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ABSTRACT

Feature visualizations such as synthetic maximally activating images are a widely
used explanation method to better understand the information processing of con-
volutional neural networks (CNNs). At the same time, there are concerns that
these visualizations might not accurately represent CNNs’ inner workings. Here,
we measure how much extremely activating images help humans to predict CNN
activations. Using a well-controlled psychophysical paradigm, we compare the
informativeness of synthetic images by Olah et al. (2017) with a simple base-
line visualization, namely exemplary natural images that also strongly activate a
specific feature map. Given either synthetic or natural reference images, human
participants choose which of two query images leads to strong positive activa-
tion. The experiment is designed to maximize participants’ performance, and is
the first to probe intermediate instead of final layer representations. We find that
synthetic images indeed provide helpful information about feature map activations
(82 ± 4% accuracy; chance would be 50%). However, natural images — origi-
nally intended to be a baseline — outperform these synthetic images by a wide
margin (92 ± 2%). Additionally, participants are faster and more confident for
natural images, whereas subjective impressions about the interpretability of the
feature visualizations by Olah et al. (2017) are mixed. The higher informativeness
of natural images holds across most layers, for both expert and lay participants
as well as for hand- and randomly-picked feature visualizations. Even if only a
single reference image is given, synthetic images provide less information than
natural images (65±5% vs. 73±4%). In summary, synthetic images from a pop-
ular feature visualization method are significantly less informative for assessing
CNN activations than natural images. We argue that visualization methods should
improve over this simple baseline.

1 INTRODUCTION

As Deep Learning methods are being deployed across society, academia and industry, the need
to understand their decisions becomes ever more pressing. Under certain conditions, a “right to
explanation” is even required by law in the European Union (GDPR, 2016; Goodman & Flaxman,
2017). Fortunately, the field of interpretability or explainable artificial intelligence (XAI) is also
growing: Not only are discussions on goals and definitions of interpretability advancing (Doshi-
Velez & Kim, 2017; Lipton, 2018; Gilpin et al., 2018; Murdoch et al., 2019; Miller, 2019; Samek
et al., 2020) but the number of explanation methods is rising, their maturity is evolving (Zeiler &
Fergus, 2014; Ribeiro et al., 2016; Selvaraju et al., 2017; Kim et al., 2018) and they are tested and
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Figure 1: How useful are synthetic compared to natural images for interpreting neural network
activations? A: Human experiment. Given extremely activating reference images (either synthetic
or natural), a human participant chooses which out of two query images is also a strongly activating
image. Synthetic images were generated via feature visualization (Olah et al., 2017). B: Core
result. Participants are well above chance for synthetic images — but even better when seeing
natural reference images.

used in real-world scenarios like medicine (Cai et al., 2019; Kröll et al., 2020) and meteorology
(Ebert-Uphoff & Hilburn, 2020).

We here focus on the popular post-hoc explanation method (or interpretability method) of feature
visualizations via activation maximization1. First introduced by Erhan et al. (2009) and subsequently
improved by many others (Mahendran & Vedaldi, 2015; Nguyen et al., 2015; Mordvintsev et al.,
2015; Nguyen et al., 2016a; 2017), these synthetic, maximally activating images seek to visualize
features that a specific network unit, feature map or a combination thereof is selective for. However,
feature visualizations are surrounded by a great controversy: How accurately do they represent a
CNN’s inner workings—or in short, how useful are they? This is the guiding question of our study.

On the one hand, many researchers are convinced that feature visualizations are interpretable
(Graetz, 2019) and that “features can be rigorously studied and understood” (Olah et al., 2020b).
Also other applications from Computer Vision and Natural Language Processing support the view
that features are meaningful (Mikolov et al., 2013; Karpathy et al., 2015; Radford et al., 2017; Zhou
et al., 2014; Bau et al., 2017; 2020) and might be formed in a hierarchical fashion (LeCun et al.,
2015; Güçlü & van Gerven, 2015; Goodfellow et al., 2016). Over the past few years, extensive
investigations to better understand CNNs are based on feature visualizations (Olah et al., 2020b;a;
Cammarata et al., 2020; Cadena et al., 2018), and the technique is being combined with other ex-
planation methods (Olah et al., 2018; Carter et al., 2019; Addepalli et al., 2020; Hohman et al.,
2019).

On the other hand, feature visualizations can be equal parts art and engineering as they are science:
vanilla methods look noisy, thus human-defined regularization mechanisms are introduced. But do
the resulting beautiful visualizations accurately show what a CNN is selective for? How represen-
tative are the seemingly well-interpretable, “hand-picked” (Olah et al., 2017) synthetic images in
publications for the entirety of all units in a network, a concern raised by e.g. Kriegeskorte (2015)?
What if the features that a CNN is truly sensitive to are imperceptible instead, as might be sug-
gested by the existence of adversarial examples (Szegedy et al., 2013; Ilyas et al., 2019)? Morcos
et al. (2018) even suggest that units of easily understandable features play a less important role in
a network. Another criticism of synthetic maximally activating images is that they only visualize
extreme features, while potentially leaving other features undetected that only elicit e.g. 70% of the
maximal activation. Also, polysemantic units (Olah et al., 2020b), i.e. units that are highly activated
by different semantic concepts, as well as the importance of combinations of units (Olah et al., 2017;
2018; Fong & Vedaldi, 2018) already hint at the complexity of how concepts are encoded in CNNs.

One way to advance this debate is to measure the utility of feature visualizations in terms of their
helpfulness for humans. In this study, we therefore design well-controlled psychophysical experi-
ments that aim to quantify the informativeness of the popular visualization method by Olah et al.
(2017). Specifically, participants choose which of two natural images would elicit a higher activa-

1Also known as input maximization or maximally exciting images (MEIs).
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tion in a CNN given a set of reference images that visualize the network selectivities. We use natural
query images because real-world applications of XAI require understanding model decisions to nat-
ural inputs. To the best of our knowledge, our study is the first to probe how well humans can predict
intermediate CNN activations. Our data shows that:

• Synthetic images provide humans with helpful information about feature map activations.

• Exemplary natural images are even more helpful.

• The superiority of natural images mostly holds across the network and various conditions.

• Subjective impressions of the interpretability of the synthetic visualizations vary greatly
between participants.

2 RELATED WORK

Significant progress has been made in recent years towards understanding CNNs for image data.
Here, we mention a few selected methods as examples of the plethora of approaches for under-
standing CNN decision-making: Saliency maps show the importance of each pixel to the classifi-
cation decision (Springenberg et al., 2014; Bach et al., 2015; Smilkov et al., 2017; Zintgraf et al.,
2017), concept activation vectors show a model’s sensitivity to human-defined concepts (Kim et al.,
2018), and other methods - amongst feature visualizations - focus on explaining individual units
(Bau et al., 2020). Some tools integrate interactive, software-like aspects (Hohman et al., 2019;
Wang et al., 2020; Carter et al., 2019; Collaris & van Wijk, 2020; OpenAI, 2020), combine more
than one explanation method (Shi et al., 2020; Addepalli et al., 2020) or make progress towards
automated explanation methods (Lapuschkin et al., 2019; Ghorbani et al., 2019). As overviews, we
recommend Gilpin et al. (2018); Zhang & Zhu (2018); Montavon et al. (2018) and Carvalho et al.
(2019).

Despite their great insights, challenges for explanation methods remain. Oftentimes, these tech-
niques are criticized as being over-engineered; regarding feature visualizations, this concerns the
loss function and techniques to make the synthetic images look interpretable (Nguyen et al., 2017).
Another critique is that interpretability research is not sufficiently tested against falsifiable hypothe-
ses and rather relies too much on intuition (Leavitt & Morcos, 2020).

In order to further advance XAI, scientists advocate different directions. Besides the focus on devel-
oping additional methods, some researchers (e.g. Olah et al. (2020b)) promote the “natural science”
approach, i.e. studying a neural network extensively and making empirical claims until falsification.
Yet another direction is to quantitatively evaluate explanation methods. So far, only decision-level
explanation methods have been studied in this regard. Quantitative evaluations can either be real-
ized with humans directly or with mathematically-grounded models as an approximation for human
perception. Many of the latter approaches show great insights (e.g. Hooker et al. (2019); Nguyen &
Martı́nez (2020); Fel & Vigouroux (2020); Lin et al. (2020); Tritscher et al. (2020); Tjoa & Guan
(2020)). However, a recent study demonstrates that metrics of the explanation quality computed
without human judgment are inconclusive and do not correspond to the human rankings (Biess-
mann & Refiano, 2019). Additionally, Miller (2019) emphasizes that XAI should build on existing
research in philosophy, cognitive science and social psychology.

