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Abstract

We give a simple, generic conformal prediction method for sequential prediction
that achieves target empirical coverage guarantees on adversarial data. It is com-
putationally lightweight — comparable to split conformal prediction — but does
not require having a held-out validation set, and so all data can be used for training
models from which to derive a conformal score. Furthermore, it gives stronger
than marginal coverage guarantees in two ways. First, it gives threshold calibrated
prediction sets that have correct empirical coverage even conditional on the thresh-
old used to form the prediction set from the conformal score. Second, the user can
specify an arbitrary collection of subsets of the feature space — possibly intersect-
ing — and the coverage guarantees will also hold conditional on membership in
each of these subsets. We call our algorithm MVP, short for MultiValid Prediction.
We give both theory and an extensive set of empirical evaluations.1

1 Introduction

Consider the problem of predicting labels y ∈ Y given examples x ∈ X . One popular strategy for
expressing uncertainty is to allow the algorithm to produce a prediction set T ⊆ Y rather than an
individual label. We give a simple, practical algorithm for constructing prediction sets in sequential
prediction problems over an arbitrary domain X×Y , given any data-dependent sequence of conformal
score functions st : X × Y → R≥0. In each round t, an example represented by a feature vector
xt ∈ X arrives. We can define an arbitrary conformal score st : X × Y → R≥0 that can depend on
previously observed examples (as well as on f ) in arbitrary ways. We produce a round-dependent
threshold qt, which gives us a prediction set Tt = {y ∈ Y : st(xt, y) ≤ qt}. We then observe the
true label yt; we say our prediction set covers yt if yt ∈ St. Given a coverage target 1− δ, our goal
is to produce sets that have correct empirical coverage — i.e. that cover a 1− δ fraction of the labels
(we do not want either over-coverage or under-coverage). We wish to make as few assumptions as
possible, so that our method is robust to arbitrary and unanticipated distribution shift, and applies to
e.g. time series data which are very far from exchangeable. We also want our coverage guarantees to
be meaningful not just marginally, but at finer granularities: conditional on both the threshold value
we choose, and on membership of xt ∈ G for a set of groups G ∈ G ⊆ 2X that can be arbitrarily
defined and intersecting. Finally, we want our algorithm to have low computational overhead, so
that it can be applied as a wrapper on top of arbitrary prediction methods, for both regression and
classification. The algorithm we propose achieves these goals and has several desirable properties:

Worst-Case Empirical Coverage: Our method has worst case adversarial guarantees. The
sequence of examples {(xt, yt)}Tt=1 needs not be drawn from an exchangeable distribution as it does
for standard conformal prediction methods [Shafer and Vovk, 2008] — instead, it can be chosen
by an adaptive adversary. The conformal scores st can be arbitrary and can depend on data from

1Code to replicate our experiments can be found at https://github.com/ProgBelarus/MultiValidPrediction.
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previous rounds (e.g. they can be derived from models trained on all past data, and so there is no need
to separate data into training and calibration sets as in split conformal prediction [Lei et al., 2018]).
Thus, our method can tolerate time series data, and arbitrary and unanticipated distribution shifts.

Calibrated, Multivalid Coverage: Our prediction sets obtain their target empirical coverage level
not just marginally, but in a threshold-calibrated fashion: for every threshold q, they approach
1 − δ coverage on the subsequence of rounds t on which the threshold qt = q2. We also promise
group-conditional coverage. We can specify an arbitrary collection of groups G, each group G ∈ G
representing an arbitrary feature-space subset: G ⊆ X . These groups can intersect in arbitrary ways.
For example, G can be a collection of demographic groups based on race, age, income, or medical
history, and each data point x ∈ X could represent a member of an arbitrary subset of these groups.
Our method promises that simultaneously for every group G ∈ G, on the subsequence of rounds t for
which xt ∈ G, our intervals obtain the target empirical coverage rate (again, in a calibrated fashion).

Computationally Lightweight: Our method is computationally lightweight. At each round t, it
relies on simple arithmetic calculations involving the historical empirical coverage rates of finitely
many candidate thresholds qt on groups G such that xt ∈ G. Hence it is comparable in cost to fast
split conformal prediction methods [Lei et al., 2018] despite its ability to use all data for model
training. We give an implementation of our algorithm and an extensive empirical evaluation. By
contrast, prior work by Gupta et al. [2022] that gets comparable theoretical guarantees (in the special
case of regression prediction intervals) does not give a practical algorithm: their approach uses the
Ellipsoid method with a separation oracle to solve exponentially-sized linear programs at all rounds.

