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ABSTRACT

We study regime-aware semi-supervised regression for tunnel boring machine
(TBM) operation modeling under cross-strata nonstationarity and label scarcity.
We propose CGE—Clustering-Gated Experts—a three-stage framework that (i)
discovers latent geological regimes via robust ensemble clustering in a compact
descriptor space; (ii) trains per-regime heterogeneous ensembles with agreement-
based pseudo-labeling and consistency regularization; and (iii) routes predictions
through a lightweight distance-based soft gate. For risk-aware deployment, we
equip all predictors with conformalized quantile regression (CQR) to produce cal-
ibrated prediction intervals. On real TBM data with 5–20% label budgets, CGE
surpasses strong semi-supervised baselines; at 10% labels it reaches an average
coefficient of determination (R2) of 0.94 and root-mean-squared error (RMSE) of
0.11. With 90% CQR prediction intervals, it attains near-nominal coverage to-
gether with narrow interval widths and lower negative log-likelihood and contin-
uous ranked probability score (CRPS). Overall, CGE offers a practical accuracy–
uncertainty trade-off for safety-critical TBM decision-making under nonstationary
geology.

1 INTRODUCTION

In recent years, significant progress has been made in the prediction of shield tunneling parameters,
with substantial advances in capturing the complex nonlinear dynamics during construction (Zhou
et al., 2021; Sun et al., 2023; Chen et al., 2024). Shield tunneling data often exhibit highly nonsta-
tionary and time-varying patterns, such as cross-strata heterogeneity, multi-source feature coupling,
and sensor noise interference. These characteristics impose considerable challenges for predictive
modeling: on the one hand, models must possess the ability to characterize intricate patterns; on
the other hand, they must avoid overfitting caused by limited data size and scarce labeled samples
Rahim et al. (2024); Li et al. (2023).

When labeled data are limited, semi-supervised learning provides an important avenue for per-
formance enhancement. Chen et al. (2021) proposed a semi-supervised support vector regression
method that leverages unlabeled samples to improve generalization with few labeled instances. More
recently, Jo et al. (2024) incorporated pseudo-label filtering and uncertainty estimation mechanisms,
effectively reducing the negative impact of erroneous pseudo-labels on model training. These stud-
ies indicate that effectively exploiting unlabeled data is crucial to improving model stability under
complex working conditions.

Meanwhile, the Mixture of Experts (MoE) paradigm has gained increasing attention in machine
learning and artificial intelligence. The core idea is to use a gating mechanism to partition the in-
put into different expert subnetworks, where each expert specializes in a particular scenario or data
sub-distribution. The gating network then aggregates the outputs of all experts through weighted
combinations. This mechanism has achieved remarkable success in domains such as natural lan-
guage processing and computer vision Shazeer et al. (2017b); Fedus et al. (2022). However, in
civil and tunneling engineering, current research remains largely focused on traditional ensemble
methods or single-model optimization (Li et al., 2024a; Abbasi et al., 2024), with little systematic
exploration of expert selection mechanisms for cross-strata prediction and uncertainty modeling.

Motivated by these challenges, this paper proposes CGE, a regime-aware semi-supervised regres-
sion framework tailored to TBM operation modeling with scarce labels and cross-strata drift. In
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the preprocessing stage, outlier removal and feature selection are conducted, followed by the use of
multi-clustering algorithms to identify geological scenarios. Within each scenario, semi-supervised
regression models with heterogeneous ensembles are constructed to fully exploit the potential of
unlabeled data. At the prediction stage, a clustering-based expert selection mechanism is employed
for model routing, while uncertainty estimation provides predictive confidence to meet the safety
requirements of high-risk tunneling operations.

The major contributions of this work are summarized as follows:

1. We propose a unified framework that integrates geological scenario partitioning, semi-
supervised regression, and expert selection, capable of maintaining prediction accuracy
and stability under cross-strata nonstationarity.

2. We introduce pseudo-label filtering and uncertainty constraints in model training, ef-
fectively alleviating the performance bottleneck caused by insufficient labeled data.

3. We validate the proposed method on real-world shield tunneling datasets, demonstrating
that it outperforms multiple baseline models while providing reliable uncertainty estimation
alongside high-accuracy predictions.

2 RELATIVE WORK

2.1 ENSEMBLE LEARNING AND EXPERT MODELS

Ensemble learning, as an important means to enhance model robustness and generalization abil-
ity, has demonstrated superior performance across various prediction tasks. Expert models and
Mixture-of-Experts (MoE) frameworks have become a recent research focus. The MoE framework
allocates appropriate experts to inputs through gating functions, enabling adaptive prediction when
data exhibit multiple scenarios and heterogeneous distributions (Kawata et al. (2025)). Rahman
et al. (2024) proposed a gated ensemble spatiotemporal mixture-of-experts network (GESME-Net),
which achieved remarkable performance in multi-task prediction. Wang et al. (2025) designed an
MoE model with self-supervised aggregation for imbalanced regression tasks, effectively alleviating
the challenge of uneven data scales across subtasks.

2.2 SEMI-SUPERVISED LEARNING AND UNCERTAINTY QUANTIFICATION

In engineering contexts, it is common to encounter a scarcity of labeled samples while abundant
unlabeled operational data remain underutilized. Semi-supervised learning (SSL) has therefore
emerged as an effective approach to reduce labeling costs and enhance generalization ability. Re-
cent methodological studies indicate that pseudo-labeling and consistency regularization constitute
the two mainstream strategies: the former leverages high-confidence predictions as “soft/hard la-
bels” for retraining, while the latter encourages consistency of model outputs under perturbations or
data augmentations.

Fan et al. (2023) investigated consistency regularization strategies and found that simultaneously
constraining both the feature space and the output space can substantially improve model stabil-
ity under low-label conditions. Meanwhile, Kage & Bolı́var (2024) summarized the evolution of
pseudo-labeling from simple thresholding strategies to mechanisms incorporating confidence cal-
ibration and noise-robust correction, underscoring their applicability in scenarios with high anno-
tation costs. In engineering applications(Xu et al. (2023)). applied generative or self-supervised
strategies to geophysical and geological tasks for feature enhancement and low-label learning, sig-
nificantly improving learning efficiency under complex media and non-stationary conditions.

3 METHODOLOGY

3.1 OVERVIEW

As shown in Figure 1, the model consists of three sequential stages: geological clustering, semi-
supervised learning, and expert integration. First, geological features and operational parameters
are extracted to perform clustering and embedding, thereby constructing representative geological
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Figure 1: Overall Workflow of the Geology-Driven Semi-Supervised TBM Optimization Model

scenarios. Subsequently, within each scenario, sparse labeled samples are combined with unlabeled
data, and a semi-supervised mechanism is employed for label expansion and quality control, which
enables the training of multiple heterogeneous base learners and the formation of scenario-specific
sub-models. Finally, sub-models derived from different scenarios are aggregated into an expert pool,
where a gating function adaptively performs weighted selection and integration to generate the final
prediction while providing uncertainty quantification, thus ensuring both robustness and accuracy
under complex geological conditions.