The body of literature on human evaluations of explanation methods is growing: Various combi-
nations of data types (tabular, text, static images), task set-ups and participant pools (experts vs.
laypeople, on-site vs. crowd-sourcing) are being explored. However, these studies all aim to inves-
tigate final model decisions and do not probe intermediate activations like our experiments do. For
a detailed table of related studies, see Appendix Sec. A.3. A commonly employed task paradigm is
the “forward simulation / prediction” task, first introduced by Doshi-Velez & Kim (2017): Partici-
pants guess the model’s computation based on an input and an explanation. As there is no absolute
metric for the goodness of explanation methods (yet), comparisons are always performed within
studies, typically against baselines. The same holds for additional data collected for confidence or
trust ratings. According to the current literature, studies reporting positive effects of explanations
(e.g. Kumarakulasinghe et al. (2020)) slightly outweigh those reporting inconclusive (e.g. Alufaisan
et al. (2020); Chu et al. (2020)) or even negative effects (e.g. Shen & Huang (2020)).
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Figure 2: Example trial in psychophysical experiments. A participant is shown minimally and
maximally activating reference images for a certain feature map on the sides and is asked to select
the image from the center that also strongly activates that feature map. The answer is given by
clicking on the number according to the participant’s confidence level (1: not confident, 2: somewhat
confident, 3: very confident). After each trial, the participant receives feedback which image was
indeed the maximally activating one. For screenshots of each step in the task, see Appendix Fig. 7.

To our knowledge, no study has yet evaluated the popular explanation method of feature visualiza-
tions and how it improves human understanding of intermediate network activations. This study
therefore closes an important gap: By presenting data for a forward prediction task of a CNN, we
provide a quantitative estimate of the informativeness of maximally activating images generated
with the method of Olah et al. (2017). Furthermore, our experiments are unique as they probe for
the first time how well humans can predict intermediate model activations.

3 METHODS

We perform two human psychophysical studies2 with different foci (Experiment I (N = 10) and
Experiment II (N = 23)). In both studies, the task is to choose the one image out of two natural
query images (two-alternative forced choice paradigm) that the participant considers to also elicit
a strong activation given some reference images (see Fig. 2). Apart from the image choice, we
record the participant’s confidence level and reaction time. Specifically, responses are given by
clicking on the confidence levels belonging to either query image. In order to gain insights into
how intuitive participants find feature visualizations, their subjective judgments are collected in a
separate task and a dynamic conversation after the experiment (for details, see Appendix Sec. A.1.1
and Appendix Sec. A.2.6).

All design choices are made with two main goals: (1) allowing participants to achieve the best
performance possible to approximate an upper bound on the helpfulness of the explanation method,
and (2) gaining a general impression of the helpfulness of the examined method. As an example,
we choose the natural query images from among those of lowest and highest activations (→ best
possible performance) and test many different feature maps across the network (→ generality). For
more details on the human experiment besides the ones below, see Appendix Sec. A.1.

In Experiment I, we focus on comparing the performance of synthetic images to two baseline con-
ditions: natural reference images and no reference images. In Experiment II, we compare lay vs.
expert participants as well as different presentation schemes of reference images. Expert participants
qualify by being familiar or having practical experience with feature visualization techniques or at
least CNNs. Regarding presentation schemes, we vary whether only maximally or both maximally
and minimally activating images are shown; as well as how many example images of each of these
are presented (1 or 9).

Following the existing work on feature visualization (Olah et al., 2017; 2018; 2020b;a), we use an
Inception V1 network3 (Szegedy et al., 2015) trained on ImageNet (Deng et al., 2009; Russakovsky

2Code and data is available at https://bethgelab.github.io/testing visualizations/
3also known as GoogLeNet
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Figure 3: Participants are better, more confident and faster at judging which of two query images
causes higher feature map activation with natural than with synthetic reference images. A: Perfor-
mance. Given synthetic reference images, participants are well above chance (proportion correct:
82± 4%), but even better for natural reference images (92± 2%). Without reference images (base-
line comparison “None”), participants are close to chance. B: Confidence. Participants are much
more confident (higher rating = more confident) for natural than for synthetic images on correctly
answered trials (χ2, p < .001). C: Reaction time. For correctly answered trials, participants are
on average faster when presented with natural than with synthetic reference images. We show addi-
tional plots on confidence and reaction time for incorrectly answered trials and all trials in the Ap-
pendix (Fig. 16); for Experiment II, see Fig. 17.). The p-values in A and C correspond to Wilcoxon
signed-rank tests.

et al., 2015). The synthetic images throughout this study are the optimization results of the feature
visualization method by Olah et al. (2017) with the spatial average of a whole feature map (“channel
objective”). The natural stimuli are selected from the validation set of the ImageNet ILSVRC 2012
dataset (Russakovsky et al., 2015) according to their activations for the feature map of interest.
Specifically, the images of the most extreme activations are sampled, while ensuring that each lay
or expert participant sees different query and reference images. A more detailed description of the
specific sampling process for natural stimuli and the generation process of synthetic stimuli is given
in Sec. A.1.2.

4 RESULTS

In this section, all figures show data from Experiment I except for Fig. 5A+C, which show data
from Experiment II. All figures for Experiment II, which replicate the findings of Experiment I, as
well as additional figures for Experiment I (such as a by-feature-map analysis), can be found in the
Appendix Sec. A.2. Note that (unless explicitly noted otherwise), error bars denote two standard
errors of the mean of the participant average metric.

4.1 PARTICIPANTS ARE BETTER, MORE CONFIDENT AND FASTER WITH NATURAL IMAGES

Synthetic images can be helpful: Given synthetic reference images generated via feature visualiza-
tion (Olah et al., 2017), participants are able to predict whether a certain network feature map prefers
one over the other query image with an accuracy of 82±4%, which is well above chance level (50%)
(see Fig. 3A). However, performance is even higher in what we intended to be the baseline condi-
tion: natural reference images (92±2%). Additionally, for correct answers, participants much more
frequently report being highly certain on natural relative to synthetic trials (see Fig. 3B), and their
average reaction time is approximately 3.7 seconds faster when seeing natural than synthetic refer-
ence images (see Fig. 3C). Taken together, these findings indicate that in our setup, participants are
not just better overall, but also more confident and substantially faster on natural images.

4.2 NATURAL IMAGES ARE MORE HELPFUL ACROSS A BROAD RANGE OF LAYERS

Next, we take a more fine-grained look at performance across different layers and branches of the
Inception modules (see Fig. 4). Generally, feature map visualizations from lower layers show low-
level features such as striped patterns, color or texture, whereas feature map visualizations from
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Figure 4: Performance is high across (A) a broad range of layers and (B) all branches of the Inception
modules. The latter differ in their kernel sizes (1 × 1, 3 × 3, 5 × 5, pool). Again, natural images
are (mostly) more helpful than synthetic images. Additional plots for the none condition as well as
Experiment II can be found in the Appendix in respectively Fig. 18 and Fig. 19.

higher layers tend to show more high-level concepts like (parts of) objects (LeCun et al., 2015;
Güçlü & van Gerven, 2015; Goodfellow et al., 2016). We find performance to be reasonably high
across most layers and branches: participants are able to match both low-level and high-level patterns
(despite not being explicitly instructed what layer a feature map belonged to). Again, natural images
are mostly more helpful than synthetic images.

4.3 FOR EXPERT AND LAY PARTICIPANTS ALIKE: NATURAL IMAGES ARE MORE HELPFUL

Explanation methods seek to explain aspects of algorithmic decision-making. Importantly, an expla-
nation should not just be amenable to experts but to anyone affected by an algorithm’s decision. We
here test whether the explanation method of feature visualization is equally applicable to expert and
lay participants (see Fig. 5A). Contrary to our prior expectation, we find no significant differences
in expert vs. lay performance (RM ANOVA, p = .44, for details see Appendix Sec. A.2.2). Hence,
extensive experience with CNNs is not necessary to perform well in this forward simulation task. In
line with the previous main finding, both experts and lay participants are both better in the natural
than in the synthetic condition.

4.4 EVEN FOR HAND-PICKED FEATURE VISUALIZATIONS, PERFORMANCE IS HIGHER ON
NATURAL IMAGES

Often, explanation methods are presented using carefully selected network units, raising the ques-
tion whether author-chosen units are representative for the interpretability method as a whole. Olah
et al. (2017) identify a number of particularly interpretable feature maps in Inception V1 in their
appendix overview. When presenting either these hand-picked visualizations4 or randomly selected
ones, performance for hand-picked feature maps improves slightly (Fig. 5B); however this perfor-
mance difference is small and not significant for both natural (Wilcoxon test, p = .59) and synthetic
(Wilcoxon test, p = .18) reference images (see Appendix Sec. A.2.4 for further analysis). Consis-
tent with the findings reported above, performance is higher for natural than for synthetic reference
images even on carefully selected hand-picked feature maps.

4.5 ADDITIONAL INFORMATION BOOSTS PERFORMANCE, ESPECIALLY FOR NATURAL
IMAGES

Publications on feature visualizations vary in terms of how optimized images are presented: Often, a
single maximally activating image is shown (e.g. Erhan et al. (2009); Carter et al. (2019); Olah et al.
(2018)); sometimes a few images are shown simultaneously (e.g. Yosinski et al. (2015); Nguyen
et al. (2016b)), and on occasion both maximally and minimally activating images are shown in
unison (Olah et al. (2017)). Naturally, the question arises as to what influence (if any) these choices
have, and whether there is an optimal way of presenting extremely activating images. For this reason,
we systematically compare approaches along two dimensions: the number of reference images (1
vs. 9) and the availability of minimally activating images (only Max vs. Min+Max). The results can

4All our hand-picked feature maps are taken from the pooling branch of the Inception module. As the ap-
pendix overview in Olah et al. (2017) does not contain one feature map for each of these, we select interpretable
feature maps for the missing layers mixed5a and mixed5b ourselves.

6



Published as a conference paper at ICLR 2021

Expert Level

A

Synthetic Natural
Selection Mode

B

Synthetic

C

Presentation Scheme
Synthetic

Pr
op

or
tio

n 
Co

rr
ec

t

Natural

Random
Hand-

Picked

Chance

0.6

0.7

0.8

0.9

1
ns

Random
Hand-

Picked

ns

Max 1
Max 9

Min+Max 1

Min+Max 9
Max 1

Max 9

Min+Max 1

Min+Max 9

Natural

Pr
op

or
tio

n 
Co

rr
ec

t

0.6

0.7

0.8

0.9

1

Pr
op

or
tio

n 
Co

rr
ec

t

Expert Lay

ns

Expert Lay

ns

0.6

0.7

0.8

0.9

1

Chance Chance

Figure 5: We found no evidence for large effects of expert level or feature map selection. However,
performance does improve with additional information. A: Expert level. Both experts and lay
participants perform equally well (RM ANOVA, p = .44), and consistently better on natural than on
synthetic images. B: Selection mode. There is no significant performance difference between hand-
picked feature maps selected for interpretability and randomly selected ones (Wilcoxon test, p = .18
for synthetic and p = .59 for natural reference images). C: Presentation scheme. Presenting both
maximally and minimally activating images simultaneously (Min+Max) and presenting nine instead
of one single reference image tend to improve performance, especially for natural reference images.
“ns” highlights non-significant differences.

be found in Fig. 5C. When just a single maximally activating image is presented (condition Max 1),
natural images already outperform synthetic images (73 ± 4% vs. 64 ± 5%). With additional
information along either dimension, performance improves both for natural as well as for synthetic
images. The stronger boost in performance, however, is observed for natural reference images. In
fact, performance is higher for natural than for synthetic reference images in all four conditions. In
the Min+Max 9 condition, a replication of the result from Experiment I shown in Fig. 3A, natural
images now outperform synthetic images by an even larger margin (91± 3 vs. 72± 4%).

4.6 SUBJECTIVELY, INTERPRETABILITY OF FEATURE VISUALIZATIONS VARIES GREATLY

While our data suggests that feature visualizations are indeed helpful for humans to predict CNN
activations, we want to emphasize again that our design choices aim at an upper bound on their
informativeness. Another important aspect of evaluating an explanation method is the subjective
impression. Besides recording confidence ratings and reaction times, we collect judgments on intu-
itiveness trials (see Appendix Fig. 14) and oral impressions after the experiments. The former ask
for ratings of how intuitive feature visualizations appear for natural images. As Fig. 6A+B show,
participants perceive the intuitiveness of synthetic feature visualizations for strongly activating nat-
ural dataset images very differently. Further, the comparison of intuitiveness judgments before and
after the main experiments reveals only a small significant average improvement for one out of three
feature maps (see Fig. 6B+C, Wilcoxon test, p < .001 for mixed4b). The interactive conversations
paint a similar picture: Some synthetic feature visualizations are perceived as intuitive while others
do not correspond to understandable concepts. Nonetheless, four participants report that their first
“gut feeling” for interpreting these reference images (as one participant phrased it) is more reliable.
Further, a few participants point out that the synthetic visualizations are exhausting to understand.
Finally, three participants additionally emphasize that the minimally activating reference images
played an important role in their decision-making.

In a by-feature-map analysis (see Appendix A.2.7 for details and images, as well as Supplementary
Material 1 for more images), we compare differences and commonalities for feature maps of dif-
ferent performance levels. According to our observations, easy feature maps seem to contain clear
object parts or shapes. In contrast, difficult feature maps seem to have diverse reference images,
features that do not correspond to human concepts, or contain conflicting information as to which
commonalities between query and reference images matter more. Bluntly speaking, we are also
often surprised that participants identified the correct image — the reasons for this are unclear to us.

5 DISCUSSION & CONCLUSION

Feature visualizations such as synthetic maximally activating images are a widely used explana-
tion method, but it is unclear whether they indeed help humans to understand CNNs. Using well-
controlled psychophysical experiments with both expert and lay participants, we here conduct the
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Figure 6: The subjective intuitiveness of feature visualizations varies greatly (see A for the ratings
from the beginning of Experiment I and B for the ratings at the beginning and end of Experiment II).
The means over all participants yield a neutral result, i.e. the visualizations are neither un- nor
intuitive, and the improvement of subjective intuitiveness before and after the experiment is only
significant for one feature map (mixed4b). C: On average, participants found feature visualizations
slightly more intuitive after doing the experiment as the differences larger than zero show. In all
three subfigures, gray dots and lines show data per participant.

very first investigation of intermediate synthetic feature visualizations by Olah et al. (2017): Can
participants predict which of two query images leads to a strong activation in a feature map, given
extremely activating visualizations? Specifically, we shed light on the following questions:

(1.) How informative are synthetic feature visualizations — and how do they compare to a natural
image baseline? We find above-chance performance given synthetic feature visualizations, but to
our own surprise, synthetic feature visualizations are systematically less informative than the simple
baseline of strongly activating natural images. Interestingly, many synthetic feature visualizations
contain regularization mechanisms to introduce more “natural structure” (Olah et al., 2017), some-
times even called a “natural image prior” (Mahendran & Vedaldi, 2015; Offert & Bell, 2020). This
raises the question: Are natural images maybe all you need? One might posit that extremely acti-
vating natural (reference) images would have an unfair advantage because we also test on extremely
activating natural (query) images. However, our task design ultimately reflects that XAI is mainly
concerned with explaining how units behave on natural inputs. Furthermore, the fact that feature
visualization are not bound to the natural image manifold is often claimed as an advantage because
it supposedly allows them to capture more precisely which features a unit is sensitive to (Olah et al.,
2017). Our results, though, demonstrate that this is not the case if we want to understand the behav-
ior of units on natural inputs.

(2.) Do you need to be a CNN expert in order to understand feature visualizations? To the best of our
knowledge, our study is the first to compare the performances of expert and lay people when eval-
uating explanation methods. Previously, publications either focused on only expert groups (Hase &
Bansal, 2020; Kumarakulasinghe et al., 2020) or only laypeople (Schmidt & Biessmann, 2019; Al-
ufaisan et al., 2020). Our experiment shows no significant difference between expert and lay partic-
ipants in our task — both perform similarly well, and even better on natural images: a replication of
our main finding. While a few caveats remain when moving an experiment from the well-controlled
lab to a crowdsourcing platform (Haghiri et al., 2019), this suggests that future studies may not have
to rely on selected expert participants, but may leverage larger lay participant pools.

