
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MATHHAY: AN AUTOMATED BENCHMARK FOR LONG-
CONTEXT MATHEMATICAL REASONING IN LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent large language models (LLMs) have demonstrated versatile capabilities in
long-context scenarios. Although some recent benchmarks have been developed
to evaluate the long-context capabilities of LLMs, there is a lack of benchmarks
evaluating the mathematical reasoning abilities of LLMs over long contexts, which
is crucial for LLMs’ application in real-world scenarios. In this paper, we intro-
duce MATHHAY, an automated benchmark designed to assess the long-context
mathematical reasoning capabilities of LLMs. Unlike previous benchmarks like
Needle in a Haystack, which focus primarily on information retrieval within long
texts, MATHHAY demands models with both information-seeking and complex
mathematical reasoning abilities. We conduct extensive experiments on MATHHAY
to assess the long-context mathematical reasoning abilities of eight top-performing
LLMs. Even the best-performing model, Gemini-1.5-Pro-002, still struggles with
mathematical reasoning over long contexts, achieving only 51.26% accuracy at
128K tokens. This highlights the significant room for improvement on the MATH-
HAY benchmark.

1 INTRODUCTION

Long-context tasks arise in various applications, including summarization (Huang et al., 2021),
multi-document question answering (Yang et al., 2018), prompt compression (Jiang et al., 2023a;b),
and repository-level code generation (Bogomolov et al., 2024). Recent large language models (LLMs)
such as GPT-4 (OpenAI, 2023), Claude (Claude, 2023), and Gemini (Reid et al., 2024) have shown
versatile capabilities across various long-context scenarios. They are designed to support long context
modeling, being able to process up to 128k or even 2M tokens (Reid et al., 2024).

Some recent benchmarks have been developed to evaluate the long-context capabilities of LLMs.
LongBench (Bai et al., 2023) is a benchmark that covers 6 tasks, with an average length of about
7, 000 words (English version). To evaluate the ability of LLMs to handle longer contexts, Needle
in a Haystack (Kamradt, 2023) is increasingly popular. This test requires models to locate a small,
specific piece of information within varying long context windows. However, recent advanced LLMs
can easily achieve near-perfect performance on Needle in a Haystack (Dubey et al., 2024). To
refine the evaluation of long-context ability LLMs, several variants of the Needle in a Haystack
task have been introduced. For example, Laban et al. (2024) presents Summary of a Haystack,
a summarization-based test that evaluates reasoning over long contexts and the ability to grasp
content importance. NeedleBench (Li et al., 2024) positions critical data points at varying depths
within texts, testing retrieval and reasoning abilities in contexts ranging from 4k to 1000k tokens.
In addition, the BABILong benchmark (Kuratov et al., 2024) is designed to test models’ reasoning
across facts dispersed throughout extremely long documents, encompassing 20 tasks such as fact
chaining, induction, deduction, counting, and managing lists/sets.

While these benchmarks bring complexity and diversity to evaluate the capabilities of the latest LLMs
in long-context scenarios, there is still a lack of appropriate benchmarks for evaluating their long-
context abilities in mathematical reasoning, which often arise in real-world situations. For example,
some example scenarios where such long-context mathematic reasoning can be helpful for users i)
if there is a set of news about Nvidia’s Q2 in 2024, then the user might want to know how much
revenue increased compared to the previous quarter, or the earnings per share for the quarter, and
whether they exceeded analysts’ expectations ii) the user wants to compare Microsoft’s and Amazon’s

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Benchmark Multi-Doc Multi-Step Avoidance of Irrelevant Realistic Automated Mathematical
Tasks Reasoning Contamination Documents Documents Construction Reasoning

ZeroSCROLLS (Shaham et al., 2023) ✓ ✓ × ✓ ✓ × ×
L-Eval (Math) (An et al., 2023) ✓ × × × × × ✓
LongBench (Bai et al., 2023) ✓ × × ✓ ✓ × ×
BAMBOO (Dong et al., 2023) × × ✓ ✓ ✓ × ×
InfiniteBench (Math) (Zhang et al., 2024) ✓ ✓ × ✓ × × ✓
Loong (Wang et al., 2024) ✓ ✓ × ✓ ✓ × ×

NIAH (Kamradt, 2023) × × × ✓ ✓ ✓ ×
RULER (Hsieh et al., 2024) ✓ ✓ × ✓ ✓ ✓ ×
FlenQA (Levy et al., 2024) ✓ ✓ × ✓ ✓ ✓ ×
SummHay (Laban et al., 2024) ✓ × × ✓ ✓ × ×
BABILong (Kuratov et al., 2024) ✓ ✓ × ✓ ✓ ✓ ×
NeedleBench (Li et al., 2024) ✓ ✓ × ✓ ✓ ✓ ×

MATHHAY (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Comparative analysis of MATHHAY and existing long-context benchmarks.

cloud income and expenditure in Q2 of 2024 to help determine if they should invest in Microsoft
or Amazon stocks. iii) Knowing the population growth rates for previous year and this year in a
certain country can help the user decide whether to invest in real estate there in the future. For these
real-world queries, there is need for the ability to gather extensive materials from different sources,
identify the precise relevant information within it and perform some mathematical reasoning in order
to derive the correct answer. This inspires us to create a new mathematical reasoning benchmark to
evaluate LLMs’ long-context capabilities in more real-world scenarios.

In this paper, we introduce MATHHAY, an automated benchmark designed to evaluate long-context
mathematical reasoning in LLMs. The benchmark is built through four key stages: document
collection, question generation, quality control, and haystack construction. First, we gather documents
featuring real-world mathematical reasoning scenarios within a certain time period to support to form
MATHHAY. Next, we generate four types of test tasks, varying in difficulty: (1) Single-Step, Single-
Document (SSSD), (2) Multi-Step, Single-Document (MSSD), (3) Single-Step, Multi-Document
(SSMD), and (4) Multi-Step, Multi-Document (MSMD). SSSD is the simplest, requiring a single
relevant document and one computational step, while MSMD is the most complex, requiring multiple
documents and computational steps. After question generation, we apply quality control by comparing
solutions generated through different strategies to ensure high-quality data. Finally, we construct
the haystack for MATHHAY by inserting relevant documents into noisy text using certain placement
strategies. Our main contributions are summarized as follows:

• We introduce an automated method to create high-quality long-context mathematical reason-
ing benchmarks tailored for real-world scenarios within a specified time period.

• We present the MATHHAY benchmark, which includes questions of varying difficulty levels
to assess LLMs’ reasoning abilities across different input lengths (32K, 64K, 128K).

• We conduct extensive experiments on MATHHAY to assess the long-context reasoning
abilities of eight top-performing LLMs. Our results show that current LLMs struggle to
handle mathematical reasoning tasks over long contexts, highlighting significant room for
improvement on the MATHHAY benchmark.

2 RELATED WORK

2.1 LONG-CONTEXT BENCHMARKS

Long-context modeling is rapidly growing, with several benchmarks developed to evaluate this
capability by building on or revising existing tasks and datasets. ZeroSCROLLS (Shaham et al.,
2023) facilitates systematic comparisons of LLMs on tasks requiring information from long texts.
LongBench (Bai et al., 2023) introduces a multitask bilingual benchmark for long-context understand-
ing, spanning 21 tasks. Loong (Wang et al., 2024) highlights a key limitation of current benchmarks
that artificially extend input lengths with irrelevant noise. Loong aims to reflect real-world scenarios
through extended multi-document question answering. BAMBOO (Dong et al., 2023) addresses
data contamination in long-context settings by incorporating more recent documents into the bench-
mark. L-Eval (An et al., 2023) offers a comprehensive suite of tasks for long-context models.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

InfiniteBench (Zhang et al., 2024) is the first benchmark featuring data lengths exceeding 100K
tokens. L-Eval and InfiniteBench include mathematical reasoning tasks, but MATHHAY stands out
by introducing irrelevant documents, making reasoning more challenging. Needle-in-a-Haystack
(NIAH) (Kamradt, 2023) evaluates LLM recall by embedding a fact within long contexts but fo-
cuses on shallow understanding. RULER (Hsieh et al., 2024) builds on NIAH with more complex
tasks involving multi-hop reasoning. SummHay (Laban et al., 2024) focuses on summarizing large
document sets, while BABILong (Kuratov et al., 2024) tests reasoning across dispersed facts in
long documents. NeedleBench (Li et al., 2024) provides a customizable framework for bilingual
long-context evaluations. In addtion, DocFinQA (Reddy et al., 2024) is developed to assess financial
reasoning in LLMs and DOCMATH-EVAL (Zhao et al., 2023) is manually annotated by experts to
evaluate the mathematical reasoning abilities of LLMs within a context length of 35K. Compared to
these benchmarks, MATHHAY is designed to automatically evaluate LLMs’ mathematical reasoning
in longer, more diverse, and real-world contexts.

