect the internal uncertainty of LLMs, to enhance
the credibility of quality assessment. Specifically, we assess the average disparity between the
predicted Sbase token and the other, where the greater the disparity, the more the confidence of LLMs.
This disparity is then utilized to refine the original Sbase, resulting in a token-level score Stoken.

Stoken = Sbase × 1

K − 1

K∑
i=1

|P ′
i − P ′

Sbase |︸ ︷︷ ︸
Uncertainty

(3)

3.2 Sentence-level Self-Reflection

Different prompts can significantly affect outputs of LLMs (Kung et al., 2023; Peng et al., 2023b),
introducing uncertainty into IT data evaluation at the sentence level. To make better use of this uncer-
tainty to bolster the reliability of our method, we implement sentence-level self-reflection (Sentence-
R). Building upon Token-R, we devise K semantically similar rating prompts{RP0, RP1, . . . , RPK}
to obtain a series of quality scores {Stoken

0 , Stoken
1 , . . . , Stoken

K } based on a given sample S. We
calculate the average of these scores to represent the overall quality of sample S, because of the
importance of incorporating assessments from diverse prompts. Additionally, we use the standard
deviation to quantify the LLMs’ uncertainty to rating prompt; a higher standard deviation suggests
greater sensitivity to prompt variation, while a lower standard deviation indicates more consistent and
confident quality ratings by LLMs (Zhou et al., 2020). By integrating a holistic sample evaluation
with the quantification of model uncertainty, we derive the sentence-level score Ssent, offering a
more nuanced and reliable measure of IT data quality.

Ssent =
Avg{Stoken

i }Ki=1

1 + α× Std{Stoken
i }Ki=1︸ ︷︷ ︸

Uncertainty

(4)

where Avg{·} and Std{·} respectively denote the mean and standard deviation of Stoken
i , K means

the number of rating prompts RP . Moreover, we use the uncertainty factor α to control for the impact
of the uncertainty of LLMs on overall scores.

3.3 Model-level Self-Reflection

A sample affirmed by multiple foundation models can truly be deemed as high-quality. Different
foundation models have different quality assessments of the sample, which introduce model-level
uncertainty. To maximize the utilization of this uncertainty, we introduce model-level self-reflection
(Model-R). This strategy leverages the capabilities of existing open-source models without the need
for additional resources or the complexities associated with fine-tuning. However, the challenge lies
in the diverse capabilities of various LLMs and determining how to reasonably combine their sample
evaluation based on their performance. It is widely acknowledged that the capabilities of LLMs tend
to increase with their parameter count (Hendrycks et al., 2021). Thus, we suggest using the parameter
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count of LLMs as an initial metric for assessing their capabilities to properly weight sample quality
scores. Given N foundation models with parameter counts {θ1, θ2, . . . , θN} and their respective
sentence-level scores for a sample S being {Ssent

0 , Ssent
1 , . . . , Ssent

N }, we formulate the model-level
score Smodel to reflect a comprehensive evaluation of sample quality.

Quality ∝ Smodel =

N∑
i=1

(
θi∑N
j=1 θj

× Ssent
i

)
(5)

where N means the number of the foundation models. By obtaining LLM parameters without
resource expenditure, Model-R effectively allows us to employ more powerful foundation models,
which is advantageous for selecting higher-quality data. Finally, we use Smodel as the final evaluation
of sample S in SelectIT. The higher Smodel, the better sample quality. We sort the samples in
descending order based on their Smodel and then select the top-ranked samples as high-quality data.

3.4 Selective Alpaca

We apply SelectIT to the widely-used Alpaca-GPT4 (Peng et al., 2023a). Specifically, we use the
most popular LLaMA-2 (7B, 13B, 70B) as our foundation models and set the hyper-parameters
α = 0.2 and K = 5, which decides the range of LLMs rating in Token-R and the number of rating
prompts in Sentence-R. We finally select the top 20%, a total of 10.4K pairs as the high-quality data
and obtain a curated IT dataset called Selective Alpaca.