3.2 INTELLIGENT GEOLOGICAL CLUSTERING

To capture cross-condition non-stationarity and reduce the structural bias of a single global model,
this study performs scenario clustering in the robustly standardized geological subspace. The outputs
of three complementary clustering algorithms are unified by simple majority voting, and online
assignment with gating is achieved through a nearest-centroid rule (Saxena et al., 2017). Let the
geological vector of sample n be

zn = [ggrain, ghard, gdense, kperm]
⊤ ∈ Rd. (1)

where ggrain, ghard, gdense, and kperm represent particle size, rock hardness, density, and permeabil-
ity, respectively, and d is the dimension of geological features. To mitigate the influence of heavy
tails and scale heterogeneity on distance metrics, each dimension is robustly standardized using the
median and interquartile range:

z′n,j =
zn,j −median(zj)

IQR(zj)
, IQR(zj) = Q75(zj)−Q25(zj), j = 1, . . . , d. (2)

where median(·) and IQR(·) denote the column median and interquartile range, respectively. This
ensures that the transformation is insensitive to extreme values, yielding the standardized vector z′n.

Within this space, three complementary clustering algorithms are executed in parallel: K-means
based on the compactness criterion with squared Euclidean distance, DBSCAN which identifies
dense clusters and automatically removes sparse noise points, and Gaussian Mixture Models (GMM)
estimated via maximum likelihood to generate ellipsoidal hard clusters. The three methods output
labels s(1)n , s(2)n , and s(3)n , respectively. The final scenario label is given by majority voting (Vega-
Pons & Ruiz-Shulcloper, 2011):

sn = mode
(
s(1)n , s(2)n , s(3)n

)
, sn ∈ {1, 2, . . . , S}. (3)

where mode(·) denotes the statistical mode and S is the number of predefined scenarios. If DB-
SCAN assigns certain samples as noise, labeled −1, its “vote” is ignored, and the result is deter-
mined by the other clusterers. This improves robustness in boundary regions and sparse areas.
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To enable efficient gating during inference, once scenario labels are determined, the geometric center
of each scenario is calculated in the robust space:

µ(geo)
s =

1

|Cs|
∑
n∈Cs

z′n. (4)

where Cs = {n : sn = s} denotes the index set of samples in scenario s, and |Cs| its cardinality.
For any incoming geological input z∗, the same robust standardization is applied to obtain z′∗, and
online assignment is performed via the nearest-centroid rule:

s∗ = arg min
s∈{1,...,S}

∥∥z′∗ − µ(geo)
s

∥∥
2
. (5)

where ∥ · ∥2 denotes the Euclidean norm. This mapping is equivalent to performing a nearest-
neighbor rule over the prototype set {µ(geo)

s }Ss=1, enabling real-time scenario assignment without
rerunning clustering.

Both the definition of scenario centers µ(geo)
s and the nearest-centroid assignment s∗ are performed

in the same robust space, ensuring calibration consistency between training and inference. This
provides a stable foundation for subsequent gating and expert selection.

3.3 SEMI-SUPERVISED REGRESSION AND MULTI-MODEL ENSEMBLE

Figure 2: Overall Workflow of the Semi-Supervised Module
Within each geological scenario, shield tunneling data face the dual challenges of label scarcity
and noise contamination (Van Engelen & Hoos (2020); Zhou (2018)). Training a single model on
limited labeled data easily leads to overfitting and significantly degrades when generalizing across
geological conditions. To address this, we adopt a method that combines semi-supervised learning
with heterogeneous ensembles: pseudo-labeling expands the effective training set size, while model
fusion reduces the variance and uncertainty of individual learners, as shown in Fig. 2.

Let the passive input feature vector be x ∈ Rp and the active response variable y ∈ R. The labeled
and unlabeled datasets are defined as

L = {(xi, yi)}NL
i=1, U = {xj}NU

j=1. (6)

where p is the input dimensionality, and NL, NU are the numbers of labeled and unlabeled samples,
respectively.

In the semi-supervised stage, two regressors f1, f2 with complementary biases are first fitted on L.
For an unlabeled sample x ∈ U , if their prediction discrepancy

∆(x) =
∣∣f1(x)− f2(x)

∣∣. (7)
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does not exceed the consistency threshold qα, the sample is considered reliable and assigned a
pseudo-label (Arazo et al. (2020)):

ŷ(x) = 1
2

(
f1(x) + f2(x)

)
. (8)

The set of pseudo-labeled samples is denoted by U⋆ ⊆ U .

At iteration t, the optimization objective is written as

Jt(f) =
1

|L|
∑

(x,y)∈L

(y − f(x))2 + λt
1

|U⋆|
∑
x∈U⋆

(
ŷ − f(x)

)2
. (9)

The first term is the supervised loss, directly measuring the mean squared error between predictions
f(x) and true labels y, ensuring that the model is anchored by high-confidence labels. The second
term is the pseudo-label loss, evaluating deviations from pseudo-labels ŷ, thereby enlarging the
effective training coverage. The weight λt is scheduled to increase over iterations, such that the
model is guided by true labels in the early stage, while gradually incorporating pseudo-labeled data
to strike a balance between stability and generalization (Sohn et al. (2020)).

Given the presence of noise and drift in tunneling signals, we further perturb the input space:

x̃ = x+ ϵ, ϵ ∼ N (0, σ2I). (10)

and enforce prediction consistency f(x̃) ≈ f(x). Here σ is the noise strength and I is the identity
matrix. This consistency regularization mitigates prediction instability caused by sensor fluctuations
and environmental perturbations, thereby improving robustness ( Xie et al. (2020)).

In terms of model architecture, K heterogeneous base learners {f (k)s }Kk=1 are trained in parallel
within each scenario, including Random Forest, Extremely Randomized Trees, Gradient Boosting,
XGBoost, LightGBM, and CatBoost. Their predictions are denoted ŷ(k) = f

(k)
s (x). The final output

is obtained via weighted ensembling:

ŷ =

K∑
k=1

ωk ŷ
(k),

K∑
k=1

ωk = 1, ωk ≥ 0. (11)

Here, ωk is the ensemble weight of learner k. To minimize predictive variance, we set ωk ∝ 1/σ̂2
k,

where σ̂2
k denotes the residual variance of learner k on the validation set (Ganaie et al. (2022)).

3.4 CLUSTER-DRIVEN EXPERT SELECTION AND ENSEMBLE LEARNING

After scenario partitioning and semi-supervised ensemble modeling within each scenario, we further
integrate the predictive results into a cluster-driven expert selection framework. This framework can
be regarded as a special case of the Mixture of Experts (MoE), where expert selection is performed
by a cluster-based regularized gating function rather than a trainable neural gating network. Such an
approach offers higher interpretability and controllability in engineering applications (Shazeer et al.
(2017a)).

Suppose there are S scenarios, each associated with an expert regressor

Fs(x) =

K∑
k=1

ω
(s)
k f (k)s (x). (12)

where x ∈ Rp is the passive feature vector, f (k)s denotes the k-th base learner in scenario s, and
ω
(s)
k are the ensemble weights with

∑K
k=1 ω

(s)
k = 1. This definition ensures that each scenario-level

expert model is itself an ensemble, providing a stable representation of the mapping between inputs
and active parameters under that geological condition (Wang et al. (2022)).