2.2 MATHEMATICAL REASONING BENCHMARKS

Assessing mathematical reasoning abilities is crucial for advancing large language models. Early work
in this area includes MathQA (Amini et al., 2019), which introduces a “large-scale” dataset of math
word problems densely annotated with operation programs, curated from the AQuA (Ling et al., 2017)
dataset. Later, GSM8K (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021) provide high-quality
datasets of linguistically diverse grade school problems and challenging competition-level problems,
respectively. These datasets, known for their difficulty, are widely used to evaluate mathematical
reasoning capabilities of large language models. More recent efforts, such as LILA (Mishra et al.,
2022), introduce a unified benchmark of 23 mathematical reasoning tasks across multiple dimensions,
further expanding the evaluation of AI systems in mathematics. GHOSTS (Frieder et al., 2024)
shifts the focus towards graduate-level math, addressing professional use cases for models like
GPT-4 in assisting mathematicians. Our benchmark, MATHHAY, extends the exploration to long-
context scenarios, focusing on multi-step mathematical reasoning, making it a unique contribution to
benchmarking the mathematical reasoning abilities of large language models over long contexts.

3 BENCHMARK CONSTRUCTION

In this section, we go through the steps taken to automatically construct the MATHHAY benchmark
and ensure the quality of the constructed benchmark. Figure 1 illustrates the automated process,
which consists of four main stages: document collection, question generation, quality control, and
haystack construction. We provide a detailed explanation of each step in this section.

3.1 DOCUMENT COLLECTION

The document collection stage involves gathering texts from sources that potentially include math-
ematical reasoning in real-world scenarios. These documents should contain sufficient numerical
values to construct data examples for the MATHHAY benchmark.

Topic Generation. We aim for MATHHAY to cover diverse topics, including Financial Market
Analysis, Sports Performance Metrics, and Climate Change Impact Assessment, where queries
frequently require mathematical reasoning. To facilitate this, we designed a prompt to guide the LLM
in generating responses on these topics. Refer to the corresponding prompt in Appendix A.1.1.

Relevant Document Collection. After obtaining key topics related to mathematical reasoning, we
prompt the LLM to generate subtopics along with corresponding queries. Each subtopic is paired
with several specific queries. For example, under the “Nvidia’s stock price” subtopic, a potential
query could be, “Compare Nvidia’s end-of-month stock prices for April 2024 and May 2024”. To
ensure the queries are time-sensitive, we incorporate a time period constraint in the prompt, guiding
the LLM to generate queries within a specific time range. This keeps the MATHHAY benchmark
up-to-date and may help mitigate data leakage (test data from a benchmark might be included in the
training set of newer models (White et al., 2024)), enabling a fairer evaluation of different LLMs’
abilities. For this benchmark, we set the time period from January to August 2024. Refer to the
corresponding prompt in Appendix A.1.2.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 1: Overview of the framework for the automatic construction of the MATHHAY Benchmark.
The upper section illustrates the document collection process, while the lower section outlines the
stages of question generation, quality control, and haystack construction.

The generated queries are used to retrieve relevant documents from online sources. For each query,
we employ Tavily Search1 to gather up-to-date and relevant information. From the search results, we
select the top-ranked document as the most relevant for each query.

Document Filtering. After gathering the initial set of documents from search engine, we implement
a filtering process to retain sufficient numerical values and informative texts for constructing high-
quality mathematical reasoning problems. First, each document has to contain more than a specific
number of distinct numerical values (excluding dates) to ensure sufficient complexity for generating
diverse, multi-step reasoning problems. Documents with fewer numbers might be inadequate for
testing LLMs’ numerical reasoning abilities. Second, we prioritized documents with rich context,
including ample sentences, sufficient words, and diverse named entities such as people, places,
and organizations. This ensured that the later generated questions could be grounded in real-world
scenarios. Through this process, we narrowed the collected documents to a refined set of high-quality
documents rich in numerical values and contextual depth, enabling the generation of more realistic
and challenging reasoning problems.

3.2 QUESTION GENERATION

To construct a comprehensive benchmark for evaluating models’ capabilities in long-context mathe-
matical reasoning, we designed a series of test tasks that vary in difficulty. The tasks can be divided
into four distinct categories: (1) Single-Step, Single-Document Mathematical Reasoning Task, (2)
Multi-Step, Single-Document Mathematical Reasoning Task, (3) Single-Step, Multi-Document
Mathematical Reasoning Task, and (4) Multi-Step, Multi-Document Mathematical Reasoning Task.

Single-Step, Single-Document Mathematical Reasoning Task (SSSD). Questions in this task
require a single computational step (+, −, ×, ÷) to reach the solution, based on information contained
within a single document. This task assesses the model’s ability to extract relevant numerical
information from a single document within a document haystack and perform mathematical reasoning

1Tavily Search is a search engine optimized for LLMs and RAG, designed for efficient, fast, and persistent
results. More information is available at https://tavily.com/

4

https://tavily.com/

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 2: Accuracy of GPT-4o-mini on (a) single-document; (b) two-document; (c) three-document
mathematical reasoning tasks from a subset of the MATHHAY Benchmark, with varying relevant
document placements and input lengths.

to arrive at a correct answer. The LLM is prompted to generate the question and Python solution
(i.e., the solution process represented as a Python program). Refer to the corresponding prompt in
Appendix A.1.3.

Multi-Step, Single-Document Mathematical Reasoning Task (MSSD). This task involves ques-
tions requiring multiple computational steps to reach a solution, based on information within a single
document. Unlike the SSSD, the MSSD challenges the model to identify multiple snippets containing
numerical data and then correctly sequence them into intermediate reasoning steps. An LLM is used
to generate the question and a one-step solution process as a Python program.

Single-Step, Multi-Document Mathematical Reasoning Task (SSMD). In this category, the task
requires the model to solve a problem that involves information spread across multiple documents.
Although the solution involves only a single computational step, the complexity lies in the need to
correctly identify and extract relevant numerical values from different documents in the haystack.
The LLM is prompted to generate the question and the one-step Python solution.

Multi-Step, Multi-Document Mathematical Reasoning Task (MSMD). This category represents
the most complex task, challenging models to perform multi-step reasoning and extract information
from multiple documents. It requires the model to sequentially process and combine numerical values
from several sources, while maintaining clear mathematical reasoning and accuracy throughout the
calculations. The LLM is prompted to generate the question and Python solution.

3.3 QUALITY CONTROL

Given the range of tasks in the MATHHAY benchmark, which span from single-step to multi-step
reasoning across one or more documents, it’s crucial that the solution process produces the correct
final answer. To ensure the quality of the generated data examples, we implement a quality control
process that focuses on consistency across different solutions for each question.

The quality control process begins by executing the Python solution generated by the LLM from the
previous question-generation stage using a Python interpreter to get the first answer. Next, we re-feed
the question and relevant documents into the LLM, prompting it to generate another Python solution.
This second solution is also executed to produce a new answer. We then compare the two answers: if
they match, the example is considered as high quality and suitable to be included in the benchmark. If
the answers differ, the example is filtered out for being inconsistent. Refer to corresponding prompts
in Appendix A.1.4.