4 Experiments

4.1 Setups

Benchmark To gain a more comprehensive understanding of the capabilities of LLMs, we evaluate
our approach in diverse downstream tasks (Wang et al., 2024; Ivison et al., 2023). Factual knowledge:
We use the Massive Multitask Language Understanding dataset (MMLU (Hendrycks et al., 2021)) to
assess the factual knowledge of LLMs and report 5-shot results. Reasoning: We evaluate the reasoning
abilities of LLMs using two widely utilized datasets: the Grade School Math dataset (GSM (Cobbe
et al., 2021)) and Big-Bench-Hard (BBH (Suzgun et al., 2022)) with the CoT setting (Wei et al.,
2022b). Multilinguality: we assess this ability by TyDiQA, a multilingual question-answering
benchmark that encompasses 11 diverse languages, with the gold-passage setup. Coding: We evaluate
this ability using the HumanEval dataset (Chen et al., 2021) and report pass@10 results with a
temperature of 0.8. Open-ended generation: We utilize AlpacaEval (Dubois et al., 2023), which
employs GPT-4 to effectively assess model outputs. This can evaluate whether the text produced by
LLMs aligns with humans.

Implementation Details We use LLaMA-2 as our testbed. We fine-tune it for 3 epochs, with a
batch size of 128. We use Adam with β1 = 0.9, β2 = 0.999, and the cosine learning rate scheduler
starts from 2e−5, and decays to 0. we opted for a 4096 input length because it can show the best
performance of LLMs. We employ the beam = 4 for decoding. We set the temperature parameter
to 0.8 and the top−p sampling parameter to 0.9 to improve the originality of the output text while
ensuring the accuracy and relevance of the content.

Baselines We compare with the following baselines:

• Alpaca-GPT4 (Peng et al., 2023a) is a widely-used IT dataset that implements a self-instruct
method to autonomously generate instructions by the advanced GPT4.

• LIMA (Zhou et al., 2023) primarily consists of 1000 manually crafted high-quality instruc-
tional data, which can better stimulate the alignment capability of LLMs.

• AlpaGasus (Chen et al., 2024) involves utilizing the robust ChatGPT to score and select
data from the original Alpaca-GPT4 dataset.

• Q2Q (Li et al., 2023a) operates by training a precursor model, determining the quality of
the IT data based on the two different loss values within this model.

• Instruction Mining (Cao et al., 2023) entails fitting data features and loss values to derive a
formula for assessing data quality.
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ID System External MMLU BBH GSM TydiQA CodeX AE Overall
Model Data AVG ∆ (↑)

Base Model: LLaMA-2-7B Implemented Existing Method
1 Alpaca-GPT4 46.5 38.4 15.0 43.4 26.8 34.2 34.1 -
2 LIMA % ! 45.4 37.5 14.3 45.1 24.6 33.1 33.3 -0.7
3 1 + AlpaGasus ! % 45.9 39.0 14.5 46.4 27.5 35.4 34.8 +0.7
4 1 + Q2Q ! % 46.9 39.4 15.3 46.7 28.2 35.7 35.4 +1.3
5 1 + Instruction Mining ! ! 47.0 39.6 16.5 47.1 28.6 34.4 35.5 +1.5

Our Proposed Method (Individual)
6 1 + Token-R % % 46.8 36.5 14.5 44.6 28.9 35.5 34.5 +0.4
7 1 + Sentence-R % % 46.9 38.1 16.1 48.4 26.9 35.3 35.3 +1.2
8 1 + Model-R % % 47.3 37.4 16.1 45.3 28.4 35.8 35.1 +1.0

Our Proposed Method (All)
9 SelectIT (6 + 7 + 8) % % 47.4 40.6 16.8 47.4 29.4 35.7 36.2 +2.2

Base Model: LLaMA-2-13B Implemented Existing Method
10 Alpaca-GPT4 55.7 46.6 30.5 48.1 40.8 46.5 44.7 -
11 LIMA % ! 54.6 45.3 30.5 51.1 34.1 42.6 43.0 -1.7
12 10 + AlpaGasus ! % 54.1 47.3 31.5 50.6 41.3 46.3 45.2 +0.5
13 10 + Q2Q ! % 55.3 48.5 32.0 50.8 41.3 47.3 45.9 +1.2
14 10 + Instruction Mining ! ! 54.1 47.3 32.5 52.6 43.3 48.3 46.3 +1.6

Our Proposed Method (Individual)
15 10 + Token-R % % 55.3 47.3 30.5 51.3 39.8 46.2 45.1 +0.4
16 10 + Sentence-R % % 55.2 48.3 31.0 52.2 42.5 46.3 45.9 +1.2
17 10 + Model-R % % 55.1 47.5 31.5 52.3 40.2 46.1 45.5 +0.8

Our Proposed Method (All)
18 SelectIT (15 + 16 + 17) % % 55.7 48.9 33.0 54.1 42.2 48.8 47.1 +2.4

Table 1: Overall results on IT. “CodeX” and “AE” mean HumanEval and AlpacaEval benchmarks.
All the scores are averages of three independent runs with different random seeds.