(3.) Are hand-picked synthetic feature visualizations representative? An open question was whether
the visualizations shown in publications represent the general interpretability of feature visualiza-
tions (a concern voiced by e.g. Kriegeskorte, 2015), even though they are hand-picked (Olah et al.,
2017). Our finding that there is no large difference in performance between hand- and randomly-
picked feature visualizations suggests that this aspect is minor.

(4.) What is the best way of presenting images? Existing work suggests that more than one example
(Offert, 2017) and particularly negative examples (Kim et al., 2016) enhance human understanding
of data distributions. Our systematic exploration of presentation schemes provides evidence that
increasing the number of reference images as well as presenting both minimally and maximally
activating reference images (as opposed to only maximally activating ones) improve human per-
formance. This finding might be of interest to future studies aiming at peak performance or for
developing software for understanding CNNs.
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(5.) How do humans subjectively perceive feature visualizations? Apart from the high informa-
tiveness of explanations, another relevant question is how much trust humans have in them. In our
experiment, we find that subjective impressions of how reasonable synthetic feature visualizations
are for explaining responses to natural images vary greatly. This finding is in line with Hase &
Bansal (2020) who evaluated explanation methods on text and tabular data.

Caveats. Despite our best intentions, a few caveats remain: The forward simulation paradigm is
only one specific way to measure the informativeness of explanation methods, but does not allow us
to make judgments about their helpfulness in other applications such as comparing different CNNs.
Further, we emphasize that all experimental design choices were made with the goal to measure
the best possible performance. As a consequence, our finding that synthetic reference images help
humans predict a network’s strongly activating image may not necessarily be representative of a
less optimal experimental set-up with e.g. query images corresponding to less extreme feature map
activations. Knobs to further de- or increase participant performance remain (e.g. hyper-parameter
choices could be tuned to layers). Finally, while we explored one particular method in depth (Olah
et al., 2017); it remains an open question whether the results can be replicated for other feature
visualizations methods.

Future directions. We see many promising future directions. For one, the current study uses query
images from extreme opposite ends of a feature map’s activation spectrum. For a more fine-grained
measure of informativeness, we will study query images that elicit more similar activations. Addi-
tionally, future participants could be provided with even more information—such as, for example,
where a feature map is located in the network. Furthermore, it has been suggested that the combina-
tion of synthetic and natural reference images might provide synergistic information to participants
(Olah et al., 2017), which could again be studied in our experimental paradigm. Finally, further
studies could explore single neuron-centered feature visualizations, combinations of units as well as
different network architectures.

Taken together, our results highlight the need for thorough human quantitative evaluations of feature
visualizations and suggest that example natural images provide a surprisingly challenging baseline
for understanding CNN activations.
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Sogo, Erik Kastman, and Jonas Kristoffer Lindeløv. Psychopy2: Experiments in behavior made
easy. Behavior research methods, 51(1):195–203, 2019.

13

https://microscope.openai.com/models


Published as a conference paper at ICLR 2021

Alec Radford, Rafal Jozefowicz, and Ilya Sutskever. Learning to generate reviews and discovering
sentiment. arXiv preprint arXiv:1704.01444, 2017.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ”why should i trust you?” explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining, pp. 1135–1144, 2016.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Anchors: High-precision model-agnostic
explanations. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV), 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.
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A APPENDIX

A.1 DETAILS ON METHODS

A.1.1 HUMAN EXPERIMENTS

In our two human psychophysical studies, we ask humans to predict a feature map’s strongly acti-
vating image (“forward simulation task”, Doshi-Velez & Kim 2017). Answers to the two-alternative
forced choice paradigm are recorded together with the participants’ confidence level (1: not con-
fident, 2: somewhat confident, 3: very confident, see Fig. 7). Time per trial is unlimited and we
record reaction time. After each trial, feedback is given (see Fig. 7). A progress bar at the bottom of
the screen indicates how many trials of a block are already completed. As reference images, either
synthetic, natural or no reference images are given. The synthetic images are the feature visual-
izations from the method of Olah et al. (2017). Trials of different reference images are arranged
in blocks. Synthetic and natural reference images are alternated, and, in the case of Experiment I,
framed by trials without reference images (see Fig. 8A, B). The order of the reference image types
is counter-balanced across subjects.

The main trials in the experiments are complemented by practice, catch and intuitiveness trials. To
avoid learning effects, we use different feature maps for each trial type per participant. Specifically,
practice trials give participants the opportunity to familiarize themselves with the task. In order to
monitor the attention of participants, catch trials appear randomly throughout blocks of main trials.
Here, the query images are a copy of one of the reference images, i.e., there is an obvious correct
answer (see Fig. 15). This control mechanism allows us to decide whether trial blocks should be
excluded from the analysis due to e.g. fatigue. To obtain the participant’s subjective impression of
the helpfulness of maximally activating images, the experiments are preceded (and also succeeded
in the case of Experiment II) by three intuitiveness trials (see Fig. 14). Here, participants judge in a
slightly different task design how intuitive they consider the synthetic stimuli for the natural stimuli.
For more details on the intuitiveness trials, see below.

At the end of the experiment, all expert participants in Experiment I and all lay (but not expert)
participants in Experiment II are asked about their strategy and whether it changed over time. The
information gained through the first group allows us to understand the variety of cues used and paves
the way to identify interesting directions for follow-up experiments. The information gained through
the second group allowed comparisons to experts’ impressions reported in Experiment I.

Experiment I The first experiment focuses on comparing performance of synthetic images to two
baselines: natural reference images and no reference images (see Fig. 8A). Screenshots of trials
are shown in Fig. 12. In total, 45 feature maps are tested: 36 of these are uniformly sampled
from the feature maps of each of the four branches for each of the nine Inception modules. The
other nine feature maps are uniformly hand-picked for interpretability from the Inception modules’
pooling branch based on the appendix overview selection provided by Olah et al. (2017) or based
on our own choices. In the spirit of a general statement about the explainability method, different
participants see different natural reference and query images, and each participant sees different
natural query images for the same feature maps in different reference conditions. To check the
consistency of participants’ responses, we repeat six randomly chosen main trials for each of the
three tested reference image types at the end of the experiment.

Experiment II The second experiment (see Fig. 8B) is about testing expert vs. lay participants
as well as comparing different presentation schemes5 (Max 1, Min+Max 1, Max 9 and Min+Max 9,
see Fig. 8E). Screenshots of trials are shown in Fig. 13. In total, 80 feature maps are tested: They
are uniformly sampled from every second layer with an Inception module of the network (hence
a total of 5 instead of 9 layers), and from all four branches of the Inception modules. Given the
focus on four different presentation schemes in this experiment, we repeat the sampling method four
times without overlap. In terms of reference image types, only synthetic and natural images are
tested. Like in Experiment I, different participants see different natural reference and query images.

5In pilot experiments, we learned that participants preferred 9 over 4 reference images, hence this “default”
choice in Experiment I.
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(a) Screen at the beginning of a trial. The question is which of the two natural images at
the center of the screen also strongly activates the CNN feature map given the reference
images on the sides.

(b) Screen including a participant’s answer visualized by black boxes around the image
and the confidence level. A participant indicates which natural image at the center would
also be a strongly activating image by clicking on the number corresponding to his/her
confidence level (1: not confident, 2: somewhat confident, 3: confident). The time until
a participant selects an answer is recorded (“reaction time”).

(c) Screen including a participant’s answer (black boxes) and feedback on which image
is indeed also a strongly activating image (green box).

