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ABSTRACT

Diffusion-based Generative Models (DGMs) have achieved unparalleled perfor-
mance in synthesizing high-quality visual content, opening up the opportunity
to improve image super-resolution (SR) tasks. Recent solutions for these tasks
often train architecture-specific DGMs from scratch, or require iterative fine-tuning
and distillation on pre-trained DGMs, both of which take considerable time and
hardware investments. More seriously, since the DGMs are established with a
discrete pre-defined upsampling scale, they cannot well match the requirements of
enhancing arbitrary images to a target resolution like 1080p, 2K, where a unified
model adapts to arbitrary upsampling scales from the low-resolution to the target
resolution, instead of preparing a series of distinct models for each case, we name
it as TRSR. These limitations beg an intriguing question: can we identify the
TRSR capability of existing pre-trained DGMs without the need for distillation
or fine-tuning? In this paper, we take a step towards resolving this matter by
proposing Diff-SR, a TRSR attempt based solely on pre-trained DGMs, without
additional training efforts. It is motivated by an exciting finding that a simple
methodology, which first injects a specific amount of noise into the low-resolution
images before invoking a DGM’s backward diffusion process, outperforms current
leading solutions. The key insight is determining a suitable amount of noise to
inject, i.e., small amounts lead to poor low-level fidelity, while over-large amounts
degrade the high-level signature. Through a finely-grained theoretical analysis, we
propose the Perceptual Recoverable Field (PRF), a metric that achieves the optimal
trade-off between these two factors. Extensive experiments verify the effectiveness,
flexibility, and adaptability of Diff-SR, demonstrating superior performance to
state-of-the-art solutions under diverse TRSR environments.

1 INTRODUCTION

Over the last decade, the deep neural models (e.g., EDSR (Lim et al., 2017), ESRGAN (Wang et al.,
2018)) have significantly promoted the development of super-resolution (SR) techniques. However, it
is still challenging for them to match the requirements of target-resolution super-resolution (TRSR)
tasks (Hui et al., 2019). The primary target of TRSR is to provide a unified model for arbitrary
upsampling scales from the low-resolution to the target resolution, instead of training a series of
distinct models for each case. This requirement is practical as individuals tend to prefer images and
videos in specific resolutions such as 1080p or 2K. However, it is common for the images they receive
to be in varying resolutions. Traditional SR models are often customized to a specific integer scale
setting (e.g., 2×). Thus, when dealing with a larger scale (e.g., 4×) during inference, a natural way is
to cascade a 2× SR model twice which often suffers from losing high-fidelity details (Yang et al.,
2014) or train a new 4× SR model from scratch (Yang et al., 2018). Besides, due to the fixed network
architecture, it is hard to adapt the model to non-integer scale SR tasks, e.g., 2.7×. Observing these
issues, the recent LIIF (Chen et al., 2021) and its variations (Wang et al., 2021; Xu et al., 2021) try to
learn a continuous function representing high-resolution images. However, their upscaled images still
suffer from unacceptable structural distortion and fidelity loss.

Recently, Diffusion-based Generative Models (DGMs) (Sohl-Dickstein et al., 2015), have achieved
remarkable success in synthesizing high-quality visual content (Rombach et al., 2022; Ramesh
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et al., 2022; Dhariwal & Nichol, 2021b; Croitoru et al., 2022; Harvey et al., 2022; Kawar et al.,
2022a; Song et al., 2021b). Due to this unique strength (Dhariwal & Nichol, 2021a), DGMs have
opened up the opportunity to handle image SR tasks (Saharia et al., 2021). Although DGMs can be
implemented with large freedom, in this paper, we will exclusively demonstrate our methodology
based on Denoising Diffusion Probabilistic Modeling (DDPM) (Ho et al., 2020), which is a pertinent
case belonging to the DGM family. Generally, DDPM is inspired by non-equilibrium thermodynamics
(Sohl-Dickstein et al., 2015). It defines a Markov chain (Ching & Ng, 2006) of diffusion steps by
gradually adding Gaussian noise into data, and learns to reverse the diffusion process to reconstruct
data samples from the noise (Weng, 2021). For image synthesis, DGMs start from a generative
seed based on Gaussian noise, and then iteratively denoise it to obtain a clear image with high
perceptual quality. Despite the benefit, most recent solutions often train architecture-specific DGMs
from scratch, or require the efforts of fine-tuning (Hu et al., 2021; Gal et al., 2022; Roich et al., 2022)
and distillation (Salimans & Ho, 2022; Song et al., 2023; Luhman & Luhman, 2021), both of which
take considerable time and hardware investments. More seriously, the DGMs are established based
on a discrete pre-defined upsampling scale, limiting their TRSR performance when adapting to a
different scale during inference.

These limitations raise an interesting question – can we identify the TRSR capability from an existing
pre-trained DGM without additional efforts of fine-tuning or distillation? Surprisingly, we find a
simple but effective methodology to resolve this matter, i.e., injecting a specific amount of noise
into the low-resolution (LR) image before invoking a DGM’s backward diffusion process. Our
motivation is that since the DGMs can generate high-quality visual content in a fixed resolution, we
can utilize this property to control a DGM’s pipeline and adapt it to the TRSR environments. The
key here is to determine a suitable amount of noise to inject. We develop insights that the injected
noise affects the TRSR capability in both low-level fidelity measure and high-level signature of
generated content. From this perspective, we prove the feasibility of this methodology in theory and
deduce the Perceptual Recoverable Field (PRF). This key concept indicates how much noise could
be injected to guarantee a good recovery quality for different upsampling scales. Based on these
theoretical fundamentals, we deeply analyze the rationale of DGM’s image TRSR capacity and give
a mathematical analysis of the suitable noise injection level to obtain the desired recovery quality.