Nearly Statistically Optimal Rates: For each threshold q and group G, we promise 1−δ empirical
coverage over the rounds t where xt ∈ G and the predicted threshold qt = q. Let nG,q denote the
total number of such rounds. Even if the labels yt were drawn from a known distribution and our
coverage probability was exactly 1−δ, we would expect our empirical coverage on these nG,q rounds
to deviate from 1 − δ by a ±1/

√
nG,q term. The prior theoretical coverage guarantees for each q

and G of Gupta et al. [2022] differ from their target by Õ(
√
T/nG,q), which is nearly optimal if

nG,q ≥ Ω(T ) but sub-optimal otherwise. Our algorithm promises empirical coverage rates for each
pair (G, q) that differ from the target by an optimal Õ(1/

√
nG,q) term.

We give an extensive experimental evaluation of our algorithm in a number of settings, and compare
to vanilla split conformal prediction [Lei et al., 2018], as well as prior work that handles limited
forms of known distribution shift [Tibshirani et al., 2019], produces conservative groupwise coverage
[Foygel Barber et al., 2020], and gives adversarial (but uncalibrated) coverage guarantees [Gibbs and
Candes, 2021]. In each setting, we show that our algorithm is competitive with previous work “on
their turf” (i.e. in settings for which their assumptions are satisfied and we use their evaluation metrics).
We then go on to show that our method gives substantial improvements when either the setting or the
evaluation metric becomes more difficult — e.g. when the distribution shift is unanticipated, when
we measure group-wise rather than just marginal coverage, or when the data comes in adversarial
ordering. In some cases we improve on standard techniques even in standard “benign” settings: for
example, we improve on split conformal prediction in an online linear regression setting with iid. data
when the evaluation metric is just marginal coverage, but the regression function has to be learned
from the same stream of data used to calibrate the prediction intervals. This is because split conformal
prediction requires using separate splits of the data for training the regression and calibrating the
prediction intervals to maintain exchangeability of the conformal scores — but we are able to use all
of the data for both tasks.

2Calibration is especially important in a distribution free setting, when coverage is measured empirically.
If we only asked for the target marginal empirical coverage as Gibbs and Candes [2021] do, rather than for
threshold-calibrated prediction sets, one could obtain the right coverage rate by “cheating” in the following
uninformative way: predict the full label set St = Y on a 1 − δ fraction of rounds (guaranteeing coverage),
and the empty set St = ∅ on the remaining δ fraction of rounds (guaranteeing miscoverage of the label). This
obtains empirical coverage rate 1− δ ±O(1/T ) marginally, but not conditional on the prediction sets chosen.
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1.1 Additional Related Work

See Angelopoulos and Bates [2021] for an excellent recent survey of conformal prediction methods.
The weaknesses of these methods that we seek to address — namely, that in the worst case they
provide only marginal coverage, and that they rely on strong distributional assumptions (typically
exchangeability) — have been noted before. For example, Romano et al. [2020a] note that marginal
coverage guarantees are undesirable and give group conditional guarantees for disjoint groups by
calibrating separately on each group. This fails when the groups can intersect. Foygel Barber
et al. [2020] provide guarantees that are valid conditional on membership in intersecting subgroups
G. They take a conservative approach, by computing prediction sets separately for each group
and then taking the union of all these sets over the groups of a new individual. As a result, their
prediction sets are conservative and do not approach the target coverage level. These results both
require exchangeable data. Chernozhukov et al. [2018] obtain approximate marginal coverage
guarantees for non-exchangeable time series data coming from a rapidly mixing process. Gendler
et al. [2021] study conformal prediction for adversarially perturbed data: they assume that the dataset
is drawn exchangeably, but the test examples additionally have their features perturbed by small-norm
adversarial noise. Their techniques are different from ours, and leverage the fact that the underlying
distribution (except for the perturbations) is exchangeable, which we do not require. Tibshirani et al.
[2019] study conformal prediction under covariate shift. They adapt conformal techniques to handle
the case when both the point of distribution shift and the likelihood ratio between the training and test
distribution are known. Gibbs and Candes [2021] give a method that can guarantee target marginal
coverage without any assumptions on the data generating process. In contrast, our prediction sets
promise not just marginal coverage, but are “threshold-calibrated” and hold also conditional on
membership in arbitrary sub-groups. Further notions of conditional coverage different from ours
have been studied before in the batch setting, for instance training-, object-, and label- conditional
guarantees; see e.g. Vovk [2012], Bian and Barber [2022] for details.