Figure 7: Forward Simulation Task. The progress bar at the bottom of the screen indicates the
progress within one block of trials.
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B Experiment II (Expert & Lay Participants)

Experiment I (Expert Participants)

Max 1 Min+Max 1 Min+Max 9Max 9E

Figure 8: Detailed structure of the two experiments with different foci. A: Experiment I. Here,
the focus is on comparing performance of synthetic and natural reference images to the most simple
baseline: no reference images (“None”). To counter-balance conditions, the order of natural and
synthetic blocks is alternated across participants. For each of the three reference image types (syn-
thetic, natural and none), 45 relevant trials are used plus additional catch, practice and repeated trials.
B: Experiment II. Here, the focus is on testing expert and lay participants as well as comparing dif-
ferent presentation schemes (Max 1, Min+Max 1, Max 9 and Min+Max 9, see E for illustrations).
Both the order of natural and synthetic blocks as well as the four presentation conditions are counter-
balanced across participants. To maintain a reasonable experiment length for each participant, only
20 relevant trials are used per reference image type and presentation scheme, plus additional catch
and practice trials. C: Legend. D: Number of trials per block type (i.e. reference image type and
main vs. practice trial) and experiment. Catch trials are not shown in the figure; there was a total
of 3 (2) catch trials per each synthetic and natural main block in Experiment I (II). E: Illustration of
presentation schemes. In Experiment II, all four schemes are tested, in Experiment I only Min+Max
9 is tested.

However, expert and lay participants see the same images. For details on the counter-balancing of
all conditions, please refer to Tab. 1.

Intuitiveness Trials In order to obtain the participants’ subjective impression of the helpfulness of
maximally activating images, we add trials at the beginning of the experiments, and also at the end
of Experiment II. The task set-up is slightly different (see Fig. 14): Only maximally activating (i.e.
no minimally activating) images are shown. We ask participants to rate how intuitive they find the
explanation of the entirety of the synthetic images for the entirety of the natural images. Again, all
images presented in one trial are specific to one feature map. By moving a slider to the right (left),
participants judge the explanation method as intuitive (not intuitive). The ratings are recorded on a
continuous scale from −100 (not intuitive) to +100 (intuitive). All participants see the same three
trials in a randomized order. The trials are again taken from the hand-picked (i.e. interpretable)
feature maps of the appendix overview in Olah et al. (2017). In theory, this again allows for the
highest intuitiveness ratings possible. The specific feature maps are from a low, intermediate and
high layer: feature map 43 of mixed3a, feature map 504 of mixed4b and feature map 17 of mixed
5b.

Participants Our two experiments are within-subject studies, meaning that every participant an-
swers trials for all conditions. This design choice allows us to test fewer participants. In Experi-
ment I, 10 expert participants take part (7 male, 3 female, age: 27.2 years, SD = 1.75). In Experi-
ment II, 23 participants take part (of which 10 are experts; 14 male, 9 female, age: 28.1 years, SD
= 6.76). Expert participants qualify by being familiar or having worked with convolutional neural
networks and most of them even with feature visualization techniques. All participants are naive
with respect to the aim of the study. Expert (lay) participants are paid 15e (10 e), per hour for
participation. Before the experiment, all participants give written informed consent for participat-
ing. All participants have normal or corrected to normal vision. All procedures conform to Standard
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8 of the American Psychological 405 Association’s “Ethical Principles of Psychologists and Code
of Conduct” (2016). Before the experiment, the first author explains the task to each participant
and ensures complete understanding. For lay participants, the explanation is simplified: Maximally
(minimally) activating images are called “favorite images” (“non-favorite images”) of a “computer
program” and the question is explained as which of the two query images would also be a “favorite”
image to the computer program.

Apparatus Stimuli are displayed on a VIEWPixx 3D LCD (VPIXX Technologies; spatial resolu-
tion 1920 × 1080 px, temporal resolution 120Hz). Outside the stimulus image, the monitor is set
to mean gray. Participants view the display from 60 cm (maintained via a chinrest) in a darkened
chamber. At this distance, pixels subtend approximately 0.024° degrees on average (41 ps per de-
gree of visual angle). Stimulus presentation and data collection is controlled via a desktop computer
(Intel Core i5-4460 CPU, AMD Radeon R9 380 GPU) running Ubuntu Linux (16.04 LTS), using
PsychoPy (Peirce et al., 2019, version 3.0) under Python 3.6.

A.1.2 STIMULI SELECTION

Model Following the existing work on feature visualization by Olah et al. (2017; 2018; 2020b;a),
we use an Inception V1 network6 (Szegedy et al., 2015) trained on ImageNet (Deng et al., 2009;
Russakovsky et al., 2015). Note that the Inception V1 network used in previously mentioned work
slightly deviates from the original network architecture: The 3 × 3 branch of Inception module
mixed4a only holds 204 instead of 208 feature maps. To stay as close as possible to the aforemen-
tioned work, we also use their implementation and trained weights of the network7. We investigate
feature visualizations for all branches (i.e. kernel sizes) of the Inception modules and sample from
layers mixed3a to mixed5b before the ReLU non-linearity.

Synthethic Images from Feature Visualization The synthetic images throughout this study are
the optimization results of the feature visualization method from Olah et al. (2017). We use the
channel objective to find synthetic stimuli that maximally (minimally) activate the spatial mean of a
given feature map of the network. We perform the optimization using lucid 0.3.8 and TensorFlow
1.15.0 (Abadi et al., 2015) and use the hyperparameter as specified in Olah et al. (2017). For the
experimental conditions with more than one minimally/maximally activating reference image, we
add a diversity regulariztion across the samples. In hindsight, we realized that we generated 10
synthetic images in Experiment I, even though we only needed and used 9 per feature map.

Selection of Natural Images The natural stimuli are selected from the validation set of the Im-
ageNet ILSVRC 2012 (Russakovsky et al., 2015) dataset. To choose the maximally (minimally)
activating natural stimuli for a given feature map, we perform three steps, which are illustrated in
Fig. 9 and explained in the following: First, we calculate the activation of said feature map for all
pre-processed images (resizing to 256× 256 pixels, cropping centrally to 224× 224 pixels and nor-
malizing) and take the spatial average to get a scalar representing the excitability of the given feature
map caused by the image. Second, we order the images according to the collected activation values
and select the (Nstimuli+1) ·Nbatches maximally (respectively minimally) activating images. Here,
Nstimuli corresponds to the number of reference images used (either 1 or 9, see Fig. 8, E), the +1
comes from the query image, and Nbatches = 20 determines the maximum number of participants
we can test with our setup. Third, we distribute the selected images intoNstimuli+1 blocks. Within
each block, we randomly shuffle the order of the images. Lastly, we create Nbatches batches of data
by selecting one image from each of the blocks for every batch.8

6This network is considered very interpretable (Olah et al., 2018), yet other work also finds deeper networks
more interpretable (Bau et al., 2017). More recent work, again, suggests that “analogous features [...] form
across models [...],” i.e. that interpretable feature visualizations appear “universally” for different CNNs (Olah
et al., 2020b; OpenAI, 2020).

7github.com/tensorflow/lucid/tree/v0.3.8/lucid
8After having performed Experiment I and II, we realized a minor bug in our code: Instead of moving

every 20th image into the same batch for one participant, we moved every 10th image into the same batch for
one participant. This means that we only use a total of 110 different images, instead of 200. The minimal query
image is still always selected from the 20 least activating images; the maximal query image is selected from the
91st to 110th maximally activating images - and we do not use the 111th to 200th maximally activating images.
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Figure 9: Sampling of natural images. A: Distribution of activations. For an example channel
(mixed3a, kernel size 1× 1, feature map 25), the smoothed distribution of activations for all 50, 000
ImageNet validation images is plotted. The natural stimuli for the experiment are taken from the
tails of the distribution (shaded background). B: Zoomed-in tail of activations distribution. In the
presentation schemes with 9 images, 10 bins with 20 images each are created (10 because of 9
reference plus 1 query image). C: In order to obtain 20 batches with 10 images each, the 20 images
from one bin are randomly distributed to the 20 batches. This guarantees that each batch contains a
fair selection of extremely activating images. The query images are always sampled from the most
extreme bins in order to give the best signal possible. In the case of the presentation schemes with 1
reference image, the number of bins in B is reduced to 2 and the number of images per batch in C is
also reduced to 2.

Subject Order of presentation schemes
(0-3) and batch-blocks (A-D)

Batches Order of synthetic
and naturalPractice Main

1 0 (A) 1 (B) 2 (C) 3 (D)

0

natural: 1
synthetic: 2 natural - synthetic2 0 (B) 2 (D) 1 (C) 3 (A)

3 3 (B) 1 (D) 2 (A) 0 (C)
4 3 (C) 2 (B) 1 (A) 0 (D)

5

see subject 1-4 natural: 3
synthetic: 4 synthetic - natural6

7
8

9

see subject 1-4 natural: 5
synthetic: 6 natural - synthetic10

11
12

see subject 1-4 natural: 7
synthetic: 8 synthetic - natural13

Table 1: Counter-balancing of conditions in Experiment II. In total, 13 naive and 10 lay partic-
ipants are tested. Each “batch block” contains 20 feature maps (sampled from five layers and all
Inception module branches). Batches indicate which batch number the natural query (and reference
images) are taken from.

