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ABSTRACT

Human motion generation is a critical task with a wide range of applications.
Achieving high realism in generated motions requires naturalness, smoothness, and
plausibility. Despite rapid advancements in the field, current generation methods
often fall short of these goals. Furthermore, existing evaluation metrics typically
rely on ground-truth-based errors, simple heuristics, or distribution distances,
which do not align well with human perceptions of motion quality. In this work,
we propose a data-driven approach to bridge this gap by introducing a large-scale
human perceptual evaluation dataset, MotionPercept, and a human motion
critic model, MotionCritic, that capture human perceptual preferences. Our
critic model offers a more accurate metric for assessing motion quality and could
be readily integrated into the motion generation pipeline to enhance generation
quality. Extensive experiments demonstrate the effectiveness of our approach
in both evaluating and improving the quality of generated human motions by
aligning with human perceptions. Code and data are publicly available at https:
//motioncritic.github.io/.

1 INTRODUCTION

Human motion generation is an important emerging task (Zhu et al., 2024) with wide-ranging applica-
tions, including augmented and virtual reality (AR/VR) (Yin et al., 2022; Yang et al., 2020), human-
robot interaction (Nishimura et al., 2020; Gulletta et al., 2020), and digital humans (Kucherenko et al.,
2019; Yi et al., 2023). Achieving high realism in generated human motions is crucial, necessitating
naturalness, smoothness, and plausibility. However, current generation methods still fall short of
these goals, often producing subpar results. Meanwhile, designing appropriate evaluation metrics
that accurately reflect these qualities remains a significant challenge. This complexity stems from
the highly non-linear and articulated nature of human motion, which must adhere to physical and
bio-mechanical constraints while also avoiding visual artifacts. Effective metrics would not only facil-
itate the objective comparison of generated results but also have the potential to enhance generation
models by addressing their shortcomings.

Existing evaluation metrics typically rely on error with pairing ground truth (GT) motion, simple
heuristics, or on distribution distance with real motion manifold. The error-based metrics cannot
fully reflect the performance because GT is only one reasonable possibility. The heuristics fall short
in comprehensively representing motion quality. For instance, foot-ground contact metrics (Rempe
et al., 2021; Tseng et al., 2023) fail to penalize twisting arm motions that violate bio-mechanical
constraints. It is also infeasible to manually define all the human motion rules in a handcrafted manner.
Meanwhile, distribution distance metrics like Fréchet Inception Distance (FID) (Heusel et al., 2017)
do not operate on an instance level but rather assess overall distribution similarity. Consequently, they
cannot identify implausible motions or provide direct supervision signals to guide the generation of
higher-quality motions. Some studies (Tseng et al., 2023; Voas et al., 2023) also indicate that FID
correlates poorly with user studies due to the misalignment between its distance measurement and
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Figure 1: Framework Overview. We collect MotionPercept, a large-scale, human-annotated
dataset for motion perceptual evaluation, where human subjects select the best quality motion in
multiple-choice questions. Using this dataset, we train MotionCritic to automatically judge
motion quality in alignment with human perceptions, offering better quality metrics. Additionally,
we show that MotionCritic can enhance existing motion generators with minimal fine-tuning.

human perception of motion quality. Consequently, existing automatic evaluation metrics cannot
effectively reflect or replace subjective user studies, hindering objective evaluation and comparison.

In light of this, we advocate the need for automatic evaluation aligned with human perceptions.
Firstly, humans are the primary audience and interaction partners for motion generation, making their
perception crucial for evaluating motion quality. Secondly, the human brain possesses specialized
neural mechanisms for processing biological motion (Blakemore & Decety, 2001; Grossman et al.,
2000) and is sensitive to even slightly unnatural motions (Troje, 2002; Shimada & Oki, 2012).
Therefore, we explore the possibility of directly learning perceptual evaluations from humans using a
data-driven approach. This method could bridge the gap between objective metrics and subjective
human judgments, providing a more accurate assessment of motion quality.

First, we carefully curate a human perceptual evaluation dataset named MotionPercept, which
contains 52563 pairs of human preference annotations on generated motions. Next, we train a
human motion critic model, MotionCritic, that learns motion quality ratings from the collected
dataset. Our critic model significantly outperforms previous metrics in terms of alignment with
human perceptions. Notably, it generalizes well across different data distributions. In addition to
motion evaluation, we further propose to utilize the critic model as a direct supervision signal. We
demonstrate that MotionCritic can be seamlessly integrated into the generation training pipeline,
effectively improving motion generation quality by increasing alignment with human perceptions
with few steps of finetuning.