Following a recent resurgence in interest in conformal techniques, a number of papers have proposed
conformal scores that have desirable properties [Hoff, 2021, Romano et al., 2019, Angelopoulos
et al., 2020, Romano et al., 2020b, Park et al., 2019]. Our work is complementary to this line of
work: just like traditional methods of conformal prediction, we too take as input arbitrary conformal
scores. Thus we can adopt any of these conformal score functions and inherit their properties, while
providing the stronger worst-case guarantees of multivalid coverage.

For the special case of prediction intervals, the type of multi-valid prediction that we study was first
defined in Jung et al. [2021], who gave a way of obtaining it in the batch setting for i.i.d. data, via
producing multicalibrated estimates of label variances and higher moments. Gupta et al. [2022]
proved that there exists an online prediction algorithm that gives the sort of multi-valid prediction
intervals that we consider in this work. The algorithm we give in this paper is both much more
efficient (theirs was not implementable) and has substantially better (optimal) convergence bounds.

Finally, multivalidity is related to subgroup fairness constraints [Kearns et al., 2018, 2019, Kim et al.,
2018], which ask for statistical “fairness” constraints to hold across all subgroups defined by some
rich class G. In particular, it is closely related to multicalibration [Hébert-Johnson et al., 2018].

2 Setting and Notation

We let X denote a feature domain and Y a label domain. G ⊆ 2X denotes a collection of subsets of
X , which we call “groups”. For x ∈ X , G(x) = {G ∈ G : x ∈ G} is the set of groups that contain x.
For any integer T > 0, [T ] = {1, . . . , T}. The probability simplex over a finite set A is denoted ∆A.

Our online uncertainty quantification is based on a bounded conformal score function st : X×Y → R
which can change in arbitrary ways between rounds t ∈ [T ]. Without loss of generality, we assume
that the scoring function takes values in the unit interval: st(x, y) ∈ [0, 1] for any x ∈ X , y ∈ Y ,
and t ∈ [T ]. Fix some target coverage rate 1 − δ. Ideally, the learner wants to produce prediction
sets Tt(xt) = {y ∈ Y : st(xt, y) ≤ qt} that cover the true label y with probability 1 − δ over the
randomness of the unknown label distribution: Pry|xt

[y ∈ Tt(xt)] ≈ 1 − δ. This is equivalent to
choosing a conformity threshold qt such that Pry|xt

[st(xt, y) ≤ qt] ≈ 1− δ.

We want to model an adversary that can choose an arbitrary sequence of examples xt and labels yt.
However, because the adversary may choose the label distribution with knowledge of the conformal
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score function, we will elide the particulars of the conformal score function and the distribution on
labels yt in our derivation, and instead equivalently imagine the adversary as directly choosing xt and
a distribution over conformal scores st conditional on xt (representing the distribution over conformal
scores st(xt, yt)). We may thus without loss view the interaction in the following simplified form:

1. The adversary chooses a joint distribution over feature vector xt ∈ X and conformal score
st ∈ [0, 1]. The learner receives xt (a realized feature vector), but no information about st.

2. The learner produces a conformity threshold qt.
3. The learner observes the realized conformal score st.

As we formally discuss in Definition 3.1 of Section 3 below, the adversary’s choice of the joint
distribution over xt and st in each round of the above protocol will need to additionally satisfy
a mild smoothness property, namely that the score distribution should not be overly concentrated
on any subinterval of the [0, 1] range. As we explain there, we can in fact enforce this property
algorithmically if necessary, by slightly perturbing the observed scores.

For any round t ∈ [T ], we write πt = (xt, st, qt) to denote the realized outcomes in round t, and
πt1:t2 for the transcript of the interaction in rounds t1 ≤ τ ≤ t2: πt1:t2 = ((xτ , sτ , qτ ))

t2
τ=t1 . To

denote a concatenation of two transcripts, we use ⊕: for example, π1:t = π1:t−1 ⊕ πt. We write
Π∗ = (X × [0, 1]× [0, 1])∗ as the domain of all transcripts. Fixing a learner and an adversary induces
a probability distribution over transcripts. Our goal is to derive algorithms with coverage guarantees
that hold over the transcript randomness, in the worst-case over all possible adversaries.