The reasons for creating several batches of extremely activating natural images are two-fold: (1) We
want to get a general impression of the interpretability method and would like to reduce the depen-
dence on single images, and (2) in Experiment I, a participant has to see different query images in the
three different reference conditions. A downside of this design choice is an increase in variability.
The precise allocation was done as follows: In Experiment I, the natural query images of the none
condition were always allocated the batch with batch nr = subject id, the query and reference im-
ages of the natural condition were allocated the batch with batch nr = subject id+1, and the natu-
ral query images of the synthetic condition were allocated the batch with batch nr = subject id+2.
The allocation scheme in Experiment II can be found in Table 1.
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Selection of Feature Maps The selection of feature maps used in Experiment I is shown in Ta-
ble 2; the selection of feature maps used in Experiment II is shown in Table 3.

Layer Branch Feature Map

mixed3a

1× 1 25
3× 3 189
5× 5 197
Pool 227
Pool∗ 230

mixed3b

1× 1 64
3× 3 178
5× 5 390
Pool 430
Pool∗ 462

mixed4a

1× 1 68
3× 3 257
5× 5 427
Pool 486
Pool∗ 501

mixed4b

1× 1 45
3× 3 339
5× 5 438
Pool 491
Pool∗ 465

mixed4c

1× 1 94
3× 3 247
5× 5 432
Pool 496
Pool∗ 449

Layer Branch Feature Map

mixed4d

1× 1 95
3× 3 342
5× 5 451
Pool 483
Pool∗ 516

mixed4e

1× 1 231
3× 3 524
5× 5 656
Pool 816
Pool∗ 809

mixed5a

1× 1 229
3× 3 278
5× 5 636
Pool 743
Pool∗ 720

mixed5b

1× 1 119
3× 3 684
5× 5 844
Pool 1007
Pool∗ 946

Table 2: Feature maps analyzed in Experiment I. For each of the 9 layers with an Inception module,
one randomly chosen feature map per branch (1 × 1, 3 × 3, 5 × 5 and pool) and one additional
hand-picked feature map (highlighted with ∗) are used.

A.1.3 DIFFERENT ACTIVATION MAGNITUDES

We note that the elicited activations of synthetic images are almost always about one magnitude
larger than the activations of natural images (see Fig. 10a). This constitutes an inherent difference in
the synthetic and natural reference image condition. A simple approach to make the two conditions
more comparable is to limit the optimization process such that the resulting feature visualizations
elicit activations similar to that of natural images. This can be achieved by halting the optimization
process once the activations approximately match. By following that procedure one finds limited
synthetic images which are indistinguishable from natural images in terms of their activations (see
Fig. 10b). Importantly though, these images are visually not more similar to natural images, have a
much lower color contrast than normal feature visualizations, and above all hardly resemble mean-
ingful features (see Fig. 11).

A.1.4 DATA ANALYSIS

Significance Tests All significance tests are performed with JASP (JASP Team, 2020, version
0.13.1). For the analysis of the distribution of confidence ratings (see Fig. 3B), we use contingency
tables with χ2-tests. For testing pairwise effects in accuracy, confidence, reaction time and intuitive-
ness data, we report Wilcoxon signed-rank tests with uncorrected p-values (Bonferroni-corrected
critical alpha values with family-wise alpha level of 0.05 reported in all figures where relevant).
These non-parametric tests are preferred for these data because they do not make distributional as-
sumptions like normally-distributed errors, as in e.g. paired t-tests. For testing marginal effects
(main effects of one factor marginalizing over another) we report results from repeated measures
ANOVA (RM ANOVA), which does assume normality.
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(b) Activations of natural and limited synthetic images.

Figure 10: Mean activations and standard deviations (not two standard errors of the mean!) of
the minimally (below 0) and maximally (above 0) activating synthetic and natural images used in
Experiment I. Note that there are 10 (i.e. accidentally not 9) synthetic images and 20 · 10 = 200
natural images (because of 20 batches) in Experiment I for both minimally and maximally activating
images. Please also note that the standard deviations for the selected natural images are invisible
because they are so small. Limited synthetic images refer to feature visualizations which are the
result of stopping the optimization process early with the goal of matching the activation level of
natural stimuli.

BA

Figure 11: Limited feature visualizations, which are the result of stopping the optimization process
early with the goal of matching the activation level of the chosen extreme natural stimuli. A: Feature
visualizations for mixed 4a pool∗ feature map of Experiment I. B: Feature visualizations for all nine
pool∗ feature maps of Experiment I.
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Figure 12: Experiment I: Example trials of the three reference images conditions: synthetic refer-
ence images (first row), natural reference images (second row) or no reference images (third row).
The query images in the center are always natural images.
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Figure 13: Experiment II: Example trials of the four presentation schemes: Max 1, Min+max 1,
Max 9, Min+Max 9. The left column contains synthetic reference images, the right column contains
natural reference images.
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Figure 14: Trials for intuitiveness judgment. The tested feature maps are from layer mixed3a (chan-
nel 43), mixed4b (channel 504) and mixed 5b (channel 17). They are the same in Experiment I and
in Experiment II.
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Layer Branch Feature Map for
Batch Block (A-D)

A B C D

mixed3a

1× 1 25 14 12 53
3× 3 189 97 171 106
5× 5 197 203 212 204
Pool 227 238 232 247

mixed4a

1× 1 68 33 45 17
3× 3 257 355 321 200
5× 5 427 425 429 423
Pool 486 497 478 506

mixed4c

1× 1 94 53 59 95
3× 3 247 237 357 209
5× 5 432 402 400 416
Pool 496 498 473 497

mixed4e

1× 1 231 83 6 89
3× 3 524 323 401 373
5× 5 656 624 642 620
Pool 816 755 724 783

mixed5b

1× 1 119 14 266 300
3× 3 684 592 657 481
5× 5 844 829 839 875
Pool 1007 913 927 903

Table 3: Feature maps analyzed in Experiment II. Four sets of feature maps (batch blocks A to D)
are sampled: For every second layer with an Inception module (5 layers in total), one feature map
is randomly selected per branch of the Inception module (1 × 1, 3 × 3, 5 × 5 and pool). For the
practice, catch and intuitiveness trials additional randomly chosen feature maps are used.

Figure 15: Catch trials. An image from the reference images is copied as a query image, which
makes the answer obvious. The purpose of these trials is to integrate a mechanism into the experi-
ment which allows us to check post-hoc whether a participant was still paying attention.

A.2 DETAILS ON RESULTS

A.2.1 COMPLEMENTING FIGURES FOR MAIN RESULTS

Figures 16 - 21 complement the results and figures presented in Section 4. Here, all experimental
conditions are shown.

A.2.2 DETAILS ON PERFORMANCE OF EXPERT AND LAY PARTICIPANTS

As reported in the main body of the paper, a mixed-effects ANOVA revealed no significant main
effect of expert level (F (1, 21) = 0.6, p = 0.44, between-subjects effect). Further, there is no
significant interaction with the reference image type (F (1, 21) = 0.4, p = 0.53), and both expert and
lay participants show a significant main effect of the reference image type (F (1, 21) = 230.2, p <
0.001).
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(g) Reaction time on all trials.