3.4 HAYSTACK CONSTRUCTION

To accurately assess models’ ability to handle long-context mathematical reasoning, we construct
document “haystacks” of varying sizes, simulating real-world scenarios where relevant information is

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

buried within large volumes of irrelevant data. This setup challenges the models to filter out noise and
identify the necessary details needed to solve the problem. We vary the sizes of the haystacks, with
token lengths ranging from 32K to 128K tokens. Each haystack contains a mixture of documents: a
small number of question-relevant documents (one relevant document for one-document reasoning
tasks) and a larger pool of irrelevant ones, which are actually relevant to other unrelated queries. These
unrelated queries mainly come from different topics. This design ensures that only a few documents
in each haystack are helpful for answering the target question, making the task progressively more
difficult as the haystack size increases.

We implement different placement strategies when inserting relevant documents into irrelevant
documents. For single-document reasoning tasks, we experiment with three strategies: (1) First: The
relevant document is placed at the beginning of the irrelevant documents, which are furthest from
the target question; (2) Middle: The relevant document is inserted in the middle of the irrelevant
documents; (3) Last: The relevant document is appended to the end of the irrelevant documents.

For two-document reasoning tasks, where two relevant documents are needed to solve the problem,
we expand the placement strategies to combinations of positions: (1) First-First: Both relevant
documents are placed at the beginning; (2) Middle-Middle: Both relevant documents are placed in
the middle; (3) Last-Last: Both relevant documents are placed at the end; (4) First-Middle: One
relevant document is placed at the beginning, and the second in the middle; (5) Middle-Last: One
relevant document is placed in the middle, and the second at the end; (6) First-Last: One relevant
document is placed at the beginning, and the other at the end.

For three-document reasoning tasks, the complexity of document placement further increases. We
introduce the following four combinations: (1) First-First-First: All three relevant documents are
placed at the beginning; (2) Middle-Middle-Middle: All three relevant documents are placed in the
middle; (3) Last-Last-Last: All three relevant documents are placed at the end; (4) First-Middle-
Last: The three relevant documents are distributed evenly, one at the beginning, one in the middle,
and one at the end.

Figure 2 shows GPT-4o-mini’s accuracy on single, two, and three-document mathematical reasoning
tasks, varying by document placement and input length. We can observe that the middle placement is
most challenging for single-document tasks, first-middle for two-document tasks, and first-first-first
for three-document tasks. Based on these results, we select these placements for each task type in
constructing the MATHHAY benchmark.

3.5 STATISTICS OF MATHHAY BENCHMARK

Table 2 presents the main statistics of MATHHAY, and Figure 3 shows the topic and task distribution
of MATHHAY. The dataset includes 673 questions across 10 topics and 40 subtopics, with 233
single-step, 168 two-step, and 198 three-step reasoning tasks. On average, each question contains
33.31 words and is linked to 1.53 relevant documents, with the average document length being
4190.53 tokens. The average number of reasoning steps per question is 2.00.

The dataset is divided into verified and unverified questions. Verified data refers to questions that have
been reviewed by authors to ensure the correctness of the reasoning steps. Incorrect data examples
are removed, while correct ones are retained. Of the 126 verified questions, 52 are single-step,
and their average length is 35.25 words. These questions are linked to 1.58 relevant documents,
averaging 4139.37 tokens in length, with 1.85 reasoning steps per question. The unverified portion,
with 547 questions, has an average length of 32.87 words. These questions are linked to 1.52 relevant
documents, averaging 4202.31 tokens, and require an average of 2.03 reasoning steps.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Models. In this work, we evaluate several cutting-edge long-context LLMs using the proposed
MATHHAY Benchmark. Our evaluation includes both closed-source and open-source models, tested
across varying token lengths: 32K, 64K, and 128K. For the closed-source models, we assess the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Statistic Number

Time period Jan. to Aug. 2024
Topics 10
Subtopics 40
Questions 673
Single-step questions 233
Two-step questions 168
Three-step questions 198
Avg. question length 33.31
Avg. relevant documents 1.53
Avg. relevant document length 4190.53
Avg. reasoning steps 2.00

Verified
- Questions 126
- Single-step questions 52
- Two-step questions 0
- Three-step questions 0
- Avg. question length 35.25
- Avg. relevant documents 1.58
- Avg. relevant document length 4139.37
- Avg. reasoning steps 1.85

Unverified
- Questions 547
- Single-step questions 181
- Two-step questions 168
- Three-step questions 198
- Avg. question length 32.87
- Avg. relevant documents 1.52
- Avg. relevant document length 4202.31
- Avg. reasoning steps 2.03

Table 2: Key statistics of MATHHAY.

Figure 3: Topic and task distribution. FMA: Financial
Market Analysis, HCA: Healthcare Cost Analysis, UP:
Urban Planning, EIA: Environmental Impact Assess-
ment, SCM: Supply Chain Management, SA: Sports
Analytics, ECA: Energy Consumption Analysis, REMT:
Real Estate Market Trends, EF: Education Funding, AE:
Agricultural Economics.

performance of several models from the GPT series2 (OpenAI, 2023; 2024a;b), including GPT-4o
(128K), GPT-4o-Mini (128K), o1-preview, and o1-mini, Claude-3.5-Sonnet3 (Anthropic, 2024), and
Gemini-1.5-Pro-0024 (Reid et al., 2024). On the open-source side, we evaluate Qwen-2.5-7B-Instruct
(128K) (Team, 2024) and LLaMA-3.1-8B-Instruct (128K) (Dubey et al., 2024), two recent advanced
models in the open research community.

Evaluation. In mathematical reasoning tasks, LLMs often generate long explanations instead of
directly providing numerical values as final answers. This poses challenges for traditional evaluation
methods, such as rule-based or template-based exact match, which struggle to accurately assess the
output. To address this, some benchmarks have adopted the practice of using LLMs as judges (Lu
et al., 2023). Building on this, we combine rule-based exact matches with LLM judgment to assess
the correctness of generated answers. We chose GPT-4o as our evaluation judge due to its advanced
reasoning and assessment capabilities (Dubois et al., 2024). If an exact match is achieved, the
predicted answer is considered correct, and a score of 1 is assigned. In cases where the exact match
fails, we rely on the LLM judge. If the LLM deems the answer correct, we also consider the predicted
answer correct. Conversely, if the LLM judges the answer to be incorrect, it is marked as wrong.
A preliminary study of 100 examples demonstrates that GPT-4o, when used as a judge, correlates
almost perfectly with human evaluations in our benchmark. Detailed instructions for this evaluation
process are provided in Appendix A.2.

Implement Details. We set the temperature to zero for all models to ensure deterministic predictions.
For closed-source models, we use the provided API for testing. For open-source models, we use
vLLM5 to build service to provide API for testing using NVIDIA A100 (40GB) GPUs.

2https://openai.com/api/
3https://claude3.pro/claude-3-5-sonnet-api/
4https://aistudio.google.com/app/apikey
5https://github.com/vllm-project/vllm

7

https://openai.com/api/
https://claude3.pro/claude-3-5-sonnet-api/
https://aistudio.google.com/app/apikey
https://github.com/vllm-project/vllm

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Model Claimed SSSD MSSD SSMD MSMD Overall
Length Verified Unverified Verified Unverified Verified Unverified Verified Unverified Verified Unverified Full

32K
LLaMA-3.1-8B-Instruct 128K 40.62 44.00 28.57 27.5 35.00 20.99 15.22 17.47 27.78 26.51 26.75
Qwen-2.5-7B-Instruct 128K 46.88 52.00 32.14 27.00 50.00 34.57 6.52 21.08 29.37 30.89 30.61
GPT-4o-mini 128K 71.88 68.00 42.86 42.50 50.00 50.62 26.09 35.54 45.24 46.25 46.06
GPT-4o 128K 71.88 73.00 53.57 53.50 60.00 55.56 34.78 45.18 52.38 54.85 54.38
o1-mini 128K 56.25 68.00 50.00 50.50 60.00 48.15 34.78 35.54 47.62 48.81 48.59
o1-preview 128K 62.50 69.00 50.00 51.00 65.00 46.91 30.43 34.34 48.41 48.63 48.59
Claude-3.5-Sonnet 200K 68.75 77.00 46.43 53.00 65.00 51.85 32.61 39.16 50.00 53.02 52.45
Gemini-1.5-Pro-002 2M 68.75 75.00 57.14 52.00 70.00 44.44 32.61 37.95 53.17 50.82 51.26

64K
LLaMA-3.1-8B-Instruct 128K 53.12 58.00 39.29 30.00 35.00 24.69 10.87 19.28 31.75 31.08 31.20
Qwen-2.5-7B-Instruct 128K 28.12 45.00 21.43 24.50 30.00 28.40 6.52 21.69 19.05 27.97 26.30
GPT-4o-mini 128K 59.38 63.00 39.29 38.00 60.00 45.68 21.74 31.33 41.27 41.68 41.61
GPT-4o 128K 65.62 69.00 53.57 48.50 65.00 48.15 32.61 40.96 50.79 49.91 50.07
o1-mini 128K 56.25 60.00 60.71 47.00 65.00 50.62 26.09 33.13 47.62 45.70 46.06
o1-preview 128K 59.38 71.00 42.86 52.00 65.00 46.91 28.26 36.75 45.24 50.09 49.18
Claude-3.5-Sonnet 200K 53.12 67.00 53.57 50.50 60.00 48.15 34.78 36.75 47.62 49.00 48.74
Gemini-1.5-Pro-002 2M 68.75 73.00 57.14 53.50 70.00 50.62 32.61 38.55 53.17 52.10 52.30

128K
LLaMA-3.1-8B-Instruct 128K 37.50 43.00 35.71 29.50 10.00 9.88 2.17 10.24 19.84 23.22 22.59
Qwen-2.5-7B-Instruct 128K 15.62 26.00 14.29 16.50 20.00 14.81 10.87 7.23 14.29 15.17 15.01
GPT-4o-mini 128K 56.25 65.00 32.14 39.50 35.00 39.51 21.74 30.12 34.92 41.32 40.12
GPT-4o 128K 68.75 69.00 45.00 48.00 55.00 56.79 28.26 42.17 46.38 51.37 50.37
o1-mini 128K 43.75 47.00 35.71 37.00 45.00 34.57 21.74 28.92 34.13 36.02 35.66
o1-preview 128K 62.50 70.00 57.14 53.50 60.00 46.91 21.74 34.34 46.03 49.73 49.03
Claude-3.5-Sonnet 200K 59.38 59.00 42.86 47.00 55.00 35.80 23.91 29.52 42.06 42.23 42.20
Gemini-1.5-Pro-002 2M 62.50 74.00 57.14 52.50 60.00 53.09 32.61 36.14 50.00 51.55 51.26

Table 3: Performance of Selected Models on MATHHAY (32K to 128K tokens). The model with the
best performance is highlighted in bold.

4.2 RESULTS

We assess eight advanced LLMs on the MATHHAY benchmark, with the key results presented in
Table 3. GPT-4o demonstrates the highest overall performance, achieving 54.38% at an input length
of 32K. Gemini-1.5-pro-002 achieves the highest overall performance, reaching 52.30% at 64K and
51.26% at 128K. We can see that even one of the best-performing models, Gemini-1.5-Pro-002, still
struggles with long contexts, achieving only 51.26% on the 128K input length, which is 48.74%
below perfect accuracy. This performance gap highlights the significant room for improvement on
the MATHHAY benchmark. In addition, to assess the quality of the automated MATHHAY benchmark
(unverified), we computed the Spearman rank correlation between the human-verified and unverified
MATHHAY. The resulting correlation coefficient of 0.9183 indicates a strong alignment in model
rankings across unverified and verified test data, suggesting that the automated benchmark can reliably
approximate the human-verified benchmark and be useful for evaluating models.

Model Analysis: We can observe that closed-source models perform relatively well compared
to open-source models across all length settings. For instance, the best-performing open-source
model, LLaMA-3.1-8B, achieves 22.59% accuracy at 128K. However, it still lags behind the worst-
performing closed-source model, o1-mini, by 13.07%. These findings suggest that closed-source
models excel in long-context mathematical reasoning compared to open-source counterparts.

Task Analysis: From the task perspective, models consistently perform better on simpler tasks.
performance of models on single-step single-document tasks (SSSD) are much better than that of
models on multi-step single-document tasks (MSSD), and models on single-step multi-document
tasks (SSMD) show better performance than models multi-step multi-document tasks (MSMD).
For example, GPT-4o reaches 71.88% accuracy on verified SSSD at 32K but drops to 53.57% on
verified MSSD. Similarly, QWen-2.5-7B achieves 20.00% on verified SSMD at 128K but only
10.87% on MSMD in the same setting. These results suggest that tasks with multiple reasoning and
computational steps are significantly more challenging, especially when large amounts of noisy text
are involved. Furthermore, multi-step tasks across multiple documents (MSMD) are more difficult
than those within a single document (MSSD), as evidenced by consistently lower performance on
MSMD across all input lengths. This suggests that gathering information and reasoning across
multiple documents is more challenging than doing so from a single document.

Length Analysis: While a few models demonstrate improved performance with longer input lengths
(e.g., LLaMA-3.1-8B increases from 26.75% at 32K to 31.20% at 64K), most models show a decline

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 4: Performance of GPT-4o and GPT-4o-mini on single-document tasks (SSSD, MSSD) with
varying placement depths and input lengths. The y-axis represents the depth of the relevant document.
For example, 10% depth indicates that the document is placed at the first 10% of the input noisy text.

Figure 5: Performance of models at the input
length of 32K across varying reasoning steps.

Figure 6: Performance of GPT-4o at the input
length of 32K across varying time periods.

as input length increases. This trend suggests that longer inputs introduce more noise, limiting the
ability of even advanced LLMs to accurately extract relevant information and reason effectively.

4.3 ANALYSIS

Impact of Placement Depths and Input Lengths. Figure 4 illustrates the performance of GPT-4o
and GPT-4o-mini on single-document tasks with varying document placement depths and input
lengths. The results show that smaller placement depths and longer input lengths lead to reduced
performance, highlighting the challenge of processing relevant information that is farther from the
target question among more noisy context. Notably, GPT-4o-mini demonstrates greater instability
with longer input lengths, suggesting that even advanced models may struggle with extreme long
inputs. These findings indicate that both insufficient context and excessive noisy text can significantly
affect model robustness when handling varying input lengths and document positions.

Impact of the Number of Reasoning Steps. Figure 5 illustrates the accuracy of models with an
input length of 32k across tasks requiring 1, 2, and 3 reasoning steps. A common trend observed
among all models is a decrease in accuracy as the number of reasoning steps increases. GPT-4o
demonstrates the highest performance in handling complex multi-step tasks, followed closely by
Claude-3.5-Sonnet and Gemini-1.5-Pro-002. In contrast, the other models, particularly LLaMA-3.1-
Instruct and Qwen-2.5-Instruct, demonstrate steeper declines in accuracy, suggesting they are less
adept at handling tasks that require multiple reasoning steps.

Impact of Time Period We aim to assess whether documents collected from queries over different
years may impact performance, particularly to explore if more recent documents pose a greater
challenge due to potential contamination avoidance. Figure 6 shows the model performance across
single-document tasks (SSSD, 2SSD, 3SSD) from 2021 to 2024. While 2SSD and 3SSD display a

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 7: Model performance on the MATHHAY benchmark at 32K across different topics and tasks.

gradual performance decline over time, SSSD remains relatively stable. This indicates that the time
period could influence model accuracy, but the effect is uncertain and not clearly confirmed by the
current analysis. Further experiments are needed to investigate this hypothesis more thoroughly.

Analysis of Models across Topics and Tasks. Figure 7 compares the performance of eight models
on the MATHHAY benchmark across (a) different topics and (b) different tasks. In Figure 7(a),
GPT-4o generally outperforms the other models across most topics, such as SCM and HDA, with
the largest coverage. Claude-3.5-Sonnet and Gemini-1.5-Pro-002 perform similarly but fall behind
GPT-4o. LLaMA3.1 and Qwen2.5 perform noticeably lower across all topics. In Figure 7(b), GPT-4o
also excels across various tasks, particularly in the SSSD and 3S2D (Three-Step, Two-Document)
tasks, maintaining strong accuracy. The smaller models—GPT-4o-mini and o1-mini show similar
trends but generally underperform relative to GPT-4o. Again, LLaMA3.1 and Qwen2.5 struggle,
especially in the multi-step tasks (e.g., 3SSD, 3S2D, and 2D2D), further indicating their difficulty
in handling complex reasoning. Overall, GPT-4o, Claude-3.5-Sonnet, and Gemini-1.5-Pro-002
demonstrate superior robustness across both different topics and tasks, while open-source models
show much weaker performance, particularly in complex, multi-step tasks.

5 CONCLUSION

In this work, we introduced MATHHAY, a benchmark specifically designed to evaluate the long-
context mathematical reasoning abilities of LLMs. MATHHAY is built to challenge LLMs with
real-world scenarios requiring both complex reasoning and numerical computation across varying
input lengths and document depths. The experimental results show that while Gemini-1.5-Pro-002
performs the best, achieving 51.26% accuracy on tasks with input lengths up to 128K tokens, there
remains a substantial performance gap, indicating significant room for improvement. Our findings
further reveal that open-source models struggle considerably compared to closed-source counterparts,
particularly in tasks that require multi-step reasoning over multiple documents. This underscores
the challenges that LLMs face when dealing with noisy and irrelevant information in long contexts,
making MATHHAY a crucial benchmark for driving future advances in long-context mathematical
reasoning. MATHHAY also offers a novel and automated framework for constructing benchmark
datasets, with strong correlations between human-verified and unverified data. This automation
enables scalable and efficient testing for future LLMs. MATHHAY aims to drive the development of
models with enhanced reasoning capabilities for complex, real-world mathematical tasks.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh Hajishirzi.
Mathqa: Towards interpretable math word problem solving with operation-based formalisms.
arXiv preprint arXiv:1905.13319, 2019.

Chenxin An, Shansan Gong, Ming Zhong, Xingjian Zhao, Mukai Li, Jun Zhang, Lingpeng Kong, and
Xipeng Qiu. L-eval: Instituting standardized evaluation for long context language models. arXiv
preprint arXiv:2307.11088, 2023.

Anthropic. Claude 3.5 Sonnet Model Card Addendum, 2024.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long context
understanding. arXiv preprint arXiv:2308.14508, 2023.

Egor Bogomolov, Aleksandra Eliseeva, Timur Galimzyanov, Evgeniy Glukhov, Anton Shapkin,
Maria Tigina, Yaroslav Golubev, Alexander Kovrigin, Arie van Deursen, Maliheh Izadi, et al. Long
code arena: a set of benchmarks for long-context code models. arXiv preprint arXiv:2406.11612,
2024.

Claude. Model card and evaluations for claude models, 2023.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Zican Dong, Tianyi Tang, Junyi Li, Wayne Xin Zhao, and Ji-Rong Wen. Bamboo: A comprehensive
benchmark for evaluating long text modeling capacities of large language models. arXiv preprint
arXiv:2309.13345, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled
alpacaeval: A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475, 2024.

Simon Frieder, Luca Pinchetti, Ryan-Rhys Griffiths, Tommaso Salvatori, Thomas Lukasiewicz,
Philipp Petersen, and Julius Berner. Mathematical capabilities of chatgpt. Advances in neural
information processing systems, 36, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, and
Boris Ginsburg. Ruler: What’s the real context size of your long-context language models? arXiv
preprint arXiv:2404.06654, 2024.

Luyang Huang, Shuyang Cao, Nikolaus Parulian, Heng Ji, and Lu Wang. Efficient attentions for long
document summarization. arXiv preprint arXiv:2104.02112, 2021.

Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. Llmlingua: Compressing
prompts for accelerated inference of large language models. arXiv preprint arXiv:2310.05736,
2023a.

Huiqiang Jiang, Qianhui Wu, Xufang Luo, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and Lili Qiu.
Longllmlingua: Accelerating and enhancing llms in long context scenarios via prompt compression.
arXiv preprint arXiv:2310.06839, 2023b.

Gregory Kamradt. Needleinahaystack, 2023. URL https://github.com/gkamradt/
LLMTest_NeedleInAHaystack/blob/main/README.md.

11

https://github.com/gkamradt/LLMTest_NeedleInAHaystack/blob/main/README.md
https://github.com/gkamradt/LLMTest_NeedleInAHaystack/blob/main/README.md

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yuri Kuratov, Aydar Bulatov, Petr Anokhin, Ivan Rodkin, Dmitry Sorokin, Artyom Sorokin, and
Mikhail Burtsev. Babilong: Testing the limits of llms with long context reasoning-in-a-haystack.
arXiv preprint arXiv:2406.10149, 2024.

Philippe Laban, Alexander R Fabbri, Caiming Xiong, and Chien-Sheng Wu. Summary of a haystack:
A challenge to long-context llms and rag systems. arXiv preprint arXiv:2407.01370, 2024.

Mosh Levy, Alon Jacoby, and Yoav Goldberg. Same task, more tokens: the impact of input length on
the reasoning performance of large language models. arXiv preprint arXiv:2402.14848, 2024.

Mo Li, Songyang Zhang, Yunxin Liu, and Kai Chen. Needlebench: Can llms do retrieval and
reasoning in 1 million context window? arXiv preprint arXiv:2407.11963, 2024.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word problems. arXiv preprint arXiv:1705.04146,
2017.

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng,
Kai-Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning
of foundation models in visual contexts. arXiv preprint arXiv:2310.02255, 2023.

Swaroop Mishra, Matthew Finlayson, Pan Lu, Leonard Tang, Sean Welleck, Chitta Baral, Tanmay
Rajpurohit, Oyvind Tafjord, Ashish Sabharwal, Peter Clark, et al. Lila: A unified benchmark for
mathematical reasoning. arXiv preprint arXiv:2210.17517, 2022.

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

OpenAI. GPT-4o System Card, 2024a.

OpenAI. OpenAI o1 System Card, 2024b.

Varshini Reddy, Rik Koncel-Kedziorski, Viet Dac Lai, and Chris Tanner. Docfinqa: A long-context
financial reasoning dataset. arXiv preprint arXiv:2401.06915, 2024.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gemini
1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

Uri Shaham, Maor Ivgi, Avia Efrat, Jonathan Berant, and Omer Levy. Zeroscrolls: A zero-shot
benchmark for long text understanding. arXiv preprint arXiv:2305.14196, 2023.

Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm.
github.io/blog/qwen2.5/.

Minzheng Wang, Longze Chen, Cheng Fu, Shengyi Liao, Xinghua Zhang, Bingli Wu, Haiyang Yu,
Nan Xu, Lei Zhang, Run Luo, et al. Leave no document behind: Benchmarking long-context llms
with extended multi-doc qa. arXiv preprint arXiv:2406.17419, 2024.

Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Ben Feuer, Siddhartha Jain, Ravid Shwartz-
Ziv, Neel Jain, Khalid Saifullah, Siddartha Naidu, et al. Livebench: A challenging, contamination-
free llm benchmark. arXiv preprint arXiv:2406.19314, 2024.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. arXiv preprint arXiv:1809.09600, 2018.

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang Xu, Junhao Chen, Moo Khai Hao, Xu Han,
Zhen Leng Thai, Shuo Wang, Zhiyuan Liu, et al. Infinitybench: Extending long context evaluation
beyond 100k tokens. arXiv preprint arXiv:2402.13718, 2024.

Yilun Zhao, Yitao Long, Hongjun Liu, Linyong Nan, Lyuhao Chen, Ryo Kamoi, Yixin Liu, Xiangru
Tang, Rui Zhang, and Arman Cohan. Docmath-eval: Evaluating numerical reasoning capabilities
of llms in understanding long documents with tabular data. arXiv preprint arXiv:2311.09805,
2023.

12

https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A PROMPT EXAMPLES

All prompts used in MATHHAY construction consist of two key components: a prompt template and
an output parser. The output parser enables users to define any Pydantic model and query LLMs for
outputs that adhere to the specified schema.

A.1 PROMPTS USED IN MATHHAY CONSTRUCTION

A.1.1 PROMPT FOR TOPIC GENERATION

Prompt for Topic Generation

Prompt Construction:
from pydantic import BaseModel, Field
from typing import List
from langchain_core.output_parsers import PydanticOutputParser
...
class TopicGeneration(BaseModel):

topic_list: List[str] = Field(description="A Python list where each element is a string
representing a single topic. The list should only contain the topics, without any
additional information or descriptions. Each topic should be concise.")

parser = PydanticOutputParser(pydantic_object=TopicGeneration)
prompt_template.format(format_instructions=parser.get_format_instructions())

Prompt Template:
You are tasked with generating a diverse set of topics for a benchmark designed to evaluate large language
models’ abilities in mathematical and numerical reasoning within real-world scenarios.
The goal is to create topics where documents will contain ample numerical data and rich contextual
information that can support complex reasoning tasks.
The topics should span various real-world domains where mathematical reasoning is often required, such as:
Financial Market Analysis.
For each main topic, ensure that there is potential for generating subtopics that involve mathematical
reasoning with substantial numerical content.
Please provide 10 main topics that fit these criteria and briefly describe how each topic can support tasks
involving mathematical reasoning and numerical analysis in realistic contexts.

{formatted instruction}

Figure 8: Example prompt for asking the LLM to generate 10 topics.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A.1.2 PROMPT FOR SUBTOPIC AND QUERY GENERATION

Prompt for Subtopic and Query Generation

Prompt Construction:
from pydantic import BaseModel, Field
from typing import List
from langchain_core.output_parsers import PydanticOutputParser
...
class SubtopicAndQueryGeneration(BaseModel):

subtopic_and_query_map: Dict[str, List[Dict[str, List[str]]]] = Field(
description="A dictionary where each key is a main topic and its value is a list of

dictionaries, each containing a ’subtopic’ and a list of ’queries’."
)

parser = PydanticOutputParser(pydantic_object=SubtopicAndQueryGeneration)
prompt_template.format(format_instructions=parser.get_format_instructions())

Prompt Template:
You are tasked with generating subtopics and corresponding queries for a benchmark designed to evaluate
large language models’ abilities in mathematical and numerical reasoning within real-world scenarios. Your
goal is to create subtopics and queries that are not only relevant but also provide ample opportunities for
models to engage in complex numerical analysis and mathematical reasoning.
Instructions:
1. For each main topic provided, generate 4 relevant subtopics.
2. For each subtopic, generate 5 detailed queries, ensuring each query requires reasoning with numerical
data extracted from common documents within the specified time period January 2024 to August 2024.
3. Each query should specify both the relevant entities and the time period.

Examples of domains and queries (example time period is May and August 2024):
- Financial Market Analysis:
- Subtopic: Trends in Stock Prices
- Query 1: What was the percentage change in Nvidia’s stock price between May 2024 and August 2024?
- Query 2: How did Tesla’s stock volatility in April 2024 compare to that in July 2024?

Ensure each query reflects a realistic and complex scenario that necessitates mathematical reasoning to
derive the correct answer. The queries should align with the specified time period March 2024 to September
2024 and be formulated to challenge the large language models’ numerical reasoning capabilities.

Main topic: Financial Market Analysis

{formatted instruction}

Figure 9: Example prompt for asking the LLM to generate subtopics and corresponding queries.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.1.3 PROMPT FOR SSSD QUESTION GENERATION

Prompt for SSSD Question Generation

Prompt Construction:
...
class QuantityCell(BaseModel):

quantity_cell: Tuple[str] = Field(
description="A tuple containing details about a specific object, including the

nouns of the object, its attributes, numerical values, relevant dates, and
locations.")

class ReasoningTask(BaseModel):
relevant_quantity_cells: List[QuantityCell] = Field(

description="A collection of QuantityCells.")
question: str = Field(

description="A question generated from a subset of QuantityCells. The question
should involve a single computational step, challenging the model to deduce
the answer through reasoning.")

solution: str = Field(
description="A Python function that solves the generated question using basic

arithmetic operations. The function must be executable, with clearly named
variables reflecting the extracted information and a result assigned to a
variable named ‘answer‘.")

steps: int = Field(
description="How many operations(+, -, *, /), i.e., computational steps in python

solution.")
answer: float = Field(

description="The final numerical answer to the question, presented as an Arabic
numeral. This value is computed by the Python solution and represents the
correct outcome of the reasoning task.")

class ReasoningTaskList(BaseModel):
quantity_cells: List[QuantityCell] = Field(

description="A collection of QuantityCells that represent the extracted numerical
information, relevant objects, their attributes, and any associated dates or
locations from the document. This field serves as the basis for generating the
question and its corresponding solution.")

tasks: List[ReasoningTask] = Field(
description="A list of ReasoningTask elements, where each entry contains ’

quantity_cells’, ’question’, ’solution’, and ’answer’. The list should consist
of at least 3 different ReasoningTask elements.")

parser = PydanticOutputParser(pydantic_object=ReasoningTaskList)
prompt_template.format(document=doc, format_instructions=parser.get_format_instructions())

Prompt Template:
Your task is to generate a mathematical reasoning question based on the information contained within a
single document, identify the relevant numerical information, solve the question using a Python program,
and provide the final numerical answer.
Instructions:
1. Extract Quantity Cells: Identify all relevant numerical details from the document, including objects, their
attributes, numerical values, and any related dates or locations.
2. Generate a Question: Create a question that involves a single computational step (+,-,*,/) based on a
subset of the identified quantity cells. The question should be factual and exclude numerical values from the
quantity cells, testing the model’s ability to search and reason through the solution based on this data.
3. Provide a Python Solution: Write a Python function that solves the question using basic arithmetic steps.
The function should: - Be executable by a Python interpreter. - Avoid using arguments in the function
definition; instead, variables must be named and assigned appropriately. - Utilize necessary formulas to
perform computations. - Assign the computed result to a variable named ‘answer’ and ensure the function
returns the ‘answer’ variable.
4. Determine the Final Answer: The final answer should be presented as an Arabic numeral.
Document: {document}
{formatted instruction}

Figure 10: Example prompt for generating Single-Step Single-Document (SSSD) questions using
an LLM. Similar prompts are used for tasks like Multi-Step Single-Document (MSSD), Single-Step
Multi-Document (SSMD), and Multi-Step Multi-Document (MSMD).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.1.4 PROMPT FOR QUALITY CONTROL

Prompt for Generating Python Solution When Given Question and Relevant Documents.

Prompt Construction:
from pydantic import BaseModel, Field
from typing import List
from langchain_core.output_parsers import PydanticOutputParser
...
class ProblemSolving(BaseModel):

reasoning: str = Field(
description="solution process."

)
python_solution: str = Field(

description="A Python function that solves the generated question using one or
several arithmetic operations. The function must be executable, with clearly
named variables reflecting the extracted information and a result assigned to
a variable named ‘answer‘. The solution demonstrates the reasoning process
leading to the final answer.")

answer: float = Field(
description="The final numerical answer to the question, deduced through reasoning.

")
parser = PydanticOutputParser(pydantic_object=ProblemSolving)
prompt_template.format(question=question, quantity_cells=quantity_cells, documents=

documents, format_instructions=parser.get_format_instructions())

Prompt Template:
You are tasked with solving a mathematical reasoning question using information from the provided
documents.
Use the relevant documents and quantity cells to solve the question. Ensure your solution involves single or
multiple computational steps based on the relevant data extracted. Focus on arithmetic operations as required
by the question.
Instructions: 1. Provide a Python Solution: Write a Python function that solves the question using basic
arithmetic or logical steps. The function should:
- Be executable by a Python interpreter.
- Avoid using arguments in the function definition; instead, variables must be named and assigned
appropriately based on the given documents and quantity cells.
- Assign the computed result to a variable named ‘answer‘ and ensure the function returns the ‘answer‘
variable.
2. Determine the Final Answer: The final answer should be presented as an Arabic numeral.
Relevant Documents:
{documents}
Relevant Quantity Cells:
{quantity cells}
Question:
{question}

Output:
- {formatted instruction}

Figure 11: Example prompt for asking the LLM to Python Solution When Given question, relevant
quantities, and relevant documents.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.2 PROMPT FOR EVALUATION

Prompt for Evaluation.

Prompt Construction:
from pydantic import BaseModel, Field
from typing import List
from langchain_core.output_parsers import PydanticOutputParser
...
class LLMVerification(BaseModel):

reasoning: str = Field(description="Verification process.")
output: str = Field(description="Yes or No. Yes means the two solutions are equivalent.

No means the two solutions are different.")
parser = PydanticOutputParser(pydantic_object=LLMVerification)
prompt_template.format(question=question, solutioin1=solution1, solution2=solution2,

format_instructions=parser.get_format_instructions())

Prompt Template:
Your task is to determine if the two given solutions are equivalent in terms of reasoning and final answer.
Solution 1:
{solution1}
Solution 2:
{solution2}
Criteria for equivalence:
1. Both solutions should have the same reasoning steps leading to the final answer.
2. The final numerical answers should be identical.
Please analyze the two solutions and state whether they are the same or different. If different, provide a brief
explanation of the discrepancies.
Example:
Solution 1:
def solve():
current value = 45e9 # $45 billion
projected value = 400e9 # $400 billion
answer = projected value - current value
return answer
Answer1: 355000000000.0

Solution 2:
The current value of the AI chip market is projected to be $45 billion, and it is expected to rise to $400
billion by 2027. To find the difference, we subtract the current value from the projected value: $400 billion -
$45 billion = $355 billion.
Answer2: 355.0

Output: Yes

{formatted instruction}

Figure 12: Example prompt for asking the LLM to judge if two solutions are the same.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.3 PROMPT FOR SOLVING PROBLEMS IN MATHHAY

Prompt for Solving Problems in MATHHAY

Prompt Construction:
from pydantic import BaseModel, Field
from typing import List
from langchain_core.output_parsers import PydanticOutputParser
...
class QuantityCell(BaseModel):

quantity_cell: Tuple[str] = Field(
description="A tuple containing details about a specific object, including the

nouns of the object, its attributes, numerical values, relevant dates, and
locations. This cell encapsulates all information required for extracting and
computing the answer to the reasoning question."

)
class ProblemSolving(BaseModel):

relevant_quantity_cells: List[QuantityCell] = Field(
description="A collection of QuantityCells that serves as the basis for generating

the question and its corresponding solution."
)
reasoning: str = Field(description="Solution process.")
answer: float = Field(description="The final numerical answer to the question, deduced

through reasoning.")
parser = PydanticOutputParser(pydantic_object=ProblemSolving)
prompt_template.format(question=question, long_context_input=long_context_input, question=

question, format_instructions=parser.get_format_instructions())

Prompt Template:
Long-Context Documents:
{long context input}

You are tasked with solving a mathematical reasoning question using information from Long-Context
Documents. Follow these steps to ensure accurate extraction and calculation:

Instructions:
1. Extract Relevant Numerical Information: Carefully read through the provided Long-Context Documents
to identify and list all relevant numerical details. These could include objects, their attributes, numerical
values, dates, locations, or any other quantitative data.
2. Analyze and Solve the Question: Use the identified numerical details to solve the given question. Ensure
your solution involves a single computational step based on the relevant data extracted. Focus on logical or
arithmetic operations as required by the question.

Question:
{question}

{formatted instruction}

Figure 13: Example prompt for asking the LLM to solve the problems in MATHHAY.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

B TEST DATA EXAMPLES FROM MATHHAY

B.1 EXAMPLE OF DATA FOR SSSD

Example of Data for SSSD

Data Example 1:
Topic: Healthcare Data Analytics
Subtopic: Hospital Admission Rates
Relevant Document: California Weekly Report Influenza (Flu), RSV, and Other Respiratory Viruses Week
11: March 10, 2024 2̆013 March 16, 2024 Influenza and RSV Highlights 5.0% Influenza positivity 4.0%
Outpatient ILI activity 0.2% Hospital flu admissions 570 (+11) Deaths since 10/1/23 (new) 1.6% RSV
positivity Influenza Activity Levels+ Geographic Area Activity Level California Statewide Low Northern
Region Low Bay Area Region Low Central Region Low Upper Southern Region Low Lower Southern
Region Low Key Messages 0̆0bb Influenza activity is low. 0̆0bb The majority of detected influenza viruses
are A (H1N1)pdm09. 0̆0bb The flu shot is still the best way to protect yourself against flu, its potentially
serious complications, and reduce strain on our healthcare system.
... and 20 deaths among persons with RSV admission diagnoses.
- 295 RSV-coded deaths identified to date for the 20232̆0132024 season.
Other Respiratory Viruses Surveillance:
- Adenovirus: 5.4% (up from 4.6%)
- Coronavirus (non-SARS-CoV-2): 6.1% (down from 7.2%)
- Enterovirus/Rhinovirus ...
Question: What is the total number of deaths from influenza and RSV identified to date for the 2023-2024
season?
Answer: 865

Data Example 2:
Topic: Climate Change Impact Assessment
Subtopic: Temperature Variations
Relevant Document: ... August 2024 2̆013 Surface air temperature and sea surface temperature high-
lights:0̆0a0
Global Temperatures0̆0a0
August 2024 was the joint-warmest August globally (together with August 2023), with an average ERA5
surface air temperature of 16.820̆0b0C, 0.710̆0b0C above the 1991-2020 average for August.2̆02f0̆0a0
August 2024 was 1.510̆0b0C above the pre-industrial level and is the 13th month in a 14-month period for
which the global-average surface air temperature exceeded 1.50̆0b0C above pre-industrial levels. *0̆0a0
The global-average temperature for the past 12 months (September 2023 2̆013 August 2024) is the highest
on record for any 12-month period, at 0.76 0̆0b0C above the 19912̆0132020 average and 1.64 0̆0b0C above
the 18502̆0131900 pre-industrial average. These values are identical to those recorded for the previous two
12-month periods, ending in June and July 2024...
Question: What is the difference between the global-average temperature for the past 12 months above
the 1991-2020 average and the global-average temperature for the past 12 months above the pre-industrial
average?
Answer: 0.88

Figure 14: Examples of data for the Single-Step Single-Document (SSSD) task.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

B.2 EXAMPLE OF DATA FOR MSSD

Example of Data for MSSD

Data Example 1:
Topic: Financial Market Analysis
Subtopic: Trends in Stock Prices
Relevant Document: The result is $108,406 million, which is roughly one third of the JPMorgan estimate.
I suggest a reason why the JPMorgan estimate of enterprise value could be three times the estimate from the
simple formula: The JPMorgan analysts assume that Tesla will earn much more than its cost of capital going
forward. Is the assumption reasonable? The evidence presented below suggests not.
Tesla2̆019s Return On Invested Capital
Prior to 2020, Tesla2̆019s return on invested capital was negative. In 2020, it barely turned positive. However,
in 2021, it rose to 14%, then to 23% in 2022 and then dropped slightly to 20% in 2023. Therefore, in the last
three years, Tesla did indeed earn more than its cost of capital.
However, Tesla2̆019s situation has changed. The JPMorgan analysts gave Tesla2̆019s stock a recommenda-
tion of Underweight, indicating that Tesla2̆019s deteriorating fundamentals relate to decreased demand for
its vehicles, not decreased supply.
Question: What is the average ROIC for Tesla over the years 2021, 2022, and 2023?
Answer: 19.0

Data Example 2:
Topic: Climate Change Impact Assessment
Subtopic: Temperature Variations
Relevant Document: 10 assists as the Warriors (44-35) won for the eighth time in their past nine games.
LeBron James scored 33 points and dished out 11 assists and Austin Reaves had 22 points for the Lakers (45-
35), who lost consecutive games for just the second time since the start of February. It was Los Angeles2̆019
final home game of the regular season. The Lakers were playing without Anthony Davis, who took a blow to
the side of the head in Sunday2̆019s loss to the Minnesota Timberwolves and still was experiencing nausea
with a headache on Tuesday.Rui Hachimura supplied 20 points and 11 rebounds and D2̆019Angelo Russell
scored 14 points for the Lakers, who had won nine of 10 games before dropping the last two, both at home.
The ninth-seeded Lakers are now just a half-game ahead of the No. 10 Warriors. The No. 9 and 10 seeds
face off in the play-in tournament, with that winner set to go up against the loser of the 7-8 game for the final
Western Conference playoff spot. After an efficient first quarter where they went 7-for-10 from three-point
range, the Warriors took a 38-29 lead. After making eight more triples in the second quarter, the Warriors
had a 71-60 lead at halftime. The Warriors made 15 of their 22 attempts from three-point range in the first
half (68.2%).
Question: What is the total number of points scored by LeBron James, Austin Reaves, and Rui Hachimura
combined?
Answer: 75

Figure 15: Examples of data for the Single-Step Single-Document (MSSD) task.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

B.3 EXAMPLE OF DATA FOR SSMD

Example of Data for SSMD

Data Example 1:
Topic: E-commerce Sales Analysis
Subtopic: Customer Acquisition and Retention
Relevant Document 1: ... Q2 was another strong quarter for eBay as we exceeded expectations across our
key financial metrics,s̈aid Steve Priest, Chief Financial Officer at eBay. Ẅe achieved positive year-over-year
GMV growth, driven by our execution against strategic initiatives, despite an uneven discretionary demand
environment in our major markets.¨
Second Quarter Financial Highlights
Revenue was $2.6 billion, up 1% on an as-reported basis and up 2% on a foreign exchange (FX) neutral
basis. Gross Merchandise Volume (GMV) was $18.4 billion, up 1% on an as-reported and FX-Neutral basis.
GAAP net income from continuing operations was $226 million, or $0.45 per diluted share. ...
Relevant Document 2: ... For example, imagine you started the year with 700 customers but somehow lost
50 by July. Your churn rate is 50/700 X 100 = 7% How to calculate the revenue churn rate? To calculate
revenue churn, divide the net revenue lost from existing customers in a given period by the total revenue at
the beginning of the period. For example, if your March loss from downgrades is $4,000 while the MRR is
$80,000, your revenue churn is 0.05. You can calculate your revenue churn monthly or annually. Having both
numbers provides a more nuanced and complete picture of customer retention. It also helps in identifying
short-term trends, setting long-term goals, benchmarking performance, and making critical decisions to
improve customer retention ...
Question: What is the ratio of eBay’s Q2 2024 revenue to the monthly revenue in March 2024?
Answer: 32500.0

Data Example 2:
Topic: Supply Chain Management
Subtopic: Demand Forecasting
Relevant Document 1: ... impair the carrying value of the Gillette trade name intangible asset and higher
non-core restructuring charges. Core net earnings per share increased by 12% to $6.59. Currency-neutral
core EPS increased 16% versus the prior year EPS. The Company generated operating cash flow of $19.8
billion and net earnings of $15.0 billion for the fiscal year. Adjusted free cash flow productivity was 105%,
which is calculated as operating cash flow less capital spending and certain other items, as a percentage of
net earnings excluding the Gillette impairment charge and ...
Relevant Document 2: 136+ The Coca2̆011Cola Company has been refreshing the world and making a
difference for over 136 years. Explore our Purpose & Vision, History and ... Comparable EPS (Non-GAAP)
Grew 10% to $0.49; Full Year EPS Grew 13% to $2.47; Comparable EPS (Non-GAAP) Grew 8% to
$2.69 Cash Flow from Operations Was $11.6 Billion for the Full Year, Up 5%; Full-Year Free Cash Flow
(Non-GAAP) Was $9.7 Billion for the Full Year...

Question: What is the difference in operating cash flow between P & G for fiscal year 2024 and Coca-Cola
for the full year 2023?
Answer: 8.2

Figure 16: Examples of data for the Single-Step Single-Document (SSMD) task.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

B.4 EXAMPLE OF DATA FOR MSMD

Example of Data for MSMD

Data Example 1:
Topic: Sports Performance Metrics
Subtopic: Team Performance in Basketball
Relevant Document 1: ... April 9 (Wednesday, April 10, Manila time). Golden State made a season-high 26
three-pointers (on 41 attempts), one made triple short of the franchise record, and won the season series with
three wins in four games. 26 THREESHere’s every single one of ’em 2̆6140f pic.twitter.com/VzAsr9Pf67
Curry was 6-for-6 from distance and Draymond Green went 5-for-7 as the Warriors delivered the best
three-point shooting percentage ...
Relevant Document 2: ... Anthony Davis 1.11 - Karl-Anthony TownsKP in a league of his own
pic.twitter.com/I58XI7K17E Jrue Holiday: A- Holiday2̆019s 3-point shooting has exceeded expectations
(career-high 44 percent), and he sets the tone defensively every night. He always finds clever ways to
contribute, whether he takes 20 shots or five. His maturity, consistency and poise set him apart. One area
I2̆019d like to see a bit more is playmaking ...
Question: What is the difference between the Golden State Warriors’ three-point shooting percentage in the
game and Jrue Holiday’s three-point shooting percentage?
Answer: 19.41463

Data Example 2:
Topic: E-commerce Sales Analysis
Subtopic: Product Category Performance
Relevant Document 1: ... accounting for 37.6% of the U.S. ecommerce market in 2023. Amazon2̆019s
average daily sales revenue is $1.6 billion, contributing to a total revenue of $575 billion in 2023. 56% of
consumers start their product searches on Amazon. Most of Amazon2̆019s sales come from independent
sellers, with more than 60% of all Amazon sales coming from third-party sellers. 68% of Amazon sellers are
third-party (3P) sellers. 58% of Amazon sellers are profitable ...
Relevant Document 2: ... Trending beauty products A beautiful physical appearance is a desire by many
people, and this is why people spend money on trending makeup products. The total revenue from the
beauty industry amounted to $579.20 billion in 2023 and is expected to multiply in the coming years.4
Another report stated that women in the US spend an average of $3,756 annually on beauty products.5 Beauty
products comprise items needed for grooming and beautification, including makeup and skincare. Now, you
can add some trending beauty products to your store. ...
Question: What is the combined total revenue of Amazon and the beauty industry in 2023, and what
percentage of this combined total is Amazon’s average daily sales revenue?
Answer: 50.597816669554675

Figure 17: Examples of data for the Single-Step Single-Document (MSMD) task.

22

	Introduction
	Related Work
	Long-Context Benchmarks
	Mathematical Reasoning Benchmarks

	Benchmark Construction
	Document Collection
	Question Generation
	Quality Control
	Haystack Construction
	Statistics of MathHay Benchmark

	Experiment
	Experimental Setup
	Results
	Analysis

	Conclusion
	Prompt Examples
	Prompts Used in MathHay Construction
	Prompt for Topic Generation
	Prompt for Subtopic and Query Generation
	Prompt for SSSD Question Generation
	Prompt for Quality Control

	Prompt for Evaluation
	Prompt for Solving Problems in MathHay

	Test Data Examples from MathHay
	Example of Data for SSSD
	Example of Data for MSSD
	Example of Data for SSMD
	Example of Data for MSMD