4.2 Main Results

We focus on the discussion of LLaMA-2-13B because both 7B and 13B models exhibit similar
trends in Table 1. System (10) shows the vanilla IT on LLMs with the original Alpaca. By using the
data selection strategies, the ability of LLMs has a moderate enhancement in Systems (12) to (14).
Additionally, we can use Sbase as the input for Equations 4 and 5 to construct individual methods of
Sentence-R and Model-R. Systems (15) to (17) illustrate that applying each submodule of SelectIT
incrementally enhances LLMs’ performance, rivaling contemporary advanced methods.

Most remarkably, SelectIT can better boost LLaMA-2’s performance compared to vanilla IT in the
System (18). Compared to other IT data selection strategies, this enhancement is particularly evident
in the computational and reasoning tasks on the BBH and GSM benchmarks. This may be attributed
to the characteristics of selected data by SelectIT, and we will analyze this phenomenon in a later
section. These gains in reasoning ability also positively impact the coding proficiency of LLMs. The
improvement of LLMs on the TydiQA dataset is also obvious enough, which shows that SelectIT can
effectively eliminate similar samples and retain sufficient diversity in multilingual aspects.

5 Analysis

This part aims to answer the research questions through the following experiments: How to select
high-quality data in SelectIT? (§5.1) Is SelectIT adaptable to various models and domains? (§5.2)
How about the efficiency of SelectIT? (§5.3) What are the advantages of Selective Alpaca?(§5.4)

5.1 Abalation Study of SelectIT

Figure 3: Comparison of LLM abilities
with varying Alpaca proportions.

Effect of IT Data Quantity While SelectIT already
excels at assessing and ranking samples effectively,
selecting an appropriate number of samples in a redun-
dant dataset remains a crucial aspect of our method. We
divide the Alpaca dataset into multiple subsets ranging
from 10% to 100% based on SelectIT’s evaluation and
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evaluate the overall ability of LLMs on the open-instruct benchmark. As illustrated in Figure 3,
compared to using the full Alpaca dataset, we observe that LLMs achieve optimal performance using
the top 20% to 40% data. Hence, considering the tradeoff of training resources, training time, and
model performance, we opt for 20% for implementing the SelectIT on the Alpaca dataset.

K LLaMA-2-7B LLaMA-2-13B Overall
3 35.6 46.4 40.5
5 36.2 47.1 41.7
7 35.7 47.3 41.5
9 36.0 46.8 41.4

Table 2: Effect of different K.

Effect of Multiple Rating Prompts K is a critical
parameter for our method, impacting not only the range
of scores assigned by the LLMs but also the number
of rating prompts. We set K = 3, 5, 7, 9 and apply
SelectIT for sample selection within the Alpaca to get
different subset datasets. Table 2 indicates that vari-
ations in the value of K have a minor impact on the
overall performance of the LLMs. This is attributed to
our multi-granularity self-reflection mechanism, which effectively enhances the accuracy and stability
of sample selection. Although the model achieves competitive performance at K values of 5 and 7,
to minimize resource consumption, we set K = 5 as the default value in SelectIT.

α MMLU BBH GSM Tydiqa CodeX AE AVG
0.2 47.4 40.6 16.8 47.4 29.4 35.7 36.2
0.4 47.9 39.4 15.5 46.5 29.4 35.8 35.8
0.6 47.8 39.8 16.5 45.6 29.1 35.1 35.7
0.8 47.6 36.4 16.5 43.6 26.7 35.4 34.4

Table 3: Effect of different α.

Effect of Uncertainty α is an uncer-
tainty factor, integral to calibrating the
equilibrium between the mean and the
standard deviation of scores derived from
Token-R. We assign α four different val-
ues, i.e., 0.2, 0.4, 0.6, and 0.8, and in-
corporate SelectIT for sample selection
from within Alpaca to generate disparate
subset datasets, with all other parameters remaining constant. As shown in Table 3, with a rise in the
α value, Sentece-R tends to emphasize the uncertainty innate to LLMs. This results in the neglect of
the average score, a fundamental indicator of sample quality, thereby contributing to a decrease in the
overall performance of LLMs. Consequently, we ascertain that an α value of 0.2 is optimally suited
to establish an effective balance between the sample’s quality and the model’s uncertainty.

ID Individual Unique (%) Overall (%)
6 Token-R 6.18 17.83
7 Sentence-R 40.81 63.98
8 Model-R 7.37 23.08

Table 4: The relationship between the Se-
lectIT and the individual selection strategy.
Sentence-R plays the most significant im-
pact on the final rating of the IT data. IDs
6, 7, and 8 correspond to the system of the
same IDs in Table 1.

Effect of Different Reflection Strategy We analyze
the relationship between individual selection strategies
and SelectIT, from the following two aspects. We first
account for the number of high-quality data that can
only be selected by a unique selection strategy, referred
to as unique selection. Secondly, we calculate which
samples in Selective Alpaca can be selected by indi-
vidual selection strategies in Selective Alpaca, called
overall selection. As shown in Table 4, Sentence-R
plays the most important role in the final SelectIT strat-
egy. This is because rating prompts play an important
role in sample evaluation and exploiting the effect of
different prompts on LLM can effectively better improve the accuracy of sample evaluation than
Token-R and Model-R. Additionally, this phenomenon also aligns with the model’s performance
reported in Table 1, showing the rationality of our proposed uncertainty-aware self-reflection methods.

Base Model Datasets Data Size MMLU BBH GSM Tydiqa CodeX AE Overall
AVG ∆ (↑)

LLaMA-2-7B

LIMA 1K 45.4 37.5 14.3 45.1 24.6 33.1 33.3 -
Selective Alpaca 1K 46.6 41.3 14.5 46.2 30.6 33.8 35.5 +2.2

AlpaGasus 9K 45.9 39.0 14.5 46.4 27.5 35.4 34.8 -
Selective Alpaca 9K 47.2 41.3 18.5 47.6 28.3 35.4 36.4 +1.6

Table 5: Results on IT for different datasets with the same number of instances.

Effect of Data Imbalance To eliminate unfair comparison caused by IT data quantity imbalance,
we adjust the size of the Selective Alpaca dataset to 1,000 and 9,229 respectively, aligning with the
LIMA (Zhou et al., 2023) and AlpaGasus (Chen et al., 2024) datasets. The results in Table 5 show
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Base Model Datasets MMLU BBH GSM Tydiqa CodeX AE Overall
AVG ∆ (↑)

LLaMA-2-7B Alpaca-GPT4 46.5 38.4 15.0 43.4 26.8 34.2 34.1 -
Selective Alpaca 47.4 40.6 16.8 47.4 29.4 35.7 36.2 +2.1

LLaMA-2-13B Alpaca-GPT4 55.7 46.6 30.5 47.1 38.8 46.5 44.2 -
Selective Alpaca 55.3 48.5 32.5 54.1 41.2 47.8 46.6 +2.4

Mistral-7B Alpaca-GPT4 52.5 51.7 33.5 51.1 54.7 43.1 47.8 -
Selective Alpaca 56.9 53.7 36.0 49.3 55.3 44.3 49.3 +1.5

LLaMA-3-8B Alpaca-GPT4 59.6 52.3 34.5 43.1 60.2 48.2 49.7 -
Selective Alpaca 61.2 55.0 37.5 41.1 65.4 47.7 51.3 +1.6

Table 6: Results of IT with various foundation models.

Datasets Data Size MMLU BBH GSM Tydiqa CodeX AE Overall
AVG ∆ (↑)

WizardLM 143K 43.8 37.8 10.0 41.2 25.2 35.3 32.2 -
WizardLM + SelectIT 28.6K 45.1 40.1 11.0 43.1 27.5 34.7 33.6 +1.4
Orca-GPT4 1M 40.1 35.6 13.0 46.0 23.3 38.1 32.7 -
Orca-GPT4 + SelectIT 0.2M 43.9 38.7 16.5 42.0 27.7 37.4 34.4 +1.7

Table 7: Results of IT with various IT datasets.

that, when facing the same amount of data, SelectIT can still demonstrate better performances, which
further illustrates its effectiveness.

5.2 Robustness across Models, Datasets and Domains

Various Foundation Models Although Selective Alpaca achieved impressive improvements in
LLaMA-2, applying it to other foundation models remains a challenging task. To address this,
we apply Selective Alpaca on the Mistral-7B and LLaMA-3-8B LLMs and present our results on
the open-instruct benchmark alignment with the above test configuration. As depicted in Table 6,
although Selective Alpaca is selected by the LLaMA-2 models, it is also applicable to the Mistral-7B,
LLaMA-3-8B and improves their capabilities across various tasks, especially on MMLU, BBH, and
GSM benchmarks. This experiment fully demonstrates the flexibility of SelectIT which does not rely
on a specific foundation model for data selection and the universality of Selective Alpaca which can
effectively improve the capabilities of different series or scale LLMs.

Various Instruction Tuning Datasets We further validate the robustness of SelectIT by deploying it
on two additional, widely-utilized datasets: WizardLM (Xu et al., 2023) and Orca-GPT4 (Subhabrata
& Arindam, 2023). WizardLM introduces an innovative method of using LLMs to auto-generate
open-domain instructions of varying complexities. This allows for a controlled variation in instruc-
tional difficulty and the dataset comprises 143K samples. Orca-GPT4 on the other hand, leverages
rich signals from GPT-4 that include explanation traces, step-by-step thought processes, and other
multifaceted instructions, all under the guidance of teacher assistance from ChatGPT. Additionally,
we maintain consistent hyperparameters, such as α and K, choosing LLaMA-2-7B as our base model.
We limit the fine-tuning of these datasets to one epoch. As shown in Figure 7, SelectIT consistently
enhances the performance of the model on both the WizardLM and Orca-GPT4 datasets. Notably,
this augmentative effect is especially pronounced in the computational and reasoning tasks within
the BBH and GSM benchmarks. In evaluating three separate IT datasets, specifically Alpaca-GPT4,
WizardLM, and the more extensive Orca-GPT4, our extensive experimental conclusions validate the
broad utility and durability of SelectIT.

Various Domain-specific Tasks Machine translation (MT) is a representative domain-specific task
of LLMs. Previous works have already demonstrated significant improvements with LLMs, but they
usually use redundant translation IT datasets. This part tests the robustness of SelectIT on the IT
dataset of MT. We select the powerful MT LLM ALMA (Xu et al., 2024) as our backbone model.

We choose the representative language pairs {German, Chinese}⇔English from WMT’17 to
WMT’20 human-written test datasets, and development and test sets from Flores-200, totaling
30K training examples. We used WMT’22 test data for testing, and finally, 6K high-quality
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Method Size ALL
COMET BLEU

SoTA Models
NLLB (Costa-jussà et al., 2022) 54B 78.8 26.3
GPT-3.5 - 85.6 34.8
GPT-4 - 85.8 35.1

Existing Method
LLaMA-2 (Touvron et al., 2023b) 7B 76.5 21.1
TIM (Zeng et al., 2023) 7B 79.1 26.4
SWIE (Chen et al., 2023b) 7B 80.6 27.6
BigTranslate (Yang et al., 2023) 13B 78.8 21.9
Bayling (Zhang et al., 2023) 13B 82.0 27.8

Our Implemented Method
ALMA 7B 83.2 29.7

w/ SelectIT 7B 83.7 30.5
ALMA 13B 83.7 31.5

w/ SelectIT 13B 84.2 32.2

Table 8: The overall results on MT LLMs.

examples were selected using SelectIT. We utilize both
BLEU (Post, 2018; Ott et al., 2018) and COMET (Rei
et al., 2022) based on the wmt22-comet-da model for
evaluation. We report results for the two language pairs
in four directions, using ALL to represent their aver-
age. Table 8 shows that SelectIT consistently improves
ALMA’s translation performance. These results indi-
cate that SelectIT is a versatile and scalable method,
effective not only for IT data selection but also for
domain-specific tasks like MT. For more detailed anal-
ysis and results, please see Appendix A.1.

5.3 Efficiency of SelectIT

Method Speed Time Cost
ChatGPT API 0.76 it/s 19.07h $52.02
GPT4 API 0.37 it/s 38.98h $2871.56
SelectIT 9.34 it/s 5.80h $26.68

Table 9: Comparison of selection efficiency.

SelectIT is a faster and more cost-effective method
for IT data selection. We compared different selection
methods on the Alpaca-GPT4 dataset. For ChatGPT
(AlpaGasus) or GPT-4, we randomly select 500 instruc-
tion data from Alpaca-GPT4, analyze various metrics,
and estimate the resource consumption for selecting the
entire dataset. Using SelectIT, we employ 4 A800 80G
GPUs to select high-quality IT data, calculating the total cost based on Google Cloud’s rate of $1.15/h
per single GPU. As shown in Table 9, SelectIT is significantly faster and uses the least resources. This
efficiency is due to computing only the probability of the next token for input sentences, bypassing the
full sentence generation and decoding process, resulting in lower resource consumption. Additionally,
using our own GPU at a low cost enhances transparency, allowing us to preserve all intermediate
outputs and results for thorough analysis in data selection.

5.4 Insights of Selective Data Curation

Method LLaMA-2 ALMA
∆ (↑)

7B 13B 7B 13B

Full Dataset 34.1 44.2 29.7 31.5 -
w/ Random (Full) 34.1 45.1 29.3 31.0 0.0
w/ Random (Unselected) 34.6 44.3 29.1 31.2 -0.4
w/ Length 35.5 47.1 30.1 31.8 +5.0
w/ SelectIT 36.2 47.1 30.5 32.2 +6.5

Table 10: Comparasion with variants.

Different Selection Strategies This part compares
three different selection strategies, namely, randomly
selecting 20% in the full Alpaca and unselected dataset
of Selective Alpaca, and selecting 20% data based on
sample length (Zhao et al., 2024). As shown in Table 10,
the random-based strategies show certain performance
degradation and the random selection in the unselected
dataset is even worse, which reflects the effectiveness
of our method from the side. Selection based on sample length is a simple approach to defining
high-quality data, but it does not take into account the content of IT data, resulting in the limited
performance of LLMs. SelectIT can significantly improve the abilities of LLMs.

Data Representation Analysis This part explores the relationship between Selective Alpaca and
the original datasets from a representation perspective. Following Gao et al. (2024), we use the outputs
of the last layer corresponding to the last token in the input sequence as sample representations. We
then apply T-SNE (Hinton & Roweis, 2002) for dimensionality reduction, mapping high-dimensional
embeddings onto a 2D space. Figure 4 shows the intermediate representations generated by the full
and Selective Alpaca datasets. Randomly selected data struggle to distinguish abnormal data far from
the center, making it hard to define high-quality IT data. In contrast, Selective Alpaca data are mostly
concentrated around the center, indicating that our dataset predominantly contains high-quality data
near the center and effectively discards abnormal data, supporting the conclusion of Table 10.

Data Characteristic Analysis We analyze the Selective Alpaca from the following two perspectives,
to explore why our dataset is better than the original dataset and its variants. Firstly, as shown in
Figure 5, the length of instructions from the Selective Alpaca is significantly longer than those in
the Alpaca dataset and AlpaGasus which is selected by ChatGPT. This implies that, with the same
amount of data, our dataset contains more information, aligned with the results in Table 10. Secondly,
by using ChatGPT to examine IT data types, we find a substantial increase in the proportion of
computational problems in Selective Alpaca. This indicates that Selective Alpaca tends to select
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Figure 4: Instruction embeddings representations
of different selection strategies. The red and blue
points are representations of full Alpaca datasets
and selected data respectively.

Figure 5: Left: The average length of samples.
Right: The proportion of calculation type.

high-quality mathematical data, providing a solid explanation for the observed improvement in the
reasoning abilities of LLMs as demonstrated in Table 1. Appendix A.3 shows the case study of
comparing the Selective Alpaca with AlpaGasus.

Figure 6: Changing trends of the calculation
and sample length with different data sizes.

Insights of High-Quality Data in SelectIT Further-
more, we analyze the proportion of calculation and
sample average length in Alpaca-GPT4 with different
proportions after sorting by SelectIT to explore its in-
trinsic characteristics and the definition of high-quality
data. As shown in Figure 6, with the proportion of
Alpaca-GPT4 data continuing to increase, the propor-
tion of calculation and sample average length gradu-
ally decreases. This phenomenon clearly indicates that
SelectIT can reasonably rank samples based on their
characteristics. When the data size is more than 50%, the proportion of calculation IT data sharply
declines, falling below 6%, causing a noticeable decrease in the model’s overall capability, as de-
picted in Figure 3. This analysis shows that more computationally intensive IT data may be a new
perspective on the characteristics of optimal IT data, which not only effectively improves the LLMs’
reasoning ability, but also further drives the improvement of other abilities.

6 Conclusion

This paper introduces a novel data selection strategy, SelectIT, for LLM instruction tuning, which uses
LLM uncertainty to efficiently identify high-quality IT data without requiring additional resources.
SelectIT includes three types of self-reflection: token, sentence, and model, which can individually
and jointly improve the performance of IT data selection. By applying SelectIT to the Alpaca-GPT4
dataset, we introduce a compact and strong IT dataset, called Selective Alpaca. Different models and
domain tasks demonstrate the effectiveness of SelectIT. Our analysis reveals that SelectIT effectively
excludes abnormal data and tends to select longer and calculational data.

Limitation

This paper could be further strengthened as follows:

• Instruction Data Quantity: Our findings suggest that prioritizing the top 20% of high-
quality data optimizes results for Alpaca. Future studies might explore adjusting this
threshold based on the data quality in different datasets to enhance performance.

• Models at Different Scales: Our analysis is currently limited to models smaller than 30B
parameters due to computational constraints. Investigating the efficacy of Selective Alpaca
on larger-scale LLMs, could provide valuable insights into the method’s scalability.

• Expansion to Additional Instruction Datasets: Although SelectIT has been applied to the
Alpaca dataset due to its widespread adoption, extending this methodology to incorporate
other IT datasets could offer substantial advantages to the broader LLM research community.
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Broader Impacts

Our work follows the NeurIPS Ethics Policy. Our findings are based on publicly available datasets for
reproducibility purposes. LLMs can contain potential racial and gender bias. Therefore, if someone
finds our work interesting and would like to use it in a specific environment, we strongly suggest the
user check the potential bias before usage. In addition, it is hard to control the generation of LLMs.
We should be aware of the potential problems caused by hallucinations.
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A Appendix

A.1 Applying SelectIT on Machine Translation LLMs

Machine Translation (MT) is a important task for LLMs, demonstrating their domain-specific capabili-
ties. Prior research, including TIM (Zeng et al., 2023), SWIE (Chen et al., 2023b), BigTranslate (Yang
et al., 2023), and Bayling (Zhang et al., 2023), has shown significant improvements in LLMs, often
relying on extensive translation training datasets. In this section, we examine the impact of training
data quality on MT performance, employing the robust MT LLM, ALMA, as our foundational
model (Xu et al., 2024).

For training data, we select representative language pairs: German⇔English and Chinese⇔English,
sourced from WMT’17 to WMT’20 human-authored test datasets, supplemented with development
and test sets from Flores-200, totaling 30K training instances. We use the corresponding language
pair’s test data from WMT’22 as evaluation datasets. Subsequently, 6K high-quality instances are
selected for LORA fine-tuning via SelectIT.

We report both the widely used BLEU score (Post, 2018; Ott et al., 2018) and the COMET score (Rei
et al., 2022) based on the wmt22-comet-da model, which shows higher correlation with human
judgments for evaluating the LLMs’ translation abilities. Table 11 consistently demonstrates that
SelectIT enhances ALMA’s translation efficacy. Notably, SelectIT primarily focuses on improving
translations from English to other languages, likely due to ALMA’s inherent proficiency in English,
which presents challenges for further enhancements. These findings highlight SelectIT’s adaptability
and scalability, validating its effectiveness not only in IT data selection but also in domain-specific
tasks such as MT.

Method Size En⇒De De⇒En Zh⇒En En⇒Zh ALL
COMET BLEU COMET BLEU COMET BLEU COMET BLEU COMET BLEU

SoTA Models
NLLB 54B 86.5 34.5 78.9 26.9 70.7 16.6 78.9 27.4 78.8 26.3
GPT-3.5 - 87.0 34.4 85.5 33.1 82.9 26.6 87.0 44.9 85.6 34.8
GPT-4 - 87.4 35.4 85.6 33.9 82.8 27.2 87.5 44.0 85.8 35.1

Existing Method
LLaMA-2 7B 76.4 19.0 82.7 30.4 75.0 18.2 71.8 17.0 76.5 21.1
TIM 7B 74.2 20.6 77.7 24.3 79.5 23.4 84.9 37.2 79.1 26.4
SWIE 7B 82.4 27.2 83.0 30.5 76.5 21.3 80.6 31.2 80.6 27.6
BigTranslate 13B 78.8 21.5 80.7 23.4 74.3 14.2 81.3 28.6 78.8 21.9
Bayling 13B 82.7 25.6 83.0 27.3 77.7 20.1 84.6 37.9 82.0 27.8

Our Implemented Method
ALMA 7B 85.0 29.9 83.9 30.0 79.2 22.7 84.8 36.3 83.2 29.7

w/ SelectIT 7B 85.2 30.2 84.1 30.4† 80.0† 24.2 † 85.3† 37.3† 83.7 30.5
ALMA 13B 85.2 31.0 84.2 30.9 80.0 25.0 85.5 39.2 83.7 31.5

w/ SelectIT 13B 85.8† 31.7† 84.6 31.4† 80.3 25.4 86.1† 40.4† 84.2 32.2

Table 11: Overall results on machine translation LLMs. “†” the improvement is significant by contrast
to the ALMA model (p < 0.05).

A.2 Details of Sentence-level Rating

Based on the preceding analysis, Sentence-R is integral to the functionality of SelectIT. As illustrated
in Equation 4, the Token-level Rating forms the foundation for the Sentence-level Rating. The
Model-level Rating is derived through multiple iterations of the Sentence-level Rating across different
foundational LLMs. Therefore, a detailed explanation of Sentence-R is sufficient to demonstrate the
operational mechanism of SelectIT. As depicted in Figure 7, we utilize five distinct rating prompts
along with a single input to formulate the final input for Sentence-R. Initially, each rating prompt
produces a score of Stoken. We then compute the mean and standard deviation of these Stoken values
to obtain the final Ssent, as outlined in Equation 4.

A.3 Case Study

As demonstrated in Figure 8, we illustrate the selection tendencies of SelectIT in contrast to Alpa-
Gasus, which leverages advanced ChatGPT for data selection. In samples 1 to 4, SelectIT shows
a preference for instruction-tuning data containing intricate mathematical problems that contribute
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to improving the reasoning skills of the LLMs. On the contrary, AlpacaGasus frequently chooses
IT data in samples 5 to 7 that primarily offer solutions to queries or lack coherent reasoning, which
might limit its effectiveness.
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Figure 7: Example on Sentence-R calculation of SelectIT.

18



Figure 8: Examples of IT data selected by SelectIT or AlpaGasus.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: See the abstract and introduction sections. Our proposed SelectIT can capitalize
on the foundational capabilities of the LLM itself to more effectively select high-quality IT
data, without the need for extra resources. We run comprehensive experiments to support
our assumption. Our contributions are stated clearly in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In the limitation part, we have discussed the points where SelectIT could be
further optimized, including the data quantity, model scales, other foundation models, and
datasets.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: Our paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In the abstract section, we provide the GitHub link to open source all the code,
scripts, and datasets (Selective Alpaca) for other researchers to replicate the results. We also
provide the implementation details to better reproduce the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: In the abstract section, we provide the GitHub link to open access to data and
code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In Section 4.1, we have discussed datasets, baselines, and experimental setup
used in our experiments. More training details are included in the code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In the section about applying the SelectIT on MT LLMs, we do the statistical
significance tests in Table 9, which is reported in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In Section 5.3, we provide the type of computing workers, memory, and time
of execution to help other researchers reproduce the Selective Alpaca.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: we have read the guidelines and ensured that our paper conforms to them.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: In Section 5.1, Selective can use fewer computing resources to select high-
quality data, which has a positive impact on society. We also have a section to discuss the
broader impacts.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The model and datasets we used are all open-sourced, and we strictly follow
their terms once the terms are carried out.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited the creators in the main part of the paper and the supplement
material.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should citep the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: In the abstract section, we provide the GitHub link to open access to our code
and data.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: SelectIT does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: SelectIT does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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