Figure 16: Task performance (a), distribution of confidence ratings (b-d) and reaction times (e-g)
of Experiment I. The p-values are calculated with Wilcoxon sign-rank tests. Note that unlike in the
main paper, these figures consistently include the “None” condition. For explanations, see Sec. 4.1.
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Figure 17: Task performance (a), distribution of confidence ratings (b-d) and reaction times (e-g)
of Experiment II, averaged over expert level and presentation schemes. The p-values are calculated
with Wilcoxon sign-rank tests. The results replicate our findings of Experiment I. For explanations
on the latter, see Sec. 4.1.
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(a) Performance across layers.
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Figure 18: High performance across (a) layers and (b) branches of the Inception modules in Exper-
iment I. Note that unlike in the main paper these figures consistently include the “None” condition.
For explanations, see Sec. 4.2.
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Figure 19: High performance across (a) layers and (b) branches of the Inception modules in Ex-
periment II. Note that only every second layer is tested here (unlike in Experiment I). The results
replicate our findings of Experiment I. For explanations, see Sec. 4.2
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A.2.3 DETAILS ON PERFORMANCE OF EXPERTS SPLIT BY DIFFERENT LEVELS OF EXPERTISE

Even though Experiment II does not show a significant performance difference for lay and expert
participants, it is an open question whether the level of expertise or the background of experts mat-
ters. For the data from experts, we hence further divide participants into subgroups according to their
expertise (see Fig. 20a-f) and background level (see Fig. 20g-h). Expertise level 1 means that partici-
pants are familiar with CNNs, but not feature visualizations; expertise level 2 means that participants
have heard of or read about feature visualizations; and expertise level 3 means that participants have
used feature visualizations themselves. We note that we also accepted feature visualizations meth-
ods other than the one by Olah et al. (2017), e.g. DeepDream (Mordvintsev et al., 2015) for level
2 and 3. Regarding background, we distinguished computational neuroscientists from researchers
working on computer vision and / or machine learning. We note that some subgroups only hold one
participant and hence may not be representative.

Our data shows varying trends for the three expert levels (see Fig. 20a-f): For synthetic images,
performance decreases with increasing expertise in Experiment I, but increases for Experiment II.
For natural images, performance first increases for participants of expertise level 2, and then slightly
decreases for participants with expertise level 3 - a trend that holds for both Experiment I and II. In
the none condition of Experiment I, performance is highest for the participant of expertise level 1,
but decreases for participants of expertise level 2, and again slightly increases for expertise level 3.

Regarding expert’s different backgrounds, our hypothesis is that many of the computational neuro-
scientists are very familiar with maximally exciting images for monkeys or rodents, and hence might
perform better than pure computer vision / machine learning experts. Fig. 20g-h suggest that this is
not the case: The bars for all three reference image types are very similar.

Not finding clear trends in our data between different expertise levels or experts is not surprising
as there is even no significant difference between participants whose professional backgrounds are
much further apart: lay people vs. people familiar with CNNs.

A.2.4 DETAILS ON PERFORMANCE OF HAND- AND RANDOMLY-PICKED FEATURE MAPS

As described in the main body of the paper, pairwise Wilcoxon sign-rank tests reveal no significant
differences between hand-picked and randomly-selected feature maps within each reference image
type (Z(9) = 27.5, p = 0.59 for natural reference images and Z(9) = 41 p = 0.18 for synthetic
references). However, marginalizing over reference image type using a repeated measures ANOVA
reveals a significant main effect of the feature map selection mode: F (1, 9) = 6.14, p = 0.035.
Therefore, while there may be a small effect of hand-picking feature maps, our data indicates that
this effect, if present, is small.

A.2.5 REPEATED TRIALS

To check the consistency of participants’ responses, we repeat six main trials for each of the three
tested reference image types at the end of the experiment. Specifically, the six trials correspond to the
three highest and three lowest absolute confidence ratings. Results are shown in Fig. 21. We observe
consistency to be high for both the synthetic and natural reference image types, and moderate for
no reference images (see Fig. 21A). In absolute terms, the largest increase in performance occurs
for the none condition; for natural reference images there was also a small increase; for synthetic
reference images, there was a slight decrease (see Fig. 21B and C). In the question session after the
experiments, many participants reported remembering the repeated trials from the first time.

A.2.6 QUALITATIVE FINDINGS

In a qualitative interview conducted after completion of the experiment, participants reported to use
a large variety of strategies. Colors, edges, repeated patterns, orientations, small local structures and
(small) objects were commonly mentioned. Most but not all participants reported to have adapted
their decision strategy throughout the experiment. Especially lay participants from Experiment II
emphasized that the trial-by-trial feedback was helpful and that it helped to learn new strategies. As
already described in the main text, participants reported that the task difficulty varied greatly; while
some trials were simple, others were challenging. A few participants highlighted that the comparison
between minimally and maximally activating images was a crucial clue and allowed employing the
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(b) Expertise level 2: six par-
ticipants.
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(c) Expertise level 3: three
participants.
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(e) Expertise level 2: six
participants.
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(f) Expertise level 3:
three participants.
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(g) Computational Neuro-
science background: six
participants.
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(h) Computer Vision /
Machine Learning back-
ground: four participants.

Figure 20: Performance of experts split by different levels of expertise: The first (second) row
shows the data of Experiment I (II) split up by different levels of familiarity with CNNs and feature
visualizations. The third row shows the data of Experiment I split up by different backgrounds.

32



Published as a conference paper at ICLR 2021

(a) Proportion of trials that were an-
swered the same upon repetition.

(b) Performance for repeated trials
upon repetition.

(c) Performance for repeated trials
when first shown.

Figure 21: Repeated trials in Experiment I.

exclusion criterion: If the minimally activating query image was easily identifiable, the choice of
the maximally activating query image was trivial. This aspect motivated us to conduct an additional
experiment where the presentation scheme was varied (Experiment II).

A.2.7 BY-FEATURE-MAP ANALYSIS

For Experiment I, we look at each feature map separately and analyze which feature maps partici-
pants find easy and which they find difficult. Further, we investigate commonalities and differences
between feature maps. We note that the data for this analysis relies on only 10 responses for each
feature map and hence may be noisy.

In Fig. 22, we show the number of correct answers split up by reference image type. The patterns
look similar to the trend in Fig. 4: Across most layers, there is no clearly identifiable trend that
feature maps of a certain network depth would be easier or more difficult; only the lowest (3a) and
the highest layer (5b) seem slightly more difficult for both the synthetic and the natural reference
images.

Easy Feature Maps When feature maps are easy (synthetic: 10/10, natural: 10/10 correct re-
sponses), their features seem to correspond to clear object parts (e.g. dogs vs. humans, food vs.
cats), or shapes (e.g. round vs. edgy (see Supplementary Material Fig. 2- 5)). In Fig. 23, we show
the query as well as natural and synthetic reference images for one such easy feature map for one
participant. For the images shown to two more participants, see Supplementary Material Fig. 1.
Other relatively easy feature maps (where eight to ten participants choose the correct query image
for both reference image types) additionally contained other low level cues such as color or texture
(see Supplementary Material Fig. 4-5).

Difficult Feature Maps The most difficult feature maps for synthetic and natural reference images
are displayed in Fig. 24. Only four participants predicted the correct query image. Interestingly, the
other reference image type was much more easily predictable for both feature maps: Nine out of ten
participants correctly simulated the network’s decision. Our impression is that the reason for these
feature maps being so difficult in one reference condition is the diversity in the images. In the case
of synthetic reference images, we also consider identifying a concept difficult and consequently are
unsure what to compare.

From studying several feature maps, our impression is that one or more of the following aspects
make feature maps difficult to interpret:

• Reference images are diverse (see Fig. 24a for synthetic reference images and d for natural
reference images)
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Figure 22: Data for Experiment I split up by feature maps: For each reference image type, the
number of correct answers (out of ten) is shown. There is no clear trend that certain feature maps
would be easier or more difficult.
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(a) Synthetic reference
images

Min Max
Query Images

Min Reference Images Max Reference Images

(b) Natural reference
images

Min Max
Query Images

Min Reference Images Max Reference Images

Figure 23: An easy feature map (here: 5a, pool*) from Experiment I where all participants an-
swered correctly for both synthetic and natural reference images. The shown stimuli were shown to
participant 1, for stimuli shown to participant 2 and 3, see Supplementary Material Fig 1.

• The common feature(s) seem to not correspond to common human concepts (see Fig. 24a
and c)

• Conflicting information, i.e. commonalities can be found between one query image and
both the minimal and maximal reference images (see Fig. 25a: eyes and extremity-like
structure in synthetic min reference images vs. eyes and earth-colors in synthetic max
reference images - both could be considered similar to the max query image of a frog)

• Very small object parts such as eyes or round, earth-colored shapes seem to be the decisive
features (see Fig. 25a and b)

• Low level cues such as the orientation of lines appear random in the synthetic reference
images9 (see Fig. 26a)

Finally, when we speak bluntly, we are often surprised that participants identified the correct image
— the reasons for this are unclear to us (see for example Supplementary Material Fig. 6-7).