We implement our methodology as Diff-SR, a TRSR attempt based on a single pre-trained DGMs
solely. Diff-SR just involves the inference process of DGMs. Diff-SR injects a specific amount of
noise into the LR images and provides a unified generative starting point for visual details recovery.
By invoking the reverse diffusion process, Diff-SR can restore the noisy LR images into the high-
resolution version, with similar perceptual quality as the ground truth. Previous work, such as
SDEDit(Meng et al., 2022), has demonstrated the potential of utilizing noise injection for image
editing purposes. Building upon this foundation, our study aims to further showcase its effectiveness
in conducting TRSR. Additionally, we provide a comprehensive analysis and evidence to substantiate
our assertion, distinguishing our approach from SDEdit. The contributions of our work are as follows:

• Efficient Methodology. We take an attempt to identify a DGM’s TRSR capability without
distillation or fine-tuning. Excitingly, we find a simple but effective methodology for this
matter that injects a specific amount of noise into the low-resolution image before invoking
a DGM’s backward diffusion process.

• Theoretical Guarantee. We establish theoretical analysis to support our methodology and
quantify the TRSR capacity by deducing the key concept called Perceptual Recoverable
Field (PRF). Based on these fundamentals, we provide mathematical analysis to guarantee
the noise injection strength for handling different TRSR tasks.

• Competitive Performance. We implement our methodology as Diff-SR, a novel TRSR
solution based solely on a single pre-trained DGM. Evaluations based on several datasets
verify the competitiveness of Diff-SR over the current leading solutions.

2 BACKGROUND

2.1 FORWARD DIFFUSION PROCESS

For diffusion model, it models the whole forward process as a Markov chain. We add a small amount
of Gaussian noise for each step in the chain to convert the original image to a low-quality version.
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Each step is modeled by a Gaussian distribution q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI) where the

noise strength is controlled by a variance schedule {βt ∈ (0, 1)}Tt=1. By utilizing the property of
Gaussian distribution, we can formulate the distribution of xt given x0 as:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), (1)

where αt = 1 − βt and ᾱt =
∏t

i=1 αi. Usually, the noise strength increases along with time
β1 < β2 < ... < βT . Therefore, we have ᾱ1 > ᾱ2 > ... > ᾱT . With this condition distribution, we
can derive the posterior distribution of xt−1 conditioned by xt, x0 as:

q(xt−1|xt,x0) = N (xt−1; µ̃(xt,x0), β̃tI). (2)

2.2 BACKWARD DIFFUSION PROCESS

The target of a DGM is to maximize the likelihood probability pθ(x0). Based on the negative
log-likelihood theorem, we can maximize pθ(x0) and optimize the variational upper bound by intro-
ducing a KL-divergence term (Hershey & Olsen, 2007; Joyce, 2011). According to the preliminary
formulation mentioned by Eq. (1) and Eq. (2), we can deduce the variational lower bound LV LB as:

− log pθ(x0) ≤ − log pθ(x0) +DKL(q(x1:T |x0)∥pθ(x1:T |x0))

= LT︸︷︷︸
Forward error

+LT−1 + · · ·+ L0︸ ︷︷ ︸
Backward error

(3)

where:
LT = DKL(q(xT |x0) ∥ pθ(xT )) = CT , L0 = − log pθ(x0|x1).

Lt = Ex0,ϵ

[ (1− αt)
2

2αt(1− ᾱt)∥Σt∥22
∥ϵt − ϵθ(xt, t)∥2

] (4)

Note that LT reflects the forward error since it models the difference between the forward distribution
q(xT |x0) and the distribution of the neural network output. The other parts are the backward error,
which measures the difference between the true backward distribution q(xt−1|xt,x0).

3 METHOD

3.1 OBSERVATIONS FROM DGM DENOISING PROCESS

As illustrated in Figure. 1, when initiating the backward process at timestep t rather than T , a distinct
output can still be obtained from the noisy input image. In this context, we denote L̄t as the sampling
error when commencing at xt, where xt represents the outcome after injecting t forward noise steps
to the original image. Based on this, the following lemma is established:

Lemma 1. The error between the output image and the GT x0 can be formulated as:

L̄t = Ct +

t−1∑
i=1

[ (1− αi)
2

2αi(1− ᾱi)∥Σi∥22
Ei

]
+ L0, (5)

where Ei = ∥ϵi − ϵθ(
√
ᾱix0 +

√
1− ᾱiϵi, i)∥2. Note that L̄t models the error between the output

image and the original image. Ei is the training loss of the neural network and can be estimated
empirically once the network converges. Ei is actually the loss function of the diffusion model. When
the neural network converges, this value can be regarded as a constant E0. Σi is the variance of the
reverse process which changes along with time i. As there are many research about how to speed
up the sampling process of difussion model like DDIM (Song et al., 2021a), this parameter may
differ in the different sampler. For the basic DDPM (Ho et al., 2020), ΣDDPM

t = β̃iI, for DDIM,
ΣDDIM

t = 1−ᾱi−1

1−ᾱi
· 1−ᾱi

ᾱi−1
I. Detailed proof can be found in the supplementary material of §B.

Our first key observation is that this error can reflect the reversibility of the noisy image back to its
original image. As depicted in Figure. 1, the behavior of L̄t manifests a pronounced surge initially,
where t/T < 0.4. During this phase, we note that the reconstructed image undergoes negligible
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Figure 1: Illustration of DGM denoising process.

changes in comparison to the original image. Subsequently, a gradual and smoother transition occurs
up to around t/T = 0.6. Throughout this interval, the reconstructed image largely retains the essential
features of the original version, albeit with slight deviations in certain details. In the final phase, the
reconstructed image diverges significantly from the original rendition. This intriguing phenomenon
serves as a catalyst for further exploration, prompting us to investigate the potential applications of
this characteristic.

3.2 POTENTIAL OF DISSECTING ASSR CAPABILITY
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Figure 2: By injecting a specific amount of noise into the LR images, it is possible to restore the LR
images to the HR version. However, the final perceptual quality of the recovered HR images may
change with the injected noise level, which is controlled by noise level t/T .
Then, inspired by our preliminary experiment, we found that after injecting some noise to low-
resolution images x̂, the sampling results x̂t show high similarity with the high-resolution images
x̂ as shown in Figure. 2a. This adding noise process is the sampling process from the forward
distribution xt ∼ q(xt|x0). The high similarity is because their distributions become similar. The
distribution similarity can be measured by KL-divergence DKL(q(xt|x0) ∥ q(x̂t|x̂0)) where we have
deeper analysis in § 3.3. This inspires us to explore whether we can recover the high-resolution
image with these noised low-resolution images, so we try to use different resolutions to conduct
reserves steps after injecting a certain amount of noise into them. The source resolution is 256× 256,

4



Under review as a conference paper at ICLR 2024

we convert the source image to different versions, and the result is demonstrated in the Figure. 3.
According to the experiment, we can easily recover the original image when the resolution is near
the original resolution (i.e., downsampling the original image to 2.6× scale), just inject 20% noise
into the degraded image, then we can recover the high-resolution image. However, as the resolution
decreases, we should inject more noise, as shown in the 4.5× scale downsampling, when we add
20% noise and start the reverse process at this point, it ends up returning a blurry picture just as the
input data, So we need to add more noise to the input data, then it can return a more clear picture that
maintains the majority of the source image.

Actually, by injecting noise into the LR images, we make the probability flow of LR images overlap
with the HR images as illustrated in Figure. 2b. As the forward flow always ends at the Gaussian
noise space, we can identify a uniform latent space that can be reached by both HR and LR images
through noise injection. Moreover, Pretrain DGM is trained for reversing the forward flow of HR
images, so we can leverage the model to enhance the latent feature of LR images and align them
to follow the backward flow of HR images, ultimately generating HR outputs. However, there is a
tradeoff which is if we add too much noise, it will finally return totally different images.
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Figure 3: Image SR results of a pre-train DGM with different steps of noise injection. Take both
4.5× and 2.6× upsampling scales as the example, we inject different t steps of noise into the input
LR image, and then conduct the DGM’s reverse process from this step to generate the HR version.
We can see that the step numbers impact both texture fidelity and semantic signature, which are with
opposite proportional relations to step t.

3.3 ANALYSIS OF RECOVERY ERROR

In this section, we analyze how to control the amount of noise injected and explain why it works.
Note that pθ is a well pretrained Diffusion model. By just injecting some noise into the low-resolution
images and changing the start point of the reverse diffusion process, we can now use pθ to conduct
super-resolution tasks.

With a little abuse of symbols, we use xt, x̂t to represent the result after we inject t steps noise to the
original high-resolution images and low-resolution images, respectively. L̄t is the upper error bound
between the ground truth image x0 and the generated image when we use x0 as the model input.
When we use x̂0 as the model input and want to get a clear output image, the backward process is
almost the same as the backward process when we use x0 as input because it mainly depends on the
neural network parameter. The main difference comes from the forward error. Here, we use Lt to
represent the error between the ground truth image x0 and the generated image x̃.

Definition 1. In the inference period, given the original high-resolution image x (i.e., the ground
truth) and the compressed low-resolution version x̂, we first inject t steps of Gaussian noise into x̂ to
obtain the noisy version x̂t, then feed x̂t into DGM as the generative seed, and finally, reverse the
diffusion process also through t denoising steps to generate the recovered image x̄. Therefore, the
entire recovery error Lt between the recovered image x̄ and ground-truth x can be formulated as:

Lt = DKL(q(xt|x̂0) ∥ pθ(xt)) +

t−1∑
i=0

Li. (6)

Based on the definition of the recovery error, our next step is to analyze which are the key terms
impacting this error.
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Figure 4: The visualization of PRF under different upsampling scales. The PRF satisfies the
constraints of both signature and fidelity loss, indicating a suitable amount of noise injection.

Theorem 1. The recovery error Lt can be resolved as two terms: the signature loss LS
t and fidelity

loss LF
t , where the former reflects the structural similarity of the entire visual content while the latter

measures the smoothness of detailed textures. The formulation can be described as:

Lt ≜ L̄t +
[
Kt ∥ x− x̂0 ∥2 +At

]
≜ LS

t︸︷︷︸
Signature Loss

+ ωLF
t︸︷︷︸

L1 Fidelity Loss

, (7)

where ω is a hyperparameter to guarantee these two loss terms are of the same magnitude. Empirically,
we set ω = 0.004. Note that Kt, At are two intermediate variables decreasing with t. Their detailed
descriptions and the complete proof can be found in the supplementary material of §C. This theorem
reveals that the signature loss increases with t while the fidelity loss decreases with t. A lower
signature loss helps preserve visual similarity, i.e., in Figure. 3, the upscaled image holds a similar
human face as the ground truth. Besides, a lower fidelity loss serves as image deblurring, i.e., in
Figure. 3, the upscaled image provides a clear human face with sharp texture. By jointly optimizing
these two terms, we can finally upscale the images with high perceptual quality.

3.4 DETERMINING NOISE INJECTION VIA PERCEPTUAL RECOVERABLE FIELD

Remark. To restore the low-resolution image to a high-resolution one with diffusion model, we
should inject t steps noise to the low-resolution image x̂0 so that both LS

t , ωLF
t are less than a

threshold, then with the capacity of diffusion model, it will restore the noisy blur image x̂t to a clear
high-quality image x̃. As t controls the amount of injected noise, we call the range of t satisfying
the above constraints as Perceptual Recoverable Field (PRF). Consequently, searching the PRF
corresponds to determining a suitable amount of noise to inject. The searching process can be
formulated as solving the following problem.

argmin
t

Lt

s.t. LS
t ≤ CS (8)

ωLF
t ≤ CF , (9)

where the first constraint in Eq. (8) ensures that the injected noise will not destroy the content of the
input image and result in a wrong output image. Meanwhile, the second constraint in Eq. (9) ensures
that the recovered image x̃ will become clearer compared with the input low-resolution image x̂0.
CS and CF are two constant thresholds.

We illustrate this decision process in Figure. 4, and we use NL here to represent noise level. For
different resolutions, the acceptable PRFs are different. For 2× super-resolution, it just needs to inject
about 20% noise. Then starting the diffusion sampling process at this point, we can get a high-quality
output. For those downsampling in a higher scale like 4× upsampling, we need to inject about 40%
noise to get an acceptable output. For 8× upsampling, it doesn’t have a PRF area, which means it
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is hard to restore the original image. Actually, we can still get a reasonable output when we add
50 − 65% noise to this input. But, compared with other resolutions which have a wider PRF, this
output seems to be more blurred and more different in some areas.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

In our experimental evaluation, we thoroughly investigate the influence of noise injection in different
settings. Consistent with the state-of-the-art architecture of DGM, the pre-trained DGM utilizes the
U-Net (Ronneberger, 2017) architecture as the backbone. For comprehensive information regarding
implementation details and hyperparameters, we provide the supplementary material in §D. Our
experiments are conducted on four publicly available datasets specifically designed for evaluating
image editing tasks: DIV2K (Agustsson & Timofte, 2017), Set5 (Bevilacqua et al., 2012), Set14
(Zeyde et al., 2010), and Urban100 (Huang et al., 2015). Prior to conducting the experiments, we apply
preliminary processing steps, including center cropping and resizing the images to a standardized
size of 256× 256. It is important to note that the pre-trained DGM employed in our Diff-SR method
is solely trained on images of the 256 × 256 resolution setting and does not have access to any
downsampled images. Following the methodology outlined in (Rombach et al., 2022), we assess the
quality of image editing using both perceptual-based metrics, such as Fréchet Inception Distance
(FID) (Heusel et al., 2017), which aligns closely with human perception, as well as distortion-based
metrics like Peak signal-to-noise ratio (PSNR) (Horé & Ziou, 2010) and structural similarity index
measure (SSIM) (Wang et al., 2004). By employing these metrics, we can comprehensively evaluate
the impact of noise injection on both fidelity and perception fields (Lee et al., 2022). To establish a fair
comparison, we benchmark our method against several baseline methods provided by OpenMMLab
(OpenMMLab, 2022), latest DM-based method including DDRM(Kawar et al., 2022b), DDNM(Wang
et al., 2023), LDM-SR3(Rombach et al., 2022) and other methods for like LTE(Lee & Jin, 2022),
ITSRN(Yang et al., 2021), SwinIR(Liang et al., 2021). We download their pre-trained models from
their official GitHub repositories to ensure fairness in the evaluation.

4.2 PERFORMANCE COMPARISON

Table 1: Comparison with more baseline solutions, where the red and blue colors indicate the best
and the second-best performance, respectively.

Model Scale #Params #Mult-Adds DIV2K Set5 Set14 Urban100

FID ↓ PSNR ↑ SSIM ↑ FID ↓ PSNR ↑ SSIM ↑ FID ↓ PSNR ↑ SSIM ↑ FID ↓ PSNR ↑ SSIM ↑
Bicubic 4× NA NA 14.963 30.451 0.679 7.134 32.214 0.808 14.553 30.956 0.707 16.468 30.171 0.624
DDNM 4× 552M 3.31G 5.226 31.377 0.781 2.363 33.716 0.866 5.527 31.888 0.777 6.038 31.135 0.764
DDRM 4× 552M 3.31G 7.752 30.478 0.706 5.217 32.108 0.836 9.091 30.774 0.710 8.005 30.771 0.735

LDM-SR3 4× 150M 5.3G 2.805 29.361 0.512 13.140 29.663 0.517 2.394 29.498 0.528 2.209 29.695 0.589
EDSR 4× 1.51M 8.13G 7.113 31.538 0.808 3.894 34.019 0.907 7.865 32.068 0.801 7.049 31.274 0.793

ESRGAN 4× 16.72M 73.48G 6.766 31.622 0.819 3.849 34.067 0.912 7.673 32.124 0.807 5.672 31.408 0.815
LTE 4× 11.95M 149.86G 6.530 31.658 0.823 3.607 34.073 0.915 7.354 32.158 0.811 5.295 31.471 0.826

ITSRN 4× 22.6M 12.05G 7.356 31.513 0.806 3.924 34.011 0.907 7.828 32.055 0.802 7.835 31.232 0.786
LIIF 4× 1.57M 5G 7.111 31.548 0.809 3.779 34.003 0.910 7.866 32.073 0.802 6.879 31.279 0.794

SwinIR 4× 11.75M 9.46G 6.402 31.671 0.824 3.625 34.090 0.916 7.354 32.153 0.811 5.059 31.478 0.824
Diff-SR(Ours) 4× 35.71M 40.56G 1.088 32.450 0.924 0.196 34.732 0.961 0.281 34.982 0.964 0.915 32.148 0.910

Bicubic 2× NA NA 4.879 32.434 0.889 3.417 35.044 0.929 5.134 33.064 0.879 6.129 31.758 0.848
DDNM 2× 552M 3.31G 0.599 33.491 0.898 0.305 34.669 0.876 0.402 33.663 0.876 0.499 32.982 0.887
DDRM 2× 552M 3.31G 2.306 32.168 0.877 2.134 34.003 0.910 3.094 32.348 0.847 2.062 32.718 0.897

LDM-SR3 2× NA NA NA NA NA NA NA NA NA NA NA NA NA NA
EDSR 2× 1.37M 7.93G 0.539 35.885 0.966 0.924 37.849 0.973 0.751 35.928 0.944 0.717 34.970 0.954

ESRGAN 2× NA NA NA NA NA NA NA NA NA NA NA NA NA NA
LTE 2× 11.95M 149.86G 0.489 36.300 0.970 0.907 37.899 0.974 0.681 36.279 0.952 0.588 35.492 0.962

ITSRN 2× 22.6M 12.05G 0.620 35.758 0.965 0.989 37.707 0.971 0.810 35.889 0.943 0.881 34.786 0.952
LIIF 2× 1.57M 5G 1.366 34.851 0.957 1.598 37.078 0.965 1.648 35.166 0.935 1.833 33.759 0.941

SwinIR 2× 11.55M 9.26G 0.455 36.354 0.970 0.872 37.925 0.974 0.651 36.390 0.953 0.535 35.597 0.963
Diff-SR(Ours) 2× 35.71M 40.56G 0.411 35.410 0.964 0.082 38.373 0.976 0.103 38.239 0.977 0.169 36.592 0.978

As demonstrated in Table 1, our model consistently achieves superior performance across the majority
of datasets. At lower compression rates (e.g., 2×), while Diff-SR delivers commendable overall
metrics, its advantage over certain baselines may not be substantial, as some alternatives manage
to achieve similar performance levels. However, as the compression rate increases (e.g., 4×), the
distinct superiority of Diff-SR becomes more evident. Higher compression rates inevitably result in
the loss or degradation of original information, leading to visual artifacts, blurring, and other forms
of distortion. Consequently, restoring images for other baselines becomes more challenging, even
after retraining these models on the specific data. In contrast, Diff-SR maintains almost identical
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performance, even under high-rate compression scenarios. Notably, Diff-SR exhibits more significant
improvements in perception field metrics, such as FID, compared to fidelity field metrics like PSNR
and SSIM. This discrepancy arises from the fact that PSNR and SSIM tend to favor mean squared error
(MSE) regression-based techniques, which tend to be excessively conservative with high-frequency
details. However, these metrics penalize synthetic high-frequency details that may not align well
with the target image (Saharia et al., 2021). Consequently, diffusion-based models like SR3 and
Diff-SR achieve higher FID scores while occasionally exhibiting lower PSNR and SSIM scores. The
performance advantage of Diff-SR is further verified through visualizations, as illustrated in Figure. 5.

GT original size

GT

BICUBIC

Diff-SR

DDNM

DDRM

LDM-SR3

EDSR

ESRGAN

LIIF

ITE

Figure 5: Performance visualization of different 4× SR solutions, evaluated on DIV2K dataset.
Additional results are provided in the supplementary material of §F. (Zoom-in for best view)

Importantly, when considering other baselines like EDSR, ESRGAN, achieving upsampling scales
such as 2.7× poses certain challenges. One approach involves employing a 2× super-resolution
model to enhance an image from 96 × 96 to 192 × 192 and subsequently using basic upsampling
methods like Bicubic to upscale it to 256 × 256. Alternatively, another method involves using a
4× super-resolution model to enhance the image and then downsampling the output to 256× 256.
However, both of these methods suffer from performance limitations due to the distortions introduced
by further compression and the mismatch of compression scales. In contrast, our Diff-SR approach
leverages a single pre-trained model to handle diverse scale super-resolution tasks. By simply
adjusting the noise injection level, Diff-SR achieves excellent results for various scale SR scenarios.
Notably, Diff-SR is capable of directly accepting image inputs of any scale (e.g., 2.7×, 3.5×) without
the suffering of degradation caused by techniques like Bicubic interpolation.

Note that our primary objective is to explore the TRSR capacity of pretrain DGM so we didn’t put
much effort to minimize the amount of parameters or optimize the inference speed.

4.3 ABLATION STUDIES

4.3.1 IMPACT OF UPSAMPLING SCALES

In the conducted ablation experiment, as illustrated in Figure. 6, we explored various super-resolution
(SR) scales ranging from 1.6× to 4.5×. The results revealed the necessity of adapting noise injection
levels to suit different SR tasks. Initially, at the state t/T = 0, we observed a deterioration in metrics
such as FID, PSNR, and SSIM as the resolution decreased. However, by employing Diff-SR to restore
these images, their quality experienced significant improvement, particularly when the noise level
was not excessively high. Figure. 6 presents the outcomes of the experiment. For a 2× upscaling SR
task, Diff-SR achieved FID (0.50), PSNR (34.2 dB), and SSIM (89.5) scores by employing a noise
injection level of approximately 20%. Conversely, to attain similar performance in a 4× upscaling
SR task, Diff-SR required a noise injection level of approximately 40%, resulting in FID (0.55),
PSNR (33.2 dB), and SSIM (88.4) scores. The observed discrepancies in these metrics are primarily
attributable to the degradation of the input image. Nevertheless, when compared to the initial state,
Diff-SR substantially mitigated these discrepancies. Importantly, this experiment emphasized the
importance of avoiding excessive noise injection into the input images. As depicted in the figure, if
the noise injection level exceeds 60%, all metrics exhibit a deterioration worse than that of the initial
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state. This finding aligns with our preliminary observations, where excessively high noise injection
levels led to visually clear output images but compromised their semantic content.
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Figure 6: Ablation study of upsampling scales on REDS dataset.

4.3.2 IMPACT OF DGM PRE-TRAINING SCHEDULER

We further conducted an ablation study to investigate the impact of different hyperparameters on the
required noise injection levels for achieving target-scale super-resolution. Notably, we identified the
noise scheduler method as a significant influencing factor. The noise scheduler method regulates
the strength of noise injection at each step within the DGM model, which is accomplished by
manipulating the parameters αt and βt. To explore this, we examined several noise schedulers,
including Cosine (Nichol & Dhariwal, 2021), Linear (Kingma et al., 2021), Scale Linear (Austin
et al., 2021), Sigmoid (Chen, 2023), and Square Cosine (Rombach et al., 2022), which have been
previously adopted in Stable Diffusion (Rombach et al., 2022). For this ablation experiment, we
focused on a 4× super-resolution scale. The results of this study, presented in Figure. 7, showcased
the behavior of both methods starting from the same initial metric point and exhibited similar trends as
the noise injection level varied. Among the various scheduler methods, the Square Cosine scheduler
emerged as the most effective. It achieved a superior FID score (0.2), the second-best PSNR score
(34.2 dB), and SSIM score (89%) within a noise injection level range of 10% to 70%. In contrast,
schedulers such as Cosine and Linear, which were initially employed in the original DGM version
(Ho et al., 2020), demonstrated poorer performance on these metrics at the same noise injection level.
Additionally, the acceptable range of noise levels for satisfactory results was narrower compared to
the Square Cosine scheduler.
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Figure 7: Ablation study of DGM pre-training scheduler on REDS dataset.

5 CONCLUSION

This research endeavor aims to explore the target-resolution super-resolution (TRSR) capabilities
inherent in existing pre-trained diffusion-based generative models (DGMs), without necessitating
additional fine-tuning or distillation efforts. We present Diff-SR, the TRSR approach that relies
solely on pre-trained DGMs. The foundation of Diff-SR lies in a simple yet powerful observation: by
introducing a specific level of noise into the low-resolution (LR) image prior to initiating the DGM’s
backward diffusion process, the desired recovery performance can be achieved. We further substan-
tiate the feasibility of this methodology through theoretical analysis and introduce a fundamental
metric known as the Perceptual Recoverable Field (PRF). The PRF metric quantifies the permissible
amount of noise that can be injected to ensure high-quality recovery for various upsampling scales.
Our extensive experiments demonstrate that Diff-SR surpasses existing state-of-the-art solutions
across diverse super-resolution scenarios.
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A NOTATIONS

Table 2: Notation list.

Notation Description

βt The variance schedule of Diffusion model βt ∈ (0, 1),where t ∈ [1, T ]
αt Defined as αt = 1− βt

ᾱt Defined as ᾱt =
∏t

i=1 αi

β̃t The output based on ᾱt, βt, β̃t =
1−ᾱt−1

1−ᾱt
· βt

x The original high-resolution image, i.e., the ground truth
x0 The initial status before injecting Gaussian noise, i.e., x0 = x
xt The final status after injecting Gaussian noise by t steps to ground truth
x̂ The low-resolution image compressed from x
x̄ The recovered image based on x̂
t The step number that injects Gaussian noise into x̂, t ∈ [0, T ]
x̂0 The initial status before injecting Gaussian noise, i.e., x̂0 = x̂
x̂t The final status after injecting Gaussian noise by t steps
µ̃t The mean of the reverse gaussian distribution
ϵt The injected noise at timestep t
ϵθ The predicted noise by neural network
Et The prediction error between ϵt and ϵθ
L̄t The accumulation error of t steps denoising with x as input
Lt The accumulation error of t steps denoising with x̂ as input
At,Kt Derived intermediate variables decrease along with t
LS
t The signature loss

LF
t The fidelity loss

ω The hyperparameter that guarantees LS
t and LF

t with the same order of magnitude

All the notations used in the supplementary material are listed in Table 2.

B PROOF OF LEMMA 1. IN SEC. 3.2

Proof. Following the idea of DDPM, when we start the reverse process at time step t the variational
upper bound to optimize the negative log-likelihood can be rewritten as:

− log pθ(x0) ≤ − log pθ(x0) +DKL(q(x1:t|x0)∥pθ(x1:t|x0))

= Eq(x0:t)

[
log

q(x1:t|x0)

pθ(x0:t)

]
= LV UB

= L̄t

(10)

Then follow the derivation of (Sohl-Dickstein et al., 2015), we have
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L̄t = Eq(x0:t)

[
log

q(x1:t|x0)

pθ(x0:t)

]
= Eq

[
log

∏t
i=1 q(xi|xi−1)

pθ(xt)
∏t

i=1 pθ(xi−1|xi)

]
= Eq

[
− log pθ(xt) +

t∑
i=1

log
q(xi|xi−1)

pθ(xi−1|xi)

]
= Eq

[
− log pθ(xt) +

t∑
i=2

log
q(xi|xi−1)

pθ(xi−1|xi)
+ log

q(x1|x0)

pθ(x0|x1)

]
= Eq

[
− log pθ(xt) +

t∑
i=2

log
(q(xi−1|xi,x0)

pθ(xi−1|xi)
· q(xi|x0)

q(xi−1|x0)

)
+ log

q(x1|x0)

pθ(x0|x1)

]
= Eq

[
− log pθ(xt) +

t∑
i=2

log
q(xi−1|xi,x0)

pθ(xi−1|xi)
+

t∑
i=2

log
q(xi|x0)

q(xi−1|x0)
+ log

q(x1|x0)

pθ(x0|x1)

]
= Eq

[
− log pθ(xt) +

t∑
i=2

log
q(xi−1|xi,x0)

pθ(xi−1|xi)
+ log

q(xt|x0)

q(x1|x0)
+ log

q(x1|x0)

pθ(x0|x1)

]
= Eq

[
log

q(xt|x0)

pθ(xt)
+

t∑
i=2

log
q(xi−1|xi,x0)

pθ(xi−1|xi)
− log pθ(x0|x1)

]
= Eq[DKL(q(xt|x0) ∥ pθ(xt))︸ ︷︷ ︸

Lt

+

t∑
i=2

DKL(q(xi−1|xi,x0) ∥ pθ(xi−1|xi))︸ ︷︷ ︸
Li−1

− log pθ(x0|x1)︸ ︷︷ ︸
L0

]

(11)

For diffusion model, the Li term is parameterized to minimize the difference of these two distributions
q(xt−1|xt,x0) and pθ(xt−1|xt). Since both distributions are gaussian distributions, the problem can
be translated to minimize the difference of their mean, which can be further derived into the following
formulation:

Lt = DKL(q(xt|x0) ∥ pθ(xt)) = Ct

Li = Ex0,ϵ

[ (1− αi)
2

2αi(1− ᾱi)∥Σi∥22
∥ϵi − ϵθ(

√
ᾱix0 +

√
1− ᾱiϵi, i)∥2

]
, i ∈ [1, t− 1]

L0 = − log pθ(x0|x1)

(12)

Consequently, L̄t can be finally formulated as:

L̄t = Ct +

t−1∑
i=1

[ (1− αi)
2

2αi(1− ᾱi)∥Σi∥22
Ei

]
+ L0, (13)

where Ei = ∥ϵi − ϵθ(
√
ᾱix0 +

√
1− ᾱiϵi, i)∥2.

C PROOF OF THEOREM 1. IN SEC. 3.4

Proof. As shown in Eq. (12), when we change the initial x0 from high-resolution image x0 to
low-resolution image x̂0, the main different come from the Lt term. Since pθ(xt) does not change,
we will focus on the change of q(xt|x0). Note that q(xt|x0) is the forward distribution which we
have:
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q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) (14)

To analyze the changes, we can analyze the DK-divergence of these two distributions q(xt|x0) and
q(xt|x̂0).

DKL(q(xt|x0) ∥ q(xt|x̂0))

=

∫
q(xt|x0) ln(

q(xt|x0)

q(xt|x̂0)
)dx

=

∫
q(xt|x0) ln(

e−
(x−√

ᾱtx0)2

(1−ᾱt)I

e−
(x−√

ᾱtx̂0)2

(1−ᾱt)I

)dx

=

∫
q(xt|x0)(−

(x−
√
ᾱtx0)

2

(1− ᾱt)I
+

(x−
√
ᾱtx̂0)

2

(1− ᾱt)I
)dx

=
1

(1− ᾱt)I

∫
q(xt|x0)(ᾱt(x0)

2 + ᾱt(x̂0)
2 + 2

√
ᾱt(x0 − x̂0)x)dx

=
1

(1− ᾱt)I

∫
q(xt|x0)(ᾱt(x0)

2 + ᾱt(x̂0)
2)dx

+
1

(1− ᾱt)I

∫
q(xt|x0)2

√
ᾱt(x0 − x̂0)x)dx

=
ᾱt(x0)

2 + ᾱt(x̂0)
2

(1− ᾱt)I

∫
q(xt|x0)dx+

2
√
ᾱt(x0 − x̂0)

(1− ᾱt)I

∫
q(xt|x0)xdx

=
ᾱt(x0)

2 + ᾱt(x̂0)
2

(1− ᾱt)I
+

2
√
ᾱt(x0 − x̂0)

(1− ᾱt)I

∫
q(xt|x0)xdx

(15)

As q(xt|x0) is a gaussian distribution,
∫
q(xt|x0)xdx is exactly the mean of this distribution which

is
√
ᾱtx0, so we have

DKL(q(xt|x0) ∥ q(xt|x̂0)) =
ᾱt(x0)

2 + ᾱt(x̂0)
2

(1− ᾱt)I
+

2
√
ᾱt(x0 − x̂0)

(1− ᾱt)I

√
ᾱtx0 (16)

When we increase the noise injection level s, ᾱt decreases, then we can find DKL(q(xt|x0) ∥
q(xt|x̂0)) decreases which means q(xt|x̂0) becomes more similar with q(xt|x0). Especially, when
t → ∞, ᾱt → 0, then DKL(q(xt|x0 ∥ q(xt|x̂0)) = 0, both q(xt|x0) and q(xt|x̂0) follows the same
gaussian distribution. Besides, we can also find the gap between these two distributions is linear to
the error between the error (x0 − x̂0) and decreases along with the noise injection level t. Then the
Lt term with x̂0 as input can be:

Lt = DKL(q(xt|x̂0) ∥ pθ(xt))

≜ DKL(q(xt|x0) ∥ pθ(xt)) +DKL(q(xt|x̂0) ∥ q(xt|x0))

= Lt +At +Kt(x0 − x̂0)

(17)

Where Lt is the forward error when we use x as input, At is the first term in Eq. (16), Kt(x0 − x̂0)
is the second term. The second line is because we have proved that the KL-divergence between
q(xt|x0) and q(xt|x̂0) becomes smaller as t increase, so these two distributions become more and
more similar as t increases. So we can use q(xt|x̂0)) to approximate q(xt|x0) to some extent. Then
we have:
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DKL(q(xt|x0) ∥ pθ(xt)) +DKL(q(xt|x̂0) ∥ q(xt|x0))

=

∫
q(xt|x0) log

q(xt|x0)

pθ(xt)
+

∫
q(xt|x̂0) log

q(xt|x̂0)

q(xt|x0)

≜
∫

q(xt|x̂0) log
q(xt|x0)

pθ(xt)
+

∫
q(xt|x̂0) log

q(xt|x̂0)

q(xt|x0)

=

∫
q(xt|x̂0)

(
log

q(xt|x0)

pθ(xt)
+ log

q(xt|x̂0)

q(xt|x0)

)
=

∫
q(xt|x̂0) log

q(xt|x0)

pθ(xt)

(18)

Consequently, the final recovery error Lt can be revised as:

Lt = Lt +

t−1∑
i=0

Li

= DKL(q(xt|x̂0) ∥ pθ(xt)) +

t−1∑
i=0

Li

≜ DKL(q(xt|x0) ∥ pθ(xt)) +DKL(q(xt|x̂0) ∥ q(xt|x0)) +

t−1∑
i=0

Li

=

t∑
i=0

Li +
[
Kt(x0 − x̂0) +At

]
≜ L̄t + ω

[
Kt ∥ x− x̂0 ∥2 +At

]
≜ LS

t︸︷︷︸
Signature Loss

+ ωLF
t︸︷︷︸

L1 Fidelity Loss

(19)

where ω is a hyperparameter to guarantee these two loss terms are of the same magnitude, we choose
ω = 0.004.

D DETAILS OF EXPERIMENTAL SETUP IN SEC. 4.1

Baselines and Datasets. We use Bicubic (Aràndiga, 2016; Hwang & Lee, 2004), Nearest (Lin et al.,
2008), EDSR (Lim et al., 2017), ESRGAN (Wang et al., 2018), LIIF (Chen et al., 2021), and SR3
(Saharia et al., 2021) as the baseline solutions for performance comparison.