We summarize our contributions as follows: 1) We contribute MotionPercept, a large-scale
motion perceptual evaluation dataset with manual annotations. 2) We develop MotionCritic
which models human perceptions of motions through a data-driven approach. Extensive experiments
demonstrate its superiority as an automatic human-aligned metric of motion quality. 3) We show that
the proposed motion critic model could effectively serve as a supervision signal to enhance motion
generation quality. Remarkably, it requires only a small number of fine-tuning steps and can be easily
integrated into existing generator training pipeline in a plug-and-play manner.

2 RELATED WORK

2.1 HUMAN MOTION GENERATION

Human motion generation is a pivotal task in computer vision, computer graphics, and artificial
intelligence, aiming to produce natural and realistic human pose sequences (Zhu et al., 2024). This
field has seen substantial advancements with the rise of deep generative models (Kingma & Welling,
2014; Rezende & Mohamed, 2015; Goodfellow et al., 2014; Ho et al., 2020). Previous works have
explored text-conditioned motion generation that transform narrative descriptions into coherent pose
sequences (Tevet et al., 2023; 2022; Li et al., 2017; Petrovich et al., 2022; Lucas* et al., 2022), audio-
conditioned methods that synchronize movements with rhythmic cues (Huang et al., 2021; Siyao et al.,
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2022; Tseng et al., 2023), and scene-conditioned generation that integrates environmental contexts to
produce contextually appropriate motions (Corona et al., 2020; Wang et al., 2021; Araújo et al., 2023).
Despite significant progress, current mainstream data-driven kinematic motion generation methods
sometimes produce unnatural motions that are jittery, distorted, or violate physiological and physical
constraints. These issues could be attributed to the inherent uncertainty of the task, limitations of
supervision signals, and dataset noises. Furthermore, evaluating generated human motions presents
additional challenges. Traditional metrics like error and FID fail to capture key aspects such as
fluidity and biomechanical plausibility. Some works incorporate handcrafted physical priors (Tseng
et al., 2023; Rempe et al., 2021), while others propose improved distance metrics for human poses or
motions (Gopalakrishnan et al., 2019; Tanke et al., 2021; Tiwari et al., 2022). However, they still face
limitations in fully and accurately reflecting human evaluations of motion quality. These challenges
highlight the need for metrics that better align with human perception to more effectively evaluate
and improve motion generation results.

2.2 HUMAN PERCEPTION MODELING

Pioneer work (Zhang et al., 2018) collect human perceptual similarity dataset and propose to utilize
distance in deep features as perceptual metrics. Some works (Ouyang et al., 2022; Bai et al.,
2022; Yuan et al., 2023b; Hejna & Sadigh, 2024; Dong et al., 2023) in language models to explore
aligning model performance with human intent by first training a reward model, then performing
reinforcement learning with the reward model. Recent works (Yuan et al., 2023a; Wu et al., 2023;
Lee et al., 2023) also explore utilizing human feedback to improve visual generation results. For
example, ImageReward (Xu et al., 2024) propose a reward feedback learning method (ReFL) to
to align text-to-image generative models with human judgements. In human motion generation,
however, few studies have explored modeling human feedbacks, even though the generated motion
quality is highly relevant to human perceptions. HuTuMotion (Han et al., 2024) proposes to leverage
few-shot human feedback with a set of representative texts. One recent work, MoBERT (Voas et al.,
2023), constructs a dataset of human ratings for generated motions. Our work differs from MoBERT
in that we collect real human data on a scale tens of times larger (52.6K vs 1.4K) and use comparisons
instead of ratings, which is more robust. We design the critic model to learn ratings from these
comparisons automatically. Additionally, our approach could not only evaluate motion quality but
also effectively improve motion generation results.

3 MOTIONPERCEPT : A LARGE-SCALE DATASET OF MOTION PERCEPTUAL
EVALUATION

We build MotionPercept to capture real-human perceptual evaluations with large-scale and
diverse human motion sequences. Hence, we implement a rigorous and efficient pipeline for data
collection and data annotation. We also design a concensus experiment in order to examine the
perceptual consistency across various human subjects.

3.1 MOTION DATA COLLECTION

We first collect generated human motion sequence pairs for subsequent perceptual evaluation. We
utilize state-of-the-art diffusion-based motion generation method MDM (Tevet et al., 2023) and
FLAME (Kim et al., 2023) to generate human motion sequences parameterized by SMPL (Loper
et al., 2015). For MDM (Tevet et al., 2023), we utilize the action-to-motion model trained on
HumanAct12 (Guo et al., 2020) and UESTC (Ji et al., 2018) respectively. For FLAME (Kim et al.,
2023), we utilize the text-to-motion model trained on HumanML3D (Guo et al., 2022). For each
group of 4 motion sequences to be annotated, we use the same condition (text prompt or action labels)
while sampling different random noises, with a same length of 60 frames, 24 fps. This makes the
motions similar in content while still having distinguishable differences, thereby making it easier to
annotate the choices.

3.2 HUMAN PERCEPTUAL EVALUATION

Human perceptual evaluation is the core component of MotionPercept, therefore we implement a
rigorous pipeline to ensure annotation quality. We first introduce the question design of the perceptual
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Figure 2: We conduct a perceptual consensus experiment with 10 subjects on 312 multiple-choice
questions, each with 6 options. (A): The distribution of the number of supporters for the most chosen
option in each question. (B): Distribution of the number of options chosen by all subjects for each
question. (C): Pairwise agreement ratio of all subjects.

evaluation, then describe the protocol for conducting the evaluation. Finally, we present a statistical
analysis of the evaluation results.

3.2.1 QUESTION DESIGN

Our perceptual evaluation is designed in the form of multiple-choice questions as selection is generally
easier and more robust than directly rating (Kendall, 1948; Stewart et al., 2005; Voas et al., 2023).
Given a group of four motion sequence options, we instruct the annotators to select the best candidate
that is most natural, visually pleasing, and free of artifacts. Specifically, we summarize the typical
failure modes of the generated motions (e.g., jittering, foot skating, limb distortion, penetration, etc.)
and explicitly require the annotators to exclude these options. We provide detailed guidance with task
descriptions and representative video examples to better communicate the goal to the annotators. The
full guidance is presented in Appendix A.3.

While the optimal choice can be decided unambiguously in most cases, there are situations where the
decision can be challenging. Therefore, we add two additional options, “all good” and “all bad”, so
that the annotator is not required to pick one of the motions in these cases, thereby improving overall
annotation quality. Results indicate that these cases account for a small portion of the total data. We
exclude these cases from our subsequent experiments. In total, we set six options for each entry: four
motion candidates plus “all good” and “all bad”.

3.2.2 PROTOCOLS

To ensure the quality of perceptual evaluation results, our annotation process consists of annotator
training, annotation, and quality control. We recruit 10 annotators to perform the perceptual evaluation.
Before the evaluation begins, we provide annotation guidelines to help the annotators understand the
task and maintain consistent criteria. The annotators must pass a pilot test before starting the formal
annotation to ensure they correctly understand the annotation requirements. Additionally, we conduct
a perceptual consensus experiment to assess whether the annotation pipeline is suitable for our dataset,
as discussed in Section 3.3. Finally, we implement a quality control process where the annotated data
is reviewed by an expert quality inspector. During the annotation process, we continuously monitor
the quality of each batch of data. For each batch, we randomly sample 10% of the data for quality
inspection. The consistency between the sampled data and the expert’s annotations must exceed 90%;
otherwise, the entire batch will be re-annotated. Complete protocols are detailed in Appendix A.

3.3 ANALYSIS

In total, we collect annotations for 18260 multiple-choice questions covering 73040 unique motions,
significantly surpassing previous work (Voas et al., 2023) (1400 motions). We further investigate the
following two questions:

1. Based on our experimental setup, can the subjects confidently select the suitable options
from the choices provided?
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2. Is there a significant difference in perceptual preferences among different subjects, or are
they well-aligned?

For the first question, we calculate the proportion of cases where a choice could not be made (including
“all good” and “all bad”), and find a total of 418 such groups (2.29%). The result indicates that most
of the time subjects can make a definite judgment, demonstrating the validity of our protocol design.

For the second question, we conduct a perceptual consensus experiment where all 10 subjects perform
perceptual evaluation independently on 312 groups of randomly selected data. We calculate their
pairwise and overall consistency in choices. Figures 2(A) and 2(B) show that for most questions
(82.37%), all 10 subjects make the unanimous decision. Figure 2(C) reveals that all 10 subjects exhibit
high pairwise agreement (90%). These results indicate a high level of consistency in perceptual
judgments of human motion among different human subjects. This not only validates the rationality
of our perceptual evaluation pipeline but also inspires us to train machine learning models to emulate
this consistent judgment capability.

4 MOTIONCRITIC : ADVANCING MOTION GENERATION WITH PERCEPTUAL
ALIGNMENT

Based on MotionPercept, we develop a human motion critic model, MotionCritic, to emu-
late the perceptual judgment capabilities of human subjects regarding human motion. We first present
the problem formulation and training approach of the critic model, and then explain how to use the
critic model for optimizing motion generation.

4.1 PROBLEM FORMULATION

We formulate the problem as follows: given an input human motion sequence x, we assume there
is an implicit human perception model H that rates the motion quality H(x), where a higher rate
indicates better quality. We aim to build a computational critic model C that best aligns with H.
Since H is not explicitly available, we take a data-driven approach. We obtain the human perceptual
evaluation dataset D containing multiple pairs of samples (x(i),x(j)). Our training objective is to
train the model C using the dataset D so that it approximates the human perception model H as
closely as possible. Specifically, we want the model prediction C(x(i)) > C(x(j)) if and only if
H(x(i)) > H(x(j)). Based on the Bradley-Terry model (Bradley & Terry, 1952; Hunter, 2004), the
overall training objective could be written as maximizing the joint probabilities that the model C
makes judgments consistent with H for each pair of samples in the dataset D:

argmax
C

E(x(i),x(j))∼D
[
log σ

(
(C(x(i))− C(x(j))) · (H(x(i))−H(x(j)))

)]
, (1)

where σ is the sigmoid function.

4.2 HUMAN MOTION CRITIC MODEL

In practice, we represent human motion by x ∈ RL×J×D where L denotes the sequence length, J
denotes the number of body joints, and D denotes parameter dimensions. We implement the critic
model C as a neural network that maps the high-dimensional motion parameters to a scalar s. We
draw pairwise comparison annotations from the collected dataset, where x(h) is the better instance
and x(l) is the worse. The perceptual alignment loss is thus given by:

LPercept = −E(x(h),x(l))∼D
[
log σ

(
C(x(h))− C(x(l))

)]
. (2)

4.3 MOTION GENERATION WITH CRITIC MODEL SUPERVISION

Additionally, we explore to utilize the learned human perceptual prior of C not only for evaluating
generated motions, but also improving them. We demonstrate that our motion critic model could
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Figure 3: (I) Critic model training process. We sample human motion pairs x(h),x(l) annotated with
human preferences, upon which the critic model produces score pairs. We use perceptual alignment
loss LPercept to learn from the human perceptions. (II) Motion generation with critic model supervision.
We intercept MDM sampling process at random timestep t and perform single-step prediction. Critic
model computes the score s based on the generated motion x′
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0 and last-time generation result x̃0
′.

be integrated into state-of-the-art diffusion-based motion generation approaches with ease by using
MDM (Tevet et al., 2023) as an example. The forward diffusion is modeled as a Markov noising
process {xt}Tt=0 where x0 is drawn from the data distribution, and

q(xt|xt−1) = N (
√
αtxt−1, (1− αt)I), (3)

where αt ∈ (0, 1) are constant hyper-parameters. When αt is small enough, it’s reasonable to
approximate xT ∼ N (0, I), allow sampling xT from random noise to begin our denoising process.

Algorithm 1 Fine-tuning Motion Generation with MotionCritic

1: Dataset: Action-label set D̃ = {(labeli,moti)}
2: Input: MDM modelMθ0 , Critic model C, Critic-to-loss map

function ϕ, Critic loss scale λ, KL loss scale µ

3: for (labeli,moti) ∈ D̃ do
4: θi ← θi ▷ Update MDMθi with LMDM
5: t← rand(T1, T2) ▷ Pick a random time step t ∈ [T1, T2]
6: xT ∼ N (0, I) ▷ Sample noise
7: for j = T, ..., t+ 1 do
8: no grad: xj−1 ←Mθi{xj}
9: end for