A.2.8 HIGH QUALITY DATA AS SHOWN BY HIGH PERFORMANCE ON CATCH TRIALS

We integrate a mechanism to probe the quality of our data: In catch trials, the correct answer is
trivial and hence incorrect answers might suggest the exclusion of specific trial blocks (for details,
see Sec. A.1.1). Fortunately, very few trials are missed: In Experiment I, only two (out of ten)
participants miss one trial each (i.e. a total of 2 out of 180 catch trials were missed); in Experiment II,
five participants miss one trial and four participants miss two trials (i.e. a total of 13 out of 736 catch

9We expected lower layers to be easier than higher layers for synthetic reference images, but our data
showed that this was not the case (see Fig. 22. We can imagine that the diversity term as well as the non-custom
hyper-parameters contribute to these sub-optimal images.
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(a) Synthetic reference
images

Min Max
Query Images

Min Reference Images Max Reference Images

(b) Natural reference
images

Min Max
Query Images

Min Reference Images Max Reference Images

(c) Synthetic reference
images

Min Max
Query Images

Min Reference Images Max Reference Images

(d) Natural reference
images

Min Max
Query Images

Min Reference Images Max Reference Images

Figure 24: Two difficult feature maps (4d, 5x5 in a and b; 5b, 5x5 in c and d) from Experiment I
where only four participants answered correctly for synthetic (a and b) and natural (c and d) reference
images. The displayed stimuli were shown to participant 1, for stimuli shown to participant 2 (3),
see Supplementary Material Fig. 8 (9).
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(a) Synthetic reference
images

Min Max
Query Images

Min Reference Images Max Reference Images

(b) Natural reference im-
ages.

Min Max
Query Images

Min Reference Images Max Reference Images

Figure 25: A feature map (here: 4a, Pool) from Experiment I where the feature is small (eyes)
and a participant might perceive conflicting information (eyes and extremity-like structure in min
reference images vs. eyes and earth-colors in max reference images). In this specific example, eight
(nine) out of ten participants gave the correct answer for this feature map given synthetic (natural)
reference images. The displayed stimuli were shown to participant 1, for stimuli shown to participant
2 and 3, see Supplementary Material Fig. 10.
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(a) Synthetic reference
images

Min Max
Query Images

Min Reference Images Max Reference Images

(b) Natural reference
images

Min Max
Query Images

Min Reference Images Max Reference Images

Figure 26: A feature map from a low layer (here: 3a, 3x3) from Experiment I where the feature
seems to be a low level cue (horizontal vs. vertical striped) that is surprisingly clear in the natural,
but surprisingly unclear in the synthetic reference images. In this specific example, seven (eight)
out of ten subjects gave the correct answer for this feature map given synthetic (natural) reference
images. The displayed stimuli were shown to participant 1, for stimuli shown to participant 2 and 3,
see Supplementary Material Fig. 11.
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trials were missed). As this indicates that our data is of high quality, we do not perform the analysis
with excluded trials as we expect to find the same results.

8Baseline condition.
9Metrics of explanation quality computed without human judgment are inconclusive and do not correspond

to human rankings.
10Task has an additional “I don’t know”-option for confidence rating.
11Comparison is only performed between methods but no absolute measure of interpretability for a method

is obtained.
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A.3 DETAILS ON RELATED WORK

Paper
Analyzes

Intermediate
Features?

Explanation Methods
Analyzed

Results
Explanation Confidence/Trust

helpful?

Ours yes
• Feature Visualization
• natural images8

• no explanation8
yes

• high variance in
confidence ratings

• natural images are
more helpful

Biessmann
& Refiano
(2019)

no
• LRP
• Guided Backprop
• simple gradient8

yes
• highest confidence

for guided backprop9

Chu et al.
(2020) no

• prediction + gradients
• prediction8

• no information8
no

• faulty explanations
do not decrease
trust

Shen &
Huan
(2020)

no

• Extremal Perturb
• GradCAM
• SmoothGrad
• no explanation8

no • -

Jeyakumar
et al.
(2020)

no

• LIME
• Anchor
• SHAP
• Saliency Maps
• Grad-CAM++
• Ex-Matchina

unclear11 • -

Alqaraawi
et al.
(2020)

no
• LRP
• classification scores
• no explanation8

yes • confidence similar
across conditions

Chandra-
sekaran
et al.
(2017)

no

• prediction confidence
• attention maps
• Grad-CAM
• no explanation8

no • -

Schmidt &
Biessmann
(2019)

no
• LIME
• custom method
• random/no explanation8

yes

• humans trust own
judgement regardless
explanations, except
in one condition

Hase &
Bansal
(2020)

no

• LIME
• Prototype
• Anchor
• Decision Boundary
• combination of all 4

partly

• high variance in
helpfulness

• helpfulness cannot
predict user per-
formance

Kumaraku-
lasinghe
et al.
(2020)

no • LIME yes • fairly high trust
and reliance

Ribeiro
et al.
(2018)

no
• LIME
• Anchor
• no explanation8

yes

• high confidence
for Anchor

• low for LIME &
no explanation

Alufaisan
et al.
(2020)

no
• prediction + Anchor
• prediction8

• no information8
partly • explanations do not

increase confidence

Ramamurthy
et al.
(2020)

no
• MAME
• SP-LIME
• Two Step

• unclear11 • users can adjust MAME
which increased trust

Dieber &
Kirrane
(2020)

no • LIME partly • -

Dinu
et al.
(2020)

no

• SHAP
• ridge
• lasso
• random explanation8

partly • no statement on
confidence ratings

40



Published as a conference paper at ICLR 2021

Paper Experimental Setup
Dataset Task Participants Collected Data

Ours • natural images
(ImageNet)

• CNN activation
classification

• experts
• laypeople

• decision • confidence
• reaction time
• post-hoc evaluation

Biessmann
& Refiano
(2019)

• face images
(Cohn-Kanade)

• 2-way
classification10 • laypeople • decision • confidence

• reaction time

Chu et al.
(2020)

• face images
(APPA-REAL)

• age
regression • laypeople

• decision • trust
• reaction time
• post-hoc evaluation

Shen &
Huan
(2020)

• natural images
(ImageNet)

• model error
identification • laypeople • decision

Jeyakumar
et al.
(2020)

• natural images
(CIFAR-10)

• text (Sentiment140)
• audio (Speech

Commands)
• sensory data (MIT-

BIH Arrhythmia)

• preference for
one out of two
explanation
methods

• laypeople • decision

Alqaraawi
et al.
(2020)

• natural images
(Pascal VOC) • classification

• technical
background
(neither lay
nor expert)

• decision
• confidence
• free answer

on features

Chandra-
sekaran
et al.
(2017)

• VQA
(visualqa.org)

• model error
identification

• regression
• laypeople • decision

Schmidt &
Biessmann
(2019)

• book categories
• Movie reviews

(IMDb)

• 9-/2-way
classification • laypeople

• decision
• reaction time
• trust

Hase &
Bansal
(2020)

• movie reviews
(Movie Review)

• tabular
(Adult)

• 2-way
classification • experts

• decision
• helpfulness rating
• explanation helpfulness

Kumaraku-
lasinghe
et al.
(2020)

• tabular
(Patient data)

• 2-way
classification • experts

• decision
• feature ranking
• satisfaction
• questionnaire

Ribeiro
et al.
(2018)

• tabular
(Adult, rcdv)

• 2-way
classification10

• VQA
• experts • decision

• reaction time
• confidence

Alufaisan
et al.
(2020)

• tabular
(COMPAS,
Census Income)

• 2-way
classification • laypeople

• decision
• confidence
• reaction time

Ramamurthy
et al.
(2020)

• tabular
(HELOC, pump
failure)

• 2-way
classification

• experts
• laypeople • decision

Dieber &
Kirrane
(2020)

• tabular
(Rain in
Australia)

• interview • laypeople
• experts

• how interpretable
LIME output is

Dinu
et al.
(2020)

• tabular
(Airbnb price
listings)

• interview • laypeople
• decision: which model would

perform better in practice
• confidence

Table 4: Overview of publications that evaluate explanation methods in human experiments. Note
that the table already starts on the previous page and that the footnotes are displayed on page 39.
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