Given conformity threshold q, we say it covers conformal score s if Cover(q, s) = 1, where we
define: Cover(q, s) = 1[s ≤ q]. To define threshold calibration, we bucket our thresholds using
a discretization parameter m. For any m, we write Bm(i) =

[
i−1
m , i

m

)
for each bucket index

i ∈ [m− 1], and Bm(m) =
[
m−1
m , 1

]
, so that these buckets evenly partition the unit interval [0, 1]3.

For any group G ∈ G and bucket i ∈ [m], we write GT (i) = {t ∈ [T ] : xt ∈ G, qt ∈ Bm(i)} for
the set of rounds in the transcript π1:T in which the feature vectors belonged to the group G and the
chosen threshold qt was in bucket i.

We can now define our main objective in this paper: threshold calibrated multivalid coverage.
Definition 2.1 (Threshold Calibrated Multivalid Coverage). Fix a coverage target 1 − δ and a
collection of groups G ⊂ 2X . Given a transcript π1:T , a sequence of conformity thresholds (qt)Tt=1 is
said to be (α,m)-multivalid with respect to δ and G for some function α : N → R if:∣∣∣ 1

|GT (i)|
∑

t∈GT (i)

(Cover (qt, st)− (1− δ))
∣∣∣ ≤ α(|GT (i)|), for every i ∈ [m] and G ∈ G.

Note that multivalid coverage is defined by a function α(·) of the length of the sequence on which
empirical coverage is computed, letting us give fine-grained bounds that scale with the sequence
length. In this paper we use the following family of functions, parameterized by a constant ϵ > 0:

α(n) = f(n)
n , where f(n) =

√
(n+ 1) log1+ϵ(n+ 2)

Here, f is defined so that up to lower-order terms, α(n) ∼ 1√
n

; the logarithmic factor that depends on
ϵ > 0 serves to ensure the technical condition that the series 1

f(n)2 is convergent:
∑∞

n=0
1

f(n)2 = Kϵ,
where Kϵ is a constant depending only on our choice of ϵ, that will later appear in our bounds.

3 Our Algorithm and Analysis

Before we provide the algorithm and its guarantees, we first discuss a needed assumption. Observe
that even in the easier setting where the conformal score s is drawn from a fixed, known distribution:
s ∼ D — there may not be any threshold q ∈ [0, 1] that satisfies the desired target coverage value,
i.e. that guarantees that |Es∼D[Cover(q, s)− (1− δ)]| is small. Consider for example a distribution
that places all its mass on a single value s. Then any threshold q covers the s with probability 1 or 0,

3We can handle non-uniform discretizations of the unit interval as well, with no additional complications.
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which for δ ̸∈ {0, 1} is bounded away from our target coverage probability. One could randomize the
threshold to get the target marginal coverage rate, but this corresponds to the “cheating” strategy we
outline in Footnote 2, and in particular would not satisfy our notion of threshold calibrated coverage.
Of course, if achieving the target coverage is impossible in the easier distributional setting, then it is
also impossible in the more challenging online adversarial setting.

With this in mind, just as with many other approaches to conformal prediction that aim to converge to
the correct coverage rate (rather than conservatively over-cover), we will need to assume that our
target distributions are not too concentrated on any single point. Following Gupta et al. [2022], we
define a class of smooth distributions for which achieving (approximately) the target coverage is
always possible for some threshold q defined over an appropriately finely discretized range. Our
smoothness condition makes sense even for discrete distributions, so we do not need to assume
continuity. To denote the uniform grid on [0, 1], we write Prm =

{
0, 1

rm , 2
rm , . . . , 1

}
.

We show that we can achieve (approximately) our target coverage goals in the online adversarial
setting when the adversary is constrained to playing smooth distributions, which are distributions that
do not put too much probability mass on any sufficiently small sub-interval.
Definition 3.1. A distribution Q ∈ ∆([0, 1]) is (ρ, rm)-smooth if

Pr
s∼Q

[s ∈ [a, b]] ≤ ρ for any subinterval [a, b] ⊆ [0, 1] of length ≤ 1
rm ,

A joint distribution D ∈ ∆(X × [0, 1]) is (ρ, rm)-smooth if for every x ∈ X , the marginal confor-
mal score conditional on x, D|x, is (ρ, rm)-smooth. An adversary is (ρ, rm)-smooth if the joint
distribution over (xt, st) is (ρ, rm)-smooth at every round t ∈ [T ].
Remark 3.1. For any ρ, the assumption of (ρ, rm)-smoothness becomes more mild as r → ∞. For
us, r will be a nuisance parameter that we can take as large as we want — we will not have to pay for
it either in our running time or our coverage bounds. We can also algorithmically enforce smoothness
by perturbing the conformal scores with small amounts of noise from any continuous distribution,
and so we should think of smoothness as a mild assumption. Our experiments bear this out.

We now present the algorithm (MVP — MultiValid Predictor). It resembles the algorithm for online
mean multicalibration given in Gupta et al. [2022], which in turn is a multi-group generalization of
the “almost deterministic” calibration algorithm of Foster and Hart [2021].

Algorithm 1: MVP(δ, η,m, r)
for t = 1, . . . , T do

Take as input an arbitrary conformal score st : X × Y → [0, 1].
Observe xt, and for each i ∈ [m] and G ∈ G(xt), compute:

nG,i
t−1 =

t−1∑
τ=1

1[qτ ∈ Bm(i), xτ ∈ G] Definition 3.2

V G,i
t−1 =

t−1∑
τ=1

1[xτ ∈ G, qτ ∈ Bm(i)] · (Cover(qτ , sτ )− (1− δ)) Definition 3.3

Ci
t−1(xt) =

∑
G∈G(xt)

1

f(nG,i
t−1)

(
exp

(
η

V G,i
t−1

f(nG,i
t−1)

)
− exp

(
−η

V G,i
t−1

f(nG,i
t−1)

))
. From Lemma 3.1

if Ci
t−1(xt) > 0 for all i ∈ [m] then

Choose threshold qt = 0.
else if Ci

t−1(xt) < 0 for all i ∈ [m] then
Choose threshold qt = 1.

else
Find i∗ ∈ [m− 1] such that Ci∗

t−1(xt) · Ci∗+1
t−1 (xt) ≤ 0.

Define 0 ≤ pt ≤ 1 as follows:a pt =
∣∣∣Ci∗+1

t−1 (xt)
∣∣∣ /(∣∣∣Ci∗+1

t−1 (xt)
∣∣∣+ ∣∣∣Ci∗

t−1(xt)
∣∣∣).

Choose threshold qt =
i∗

m − 1
rm with probability pt and qt =

i∗

m with probability 1− pt.
Output prediction set Tt(xt) = {y ∈ Y : st(xt, y) ≤ qt}.

aUsing the convention that 0/0 = 0.
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First, we give a brief intuitive description of the inner workings of the algorithm. Note that for all
groups G and buckets i, MVP maintains historical over- (equivalently, under-) coverage amounts
over those rounds when the context was in group G (that is, xt ∈ G), and the threshold played was
in bucket i (that is, qt ∈ Bm(i)). In each round, MVP is confronted with a new context xt, and
needs to decide which bucket i to choose the threshold from. For every candidate bucket i ∈ [m],
MVP performs a certain type of normalized softmax aggregation of that bucket’s historical over- or
undercoverage over all groups G that xt belongs to. The result is a single signed quantity Ci

t−1 for
each bucket i, which summarizes its past coverage performance over all relevant groups G ∋ xt:
intuitively, if thresholds from bucket i have been mostly overcovering on the relevant groups in the
past, we can expect Ci

t−1 > 0, and in the opposite case of significant undercoverage, we can expect
Ci

t−1 < 0. The algorithm then simply finds, if such exist, any two adjacent buckets one of which has
historically over-covered and the other — under-covered, and randomizes between the two to output
a balanced threshold that, it is hoped, neither over- nor under-covers.

Now, we are ready to present our main result — the multivalid coverage guarantees for MVP. The
proof of this statement is laid out in the following Section 3.1.

Theorem 3.1. Against any (ρ, rm)-smooth adversary and for any adaptively chosen sequence

of conformal scores st, MVP(η,m, r) with learning rate η =
√

ln(|G|m)
2Kϵ|G|m (Algorithm 1) produces

a sequence of thresholds (qt)
T
t=1 that is

((√
4Kϵ|G|m ln(|G|m) + ρT

)
α(·), m

)
-multivalid in

expectation over the randomness of π1:T with respect to δ and G.

Consequently, we have for any small ϵ > 0 of our choice (with Kϵ a constant that depends only on ϵ):

E
π1:T

 max
G∈G,i∈[m]

∣∣∣∑t∈GT (i) (Cover (qt, st)− (1− δ))
∣∣∣√

(|GT (i)|+ 1) log1+ϵ(|GT (i)|+ 2)

 ≤
√

4Kϵ|G|m ln(|G|m) + ρT.