To guarantee evaluation fairness, the models of baseline solutions, as well as the pre-trained DGM
used by Diff-SR, are established on a unified experimental setup. We use four pertinent SR datasets,
including DIV2K (Agustsson & Timofte, 2017), Set5 (Bevilacqua et al., 2012), Set14 (Zeyde et al.,
2010), and Urban100 (Huang et al., 2015). Following the pre-training guidances mentioned in
the corresponding work of the baseline solutions, we use the high-resolution (HR) images as the
supervised ground truth to pre-train the baseline models, so that they can recover the low-resolution
(LR) images to the HR versions. Considering the property of the diffusion process, the DGM only
requires the HR images to optimize its restoration capacity, without access need for the LR images.

Setting of Pre-trained DGM. The DGM used by Diff-SR employs the UNet backbone (Ronneberger,
2017) and follows the sampling strategy of Denoising Diffusion Implicit Models (DDIMs) (Song
et al., 2021a). More precisely, the DGM uses three downsampling blocks, two middle blocks and
three upsampling blocks in UNet. The scaling factors are set as 2, 4, 8 for these three kinds of blocks,
respectively. The number of base feature channels is 64. To capture the time sequence information,
the diffusion step index t is specified by adding the sinusoidal position embedding into each residual
block. By setting the maximum step number as T = 1000, the DGM controls the noise variance
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βt (t ∈ [1, T ]) through a linear quadratic scheduler, which gradually ranges from β1 = 10−4 to
βT = 0.02. Also, the DGM is optimized by the Mean of Squared Error (MSE) loss with Adam
optimizer (Kingma & Ba, 2015) and 16 batch size. The total number of epochs is 10K and the initial
learning rate is 1× 10−5.

Test setting. Our Diff-SR and the other baseline solutions take the LR images to generate the
recovered HR images. The performance is compared by checking the scores of FID, SSIM and PSNR,
between the recovered HR images and the ground-truth HR ones.

E DEEP INSPECTION FROM FREQUENCY DOMAIN

Another interesting result is when we analyze this problem in the frequency domain (through Fourier
transform (Bracewell & Bracewell, 1986; Brigham & Morrow, 1967)), it gives us another perspective
to understand why this noise injection operation can restore a low-resolution image to a high-
resolution one. As shown in Figure. 8, we calculate the model output x̃’s frequency map and compare
it with the frequency map of the original image x, we use two boxes to segment the low-frequency
information and high-frequency information as shown in the supplementary material of §E. Besides,
we also illustrate the frequency map of the intermediate results that we get after injecting noise, which
is shown in the lower side of Figure. 8.

Different images in the spatial and frequency domains are shown in the first box at the initial state.
Compared with the original image x0, the low-resolution image lost most of the high-frequency
information (i.e., four corners) and the low-frequency information is preserved. Then when we inject
some noise into these images, their frequency maps also change. But as shown in the second box, if
the noise injection level is insufficient, there are still some significant differences. As a result, when
we compare the enhanced result x̃, x̃ ∼ q(x|x̂t) with ground truth x0, we can find the low-frequency
error is small but the high-frequency error is large. From the spatial domain, this means the content
of the output image is consistent with the ground truth, but the image is blurred. Then if we inject
enough noise (i.e., in the third box), the frequency domain maps are very similar. We can get a
clear output image when we denoise this image with DGM. Both high-frequency and low-frequency
errors are less than a threshold, so the output image is clear and content-right. If we inject too much
noise as shown in the final box, the frequency maps are similar, but the low-frequency information is
destroyed. Then when we start the reverse process at this data point, the output image suffers from
high low-frequency error even though the low-frequency error is small. From the spatial domain,
this means we have a clear output image but the semantic content of this image is different from the
original image.

NL=0 NL=0.1 NL=0.3 NL=0.8

High frequency

Low frequency

Figure 8: Illustration on frequency domain. For each box in the figure, the upper left is the result of
the original image inject t steps noise, the lower left is the frequency map of this image, the upper
right is the result of low-resolution image inject t steps noise, lower right is the frequency map.
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F QUALITATIVE RESULTS IN SEC. 4.2

In this section, we provide the qualitative results on the datasets of DIV2K (Agustsson & Timofte,
2017), Set5 (Bevilacqua et al., 2012), Set14 (Zeyde et al., 2010), and Urban100 (Huang et al., 2015).
From Figure. 9 to Figure. 20, we can observe that Diff-SR consistently achieves higher recovery
quality over the baseline solutions.

GT original size

GT

BICUBIC

Diff-SR

DDNM

DDRM

LDM-SR3

EDSR

ESRGAN

LIIF

ITE

Figure 9: Qualitative results of different 4× SR solutions, evaluated on DIV2K dataset.
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Figure 10: Qualitative results of different 4× SR solutions, evaluated on DIV2K dataset.
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Figure 11: Qualitative results of different 4× SR solutions, evaluated on DIV2K dataset.
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Figure 12: Qualitative results of different 4× SR solutions, evaluated on Set5 dataset.
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Figure 13: Qualitative results of different 4× SR solutions, evaluated on Set5 dataset.
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Figure 14: Qualitative results of different 4× SR solutions, evaluated on Set5 dataset.
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Figure 15: Qualitative results of different 4× SR solutions, evaluated on Set14 dataset.
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Figure 16: Qualitative results of different 4× SR solutions, evaluated on Set14 dataset.

Set14 monarch

GT

BICUBIC

Diff-SR

DDNM

DDRM

LDM-SR3

EDSR

ESRGAN

LIIF

ITE

Figure 17: Qualitative results of different 4× SR solutions, evaluated on Set14 dataset.
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Figure 18: Qualitative results of different 4× SR solutions, evaluated on Urban100 dataset.
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Figure 19: Qualitative results of different 4× SR solutions, evaluated on Urban100 dataset.
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Figure 20: Qualitative results of different 4× SR solutions, evaluated on Urban100 dataset.
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