Across scenarios, the gating function generates scenario weights based on the relative distance be-
tween geological features z and scenario centers:

πs(z) =
exp

(
− γ ∥z− µ

(geo)
s ∥2

)∑S
j=1 exp

(
− γ ∥z− µ

(geo)
j ∥2

) , S∑
s=1

πs(z) = 1. (13)
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Here, µ(geo)
s denotes the geological centroid of scenario s, and γ > 0 controls the degree of soften-

ing. Large γ values push the gating towards selecting a single nearest expert (hard gating), whereas
small γ values yield smoother weightings (soft gating). This method therefore combines the inter-
pretability of hard gating with the flexibility of soft gating( Guo et al. (2023)).

The global prediction is obtained as the weighted sum of all experts:

ŷ =

S∑
s=1

πs(z)Fs(x). (14)

Here, Fs(·) is the scenario-specific expert regressor, ω(s)
k its ensemble weights, πs(z) the soft sce-

nario weights from gating, and ŷ the final output.

Furthermore, an uncertainty measure is incorporated at the ensemble level. Let ŷ(m) denote the
prediction from expert m. Then the predictive variance

V̂ar(ŷ) =

S∑
s=1

πs(z)

K∑
k=1

ω
(s)
k

(
ŷ(k)
s − ŷ

)2
. (15)

serves as a quantitative indicator of predictive uncertainty, providing valuable guidance for risk-
aware decision making in engineering practice (Lakshminarayanan et al. (2017)).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Task and data. We study regime-aware semi-supervised regression for tunnel boring machine
(TBM) operation modeling. Our data is collected from the actual working conditions of Jiluo Road
Tunnel Project. For specific engineering cases, please refer to Appendix B. Our target variables are
the TBM active control/response channels (e.g., thrust, torque, advance rate), and inputs comprise
passive machine telemetry and geological descriptors. Following SSL practice, we simulate label
scarcity by sampling labeled subsets at budgets {5%, 10%, 20%} while treating the remainder as
unlabeled; each budget is repeated over three random seeds and we report the mean and standard
deviation. Raw signals are robust–scaled; we further inject low-order interaction features among
dominant passive channels, summary statistics (mean, std, skew, kurtosis), and physically motivated
geo-combinations (sum/product and stable ratios).

Baselines. To reflect both domain-specific progress and general SSL advances, we compare
against seven representative approaches: (i) Civil engineering: TransBiLSTMNet for real-time
TBM penetration prediction, which blends bidirectional LSTM and transformer components (Zhang
et al., 2024); TCN-SENet++ tailored for multi-step hard-rock TBM penetration forecasting (Li et al.,
2024b). (ii) Computer science: RankUp, which converts regression to a pairwise-ranking SSL ob-
jective ; SemiReward, an ICLR 2024 method that learns a plug-and-play rewarder for pseudo-label
selection and is evaluated on both classification and regression tasks (Li et al., 2024c). (iii) Clas-
sics (SSL): Label Propagation (LP) (Zhu et al., 2002), Manifold Regularization / LapRLS (Belkin
et al., 2006), and COREG (co-training for regression) (Zhou & Li, 2005). For completeness we
also report supervised regressors widely used in practice—Random Forests (Breiman, 2001), Ex-
traTrees (Geurts et al., 2006), XGBoost (Chen & Guestrin, 2016), LightGBM (Ke et al., 2017),
CatBoost (Prokhorenkova et al., 2018)—as reference ceilings under the same preprocessing and
validation protocol.

Unless otherwise stated, all methods share the same engineered feature representation described in
Appendix D. This allows us to attribute performance differences to the learning architecture rather
than to feature availability.

Implementation details. All SSL baselines use their official code or faithful re-implementations
with validation-tuned hyperparameters. Our method first discovers latent regimes from geology
using robust scaling and an ensemble of KMeans/GMM/DBSCAN, with the number of regimes se-
lected by a combined Silhouette and Calinski–Harabasz criterion. Each regime is assigned an expert

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

regressor and a light gating function; unlabeled samples contribute through an agreement-driven
co-training stage and weak Gaussian perturbation augmentation. We adopt Adam (lr=10−3, weight
decay 10−5), batch size 32, 200 max epochs with ReduceLROnPlateau and early stopping (patience
20), selecting the best checkpoint by validation R2. To stabilize across regimes, we regularize the
gate by entropy and penalize inter-regime parameter drift via a quadratic prior.

For LP and LapRLS we sweep kernel width over a logarithmic grid and tune graph regularization
on a validation split. For COREG we follow the original two-regressor setting and tune sample-
addition thresholds per budget. RankUp uses its ranking temperature and margin grid as in the
public release; SemiReward adopts the two-stage training with the official rewarder architecture and
threshold schedule. Domain-specific TransBiLSTMNet and TCN-SENet++ are adapted to our sam-
pling rate and window length, preserving their paper-reported layer sizes and look-back horizons;
all sequence models share the same early stopping rule as ours. Tree ensembles use 500 estimators,
depth ≤ 20, and learning rate 0.05 where applicable, selected on validation.

Experiments run on a single NVIDIA GPU RTX 4090, CUDA-enabled PyTorch with mixed-
precision off by default due to regression stability. We fix seeds {1, 2, 3} and release configuration
files and preprocessing scripts to reproduce splits and hyperparameter grids.

4.2 RESULTS

We evaluate our Regime-Aware Semi-Supervised Regression via Clustering-Gated Experts (abbrev.
CGE) on TBM operation modeling under label scarcity, following the setup in §4.1. Results are
reported as mean±std over three seeds with stratification across geological regimes; 95% confi-
dence intervals (95% CI) are from normal approximation over aggregated runs; p-values are from
paired Wilcoxon signed-rank tests across seeds×regimes with CGE vs. the strongest SSL baseline
(RankUp (Huang et al., 2024)) unless otherwise specified. We emphasize engineering utility: CGE
targets stable accuracy across regimes and calibrated uncertainty under low label budgets, rather
than chasing marginal best numbers at very high label rates.

Main table (10% labels). Table 1 summarizes predictive accuracy at 10% labeled data. CGE at-
tains the bestR2 and the lowest errors among SSL competitors, and approaches fully-supervised tree
ensembles trained with 100% labels. While the absolute bestR2 is achieved by XGBoost/LightGBM
under full supervision (as expected), CGE is competitive with substantially fewer labels, delivering
a favorable engineering trade-off.

Table 1: Overall performance at 10% labels.

Method R2 ↑ RMSE ↓
mean±std
(95% CI) p

mean±std
(95% CI) p

CGE (ours) 0.942 ± 0.018 – 0.112 ± 0.015 –
RankUp (Huang et al., 2024) 0.896 ± 0.021 0.018 0.131 ± 0.017 0.022
SemiReward (Li et al., 2024c) 0.881 ± 0.024 0.012 0.145 ± 0.020 0.015
COREG (Zhou & Li, 2005) 0.751 ± 0.026 <0.001 0.382 ± 0.021 <0.001
LapRLS (Belkin et al., 2006) 0.728 ± 0.028 <0.001 0.301 ± 0.022 <0.001
LP (Zhu et al., 2002) 0.702 ± 0.030 <0.001 0.422 ± 0.025 <0.001

RF (100% sup.) (Breiman, 2001) 0.866 ± 0.012 n/a 0.276 ± 0.011 n/a
XGBoost (100% sup.) (Chen & Guestrin, 2016) 0.912 ± 0.010 n/a 0.258 ± 0.010 n/a
LightGBM (100% sup.) (Ke et al., 2017) 0.909 ± 0.011 n/a 0.261 ± 0.011 n/a

4.3 UNCERTAINTY QUALITY VIA CONFORMALIZED QUANTILE REGRESSION

We equip all methods with the same conformalized quantile regression (CQR) post-hoc calibration
to form 90% prediction intervals (PIs). Table 4 reports PICP (coverage; target ≈ 0.90), MPIW
(interval width; lower is better), Gaussian NLL, and CRPS. CGE achieves near-nominal coverage
with the narrowest intervals, indicating well-separated experts and a smoother conditional residual
structure.
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Table 2: Uncertainty metrics at 10% labels with CQR (90% PIs). Lower is better for MPIW, NLL,
CRPS.

Method PICP ↑ MPIW ↓ NLL ↓ CRPS ↓
CGE (ours) 0.903 ± 0.012 0.612 ± 0.031 0.615 ± 0.022 0.238 ± 0.010
RankUp (Huang et al., 2024) 0.889 ± 0.015 0.645 ± 0.033 0.648 ± 0.023 0.251 ± 0.011
SemiReward (Li et al., 2024c) 0.881 ± 0.017 0.672 ± 0.035 0.662 ± 0.026 0.259 ± 0.012
COREG (Zhou & Li, 2005) 0.874 ± 0.018 0.665 ± 0.034 0.671 ± 0.027 0.262 ± 0.013
LapRLS (Belkin et al., 2006) 0.861 ± 0.019 0.683 ± 0.036 0.688 ± 0.028 0.267 ± 0.013
LP (Zhu et al., 2002) 0.842 ± 0.021 0.699 ± 0.038 0.701 ± 0.029 0.275 ± 0.014
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Coverage error |PICP− 0.90| ↓

M
PI

W
↓
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(a) Pareto diagnostics. CGE achieves
lower coverage error at narrower MPIW,
closer to the ideal lower-left.
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(b) By-regime error structure. CGE remains uniformly
lower, with reduced tails in harder strata (R3–R4).

CGE RankUp SemiReward LP

Figure 3: Uncertainty quality. (a) Sharpness–coverage frontier on the TBM test set: each point
corresponds to a method, with horizontal axis given by coverage error |PICP − 0.9| and vertical
axis given by mean interval width (MPIW); see Appendix E for metric definitions. (b) Per-regime
median absolute residuals (normalized) on the TBM test set. CGE (ours) achieves a favorable trade-
off between sharpness and coverage and improves residuals especially in the hardest regimes.

4.4 RICH VISUAL ANALYSIS AND NARRATIVE

To better reflect venue standards, we present composite, uncertainty-aware visualizations with con-
fidence bands, significance annotations, and per-regime diagnostics. Unless noted, all curves aggre-
gate over 3 seeds and geology-stratified folds; shaded areas depict 95% CIs from seed-wise vari-
ance; stars (⋆) mark points where the Wilcoxon signed-rank test against the strongest SSL baseline
(RankUp) is significant at p<0.05.

Fig. 3 presents the sharpness–coverage frontier, where CGE lies closer to the lower-left ideal,
achieving both tighter intervals and better-calibrated coverage. Per-regime breakdowns confirm
that these gains are not confined to simpler settings; rather, the gating mechanism and specialized
experts systematically reduce residuals in more challenging geological regimes (R3–R4), which is
particularly valuable for real-world deployment.

We measure uncertainty quality in terms of coverage error and interval sharpness (mean predic-
tion interval width, see Appendix E) and visualize the trade-off in a sharpness–coverage frontier
(Figure 3a).

Fig. 4 illustrates that confidence filtering yields the largestR2 improvements under low label budgets
, with diminishing gains at 20%. Validation diagnostics suggest an effective operating point near
the 90th percentile, where retained pseudo-labels are sufficiently clean to simultaneously improve
accuracy and enhance CQR calibration (lower MPIW and reduced coverage error). In contrast,
overly aggressive filtering (>95%) decreases data utility and slightly enlarges prediction intervals
(Fig. 4c), highlighting the inherent accuracy–uncertainty trade-off.
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Figure 4: Pseudo-label filtering gain analysis. Multi-view of accuracy gains, retention–precision
trade-offs, and uncertainty effects.

To assess the generality of the proposed regime-aware semi-supervised framework beyond TBM
telemetry, we further evaluate CGE on the public California Housing dataset, treated as a covariate-
shift regression problem with three latitude-based regimes and a 10% label budget. We compare
a supervised tree baseline (XGBoost), a global semi-supervised method (RankUp), and CGE in-
stantiated with geographic regimes and a gate in latitude–longitude space. CGE achieves the best
global RMSE and R2, and substantially improves performance in the mid-latitude regime where the
distribution differs most from the others. Detailed results are provided in Appendix G.

4.5 ABLATION STUDY

We ablate the core components at 10% labels: (i) removing geology-driven clustering (-Clust);
(ii) replacing the gating with a single global expert (-Gate); (iii) disabling co-training (-CoT); (iv)
disabling pseudo-label confidence filtering (-Filter); (v) removing weak augmentation (-Aug); (vi)
dropping gate entropy regularization (-Ent); and (vii) removing inter-regime drift penalty (-Drift).
Table 3 reports deltas relative to the full model.

To disentangle the effect of feature engineering from that of the regime-aware architecture, we re-
port in Appendix F.4 a feature-set ablation comparing basic versus engineered features for XGBoost,
RankUp, and CGE. CGE consistently outperforms both baselines under both feature settings, indi-
cating that its gains are not solely due to feature engineering.

The two most critical components are regime discovery (-Clust) and gating (-Gate), confirming the
value of regime awareness. SSL mechanisms (-CoT, -Filter) are complementary: they close much of
the gap to fully-supervised models at small budgets, in line with prior SSL analyses (Li et al., 2024c;
Huang et al., 2024). Regularizers (-Ent, -Drift) deliver smaller but consistent gains by improving
calibration and stability near regime boundaries.
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Table 3: Ablation at 10% labels: ∆ relative to CGE. Negative ∆R2 (and positive error/score deltas)
indicate degradation.

Variant ∆R2 ↑ ∆RMSE ↓ ∆NLL ↓ ∆CRPS ↓
-Clust (no regime discovery) −0.031 +0.019 +0.024 +0.012
-Gate (single expert) −0.022 +0.014 +0.018 +0.010
-CoT (no co-training) −0.018 +0.012 +0.013 +0.008
-Filter (keep-all pseudo-labels) −0.017 +0.011 +0.012 +0.007
-Aug (no augmentation) −0.010 +0.007 +0.008 +0.004
-Ent (no gate entropy reg.) −0.007 +0.005 +0.006 +0.003
-Drift (no inter-regime penalty) −0.006 +0.004 +0.005 +0.003

5 CONCLUSIONS

This work introduced CGE, a regime-aware semi-supervised regression framework tailored to TBM
operation modeling with scarce labels and cross-strata drift. By combining (i) robust geology-driven
regime discovery, (ii) per-regime heterogeneous ensembles trained with agreement-based pseudo-
labeling and consistency regularization, and (iii) a simple distance-based soft gate, CGE consistently
outperforms strong semi-supervised baselines under 5–20% label budgets. Beyond higher R2 and
lower RMSE, a uniform CQR post-hoc step yields near-nominal coverage with sharper intervals,
improving decision reliability in safety-critical settings.
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A LLM USAGE DISCLOSURE

We used large-language models (ChatGPT) to aid in polishing the writing of this paper. For numer-
ical experiments, we employed Al-assisted coding tools (GitHub Copilot and ChatGPT) to support-
code development.

B SPECIFIC CASE STUDY

Figure 5: Location and geological profile of the Jiluo Road Tunnel Project in Jinan City

The Jiluo Road Tunnel Project is located in the downtown area of Jinan City, Shandong Province,
serving as a key river-crossing passage and an important urban traffic corridor. As shown in Figure 1,
the tunnel extends from west to east beneath the Yellow River, connecting the transportation systems
on both banks. This project plays a significant role in alleviating traffic congestion and promoting
regional economic development.

The tunnel has a total length of approximately 3.89 km and is constructed using a large-diameter
slurry shield machine. The launching shaft is situated on the western bank, while the reception shaft
is located on the eastern bank, with working shafts and cut-and-cover sections at both ends. The
shield machine, named “Taishan”, has a diameter of about 12 m, featuring a large excavation cross-
section and high construction risks. Figure 5 illustrates the project location, the shield machine in
operation, and the launching shaft construction site, providing a direct view of the geographical
context and construction equipment.

As a major piece of transportation infrastructure in the city center, the Jiluo Road Tunnel passes
through geologically complex strata and groundwater-rich conditions, where construction risks are
considerably higher than in conventional projects. The shield-driven section is executed with a large-
diameter slurry shield machine, and the excavation process is strongly influenced by alternating soft
and hard ground, abrupt groundwater pressure variations, and localized gravel layers. Consequently,
the control of critical parameters such as face pressure, thrust, and torque is essential to maintaining
equipment stability and ensuring environmental safety.

Geotechnical investigations reveal that the strata along the alignment mainly consist of alternating
layers of sand, silty clay, and gravel, with confined aquifers present in certain sections. Such hetero-
geneous geological conditions not only lead to poor ground stability and potential surface settlement,
but also pose risks of water or mud inrush during excavation. As a result, the shield tunneling data
typically exhibit nonstationary, strongly coupled, and noise-contaminated characteristics, making it
challenging for traditional single-model approaches to capture their dynamic behavior.
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Figure 6: Aggregate performance and calibration. Left: label-efficiency with CI and significance
markers; Right: CQR reliability with bootstrap-like bands.

To ensure construction safety and support parameter optimization, multi-source monitoring data
were continuously collected during the shield tunneling process. A multimodal database was estab-
lished, covering active control parameters, passive feedback parameters, and geological parameters.
The active parameters, including thrust, torque, face pressure, and advance rate, reflect the direct
operational inputs of the shield machine. The passive parameters, such as synchronous grouting vol-
ume, slurry flow, and tail grease pressure, record the system responses during excavation. Geological
parameters derived from site investigations characterize the physical and mechanical properties of
the strata along the alignment. Together, this comprehensive dataset provides a solid foundation for
subsequent modeling and evaluation.

C ADDITIONAL EXPERIMENTAL DETAILS

Fig. 6) shows that CGE outperforms SSL baselines at low label rates with statistically significant
gains (stars at 5/10/20%). Reliability curves with shaded bands indicate near-nominal coverage and
mild conservativeness at the upper tail, desirable in safety-critical TBM settings. The inset density
suggests sharper intervals for CGE, aligning with lower MPIW and CRPS reported in §4.3.

Table 4 summarizes the uncertainty evaluation results during the interpolation stage, grouped by
“geological condition × parameter name.” PICP denotes the actual coverage of the prediction inter-
val; NMPIW refers to the normalized mean prediction interval width; NLL and CRPS respectively
measure the goodness of fit of the probabilistic distribution and the overall quantile loss. The “cov-
erage gap” represents the deviation between the PICP and the nominal coverage rate (with smaller
values indicating better performance). “Sample size” indicates the data volume within each group.

Table 4: Uncertainty evaluation results for different geological regimes and variables.

Geological Regime Variable PICP NMPIW NLL CRPS Coverage Gap Sample Size

0 Torque 0.985 0.589 -0.515 0.065 0.085 67

Continued on next page
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Table 4 – continued from previous page

Geological Regime Variable PICP NMPIW NLL CRPS Coverage Gap Sample Size

0 Slurry Circuit
Inflow Pressure

0.955 0.286 -1.172 0.035 0.055 67

0 P1.1 Slurry Pump
Suction Pressure

0.985 0.556 -0.395 0.075 0.085 67

0 P1.1 Slurry Pump
Discharge Pressure

0.985 0.348 -1.158 0.033 0.085 67

0 P2.1 Slurry Pump
Suction Pressure

0.851 0.161 -0.631 0.062 0.049 67

0 P2.1 Slurry Pump
Discharge Pressure

0.970 0.263 -1.038 0.038 0.070 67

0 Slurry Inflow Rate 0.985 0.600 -0.633 0.055 0.085 67
0 Slurry Inflow

Density
0.955 0.550 0.383 0.159 0.055 67

0 Slurry Outflow
Rate

1.000 1.034 -0.225 0.077 0.100 67

0 Slurry Outflow
Density

1.000 0.618 -0.965 0.045 0.100 67

1 Torque 1.000 0.639 -0.580 0.062 0.100 67
1 Cutterhead Total

Contact Force
0.985 0.524 -0.584 0.063 0.085 67

1 Slurry Circuit
Inflow Pressure

1.000 0.453 -0.606 0.063 0.100 67

1 P1.1 Slurry Pump
Suction Pressure

0.970 0.600 -0.111 0.105 0.070 67

1 P1.1 Slurry Pump
Discharge Pressure

0.985 0.390 -1.235 0.032 0.085 67

1 P2.1 Slurry Pump
Suction Pressure

1.000 0.365 -0.655 0.052 0.100 67

1 P2.1 Slurry Pump
Discharge Pressure

0.970 0.567 -0.801 0.044 0.070 67

1 Slurry Inflow Rate 0.955 0.393 -0.761 0.051 0.055 67
1 Slurry Inflow

Density
1.000 0.706 0.168 0.130 0.100 67

1 Slurry Outflow
Rate

0.940 0.400 -1.144 0.037 0.040 67

1 Slurry Outflow
Density

0.985 0.420 -0.962 0.036 0.085 67

2 Slurry Circuit
Inflow Pressure

1.000 0.998 -0.615 0.054 0.100 53

2 P1.1 Slurry Pump
Suction Pressure

0.906 0.868 -0.201 0.094 0.006 53

2 P1.1 Slurry Pump
Discharge Pressure

1.000 0.357 -2.042 0.012 0.100 53

2 P2.1 Slurry Pump
Suction Pressure

0.981 0.798 -0.423 0.066 0.081 53

2 P2.1 Slurry Pump
Discharge Pressure

0.981 0.526 -1.229 0.030 0.081 53

2 Slurry Inflow Rate 0.962 0.499 -0.615 0.057 0.062 53
2 Slurry Inflow

Density
1.000 1.398 0.847 0.226 0.100 53

2 Slurry Outflow
Rate

0.906 0.275 -1.206 0.036 0.006 53

Continued on next page
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Table 4 – continued from previous page

Geological Regime Variable PICP NMPIW NLL CRPS Coverage Gap Sample Size

2 Slurry Outflow
Density

1.000 0.904 -0.995 0.039 0.100 53

3 Torque 0.958 0.690 -0.285 0.083 0.058 48
3 Cutterhead Total

Contact Force
0.917 0.639 -0.364 0.079 0.017 48

3 Slurry Circuit
Inflow Pressure

1.000 1.601 0.620 0.179 0.100 48

3 P1.1 Slurry Pump
Discharge Pressure

0.979 0.708 -1.040 0.036 0.079 48

3 P2.1 Slurry Pump
Suction Pressure

1.000 0.489 -0.630 0.055 0.100 48

3 P2.1 Slurry Pump
Discharge Pressure

1.000 0.312 -0.453 0.062 0.100 48

3 Slurry Inflow Rate 0.958 0.588 -0.545 0.063 0.058 48
3 Slurry Inflow

Density
0.938 0.418 0.100 0.121 0.037 48

3 Slurry Outflow
Rate

1.000 0.581 -0.577 0.060 0.100 48

3 Slurry Outflow
Density

1.000 0.725 -1.286 0.032 0.100 48

4 Torque 0.984 0.729 0.258 0.133 0.084 62
4 Cutterhead Total

Contact Force
0.984 0.790 0.237 0.128 0.084 62

4 Slurry Circuit
Inflow Pressure

0.968 0.320 -1.056 0.038 0.068 62

4 P1.1 Slurry Pump
Suction Pressure

0.952 0.239 -0.859 0.049 0.052 62

4 P1.1 Slurry Pump
Discharge Pressure

1.000 0.473 -0.526 0.056 0.100 62

4 P2.1 Slurry Pump
Suction Pressure

0.919 0.241 -1.120 0.035 0.019 62

4 P2.1 Slurry Pump
Discharge Pressure

0.984 0.375 -0.973 0.040 0.084 62

4 Slurry Inflow Rate 1.000 0.333 -0.603 0.054 0.100 62
4 Slurry Inflow

Density
1.000 0.998 0.670 0.198 0.100 62

4 Slurry Outflow
Rate

1.000 0.434 -0.178 0.087 0.100 62

4 Slurry Outflow
Density

0.968 0.364 -0.310 0.078 0.068 62

5 Torque 0.987 0.525 -0.421 0.070 0.087 75
5 Cutterhead Total

Contact Force
0.987 0.527 -0.278 0.080 0.087 75

5 Slurry Circuit
Inflow Pressure

0.960 0.364 -1.173 0.035 0.060 75

5 P1.1 Slurry Pump
Suction Pressure

0.853 0.306 -0.436 0.080 0.047 75

5 P1.1 Slurry Pump
Discharge Pressure

0.987 0.196 -1.087 0.035 0.087 75

5 P2.1 Slurry Pump
Suction Pressure

0.987 0.375 -0.806 0.049 0.087 75

Continued on next page
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Table 4 – continued from previous page

Geological Regime Variable PICP NMPIW NLL CRPS Coverage Gap Sample Size

5 P2.1 Slurry Pump
Discharge Pressure

0.960 0.418 -1.556 0.024 0.060 75

5 Slurry Inflow Rate 1.000 0.544 -0.666 0.056 0.100 75
5 Slurry Inflow

Density
1.000 1.009 0.935 0.254 0.100 75

5 Slurry Outflow
Rate

0.987 0.642 -0.487 0.062 0.087 75

5 Slurry Outflow
Density

1.000 1.042 -0.559 0.057 0.100 75

6 Torque 0.988 0.948 0.505 0.167 0.088 86
6 Cutterhead Total

Contact Force
0.988 0.610 0.035 0.112 0.088 86

6 Slurry Circuit
Inflow Pressure

0.988 0.600 -0.694 0.052 0.088 86

6 P1.1 Slurry Pump
Suction Pressure

0.988 0.732 0.134 0.118 0.088 86

6 P1.1 Slurry Pump
Discharge Pressure

0.965 0.164 -1.592 0.023 0.065 86

6 P2.1 Slurry Pump
Suction Pressure

0.988 0.554 -0.731 0.054 0.088 86

6 P2.1 Slurry Pump
Discharge Pressure

0.977 0.453 -1.228 0.033 0.077 86

6 Slurry Inflow Rate 0.988 0.251 -0.881 0.045 0.088 86
6 Slurry Inflow

Density
0.953 0.543 0.311 0.148 0.053 86

6 Slurry Outflow
Rate

0.965 0.269 -0.658 0.055 0.065 86

6 Slurry Outflow
Density

0.977 0.443 -0.943 0.046 0.077 86

7 Torque 0.988 0.741 -0.322 0.075 0.088 80
7 Cutterhead Total

Contact Force
0.963 0.408 -0.511 0.065 0.062 80

7 Slurry Circuit
Inflow Pressure

0.938 0.164 -1.137 0.037 0.037 80

7 P1.1 Slurry Pump
Suction Pressure

0.975 0.522 -0.414 0.069 0.075 80

7 P1.1 Slurry Pump
Discharge Pressure

0.950 0.201 -1.649 0.020 0.050 80

7 P2.1 Slurry Pump
Suction Pressure

0.963 0.432 -0.407 0.068 0.062 80

7 P2.1 Slurry Pump
Discharge Pressure

0.988 0.504 -0.846 0.044 0.088 80

7 Slurry Inflow Rate 0.925 0.300 -0.626 0.064 0.025 80
7 Slurry Outflow

Rate
0.950 0.337 -0.677 0.056 0.050 80

7 Slurry Outflow
Density

0.950 0.355 -1.029 0.042 0.050 80

8 Torque 0.991 0.890 -0.093 0.095 0.091 108
8 Cutterhead Total

Contact Force
0.972 0.611 -0.235 0.090 0.072 108

8 P1.1 Slurry Pump
Suction Pressure

0.991 0.681 -0.279 0.080 0.091 108

Continued on next page
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Table 4 – continued from previous page

Geological Regime Variable PICP NMPIW NLL CRPS Coverage Gap Sample Size

8 P1.1 Slurry Pump
Discharge Pressure

0.935 0.220 -1.648 0.022 0.035 108

8 P2.1 Slurry Pump
Suction Pressure

0.991 0.707 -0.067 0.100 0.091 108

8 P2.1 Slurry Pump
Discharge Pressure

0.972 0.390 -1.570 0.023 0.072 108

8 Slurry Inflow Rate 0.981 0.462 -0.628 0.058 0.081 108
8 Slurry Inflow

Density
0.963 0.508 0.286 0.147 0.063 108

8 Slurry Outflow
Rate

0.972 0.362 -0.669 0.059 0.072 108

8 Slurry Outflow
Density

0.972 0.490 -1.537 0.024 0.072 108

9 Torque 0.952 0.452 -0.953 0.046 0.052 42
9 Slurry Circuit

Inflow Pressure
0.929 0.449 -0.134 0.089 0.029 42

9 P1.1 Slurry Pump
Discharge Pressure

1.000 0.426 -1.341 0.029 0.100 42

9 P2.1 Slurry Pump
Suction Pressure

0.952 0.461 0.017 0.099 0.052 42

9 Slurry Inflow Rate 0.952 0.477 -1.119 0.038 0.052 42
9 Slurry Outflow

Rate
0.905 0.342 -1.354 0.030 0.005 42

10 Torque 0.959 0.650 -0.250 0.086 0.059 123
10 Cutterhead Total

Contact Force
0.943 0.520 -0.250 0.087 0.043 123

10 Slurry Circuit
Inflow Pressure

0.976 0.612 -0.506 0.066 0.076 123

10 P1.1 Slurry Pump
Suction Pressure

0.976 0.467 -0.221 0.087 0.076 123

10 P1.1 Slurry Pump
Discharge Pressure

0.976 0.234 -1.078 0.035 0.076 123

10 P2.1 Slurry Pump
Suction Pressure

0.967 0.463 -0.654 0.059 0.067 123

10 P2.1 Slurry Pump
Discharge Pressure

0.967 0.234 -1.357 0.028 0.067 123

10 Slurry Inflow Rate 0.951 0.327 -0.860 0.045 0.051 123
10 Slurry Inflow

Density
0.976 0.724 0.467 0.169 0.076 123

10 Slurry Outflow
Rate

0.967 0.360 -0.605 0.057 0.067 123

10 Slurry Outflow
Density

0.984 0.459 -0.773 0.047 0.084 123

D DATA PREPROCESSING, FEATURE ENGINEERING, AND SELECTION

Along the temporal axis, missing observations are recovered using cubic spline interpolation with
limited extrapolation at the boundaries. Residual gaps are conservatively imputed with column-wise
medians to mitigate distortion from outliers. Anomalous samples are identified both at the univariate
level, via a modified Z-score based on the Median Absolute Deviation (MAD):

Z
(M)
ij = 0.6745

xij −median(xj)

MAD(xj)
, (16)
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and at the multivariate level, using the Mahalanobis distance:

DM (xi) =
√
(xi − µ)⊤Σ−1(xi − µ). (17)

Only the top 5% of extreme samples are trimmed to balance noise suppression and information
retention. Here, xij denotes the j-th feature of sample i, median(·) and MAD(·) denote the column-
wise median and Median Absolute Deviation, respectively; τ is the anomaly threshold; µ and Σ are
the sample mean vector and covariance matrix, respectively.

After missing-value recovery and anomaly removal, the goal of feature engineering is to embed op-
erational parameter couplings, sample distributional characteristics, and geological priors into learn-
able representations with minimal information loss, while simultaneously controlling dimensional-
ity and estimation variance. Specifically, the cleaned passive parameter vector z = (z1, . . . , zp)

⊤ is
mapped to second-order interaction terms, retaining only pure cross-products:

Φint(z) = { zizj | 1 ≤ i < j ≤ p }. (18)

At the row level, statistical descriptors are extracted across the p-dimensional passive measurements
at each time slice. For the i-th sample {zi1, . . . , zip}, we define the row mean and standard deviation
as

z̄i =
1

p

p∑
j=1

zij , si =

√√√√ 1

p− 1

p∑
j=1

(
zij − z̄i

)2
. (19)

and the skewness and excess kurtosis as:

γ1,i =

1
p

∑p
j=1(zij − z̄i)

3(
1
p

∑p
j=1(zij − z̄i)2

)3/2
, γ2,i =

1
p

∑p
j=1(zij − z̄i)

4(
1
p

∑p
j=1(zij − z̄i)2

)2 − 3. (20)

To incorporate geological priors, let the geological vector of the i-th sample be gi = (gi1, . . . , gim),
and construct aggregated quantities:

ψ
(sum)
i =

m∑
k=1

gik, ψ
(prod)
i =

m∏
k=1

gik. (21)

and robust ratios:
ψ
(ratio)
i,1 =

gi1
gi2 + ϵ

, ψ
(ratio)
i,2 =

gi3
gi4 + ϵ

. (22)

As interaction and composite terms are introduced, feature dimensionality grows rapidly. To
preserve key information while suppressing redundancy, we define the expanded input matrix
X ∈ Rn×d. Near-constant columns are removed by variance thresholding:

Var(X·j) =
1

n− 1

n∑
i=1

(
Xij − X̄·j

)2
. (23)

Mutual information is then used to quantify nonlinear dependence between features and the target
variable y:

I(xj ; y) =

∫∫
p(xj , y) log

p(xj , y)

p(xj)p(y)
dxj dy. (24)

Finally, recursive feature elimination (RFE) with Extremely Randomized Trees is applied. Let St

denote the retained feature set at iteration t; in each round, r features with the lowest marginal
contribution are removed, with cross-validation score Score(·) guiding the update:

St+1 = arg max
S⊂St

|S|=|St|−r

Score
(
f̂ET(XS , y)

)
. (25)

Iteration continues until the retained dimensionality drops to the preset limit s.
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E UNCERTAINTY METRICS AND SHARPNESS–COVERAGE FRONTIER

For completeness, we give the exact definitions of the uncertainty metrics used in the main paper
and in Figure 3.

Given a held-out test set {(xi, yi)}Ni=1 and a predictive model that produces an interval [Li, Ui] for
each input xi, the prediction interval coverage probability (PICP) and the mean prediction interval
width (MPIW) are defined as:

PICP =
1

N

N∑
i=1

1{yi ∈ [Li, Ui]},

MPIW =
1

N

N∑
i=1

(Ui − Li).

(26)

For a nominal coverage level 1− α (e.g., 0.9 in the main paper), we also report the coverage error

CovErr =
∣∣PICP− (1− α)

∣∣. (27)

In the sharpness–coverage frontier plot in Figure 3a, each method is represented as a point in the
plane with horizontal coordinate given by CovErr and vertical coordinate given by MPIW. The
ideal performance corresponds to the lower-left corner (small coverage error and narrow intervals).
In this work, we use conformalized quantile regression (CQR) to construct [Li, Ui] for all methods;
thus differences in PICP and MPIW reflect how well different training strategies support calibrated
uncertainty.

F ADDITIONAL ABLATIONS AND SENSITIVITY STUDIES

This section provides additional quantitative evidence for the design choices in CGE (ours), com-
plementing the main experiments.

F.1 SENSITIVITY TO THE NUMBER OF REGIMES

We first study the sensitivity of CGE to the number of discovered regimes S in the geological
feature space. We vary S ∈ {2, 3, 4, 5} and retrain CGE under the 10% label budget while keeping
the clustering pipeline, experts, and semi-supervised learning configuration fixed. Table 5 reports
the global TBM test R2 averaged over the same three random seeds as in the main experiments.

Table 5: Sensitivity of CGE (ours) to the number of regimes S (TBM test set, 10% label budget).

# Regimes S R2 ↑

2 0.936
3 0.939
4 (default) 0.942
5 0.937

CGE is empirically robust for S ∈ [2, 5]: the testR2 remains within a narrow band around the default
value, with at most about one percentage point difference between the best and worst configurations.
When S is too small (e.g., S = 2), dissimilar strata are merged and complex segments become
harder to model; when S is too large (e.g., S = 5), some regimes become data-poor, which makes
semi-supervised training less stable. The default configuration of four regimes provides the best
compromise between specialization and data sufficiency and matches the value reported in the main
accuracy table at the 10% label budget.

F.2 ROBUSTNESS TO GEOLOGICAL FEATURE NOISE

To evaluate the robustness of CGE to errors in geological descriptors at test time, we conduct a
stress test where only the geological feature vector z that feeds the gate is perturbed, while the
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regime experts and all other model components remain fixed. Specifically, on the TBM test set we
construct perturbed descriptors

z′ = z + ε, ε ∼ N
(
0, σ2 · std(z)2

)
, (28)

where σ is a noise level expressed as a fraction of each dimension’s standard deviation. For each σ,
we recompute the distance-based gating weights πs(z′) and re-evaluate CGE (ours) on the test data.
Table 6 summarizes the resulting global test R2 under the 10% label budget.

Table 6: Robustness of CGE (ours) to Gaussian perturbations of the geological descriptors at test
time (TBM test set, 10% labels).

Noise level σ 0.0 0.1 0.2 0.3 0.4 0.5

R2 (CGE, test) 0.942 0.933 0.922 0.907 0.879 0.846

The performance degrades monotonically but gradually as the noise strength increases. For moderate
noise up to σ = 0.3, the global test R2 remains close to the main experimental value, dropping from
0.942 to 0.907. Even under stronger perturbations (σ = 0.5), CGE retains non-trivial predictive
power. This behavior is consistent with the robust preprocessing of geological descriptors (median
and interquartile range) and indicates that the distance-based gate does not collapse under realistic
levels of measurement error.

F.3 NEURAL GATING VS. DISTANCE-BASED GATING

We also compare the original distance-based gating mechanism with a learned neural gating net-
work. The neural gate is implemented as a small MLP that takes the robustly scaled geological
descriptor z as input, is trained with cross-entropy to predict the cluster assignments obtained from
the ensemble clustering, and outputs softmax weights over regimes. The regime experts themselves
are unchanged; only the gating function is replaced. Table 7 reports test performance under the 10%
label budget.

Table 7: Comparison between distance-based gating and an MLP-based gate (TBM test set, 10%
labels).

Gating scheme R2 ↑ PICP (90%) ↑ MPIW ↓

Distance-based gate (ours) 0.942 0.903 0.612
MLP gate 0.941 0.881 0.598

Both gating mechanisms achieve almost identical R2; the MLP gate yields slightly narrower inter-
vals (smaller MPIW) but noticeably worse coverage, drifting further below the nominal 90% target
than the distance-based gate. In addition, the distance-based gate is substantially more interpretable,
since regime assignments can be directly explained in terms of distances in geological feature space
and easily visualized along chainage. Given the negligible difference in R2, worse calibration, and
reduced interpretability, we retain the distance-based gate as the main design in CGE.

F.4 FEATURE-SET ABLATION

In the main experiments, all methods—including XGBoost, RankUp, SemiReward, LP, LapRLS,
COREG, TransBiLSTMNet, TCN-SENet++, and CGE—use the same engineered feature set de-
scribed in Appendix D. To disentangle the effect of feature engineering from the benefit of the
regime-aware architecture in CGE, we additionally compare performance under a basic feature set
versus the full engineered set.

The basic feature set consists of raw machine telemetry channels concatenated with basic geological
descriptors, without high-order interactions or advanced statistical aggregations. The engineered
feature set is the one used in the main paper. Table 8 reports TBM test performance at the 10%
label budget for three representative methods: a supervised tree baseline (XGBoost), a global semi-
supervised baseline (RankUp), and CGE (ours).

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 8: Feature-set ablation on the TBM test set under the 10% label budget.

Method Features R2 ↑ CRPS ↓

XGBoost Basic 0.884 0.259
RankUp Basic 0.873 0.262
CGE (ours) Basic 0.910 0.247

XGBoost Engineered 0.903 0.244
RankUp Engineered 0.896 0.251
CGE (ours) Engineered 0.942 0.238

Feature engineering provides a global uplift for all methods, improving both R2 and CRPS. Cru-
cially, CGE outperforms XGBoost and RankUp under both feature settings, indicating that the ad-
ditional gains are due to the regime-aware semi-supervised architecture rather than special access to
engineered features.

G CALIFORNIA HOUSING COVARIATE-SHIFT EXPERIMENT

To demonstrate that the regime-aware semi-supervised idea in CGE is not specific to TBM teleme-
try, we evaluate CGE on the public California Housing dataset from scikit-learn, which exhibits
covariate shift across geographic regions.

We treat this as a multi-regime regression problem by partitioning the data into three latitude-based
regimes (R1–R3: low-, mid-, and high-latitude). We simulate label scarcity by retaining only 10%
of the training samples as labeled and using the remaining 90% as unlabeled data. We reuse the
same preprocessing and train/validation/test split protocol as in the TBM case. On this dataset we
compare:

• XGBoost: a supervised tree-based baseline trained only on the labeled 10% of the data;
• RankUp: a global semi-supervised regression method trained on all labeled and unlabeled

samples without using regime structure;
• CGE (ours): the proposed regime-aware semi-supervised framework instantiated with

latitude-based regimes and a distance-based gate in latitude–longitude space.

Table 9 reports global test performance in terms of RMSE, R2, PICP, and MPIW, and Table 10
reports per-regime R2.

Table 9: Global performance on the California Housing test set (10% labeled, 90% unlabeled).

Method RMSE ↓ R2 ↑ PICP (90%) ↑ MPIW ↓

XGBoost 0.594 0.741 0.817 2.133
RankUp 0.586 0.747 0.614 1.161
CGE (ours) 0.577 0.756 0.664 1.429

Table 10: Per-regime R2 on the California Housing test set (R1–R3: low-, mid-, and high-latitude).

Method R2 (R1) ↑ R2 (R2) ↑ R2 (R3) ↑

XGBoost 0.742 0.748 0.733
RankUp 0.749 0.757 0.735
CGE (ours) 0.746 0.792 0.731

CGE (ours) achieves the best global RMSE and R2, outperforming both XGBoost and RankUp.
The mid-latitude regime R2, whose distribution differs most from the other regions, benefits most
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from regime-aware modeling: its R2 increases from 0.748/0.757 (XGBoost/RankUp) to 0.792 for
CGE. In terms of uncertainty, XGBoost produces relatively wide but well-covered intervals, RankUp
sharp but under-covered intervals, and CGE finds a compromise by narrowing intervals compared
to XGBoost while partially recovering the coverage lost by RankUp. These trends indicate that the
benefits of regime-aware semi-supervised learning extend beyond TBM applications to a standard
public regression benchmark with covariate shift.
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