Remark 3.2. Since we can take r to be arbitrarily large, for any continuous distribution we can drive
the ρT term to zero. Thus this bound establishes nearly statistically optimal convergence rates for con-
stant |G| and m. Using a simpler analysis analogous to that of Gupta et al. [2022] for mean multical-
ibration, it is also possible to establish (α,m)-multivalidity with α(n) = O(

√
T log(|G|m)/n+ ρ),

which is optimal in |G| and m but has a bad dependence on T . We believe that our sub-optimal
dependence on |G| and m is an artifact of our analysis, and not a property of our algorithm.

3.1 Analysis

Omitted proofs from this section are presented in full detail in Appendix A. Our analysis here can be
seen as an extension of the surrogate loss argument developed in Gupta et al. [2022] for the problem
of mean multicalibration. There are two main novel insights that lead to our algorithm and analysis
for multivalid coverage. First, Gupta et al. [2022] were unable to extend their simple multicalibration
algorithm to prediction interval multivalidity (and instead analyzed an impractical Ellipsoid-based
algorithm). Informally this is because they parameterized prediction intervals with two parameters
(the lower and upper endpoint), which eliminated the simple one-dimensional structure they were
able to exploit for mean multicalibration. In contrast, our prediction intervals are parameterized by a
single parameter q, which allows us to exploit a simple one-dimensional structure.

Second, the bounds in Gupta et al. [2022] uniformly bound the coverage error for each group G ∈ G
and bucket i ∈ [m] by Õ(

√
T ), which is optimal only for subsequences that have nG,i

T = Ω(T ). In
contrast, we obtain non-uniform bounds that depend on nG,i

T but not on T , and (at least for constant m

and |G|) have the optimal
√
nG,i
T dependence. We achieve this by analyzing a modified surrogate loss,

leading to a significant amount of added complexity which accounts for the bulk of our argument.

Proof sketch for Theorem 3.1. For each group G ∈ G, bucket i ∈ [m], round t ∈ [T ], we would like
to bound the coverage error on the subsequence of rounds τ in which xτ ∈ G and qτ ∈ Bm(i) in
terms of the length of that sequence. We give the following notation for these sequence lengths:
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Definition 3.2 (Group-bucket size). Given a transcript π1:t = ((xτ , sτ , qτ ))
t
τ=1, we define the size

for a group G ∈ G and a bucket i ∈ [m] at time t to be: nG,i
t (π1:t) =

t∑
τ=1

1[qτ ∈ Bm(i), xτ ∈ G].

Similarly, for each G ∈ G, i ∈ [m] and time t ∈ [T ], we can define the (unnormalized) coverage
error on the sequence corresponding to rounds τ ≤ t such that xτ ∈ G and qτ ∈ [m]:

Definition 3.3. Given transcript π1:t, the coverage error for group G ∈ G and bucket i ∈ [m] at time t

is given as: V G,i
t =

t∑
τ=1

1[xτ ∈ G, qτ ∈ Bm(i)] ·vδ(qτ , sτ ), where vδ(q, s) = Cover(q, s)−(1−δ).

Note that V G,i
t just records the deviation of the empirical coverage from its target (1 − δ) on the

subsequence of rounds τ in which xτ ∈ G and qt ∈ Bm(i): it takes a positive value if we have
over-covered on this subsequence and a negative value if we have under-covered.

Observation 3.1. Fix a transcript π1:T . If for all G ∈ G and i ∈ [m], we have for some constant c:∣∣∣V G,i
T

∣∣∣ ≤ cf(nG,i
T ), then the resulting sequence of thresholds (qt)Tt=1 is (cα(·),m)-multivalid with

respect to δ and G.

To bound the maximum of our normalized absolute coverage errors across all groups and buckets, i.e.

maxG∈G,i∈[m]
|V G,i

T |
f(nG,i

T )
, we use the following surrogate loss:

Definition 3.4 (Surrogate loss). Fix a transcript π1:t ∈ Π∗ and a parameter η ∈ (0, 1/2). Define a
surrogate coverage loss function at day t for bucket i ∈ [n] and group G ∈ G as

LG,i
t (π1:t) = exp

(
η

V G,i
t

f(nG,i
s )

)
+ exp

(
−η

V G,i
t

f(nG,i
s )

)
,

where V G,i
t are implicitly functions of π1:t. The overall surrogate coverage loss function is defined

as Lt(π1:t) =
∑

G∈G,i∈[m] L
G,i
t (π1:t).

We first show that the increase in the surrogate loss can be bounded in the following way:

Lemma 3.1. Fix η ∈ (0, 1
2 ) and a transcript π1:t−1 for some t. For any πt = (qt, xt, st), we have

Lt(π1:t−1 ⊕ πt)− Lt−1(π1:t−1) ≤
∑

(G,i)∈At(πt)

ηvδ(qt, st)C
G,i
t−1 +

2η2

f(nG,i
t )2

LG,i
t−1(πt−1),

where At(πt) = {(G,i) : G∈G(xt), qt ∈ Bm(i)} contains (G,i) pairs “active” at time t∈ [T ], and

CG,i
t = 1

f(nG,i
t )

(
exp

(
η

V G,i
t

f(nG,i
t )

)
− exp

(
−η

V G,i
t

f(nG,i
t )

))
.

Now, we show that Algorithm 1 guarantees
∑

(G,i)∈At(πt)
vδ(qt, st)C

G,i
t−1 is small in expectation over

the randomness of the algorithm.

Lemma 3.2. Fix any t ∈ [T ], η ∈ (0, 1
2 ), transcript π1:t−1 recording a realization for the first

t − 1 rounds and xt. At round t, Algorithm 1 chooses a distribution over qt such that against any
(ρ, rm)-smooth distribution over conformal scores st, we have:

E
(st,qt)

 ∑
(G,i)∈At(πt)

vδ(qt, st)C
G,i
t−1

∣∣∣∣∣∣π1:t−1

 ≤ ρLt−1.

Carefully telescoping the bounded increase in surrogate loss over each round via Lemma 3.1 and 3.2
and noticing that 1/f(n)2 forms a convergent series yields the result of Theorem 3.1.
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Figure 1: Left: histogram of empirical marginal coverage of MVP vs split conformal over 500 repeated
trials. Right: histogram of average interval widths. MVP gets both empirical coverage that is more
tightly concentrated around target (0.9), and narrower coverage interval widths.

4 Experiments

In this section, we summarize our experiments4 — full details can be found in Appendix B. We
evaluate MVP and compare it to more traditional conformal prediction methods on a variety of tasks.
In each case, for a fair comparison, both MVP and the compared-to method receive as input the same
predictive model and conformal scores.

Exchangeable data First, in Section B.1 we study a synthetic linear regression problem in a simple
exchangeable (iid.) setting, and compare to split conformal prediction [Lei et al., 2018]. Given a
regression model ft(x), we use conformal score st(x, y) = |ft(x) − y|. The regression function
is unknown at the outset, and must be learned during the interaction. As we show (Figure 1), MVP
improves over split conformal prediction even in terms of marginal empirical coverage. This is
because to keep the conformal scores exchangeable, split conformal prediction must split the data into
two sets: one for training the regression model and one for calibrating prediction sets.5 In contrast,
our method does not require exchangeability, so we can both train the regression model and calibrate
our prediction sets on the entire dataset. We are thus able to make better use of the data, and our
regression function (and hence our conformal score function) becomes more informative faster. Then,
we modify our regression problem so that there are 20 overlapping sub-populations, one of which
(consisting of half of the data) has higher label noise. We measure groupwise coverage for MVP,
for naive split conformal prediction with no knowledge of to-be-covered groups, and the method
of Foygel Barber et al. [2020] which guarantees (conservative) groupwise coverage for intersecting
groups. We find (Figure 2) that MVP significantly improves on both methods, obtaining correct
coverage on all groups and (correctly) obtaining much smaller interval width on the low noise group.

Covariate shift Next, in Section B.2 we study a regression problem in the presence of covariate
shift. First we replicate an experiment of Tibshirani et al. [2019], in which a synthetic covariate
shift (with known propensity scores and known changepoint) is simulated on a UCI dataset. The
method of Tibshirani et al. [2019] reweighs the calibration set using the propensity scores. MVP
can also take advantage of propensity scores warm-start MVP on the same portion of the dataset that
split conformal prediction uses for calibration, sampled with replacement after being re-weighted by
the propensity scores. Both algorithms are then evaluated on the shifted distribution. We find both
algorithms perform comparably. We then experiment with unanticipated covariate shift simulated on
datasets derived from 2018 U.S. Census data provided from the Folktables package [Ding et al., 2021].
We use the quantile-regression based conformal score proposed by Romano et al. [2019] for both
methods. We compare to split conformal prediction calibrated on California data and evaluated on
the Pennsylvania data. Similarly, we warm-start MVP on California data and measure its performance
on the Pennsylvania data, finding that MVP gets the correct coverage rate and smaller interval widths
compared to the split conformal method despite having no knowledge of the distribution shift.

4Our experiments are fairly lightweight, and can be run e.g. on a standard 12gb RAM Google Colab account.
5This is not only a theoretical requirement — split conformal prediction fails badly otherwise.
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Figure 2: Left: median (over 100 indep. trials) per-group coverage of MVP vs split conformal. Right:
median group-conditional interval widths. Compared to split conformal, MVP obtains target coverage
on each group, and narrower interval widths.

Figure 3: Both MVP and split conformal prediction are initialized on California data and evaluated
on Pennsylvania data. On the left-hand is a histogram of the coverage for MVP and split conformal
prediction over 50 trials; the right-hand figure is a histogram of the prediction interval width.

Time series In Section B.3 we evaluate MVP on time series data — 20 years of stock returns, in
a volatility prediction task. We compare MVP to the Adaptive Conformal Inference (ACI) method
of Gibbs and Candes [2021], which guarantees marginal (but not threshold- or group- calibrated)
coverage for adaptively chosen data. When evaluated in terms of marginal coverage, we find that
MVP and ACI perform comparably, with ACI’s coverage slightly closer to the target, but with MVP’s
sequence of predicted thresholds exhibiting more stability (Figure B.6). We then complicate the
experiment to exhibit the two advantages of MVP (groupwise and threshold-calibrated coverage).
First, we define 20 intersecting groups of trading days: a period-1 sequence (all the days), a period-2
sequence (the even days), ..., a period-20 sequence (every 20th day). We add perturbations to the
stock returns, such that each day receives an amount of noise commensurate with how many groups
it belongs to. The point of adding these perturbations to the stock returns on different subsets of the
days is to produce a dataset on which the uncertainty of the model is quantifiably different within
different groups — thus making it nontrivial to obtain valid coverage on each of those groups by only
enforcing valid marginal coverage. Indeed, we find that MVP obtains the correct group-wise coverage,
whereas ACI fails to: as shown in Figure 4a, ACI undercovers on most groups.6

As our next experiment, we produce a fully adversarial sequence by presenting examples to ACI and
MVP not in time order but in sorted order by their conformal scores (see Figure 4b). By construction,
this sequence would cause split conformal prediction methods to have 0 coverage, while both ACI
and MVP guarantee correct marginal coverage on it. However, we find (see Figure B.8d) that ACI
achieves its correct marginal coverage by violating threshold calibration: namely, by predicting

6To balance out this undercoverage, ACI strongly overcovers on points belonging to none of groups 2..20.
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(a) MVP and ACI median coverage (over 20 indep. trials)
on groups 1-20 on noisy data (group j consists of days t
such that t ≡ 0 mod j). MVP closely matches desired
coverage level on all groups, whereas ACI significantly
undercovers (within up to 10-20% from the target).

(b) Synthetic sorted scores sequence

(c) MVP thresholds on the sorted scores

Figure 4: MVP vs ACI comparison on time-series data

predominantly the trivial coverage interval (all of [0, 1]) and occasionally — short, under-covering
intervals.7 This strategy both yields thresholds that are uninformative about the input sequence of
scores, and produces close-to-maximum average interval widths regardless of the actual magnitude of
the input scores. In contrast, MVP, by virtue of its threshold calibration, outputs coverage thresholds
that correctly track the input sequence of conformal scores (Figure 4c), and hence produces prediction
intervals with the correct widths.

Classification: ImageNet Finally, in Section B.4 we compare MVP to the work of Angelopoulos
et al. [2020] on a large-scale ImageNet classification task. We find that MVP obtains comparable
coverage rates and prediction set sizes, despite the fact that the setting is favorable to Angelopoulos
et al. [2020] — i.e. the data is i.i.d. and we measure only marginal coverage.

Potential societal impact of our work: When the underlying dataset consists of e.g. labeled indi-
viduals, our conformal prediction approach achieves target coverage guarantees not only marginally,
but on arbitrary collections of user-specified population groups. Thus, we believe that when used
responsibly, our method can serve as a key tool for advancing the interests of protected subpopulations,
resulting in significant added positive societal impact.
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