10: with grad: x̃0
′ ←Mθi{xt}

11: if x̃0
′ is not None then

12: LKL ← µKL(x̃0
′,x′

0 ) ▷ KL loss with previous x′
0

13: end if
14: LCritic ← λϕ(C(x′

0)) ▷ Critic loss
15: θi+1 ← θi ▷ UpdateMθi with LCritic and LKL

16: x̃0
′ ← x′

0 ▷ Save x′
0 for next-step LKL

17: end for

Given an MDM model M with pre-
trained parameters θ0, we fine-tune
to improve its alignment with a pre-
trained critic model C. We develop a
lightweight perceptual-aligned fine-
tuning approach based on ReFL (Xu
et al., 2024). Notably, in order to uti-
lize the critic model in a plug-and-
play manner, we keep the MDM
training step and objective LMDM
unchanged. Of each fine-tuning iter-
ation, the original MDM loss is com-
puted using text labels and ground-
truth motions as the initial step. This
loss is first utilized to update the pre-
trained model weights accordingly.
After that, we simply add another
optimization step with critic model
supervision. Structure of this opti-
mization step is shown in Figure 3,
and detailed as follows:

We begin with sampling a Gaussian noise xT and performing gradient-free denoising steps until
xt, where t ∈ [T1, T2] is randomly selected in denoising steps. Gradient interception range [T1, T2]
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are hyperparameters, with selection principles outlined in Appendix C.1. After reaching step t, a
single-step denoising with gradient is performed directly to predict x′

0 from xt. Upon the predicted
motion x′

0, we compute its critic score s = C(x′
0), and use this score output to compute the motion

critic loss. We formulate our critic loss as follows:

LCritic = Eyi∼Y [ϕ(C(x′
0)] , (4)

where ϕ(s) = −σ(τ − s)) is a critic-to-loss mapping function, τ being a constant threshold for
shifting the critic value, and σ being sigmoid function.

We further introduce a Kullback-Leibler (KL) divergence regularization to prevent M from moving
substantially away from the conditional motion generation task. We formulate our KL loss as follows:

LKL = Eyi∼Y
[
DKL

(
p(x′

0)∥p(x̃′
0)
)]

. (5)

where x̃′
0 being x′

0 of the previous iteration. Overall, our fine-tuning loss is given by

LFT = LMDM + λLCritic + µLKL. (6)

where λ and µ are re-scaling weights for loss balancing. Detailed algorithm workflow is shown in
Algorithm 1.

5 EXPERIMENT

5.1 IMPLEMENTATION DETAILS

Critic Model. We train our critic model using the MDM subset in MotionPercept. We convert
each multiple-choice question into three ordered preference pairs, which results in 46740 pairs for
training and 5823 pairs for testing. We parameterize motion sequences with SMPL (Loper et al.,
2015), including 24 axis-angle rotations, and global root translation. We implement the critic model
with DSTformer (Zhu et al., 2023) backbone with 3 layers and 8 attention heads. We apply temporal
average pooling on encoded motion embeddings followed by an MLP with a hidden layer of 1024
channels to predict a single scalar score. We train the critic model for 150 epochs with a batch size of
64 and a learning rate starting at 2e-3, decreasing with a 0.995 exponential learning rate decay.

Fine-tuning. We use MDM (Tevet et al., 2023) model trained on HumanAct12 (Guo et al., 2020) as
our baseline, which utilizes 1000 DDPM denoising steps. We load the checkpoint trained for 350000
iterations and fine-tune for 800 iterations, with a batch size of 64 and learning rate 1e-5. We fine-tune
with critic clipping threshold τ = 12.0, critic re-weight scale λ =1e-3, and KL loss re-weight scale
µ = 1.0. We set the step sampling range [T1, T2] = [700, 900]. Details of the setup are shown at
Appendix C.1.

5.2 MOTIONCRITIC AS MOTION QUALITY METRIC

We first evaluate whether the proposed critic model could serve as an effective motion quality metric.
Specifically, we are interested in the following research questions:

1. How does MotionCritic align with human perceptual evaluations?
2. Could MotionCritic generalize to different data distributions?

To investigate the first question, we evaluate the performance of our critic model on a held-out test
set and compare it with existing motion quality metrics as follows:

• Distance-based metrics, including Root Average Error (Root AVE), Root Absolute Error
(Root AE), Joint Average Error (Joint AVE), and Joint Absolute Error (Joint AE). These
metrics involve directly computing the distance between the generated motion and a pairing
GT with the same condition. Furthermore, methods like PoseNDF (Tiwari et al., 2022), Nor-
malized Power Spectrum Similarity (NPSS)(Gopalakrishnan et al., 2019), and Normalized
Directional Motion Similarity (NDMS)(Tanke et al., 2021) offer more advanced approaches
to measuring distances between motions.
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Table 1: Quantitative comparison of motion evaluation metrics on MDM and FLAME testsets of
MotionPercept.

Metric MDM FLAME
Acc. (%) ↑ Log Loss ↓ Acc. (%) ↑ Log Loss ↓

Root AVE 59.47 0.6891 48.42 0.6984
Root AE 61.79 0.6798 59.54 0.6711

Joint AVE 56.77 0.6889 44.61 0.6973
Joint AE 62.73 0.6794 58.37 0.6891

Jerk 65.48 0.7516 65.84 0.5984

Acceleration (Yang et al., 2023) 64.26 0.7792 66.67 0.6919
Person-Ground Contact (Rempe et al., 2021) 71.78 0.7260 69.82 0.7243
Foot-Floor Penetration (Rempe et al., 2021) 53.61 0.6939 55.56 0.6906
Physical Foot Contact (Tseng et al., 2023) 64.79 0.6926 66.00 0.6930

PoseNDF (Tiwari et al., 2022) 55.13 0.6930 53.07 0.6931
NPSS (Gopalakrishnan et al., 2019) 52.37 0.6911 52.07 0.6944

NDMS (Tanke et al., 2021) 63.92 0.6519 63.35 0.6301

MoBERT (Voas et al., 2023) 49.40 0.6931 52.40 0.6932
MotionCritic (Ours) 85.07 0.5486 81.43 0.5758
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Figure 4: We group HumanAct12(Guo et al., 2020) GT test set into 5 subsets, and compare their
qualities. (A): GT-I to GT-V subsets split based on critic scores from high to low. (B): Elo ratings
from user study, FID and average critic scores of different GT subsets.

• Heuristic metrics, including acceleration (Rempe et al., 2021; Yang et al., 2023), Person-
Ground Contact (Rempe et al., 2021), Foot-Floor Penetration (Rempe et al., 2021), and
Physical Foot Contact (PFC) (Tseng et al., 2023). These metrics does not compare against
GT; instead, they implement intuitive rule-based evluations. For example, PFC models the
relationship between center of mass acceleration and foot-ground contact.

• Learning-based metrics. Prior work MoBERT (Voas et al., 2023) proposes to evaluate
motion quality with a motion feature extractor and SVR Regression.

Note that distribution-based metrics (e.g. FID) could not compare quality of individual motion
sequences, and the comparison can be found in subsequent experiments. For each metric, we
calculate the percentage they align with GT annotations (accuracy) and also their probabilistic
distribution distance with GT annotations (log loss). We use the softmax function to convert the
scores to probabilities (taking the opposite before softmax for metrics where smaller is better). Table 1
demonstrates that our critic model significantly outperforms previous metrics. These results not only
validate the effectiveness of learning from large-scale human perceptual evaluations but also prove
that our critic model can serve as a more comprehensive and robust metric for assessing motion
quality.

Furthermore, to investigate the second question, we test the critic model on data outside of the
training distributions. We collect a standalone test set from 804 motions with a different motion
generation algorithm, FLAME (Li et al., 2017), and perform perceptual evaluation with a different
human subject. Note that this model is trained on a different dataset (Guo et al., 2022) with the model
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Figure 5: Model performance during fine-tuning process. (A): User study win rates (row vs column)
with different fine-tuned model steps. (B): Elo ratings from user study, FID and average critic scores
in the fine-tuning process.
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Figure 6: Motion generation results from different fine-tuning steps.

used to generate critic model training data, which means the action categories have large variations.
The results in Table 1 further shows that our critic model could well generalize to the new test set,
indicating its efficacy in evaluating different generation algorithms and unseen motion contents.

Additionally, we test the generalization of our critic model on the real GT motion distribution.
Figure 4(A) illustrates the critic score distribution of HumanAct12 (Guo et al., 2020) test set. We
group the 1190 GT motions into 5 groups based on their critic scores, evenly distributed from highest
to lowest. We compare the average critic score between the groups with distribution-based metric FID
and user study. The user study is conducted by another 5 users different from previous annotators,
comparing motion pairs sampled from each groups and then computing Elo rating (Elo, 1978; Tseng
et al., 2023) for each group. Figure 4(B) clearly indicates that the critic score aligns well with human
preferences, while FID does not. Notably, we discover that the outliers with small critic values (group
V) are indeed artifacts within the dataset. Please refer to to Appendix D for details in user study, and
the supplementary materials for video results.

The results indicate that our critic model can also generalize to the GT motion manifold, even though
the model has never been trained on it. It also highlights the potential of using our critic model
as a tool for dataset diagnosis (e.g., discover failure modes). Please also refer to Appendix B for
additional results, where we provide more discussions on MotionCritic, including failure modes,
out-of-distribution tests, the impact of different motion lengths, and its relationship with other metrics.

5.3 MOTIONCRITIC AS TRAINING SUPERVISION

Furthermore, we investigate whether our critic model can also serve as an effective supervision
signal. Specifically, we fine-tune a pre-trained motion generator (Tevet et al., 2023) with the proposed
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Table 2: Comparison of motion generation metrics at different fine-tuning steps.

Step FID↓ PFC↓ MotionCritic ↑ Accuracy↑ Diversity↑ Multimodality↑
0 0.13 0.00095 -1.64 0.98 6.66 2.15

100 0.17 0.00086 1.83 0.98 6.62 2.32
200 0.14 0.0010 1.79 0.98 6.58 2.46
300 0.14 0.0010 2.35 0.98 6.56 2.36
400 0.11 0.0012 2.54 0.98 6.61 2.63
500 0.17 0.0013 2.61 0.98 6.62 2.36
600 0.18 0.0013 2.78 0.98 6.68 2.42
700 0.54 0.0017 3.45 0.92 6.53 2.43
800 0.50 0.0012 2.73 0.88 6.57 3.04

framework, and evaluate on HumanAct12 (Guo et al., 2020) test set every 200 steps. Additionally,
we conduct a standalone user study by comparing motion pairs generated at different fine-tuning
steps and compute the Elo Rating (Elo, 1978; Tseng et al., 2023). Figure 5 reveals that as fine-tuning
progresses, the motion quality consistently improves according to the user study, in line with the
training objective of increasing the critic score. The user study is conducted with new evaluators
which are not participated in dataset annotation. Plese refer to Appendix D for details of the user study.
We also present a visualization comparison in Figure 6. We discover that as fine-tuning progresses,
unreasonable human motions such as jittering, twisting, and floating significantly decrease. Please
refer to the supplementary materials for video comparisons.

In addition, we examine the impact of fine-tuning with MotionCritic on other motion evaluation
metrics. We track changes in various metrics, including Accuracy, Diversity, and Multimodality (Tevet
et al., 2023), over the course of fine-tuning from 0 to 800 steps. These metrics capture different aspects
of motion generation, such as text alignment and richness. Table 2 shows that our critic model aligns
more closely with human judgment compared to motion quality metrics like FID and PFC. Moreover,
fine-tuning with MotionCritic does not conflict with other key metrics. For example, at 600
steps, we observe improvements in Accuracy, Diversity, and Multimodality, along with a significant
increase in user preference compared to the baseline (step = 0). In conclusion, MotionCritic
provides a more holistic evaluation of the intrinsic quality of the motion compared to other metrics in
this domain. At the same time, it complements other metrics that focus on different aspects, such as
text-motion consistency and diversity, resulting in a more comprehensive and objective evaluation.

The results also demonstrate that our fine-tuning process requires only hundreds of iterations to
take effect, significantly improving the perceptual quality of the model. Compared to the 350K
pre-training steps, this accounts for only 0.23% of the training cost. This further demonstrates the
advantages of our proposed framework in using a perceptually-aligned critic model to fine-tune the
motion generation model, not only improving quality but also being lightweight and efficient. Please
refer to Appendix C for more details and analysis of fine-tuning.

6 CONCLUSION

In conclusion, our work bridges the important gap in human motion generation between ob-
jective metrics and human perceptual evaluations by introducing a data-driven framework with
MotionPercept and MotionCritic. This paradigm not only offers a more comprehensive
metrics of motion quality but could also improve the generation results by aligning with human
preferences. We hope this work could contribute to more objective evaluations of motion generation
methods and results.

To prevent potential misuse or misunderstanding, it is important to note that the critic model should
be used either as an standalone evaluation metric or as a loss function for fine-tuning, but not for both
simultaneously. It’s also worth noticing that the energy landscape of MotionCritic is not smooth,
and MotionCritic should not be interpreted as a distance measure. