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Abstract

Information retrieval plays a crucial role in001
many applications, serving as the primary002
mechanism for accessing relevant data within003
large and complex datasets. This study inves-004
tigates the robustness of retrievers against ad-005
versarial queries, employing 17 distinct query006
perturbation techniques across three granular-007
ity levels: character, word, and sentence. Our008
findings reveal that top-performing retrievers009
exhibit significant vulnerabilities to these adver-010
sarial queries, resulting in notable performance011
degradation. Additionally, we explore the ca-012
pability of Large Language Models (LLMs)013
to generate adversarial queries autonomously,014
without human intervention. By prompting015
LLMs to create paraphrases of queries and016
subsequently annotating these using both au-017
tomated and manual methods, we assess their018
effectiveness in this task. We introduce Ad-019
versarial BEIR, a comprehensive benchmark020
for measuring the robustness of retrievers to021
adversarial queries. By sharing our benchmark022
and detailed methods, we enable researchers to023
evaluate the robustness of their retrievers and024
create additional adversarial samples.025

1 Introduction026

In a world where we are surrounded by vast027

amounts of data, efficient retrieval is a key ele-028

ment of information systems such as RAG (Lewis029

et al., 2020). Pre-trained language models have030

proven their worth in the field of information re-031

trieval in recent years (Xiao et al., 2024; Li et al.,032

2023c; Wang et al., 2024a,b). However, relatively033

small changes in the input can result in outputs034

that are not in line with expectations (Lin et al.,035

2025; Zhong et al., 2024). While newly introduced036

retrieval models achieve high performance, their ro-037

bustness to adversarial query perturbations remains038

underexplored. Evaluating these models against039

perturbed queries is crucial to understanding their040

real-world reliability.041

Deep neural networks (DNNs) have been shown 042

to be vulnerable to adversarial examples (Good- 043

fellow et al., 2014; Kurakin et al., 2016; Goswami 044

et al., 2018). Robustness to adversarial samples has 045

been widely studied in Natural Language Process- 046

ing (NLP) field, with various works exploring at- 047

tacks on textual inputs and methods for improving 048

model resilience. Recent research has examined 049

adversarial robustness of Large Language Models 050

(Wei et al., 2023; Jones et al., 2023) and techniques 051

to improve it (Agrawal et al., 2025). 052

Although some studies have evaluated retrieval 053

models against adversarial queries (Penha et al., 054

2022; Li et al., 2023b), there is no standardized 055

benchmark that allows users to assess the quality 056

of their retrieval systems against adversarial exam- 057

ples. Moreover, there is no information on how 058

models currently considered as state-of-the-art per- 059

form on adversarial queries. This motivates us to 060

build a unified robustness evaluation benchmark 061

for information retrieval models. Our contributions 062

are as follows: 063

1. We introduce Adversarial BEIR, a benchmark 064

comprising adversarial queries generated us- 065

ing 17 different construction methods. 066

2. We conduct a comprehensive robustness eval- 067

uation of state-of-the-art information retrieval 068

models. 069

3. We explore the feasibility of leveraging LLMs 070

to automatically generate adversarial queries 071

and manually assess their quality. 072

We release the code, data, and reproduction 073

scripts to facilitate the application of all methods 074

used in this work1 and plan to provide a stream- 075

lined framework for evaluating retrieval models 076

with our benchmark observations. 077

1https://anonymous.4open.science/r/
AdvBEIR-BBD3
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Figure 1: Our benchmark involves sampling 6000 observations from the public BEIR datasets. We apply 17 query
perturbation methods across three levels of granularity. Sentence-level perturbations are verified post-generation
and sampled based on Cross Encoders’ supervision. In total, we generate over 100,000 test queries to evaluate the
robustness of retrieval models.

2 Related work078

Adversarial attacks on textual inputs. Even rela-079

tively minor perturbations, such as typos in textual080

input, can substantially affect model performance081

(Belinkov and Bisk, 2018; Rychalska et al., 2019).082

In the domain of information retrieval, neural-083

based models have historically struggled to retain084

performance when exposed to adversarial data (Wu085

et al., 2022; Zhuang and Zuccon, 2021). Apply-086

ing semantic- and character-based perturbations087

to widely used passage ranking datasets causes a088

loss in retrieval quality, particularly affecting short089

queries (Campos et al., 2023). Perturbed data can090

not only serve as a foundation for evaluation, but091

can also enhance the training process, improving092

the overall robustness of a model (Rychalska et al.,093

2019; Tomonari et al., 2022).094

095

Adversarial benchmarks in NLP. Previous re-096

search on the robustness of NLP systems often097

involved ad hoc input modifications created us-098

ing evaluation toolkits such as TextAttack (Morris099

et al., 2020) or OpenAttack (Zeng et al., 2021) or100

other unsupervised methods like automated para-101

phrase generation (Campos et al., 2023). However,102

aside from the transient nature of such data, it has103

been shown that widely used textual perturbations104

can generate invalid samples (Zang et al., 2020),105

which undermines the validity of the research con-106

ducted. This emphasizes the need for consistent,107

reliable, and reusable adversarial datasets for ro- 108

bustness evaluation. Such motivations have driven 109

research like ANLI dataset (Nie et al., 2020), where 110

a human-and-model-in-the-loop approach is em- 111

ployed to generate difficult-to-assess samples. Sim- 112

ilarly, AdvGLUE (Wang et al., 2021) builds upon 113

the widely used Natural Language Understanding 114

benchmark GLUE (Wang et al., 2018), providing 115

an adversarial benchmark dataset that facilitates the 116

systematic examination of perturbations’ impact. 117

However, this type of work is currently lacking in 118

the context of information retrieval. 119

3 Dataset 120

3.1 Overview 121

We present the overview of Adversarial BEIR 122

in Figure 1. Our benchmark dataset consists of 123

6000 observations covering various fields, such as 124

medicine, finance or climate. It has been sampled 125

using all publicly available datasets from the BEIR 126

(Thakur et al., 2021) benchmark. We compare the 127

original distribution of datasets in the initial sce- 128

nario (collection of all datasets) and our benchmark 129

version (after sampling) and provide correspond- 130

ing descriptive statistics in Table 1. The sampling 131

procedure is as follows: 132

1. Take all publicly available BEIR datasets. 133

2. Draw 300 initial samples from each dataset 134

(or all if there are less than 300) to assure that 135
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Dataset Percentage Query Length Document Length
Initial Benchmark Mean Std Mean Std

MSMARCO 13.08 9.52 6.08 2.53 64.65 25.58
TREC-COVID 0.09 0.83 11.58 3.63 171.78 158.21

NFCorpus 0.61 5.02 3.56 2.83 258.75 99.43
NQ 6.47 7.13 9.25 1.73 91.65 70.05

HotpotQA 13.88 9.8 19.79 10.73 51.35 37.01
FiQA-2018 1.21 5.23 12.19 5.03 157.03 151.7
ArguAna 2.64 5.75 224.23 106.8 189.25 104.49

Touche-2020 0.09 0.82 7.55 1.98 335.38 456.53
CQADupstack 24.64 13.68 9.78 4.29 177.79 208.74

Quora 18.74 11.55 10.84 4.49 13.03 7.07
DBPedia 0.75 5.07 5.77 3.07 54.59 27.69

SCIDOCS 1.87 5.47 9.84 3.67 188.43 137.87
FEVER 12.49 9.3 9.41 3.75 94.96 124.33

Climate-FEVER 2.88 5.83 22.82 10.72 94.96 124.33
SciFact 0.56 5 13.83 5.3 232.03 102.56

Table 1: Statistics of datasets used in our benchmark, including query and document length distributions and dataset
proportions before and after the sampling process. The mean and standard deviation of the query length were
calculated on the queries before sampling the benchmark.

sufficient amount of observations from each136

collection will be included in the benchmark.137

3. Redraw from the remaining samples accord-138

ing to the scaling factor (size proportion of139

specific datasets after the initial sampling) to140

top up to the desired number of 6000 samples.141

Number of samples from original BEIR has been142

matched to our capabilities of manual annotation,143

which was necessary for some perturbations.144

3.2 Query Perturbation145

Query perturbation is a technique used to mod-146

ify a query by introducing intentional changes or147

distortions to its content, which involve altering148

characters, words, or whole sentences. Perturbed149

queries help us understand the behavior of models150

and assess the robustness of information retrieval151

systems in a wide range of real world scenarios.152

To ensure that our benchmark effectively as-153

sesses search engine resilience, we developed 17154

different methods for creating perturbed queries,155

drawing inspiration from previous research, as well156

as developing our own approaches to modifying157

queries. Information about perturbations contained158

in our benchmark is presented in Table 2. We focus159

on three levels of perturbations: character, word160

and sentence which modify individual characters,161

words or entire queries respectively.162

Each method, apart from Automatic Paraphrase163

(P17), operates on its specific perturbation strength.164

We define perturbation strength as the fraction of 165

characters or words (depending on perturbation 166

level) that are affected by a specific modification. 167

In some scenarios, such as OCR Error (P5) or Word 168

Lemmatization (P14), there is a limited number of 169

places where a perturbation can be applied. In such 170

cases, perturbation strength stands for the percent- 171

age of positions that qualify for a perturbation and 172

will be edited. To perform Context-Aware Pertur- 173

bation (P11), we apply a methodology similar to 174

CLARE (Li et al., 2021). 175

3.3 Creating sentence-level query 176

perturbations automatically 177

Recent studies have explored methods for automat- 178

ically expanding and paraphrasing queries. For 179

instance, Alaofi et al. (2023) use a LLM to gener- 180

ate synthetic queries and verify their similarity to 181

human-generated ones. Our Automatic Paraphrase 182

perturbation is similar to query refinement methods 183

studied in various works. Chan et al. (2024) en- 184

hance the model to rewrite, decompose, and clarify 185

queries in the RAG scenario. Li et al. (2023b) re- 186

fine queries with LLM to represent different demo- 187

graphic groups and iteratively verify new queries. 188

In our work, besides measuring retrieval model 189

robustness against adversarial queries, we aim to 190

address three additional research questions: 191

R1 How accurate are modern Language Models 192

in query paraphrasing? 193
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Symbol Name Level Description
P1 Capitalization Character Capitalizes characters.

P2 Keyboard Character Insert Character Inserts adjacent keyboard characters next to chosen ones.

P3 Keyboard Character Replace Character Replaces characters with adjacent keyboard characters.

P4 Random Neighbor Character Swap Character Swaps characters with their neighboring characters in text.

P5 OCR Error Character Simulates OCR errors by distorting characters.

P6 Punctuation Character Inserts / deletes / replaces punctuation marks.

P7 Random Character Delete Character Deletes a percentage of characters.

P8 Random Character Insert Character Inserts random characters at a percentage of positions.

P9 Random Character Replace Character Replaces a percentage of characters.

P10 Mobile Phone Character Miss Character Replaces characters with their corresponding symbol.

P11 Context-Aware Perturbation Word Inserts, merges or deletes semantically similar words.

P12 Word Duplicate Word Duplicates words.

P13 Words Join Word Joins adjacent words.

P14 Word Lemmatization Word Converts words to their lemma.

P15 Word Position Swap Word Swaps positions of selected word pairs.

P16 Word Stemming Word Applies stemming to words.

P17 Automatic Paraphrase Sentence Paraphrases query using a LLM or backtranslation.

Table 2: List of perturbations applied to the queries from our benchmark dataset.

Dataset Method Original Query Perturbed Query
HotpotQA P4 Which system of parliament was

modeled after the United Kingdom and
is also used in Canada?

Which system of parliament aws
modeled after teh United Kingdom and

is alos used in Canada?
NQ P7 where do they get the hair for a hair

transplant
where do they get the hair for hair

transpant
Touche-2020 P11 Should more gun control laws be

enacted?
Should more gun control laws be

passed?
CQADupstack P16 Why do large IT projects tend to fail or

have big cost/schedule overruns?
Why do larg IT project tend to fail or

have big cost/schedul overrun?
DBPedia P17 Give me all professional

skateboarders from Sweden.
List of pro skateboarders in Sweden.

Table 3: Examples of observations from Adversarial BEIR. We perturb the query on three levels of granularity:
character, word, and sentence. The manipulated elements have been highlighted in orange. In the last case (P17)
we operate on the sentence level, therefore the whole input query is considered for the perturbation.

R2 What size of a model do we need to employ194

to the automatic query paraphrase generation195

to obtain high-quality outputs?196

R3 How well is a ’LLM as a judge’ setting197

aligned with a human annotator in the task198

of annotating the quality of automatic query199

paraphrase generation?200

To address R1 and R2, we generated paraphrases201

of benchmark queries using two methods: para-202

phrasing with Qwen2.5 (Qwen et al., 2025) in203

three sizes (0.5B, 7B, and 32B parameters) and204

backtranslation. We evaluated several translation205

models for backtranslation, selecting the optimal206

one based on the highest BERTScore (Zhang et al.,207

2020), indicating better preservation of semantics208

in the paraphrase, and the largest Levenshtein dis-209

tance, indicating the highest level of perturbation.210

Details are presented in Table 7 in the Appendix. 211

After generation, paraphrases were shuffled 212

to remove model information. Annotators then 213

labeled whether each paraphrase preserved the 214

original query’s semantics. Post-annotation, we 215

used four LLMs: DeepSeek-R1-Distill-Llama- 216

70B (DeepSeek-AI et al., 2025), Llama-3.3-70B- 217

Instruct (Grattafiori et al., 2024), Qwen2.5-72B- 218

Instruct (Qwen et al., 2025), and Command A (Co- 219

here et al., 2025), for automatic annotation. Further 220

in this subsection we refer to them as DeepSeek-R1, 221

Llama-3.3, Qwen2.5, and Command A. 222

The annotation results are presented in Fig- 223

ure 2. According to human assessment, the smallest 224

model (0.5B) shows clear limitations in paraphrase 225

generation, with 39.7% of its outputs labeled in- 226

valid and 3.6% marked as exact or near duplicates. 227

In contrast, the 32B model demonstrates strong per- 228
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Dataset Perturbation
Level BM25 UAE-Large bge-large gte-large modernbert e5-large-instruct gte-Qwen2-7B-instruct

MSMARCO
Character 12.8 (-9.5) 26.3 (-15.7) 27.2 (-15) 29.1 (-13.8) 27.1 (-13) 31 (-9.3) 40.1 (-4.3)

Word 18.9 (-3.4) 36.9 (-5.1) 37.9 (-4.3) 39.2 (-3.7) 37.1 (-3) 37.5 (-2.8) 42.8 (-1.6)
Sentence 12.4 (-9.8) 29.9 (-12) 30.3 (-11.9) 31 (-11.8) 29.6 (-10.3) 30.3 (-9.7) 33.2 (-11.2)

TREC-COVID
Character 45.9 (-22.9) 56.1 (-20.3) 55.1 (-19.7) 64.4 (-13) 65.4 (-18.9) 75.6 (-6.5) 81.2 (-0.5)

Word 60.3 (-8.5) 68.6 (-7.8) 67.6 (-7.2) 73.1 (-4.3) 79.6 (-4.7) 79.3 (-2.8) 80.8 (-0.9)
Sentence 47.9 (-20.9) 58.8 (-17.6) 57.7 (-17.1) 64.5 (-12.9) 73.3 (-11) 75.7 (-6.4) 75 (-6.7)

NFCorpus
Character 28.5 (-6) 27.3 (-11.6) 26.9 (-11.4) 27.1 (-9.8) 23.2 (-10.5) 27.8 (-7.8) 33.8 (-6.8)

Word 33.4 (-1.1) 37.3 (-1.6) 36.8 (-1.5) 35.4 (-1.5) 32.5 (-1.2) 34.7 (-0.9) 39.9 (-0.7)
Sentence 27.3 (-6.3) 35.2 (-4) 34.4 (-4.2) 34.6 (-2.8) 31.3 (-2.9) 33 (-3) 38.8 (-2.2)

NQ
Character 22.5 (-9.1) 40.1 (-16.8) 39.2 (-16.2) 41.1 (-15.1) 44.9 (-16.7) 51.4 (-11.4) 59.5 (-5)

Word 27.1 (-4.5) 50.2 (-6.7) 50 (-5.4) 51.2 (-5) 58 (-3.6) 59.7 (-3.1) 62.6 (-1.9)
Sentence 29.9 (-2.1) 53.4 (-4) 52.7 (-3) 50.9 (-5.6) 56.2 (-5.5) 56.6 (-6.8) 60 (-5)

HotpotQA
Character 45.5 (-14.7) 56.9 (-16.4) 57.1 (-17.3) 56 (-10.3) 52 (-13.5) 56.9 (-11) 67.4 (-4.2)

Word 53.2 (-7) 66.3 (-7) 67.5 (-6.9) 62.2 (-4.1) 62.6 (-2.9) 64.2 (-3.7) 69.4 (-2.2)
Sentence 49.1 (-10.9) 53.4 (-4) 67.8 (-6.6) 62 (-4.4) 60.8 (-4.7) 61.9 (-6) 68.5 (-3.2)

FiQA-2018
Character 18.9 (-5.7) 34.8 (-10.5) 34.4 (-11.4) 49.1 (-14.3) 30.2 (-9.5) 39.6 (-6.2) 59 (-3.2)

Word 22.4 (-2.2) 41.4 (-3.9) 41.9 (-3.9) 57.8 (-5.6) 37.7 (-2) 43.5 (-2.3) 59.9 (-2.3)
Sentence 18.7 (-6) 39.2 (-6.3) 38.6 (-7.5) 49.9 (-13.6) 35.5 (-4.5) 38.4 (-7.7) 52.4 (-10.2)

ArguAna
Character 44.3 (-2.7) 62.4 (-2) 59.3 (-5.2) 69.7 (-1.6) 41 (-6.5) 53.7 (-1.9) 58.8 (-0.9)

Word 45.6 (-1.4) 63.5 (-0.9) 62.1 (-2.4) 70.5 (-0.8) 47.1 (-0.4) 55.0 (-0.6) 58.9 (-0.8)
Sentence 36.6 (-9.8) 59.1 (-5.3) 57.8 (-6.5) 62.8 (-8.3) 45.5 (-2.1) 49.2 (-6.6) 51.6 (-7.7)

Touche-2020
Character 24.9 (-9.8) 16.9 (-8.1) 16.1 (-8.7) 16 (-6.5) 23.6 (-6.4) 21 (-3.9) 30.3 (-2.4)

Word 30.7 (-4) 22.2 (-2.8) 22 (-2.8) 20 (-2.5) 28.1 (-1.9) 23 (-1.9) 30.8 (-1.9)
Sentence 16.7 (-18) 19.9 (-5.1) 18.7 (-6.1) 16.6 (-5.9) 21.9 (-8.1) 16.7 (-8.2) 23.2 (-9.5)

CQADupstack
Character 22.6 (-6.2) 31 (-11.3) 32 (-11.6) 32.7 (-11.2) 31.6 (-12.2) 35.3 (-7.7) 40.4 (-4.7)

Word 26.5 (-2.3) 39.2 (-3.1) 40.2 (-3.4) 40.2 (-3.7) 40.8 (-3) 40.9 (-2.1) 43.1 (-2)
Sentence 19.7 (-8.9) 34.6 (-7.8) 35.7 (-8.3) 35.3 (-8.3) 35.7 (-8.1) 34.3 (-9.2) 36.5 (-9)

Quora
Character 59.4 (-18.6) 72.8 (-15.4) 74.9 (-13.2) 77.7 (-11.1) 75.3 (-12.6) 83.6 (-4.7) 87.1 (-2.1)

Word 70.5 (-7.5) 83.4 (-4.8) 84.1 (-4) 85.9 (-2.9) 85.7 (-2.2) 86.7 (-1.6) 87.6 (-1.6)
Sentence 35 (-43.3) 72.2 (-16) 72.2 (-15.8) 74.1 (-14.7) 73.1 (-14.7) 74 (-14.2) 74.2 (-14.9)

DBPedia
Character 16.9 (-13.5) 27.2 (-16.1) 25.5 (-16.6) 28.1 (-16.2) 22 (-17.9) 25.8 (-11.1) 43.4 (-7.1)

Word 26.9 (-3.5) 38.4 (-4.9) 36.7 (-5.4) 39.3 (-5) 35.7 (-4.2) 34.7 (-2.2) 48 (-2.5)
Sentence 22.1 (-7.8) 39.8 (-3.4) 37 (-5) 37.5 (-6.5) 33.7 (-5.8) 31.3 (-5.2) 45.1 (-5.4)

SCIDOCS
Character 13.4 (-3.8) 18.8 (-5) 18.3 (-5.1) 21.9 (-6.3) 14.6 (-4.3) 17 (-2.8) 28 (-2.2)

Word 15.9 (-1.3) 21.9 (-1.9) 21.5 (-1.9) 25.6 (-2.6) 17.7 (-1.2) 18.7 (-1.1) 28.7 (-1.5)
Sentence 14.1 (-3.3) 21 (-3.1) 20.8 (-2.9) 23 (-5.3) 16.3 (-2.7) 17 (-3) 26.5 (-4)

FEVER
Character 41.8 (-19.2) 69.5 (-19) 68.8 (-19) 79.3 (-14.9) 70.4 (-16.8) 68.2 (-9.7) 84.4 (-9.6)

Word 53.9 (-7.1) 81.8 (-6.7) 80.6 (-7.2) 89.2 (-5) 83 (-4.2) 74.5 (-3.4) 90.4 (-3.6)
Sentence 49.2 (-11.7) 80.5 (-8.1) 79.7 (-8.1) 86.2 (-8) 80.5 (-6.8) 71.3 (-6.6) 86.3 (-7.9)

Climate-FEVER
Character 12.7 (-4.6) 33.2 (-6.4) 31.2 (-7.1) 42.3 (-7.3) 31.2 (-6.3) 31.9 (+0.7) 44.2 (-2.5)

Word 14.9 (-2.4) 37.2 (-2.4) 35.3 (-3) 46.5 (-3.1) 35.7 (-1.8) 31.7 (+0.5) 45.1 (-1.6)
Sentence 16.1 (-1.2) 37.8 (-1.8) 36.5 (-1.8) 44.4 (-5.2) 35.6 (-1.9) 29.4 (-1.8) 43 (-3.7)

SciFact
Character 59.5 (-9.6) 68.2 (-5.9) 67.5 (-7.1) 74.5 (-8) 62.1 (-7.7) 67.2 (-4.7) 77.1 (-2.2)

Word 66.1 (-3) 71.9 (-2.2) 72.1 (-2.5) 80.5 (-2) 68.5 (-1.3) 70 (-1.9) 78.7 (-0.6)
Sentence 62.9 (-6) 73 (-1.1) 72.7 (-1.9) 79.4 (-3) 67.4 (-2.3) 69.4 (-2.3) 77.9 (-1.4)

Table 4: NDCG@10 metric value on the Adversarial BEIR across domain datasets for selected models. The metric
value for the perturbed version of the benchmark is displayed in black. The difference between the metric values
before and after applying perturbations is shown in parentheses next to each value. This difference is highlighted in
red if the metric value decreases after perturbation and in green if it increases.

formance, generating 87.2% valid outputs and only229

0.2% duplicates. While the 7B model shows signif-230

icant improvement over the 0.5B version, the differ-231

ence between 7B and 32B is smaller (4.1%), sug-232

gesting diminishing returns at larger scales. Back-233

translation performs poorly, with 22.8% invalid234

outputs and 14.5% near-duplicates, often failing to235

introduce meaningful adversarial variation.236

Humans were stricter than any LLM judge, la-237

beling the highest number of paraphrases as invalid238

across all annotators. The annotation process is239

inherently difficult, as judgments about what con-240

stitutes a "duplicate" are subjective, interpretations241

of "very close to the original" vary across annota-242

tors (see Figure 8). DeepSeek’s model illustrates243

this challenge, labeling many more examples as du-244

plicates. Annotator agreement metrics are shown 245

in Figure 3. Since DeepSeek-R1 marked signifi- 246

cantly more duplicates, we also include agreement 247

metrics only for observations it labeled as valid or 248

invalid in Figure 4 in the Appendix. 249

Motivated by recent findings on bias in LLM-as- 250

a-judge settings (Koo et al., 2024; Li et al., 2025), 251

we examined if Qwen2.5 would favor outputs from 252

models in its own family. However, this was not the 253

case. Command A and LLaMA-3.3 labeled more 254

generations from Qwen models as valid. 255

We found that none of the human-model pairs ex- 256

hibited strong agreement. The agreement between 257

humans and DeepSeek’s model was fair, while 258

other human-model pairs showed moderate agree- 259

ment. Conversely, some model pairs (Qwen2.5- 260
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Figure 2: Results of the human and automatic annotation of the automatic query paraphrasing task. Valid stands for
the correct paraphrase generated by a model, otherwise an example was labeled as Invalid. If the model created an
exact or close duplicate, the Duplicate label was assigned.

Llama-3.3, Qwen2.5-Command A, Llama-3.3-261

Command A) demonstrated strong agreement. It262

shows that even though LLMs are often employed263

as judges for automatic annotation, their assess-264

ments may differ among themselves (as seen in the265

alignment between DeepSeek-R1 and other mod-266

els). In addition, for the task of automatic labeling267

of paraphrases, most of them align with the human268

annotator only to a moderate degree.269

3.4 Selecting paraphrases for the benchmark270

To perform Automatic Paraphrase Perturbation271

(P17), we employed four models: three Large Lan-272

guage Models from the Qwen2.5 series (Qwen273

et al., 2025) and one translation-based model. Each274

generated paraphrase was human-annotated for va-275

lidity. The observations were annotated by internal276

employees with expertise in applied linguistics. To277

identify the most challenging paraphrases among278

the valid ones, we introduced a selection method279

leveraging a group of Cross Encoder models. Cross280

Encoders, widely adopted in retrieval-based ques-281

tion answering and search applications (Wang et al.,282

2019; Nogueira and Cho, 2020), are effective at as-283

sessing textual similarity and relevance. For each284

valid paraphrase, we computed a score using each285

Cross Encoder and produced individual model-286

based rankings. These rankings were then trans-287

formed using their reciprocal values (i.e., 1/rank),288

which places greater emphasis on higher-ranked289

paraphrases. We then aggregated the reciprocal 290

ranks across all models, and selected the paraphrase 291

with the lowest total score. The algorithmic formu- 292

lation of this selection process is presented below. 293

We share the list of the Cross Encoders used in this 294

procedure in Table 9. 295

Let Q be a query and P = {p1, p2, . . . , pn} the 296

set of valid paraphrases generated by models for 297

query Q. Let M = {m1,m2, . . . ,mk} denote 298

the set of Cross Encoders. Each model mj ∈ M 299

assigns similarity scores and induces a ranking 300

rj(pi) ∈ {1, . . . , n} for each paraphrase pi. The 301

reciprocal rank is: 302

sj(pi) =
1

rj(pi)
(1) 303

The total score across models is: 304

S(pi) =

k∑
j=1

1

rj(pi)
(2) 305

The selected paraphrase minimizes this total: 306

p∗ = arg min
pi∈P

S(pi) (3) 307

This approach prioritizes valid paraphrases that are 308

least similar to the original query, thereby ensuring 309

the selection of the most challenging samples. 310
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Figure 3: Inter-annotator agreement metrics for human-model and model-model pairs. Agreement is the percentage
of observations which had the same label assigned by both annotators within a given pair.

4 Results311

To determine an appropriate perturbation strength312

for each method, we generated a dataset consist-313

ing of 100 randomly sampled observations. Each314

method was then applied to this test set, and the315

observations were labeled based on whether the316

resulting perturbations remained comprehensible317

and preserved the semantics of the original query.318

A perturbation strength was considered suitable as319

the default for our experiments if at least 95% of320

the test set was classified as valid. Details regard-321

ing the perturbation strengths used for each method322

are provided in Table 12 in the Appendix D.323

The models selected for the evaluation process324

were chosen based on their performance on the325

MTEB benchmark (Muennighoff et al., 2023), fo-326

cusing on those currently ranked highest on the327

leaderboard. All evaluated models are listed in328

Table 8 in Appendix. We employed a version of329

ModernBERT (Warner et al., 2024), which was330

further trained using datasets and methodologies331

outlined in Nussbaum et al. (2025). We report the332

mean NDCG@10 value across all datasets and per-333

turbation levels in Table 4.334

4.1 General findings335

Across all evaluated datasets, every level of per-336

turbation causes a decline in model performance337

except two cases (e5-large-instruct evaluated with338

character and word-level perturbations on Climate-339

FEVER dataset). It appears that perturbations are340

less detrimental for very long queries, such as those341

found in the Arguana dataset, due to the amount342

of information contained in the text and the lower343

probability of losing valuable information. How-344

ever, for shorter queries, where the median length 345

variations between different datasets are minimal, 346

this effect is less pronounced and does not signifi- 347

cantly impact the model’s robustness. We visualize 348

this relationship in Figure 7 in the Appendix. 349

Furthermore, we note that model size plays a 350

critical role in susceptibility to adversarial sam- 351

ples. For example, UAE-Large and bge-large (both 352

based on ~330M parameter BERT-base models) 353

exhibit average performance drops of 7.6% and 354

7.8%, respectively. Larger models such as e5-large- 355

instruct (~560M parameters) and gte-Qwen2-7B- 356

instruct (~7.6B parameters) demonstrate reduced 357

vulnerability, with drops of 5% and 4.1%. 358

4.2 Retrievers are not robust to 359

character-level perturbations 360

One of the most prominent observation from exam- 361

ining Table 4 is the significantly worse performance 362

of all models on queries perturbed at the character- 363

level in comparison to the word-level ones, hence 364

the statement in the title of this section. 365

Since all perturbation strengths have been cho- 366

sen using intelligibility preservation criteria (Ap- 367

pendix D), the results for both levels should be sim- 368

ilar if models were to match human performance 369

in capturing semantics of perturbed queries. 370

Most modern transformer-based models oper- 371

ate on neither characters nor words but on tokens. 372

Due to the nature of the tokenization process we 373

strongly believe that perturbation introduced on 374

character-level leads to much more noise in the 375

retriever’s input tokens, which could be the main 376

source of the observed performance degradation. 377

Recent studies (Zhuang and Zuccon, 2022; Zhuang 378
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et al., 2023) have reached similar conclusions, but379

they only propose five character-level perturbations380

for model evaluation and compare against models381

that are no longer state-of-the-art.382

The issue with character-level perturbations is383

that they usually introduce additional tokens into384

the input (example in Appendix F), which likely385

were not encountered in such contexts during the386

training phase. In consequence, the final sentence387

embeddings derived from mean pooling are dis-388

rupted by these noisy tokens.389

Level Mean No. Mean Token Mean
Tokens Length Jaccard Index

No Perturb. 26.19 4.30 1.00
Character 34.47 3.54 0.55
Word 27.38 4.15 0.80

Table 5: Tokenization statistics aggregated on the pertur-
bation level. Mean token length is a number of charac-
ters per token and Mean Jaccard index is calculated on
sets of unique tokens from original and perturbed query.

Looking at the aggregated tokenization statis-390

tics in Table 5 on the character level around 30%391

more tokens are introduced with smaller informa-392

tion density (almost 1 character less per token), and393

on average almost half of the tokens are different394

in perturbed query (0.55 Jaccard index). On the395

word-level, these statistics are much closer to the396

baseline ones calculated for original queries. This397

is a first strong indicator that even though character-398

level perturbations are applied at half the strength399

of word-level ones (Table 12), they introduce sig-400

nificantly more noise to the input.401

Level Mean Char. Edit Dist. Mean Token Edit Dist.

Character 13.56 10.44
Word 5.28 10.87

Table 6: Comparison of mean Levenshtein edit dis-
tances between original and perturbed queries, aggre-
gated based on the level of introduced perturbations.

Analysis of aggregated edit distances from Ta-402

ble 6 shows that although on average token-wise403

distances are similar for character- and word-level404

perturbations, the comparison of character-wise405

distances unveils a much more disruptive nature of406

character-level perturbations.407

We have shown strong evidence, that such sig-408

nificant difference between character- and word-409

level perturbations in models performance (Table 4)410

stems from the tokenization process that is not ro-411

bust to character-level perturbation. There is a lot412

of opportunity for further research like utilizing 413

various spelling corrections methods (Hladek et al., 414

2020) to alleviate this performance degradation. 415

4.3 LLM-generated paraphrases pose a high 416

challenge to retrievers 417

Methods such as CLARE (Li et al., 2021) have 418

been widely used in the NLP domain to prepare ad- 419

versarial samples. However, CLARE is a method 420

operating on the token level. In subsection 3.3 421

we proved that Large Language Models can au- 422

tomatically generate valid, high quality sentence- 423

level query paraphrases. Results from Table 4 424

show that sentence-level perturbations almost al- 425

ways cause a higher drop in performance than the 426

word-level ones. We attribute this phenomenon to 427

the enhanced capability of LLMs to modify text 428

extensively while preserving core semantics. Un- 429

like CLARE, which applies token-level perturba- 430

tions in isolation—risking rapid semantic degrada- 431

tion—LLMs iteratively refine edits by maintaining 432

contextual alignment with the original query. This 433

enables LLMs to introduce more substantial syn- 434

tactic changes without compromising meaning. To 435

quantify this, we computed the Jaccard index be- 436

tween original and perturbed queries. For CLARE- 437

based Context-Aware Perturbations, the average 438

similarity was 0.83, reflecting limited lexical al- 439

teration. In contrast, LLM-generated paraphrases 440

achieved an average Jaccard index of 0.37, indicat- 441

ing significant lexical variation yet effective seman- 442

tic retention. 443

5 Conclusion 444

We present Adversarial BEIR, an information re- 445

trieval benchmark comprising query perturbations 446

from 15 datasets, generated using 17 distinct meth- 447

ods across three granularity levels: character, word, 448

and sentence. Our findings demonstrate that current 449

state-of-the-art retrievers are not robust to adversar- 450

ial queries, indicating that this challenge remains 451

unresolved. Furthermore, through both human and 452

automated evaluations of the automatic paraphrase 453

generation method, we observe a lack of strong 454

agreement among human-model and model-model 455

pairs, highlighting the complexity of automatic an- 456

notation for this task. We believe that the data, 457

code, and results we provide will serve as a valu- 458

able foundation for future research on the robust- 459

ness of retrievers against query perturbations. 460
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6 Limitations461

We demonstrated that even top-performing retriev-462

ers face challenges with adversarial queries at three463

levels: character, word, and sentence. At the char-464

acter level, excessive modifications like typos or465

deletions might overly distort the query’s meaning.466

Despite manually calibrating the intensity of each467

perturbation, there might be individual examples468

of such characteristics in our evaluation dataset,469

which has more than 100,000 observations. Future470

work might involve deriving an automatic approach471

to detect such samples.472

Additionally, this study concentrates on the eval-473

uation of general-purpose text retrieval. Subse-474

quent research could productively explore how our475

findings generalize to more specialized retrieval476

tasks, such as programming code retrieval, which477

are not tested in this work.478

Moreover, certain models available on the479

MTEB leaderboard lack transparency regarding480

their training datasets. Consequently, this lack of481

clarity complicates comparative analyses of these482

models, particularly in evaluating their robustness483

against perturbed queries.484
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A Backtranslation model selection1082

We employed two metrics to select the optimal1083

model for backtranslation: BERTScore and mean1084

Levenshtein distance. BERTScore was used to as-1085

sess semantic similarity to the original query, while1086

mean Levenshtein distance measured the degree1087

of perturbation. As BERTScore values were com-1088

parable across all configurations, model selection1089

was primarily based on the highest mean Leven-1090

shtein distance. We evaluated X-ALMA (Xu et al.,1091

2025) and MADLAD-400 (Kudugunta et al., 2023)1092

models. Detailed evaluation results are provided in1093

Table 7.

Model Middle
Language Mean Levenshtein Mean BERTscore

X-ALMA-13B German 40.676 0.852
X-ALMA-13B Korean 65.166 0.853
MADLAD-400-3B German 26.698 0.851
MADLAD-400-3B Korean 46.248 0.852
MADLAD-400-3B Polish 30.568 0.851
MADLAD-400-10B German 27.582 0.851
MADLAD-400-10B Korean 44.874 0.852
MADLAD-400-10B Polish 30.399 0.851

Table 7: Mean Levenshtein distance and BERTscore
are reported for all configurations considered during the
model selection process for backtranslation. Given that
all options recorded nearly identical BERTscore values,
the model with the highest mean Levenshtein distance
was chosen.

1094

B Models, Prompts and Sampling 1095

Parameters 1096

We provide here the dense retrievers used in our 1097

evaluation, Cross Encoders utilized for paraphrase 1098

selection, prompts, and sampling parameters used 1099

for (i) automatic paraphrase generation and (ii) 1100

LLM-as-a-judge evaluation. List of evaluated 1101

dense retrievers is presented in Table 8. Cross En- 1102

coders used to select paraphrases for the benchmark 1103

are presented in Table 9. Figures 8 and 9 show the 1104

exact prompts used. Table 10 summarizes the sam- 1105

pling parameters, we used sampling parameters 1106

suggested by the authors of models. 1107

Model Reference Source
UAE-Large Li and Li (2024) Model card
bge-large Xiao et al. (2024) Model card
gte large Li et al. (2023c) Model card

modernbert Warner et al. (2024) and
Nussbaum et al. (2025) Model card

e5-large-instruct Wang et al. (2024c) Model card
gte-Qwen2-7B-instruct Li et al. (2023c) Model card

Table 8: List of dense retrievers used in the evaluation
process.

Model Reference Source
gte-multilingual-base Zhang et al. (2024) Model card

gte-reranker-modernbert Li et al. (2023c) Model card
bge-reranker-v2-m3 Chen et al. (2024) Model card

jina-reranker-v2 Press release Model card
bge-reranker-v2.5-gemma2 Li et al. (2023a) Model card

Table 9: List of Cross Encoders used in the process of
selecting paraphrases for the benchmark.

Parameter Paraphraser Judge

Temperature 0.9 0.6
Top-p 0.9 0.9

Table 10: Sampling parameters for paraphrase genera-
tion ("Paraphraser") and evaluation ("Judge").

C Licenses of the datasets 1108

We share the licenses of the evaluation datasets in 1109

Table 11. 1110

D Selecting perturbation strength for all 1111

methods 1112

To ensure the intelligibility of each perturbed query, 1113

we established an appropriate perturbation strength 1114

for each method. We began by setting initial per- 1115

turbation strength levels based on our intuition. We 1116

then randomly sampled 100 queries from the bench- 1117

mark and applied all perturbation methods to this 1118
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Dataset License Information
MSMARCO CC BY 4.0 Link
TREC-COVID No license Link
NFCorpus Non-commercial Link
NQ CC BY-SA 3.0 Link
HotpotQA CC BY-SA 4.0 Link
FiQA-2018 No license Link
ArguAna CC BY 4.0 Link
Touche-2020 CC BY 4.0 Link
CQADupstack CC BY-SA 3.0 Link
Quora Quora Terms of Use Link
DBPedia CC BY-SA 3.0 Link
SCIDOCS CC BY 4.0 Link
Fever CC BY-SA 3.0 Link
Climate-Fever No license Link
SciFact (claims) CC BY 4.0 Link

Table 11: Licenses and source information of the
datasets evaluated in our work.

test set. The resulting queries were manually an-1119

notated to assess semantic preservation and intel-1120

ligibility. If more than 95% of the samples at a1121

given perturbation strength were judged valid, that1122

strength was selected for subsequent experiments.1123

If the test sample did not meet these requirements,1124

we performed another round of annotation, adjust-1125

ing the perturbation strength for particular methods1126

as needed. The selected perturbation strengths for1127

all methods are summarized in Table 12.1128

Symbol Name Strength
P1 Capitalization 50%
P2 Keyboard Character Insert 5%
P3 Keyboard Character Replace 5%
P4 Random Neighbor Character Swap 5%
P5 OCR Error 5%
P6 Punctuation 40%
P7 Random Character Delete 5%
P8 Random Character Insert 5%
P9 Random Character Replace 5%
P10 Mobile Phone Character Miss 5%
P11 Context-Aware Perturbation 10%
P12 Word Duplicate 10%
P13 Words Join 30%.
P14 Word Lemmatization 100%
P15 Word Position Swap 10%
P16 Word Stemming 100%

Table 12: Selected perturbation strength for each pertur-
bation method applied in our work. There is no pertur-
bation strength for sentence-level perturbations, since
the whole input query is perturbed during this process.

E Annotation evaluation1129

In this section, we present additional results from1130

the evaluation of manual and automatic paraphrase1131

annotation. Figure 4 shows Cohen’s kappa and1132

percentage agreement between annotators for ob-1133

servations, which were not annotated as exact or1134

near duplicates by the DeepSeek-R1-Distill-Llama1135

model.1136

Figure 5 shows the average summed reverse rank 1137

(see Equation 2) for all models used in the Auto- 1138

matic Paraphrase (P17) method. Larger versions of 1139

Qwen achieve higher scores on average. Backtrans- 1140

lation outperforms Qwen models with 0.5B and 7B 1141

parameters in terms of reverse rank. However, the 1142

scores were computed only for valid paraphrases, 1143

and backtranslation generates a higher proportion 1144

of invalid outputs compared to Qwen 7B. Thus, 1145

while backtranslation produces higher-quality para- 1146

phrases when successful, it tends to output more in- 1147

valid samples than medium- and large-sized LLMs 1148

like Qwen. 1149

F Example of disrupted tokenization 1150

We present here an example of how the tokeniza- 1151

tion process can be disrupted by word level pertur- 1152

bations. Looking at the results of using Modern- 1153

BERT’s tokenizer on the word "expecting" and 1154

its various perturbed forms: 1155

• "expecting" - original (unperturbed) word, 1156

tokens: ["expect", "ing"], 1157

• "expecying" - character-level perturbed (P3) 1158

tokens: ["ex", "pe", "cy", "ing"], 1159

• "epxecting" - character-level perturbed (P4) 1160

tokens: ["ep", "x", "ect", "ing"], 1161

• "awaiting" - word-level perturbed (P11) 1162

tokens: ["aw", "ait", "ing"], 1163

• "expect" - word-level perturbed (P11) 1164

tokens: ["expect"], 1165

we can observe that making one change on the 1166

character level can lead to significant changes and 1167

results with more noisy input tokens, whereas word- 1168

level change will usually retain some of the original 1169

tokens or the core information (even tough pertur- 1170

bations on both levels can increase the number of 1171

tokens). 1172

G Visualizing individual examples 1173

The main annotation results shared in the article 1174

show that the human was more rigorous during 1175

the labeling process and classified the most cases 1176

as Invalid among all annotators. While manually 1177

reviewing the annotation results, we noticed that 1178

the models sometimes labeled paraphrases that dif- 1179

fered significantly in semantics from the original 1180

query as valid ones. To visualize this phenomenon, 1181
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Figure 4: Inter-annotator agreement metrics for human-model and model-model pairs (without observations labeled
as ’duplicate’ by the DeepSeek-R1-Distill-Llama model). Agreement is the percentage of observations which had
the same label assigned by both annotators within a given pair.
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Figure 5: Average summed reverse rank based on
reranker scores for Qwen models and the backtrans-
lation model. The calculation includes only valid para-
phrases generated for the benchmark dataset.

we present the labels assigned by human annotator1182

and Llama 3.3 for specific observations in Table 13.1183

In Figure 6, we visualize a t-SNE projection of1184

the embeddings generated by the bge large model1185

for the query ’how many eggs do rouen ducks lay1186

a year’ and its perturbations.1187

H Influence of query length1188

Models are generally expected to exhibit greater1189

resilience to perturbations when processing lengthy1190

queries compared to shorter ones. In the case of1191

short queries, which typically consist of key terms,1192

perturbations are more likely to affect the most1193
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Figure 6: A t-SNE projection of bge large embeddings
calculated for the query "how many eggs do rouen ducks
lay a year" from the MSMARCO dataset. Points on the
plot are colored based on the mean drop in NDCG@10
metric value recorded for specific perturbation method
applied to our benchmark dataset. Projection of original
query has been drawn in gold color.

informative tokens, thereby significantly altering 1194

the semantic content. Conversely, longer queries 1195

provide a more extensive context, allowing the se- 1196

mantic meaning to be distributed across a larger 1197

number of tokens. As a result, perturbations in 1198

longer queries are less likely to substantially im- 1199

pact the overall meaning, as the model can still 1200

infer the intended semantics from the unperturbed 1201

portions of the query. In Figure 7, we present the 1202

relationship between the median query length and 1203

the change in performance for models across vari- 1204

ous benchmark datasets. Longer queries, such as 1205
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Dataset Name Query Paraphrase Human Model
MSMARCO why is housekeeping so impor-

tant
housekeeping is essential for
maintaining cleanliness, organi-
zation, and cleanliness through-
out the house.

Invalid Valid

NQ who said i have just begun to
fight

What did someone say they had
started fighting?

Invalid Valid

MSMARCO what is a shoul define shoulder Invalid Valid
SCIDOCS Combining concept hierarchies

and statistical topic models
Merging Concept Hierarchies
with Statistical Topic Models

Valid Duplicate

CQADupstack English "Big black eyes" vs. "big and
black eyes"

"difference between big black
eyes and big and black eyes"

Valid Invalid

CQADupstack Tex What is a good way to show
changes between two versions

What is a good way to show the
changes between the two ver-
sions?

Duplicate Valid

HotpotQA Which documentary film was
released first Tar Creek or Vol-
canic Sprint?

What documentary film has
been released earlier than Tar
Creek or Volcanic Sprint?

Invalid Valid

Table 13: Comparison between human and automatic annotation of Llama 3.3 on selected examples. We found that
human is more restrictive than the LLM, which sometimes classifies a perturbation as correct despite significant
changes in semantics. The term ’Human’ refers to labels assigned by human annotators, while ’Model’ represents
labels generated by the model. The labels ’Valid,’ ’Invalid,’ and ’Duplicate’ are highlighted with green , red , and

yellow colors respectively.
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Figure 7: Perturbation impact for character-level pertur-
bations depending on median query length in benchmark
datasets. Perturbation impact is the mean difference in
performance after and before applying perturbations.

those in the Arguana dataset, can help mitigate the1206

performance drop caused by perturbations. How-1207

ever, for other datasets where queries are relatively1208

short and the differences in query lengths among1209

these datasets are minimal, this relationship is not1210

observable.1211

I Evaluation details1212

We conducted experiments on 15 diverse datasets1213

and observed a significant performance drop in all1214

examined models with each run. Given the sub-1215

stantial sample size, number of models and created1216

perturbation methods, we report metrics based on1217

a single evaluation round.1218
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You are a linguistic evaluator. Your task is to assess whether a given paraphrase accurately conveys the same meaning as the original sentence.

Instructions:

1. The paraphrase must retain the same semantic meaning as the original.
2. It must include exactly the same amount of information as the original, without adding or omitting knowledge.
3. It must not imply much additional context or introduce many new interpretations.

Do not penalize the paraphrase in the following situations:

• Acronyms and Expansions: When the paraphrase substitutes between full names and acronyms.

– Example:

* Original: ’Organisation for Economic Co-operation and Development’

* Paraphrase: ’What does OECD stand for?’

• Synonyms or Equivalent Phrases: When words or phrases are substituted with synonyms that preserve meaning.

– Example:

* Original: ’How to cook pasta quickly?’

* Paraphrase: ’How to make pasta fast?’

• Reordering or Structural Variations: When words are reordered or the sentence is restructured, retaining the same intent.

– Example:

* Original: ’What is the capital of France?’

* Paraphrase: ’France’s capital is what?’

• Implicit vs. Explicit Questions: When phrasing switches between implicit and explicit forms without changing intent.

– Example:

* Original: ’What is Einstein known for?’

* Paraphrase: ’What scientific contributions is Einstein famous for?’

• Conversion Between Formats (e.g., Questions and Statements): When a question is transformed into a statement or vice versa.

– Example:

* Original: ’Explain photosynthesis.’

* Paraphrase: ’What is photosynthesis?’

• Variations in Focus or Emphasis: When emphasis shifts between parts of the sentence without altering meaning.

– Example:

* Original: ’Who discovered gravity?’

* Paraphrase: ’Gravity was discovered by whom?’

• Variations in Granularity: When slight changes in specificity occur, but context implies equivalence.

– Example:

* Original: ’How many planets are in the solar system?’

* Paraphrase: ’How many planets orbit the Sun?’

• Simplifications That Retain Meaning: When language is condensed or simplified while keeping the same intent.

– Example:

* Original: ’Steps to create a new email account on Gmail?’

* Paraphrase: ’How to set up Gmail?’

• Alternative Representations of Numerical Information: When numerical formats or ranges are switched.

– Example:

* Original: ’What happened in the 20th century?’

* Paraphrase: ’What events occurred between 1901 and 2000?’

• Contextual Inferences with Unambiguous Terms: When shorter or implicit expressions are used, remaining clear in context.

– Example:

* Original: ’What is the full form of NATO?’

* Paraphrase: ’What does NATO stand for?’

• Differences in Question Type (Why/How): When closely related question types are switched but lead to the same answer.

– Example:

* Original: ’Why is the sky blue?’

* Paraphrase: ’How does the sky appear blue?’

If the paraphrase changed the style of original sentence to the search query, e.g., ’What is the capital of France?’ to ’Search for capital of France’, then this kind transformation is
acceptable.

For each pair of sentences, return a Python dictionary object with:

• label: 0 if the paraphrase is accurate, 1 otherwise.
• If the paraphrase is exactly the same or very close to the original sentence, the label should be set to "duplicate".

Three examples:

Example 1: Original sentence: ’The cat is sitting on the mat.’
Paraphrase: ’The mat has a cat sitting on it.’
Output: {"label": 0}

Example 2: Original sentence: ’The cat is sitting on the mat.’
Paraphrase: ’The cat is on the mat and it looks hungry. The dog wants to go to the pet store.’
Output: {"label": 1}

Example 3: Original sentence: ’The cat is sitting on the mat.’
Paraphrase: ’The cats are sitting on the mat.’
Output: {"label": "duplicate"}

Figure 8: Instructions given to human and automatic evaluator during the paraphrase annotation task. The
information about desired output format and the linguistic evaluator role was given only to the automatic evaluator.
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Base prompt:

You are a helpful, well educated assistant whose role is to generate a paraphrase of the supplied text. Output only the paraphrase, without any additional text. Do
not insert additional knowledge. Keep the style and length of the text. Make sure to alter the original text. {TASK_TYPE}

Task types:

• Question: Your output should be in the form of a question.
• Search Query: Your output should be in the form of a short search query.
• Argument: Your output should be in the form of an argument.
• Article Title: Your output should be in the form of an article title.
• Claim: Your output should be in the form of a claim.

Dataset - task type mapping:

• Question: HotpotQA, Touche-2020, Quora
• Search Query: MSMARCO, TREC-COVID, NFCorpus, NQ, FIQA-2018, CQADupstack, DBPedia
• Argument: ArguAna
• Article Title: SCIDOCS
• Claim: FEVER, Climate-FEVER, SciFact

Figure 9: Prompt instructions used for paraphrase generation by the language model. The final prompt is constructed
by combining a general base prompt with an instruction specific to the task type (e.g., question, search query). In
this figure, the set of possible task types is listed directly below the base prompt, while the mapping from each
dataset to its corresponding task type is provided at the bottom of the figure.

19


	Introduction
	Related work
	Dataset
	Overview
	Query Perturbation
	Creating sentence-level query perturbations automatically
	Selecting paraphrases for the benchmark

	Results
	General findings
	Retrievers are not robust to character-level perturbations
	LLM-generated paraphrases pose a high challenge to retrievers

	Conclusion
	Limitations
	Backtranslation model selection
	Models, Prompts and Sampling Parameters
	Licenses of the datasets
	Selecting perturbation strength for all methods
	Annotation evaluation
	Example of disrupted tokenization
	Visualizing individual examples
	Influence of query length
	Evaluation details

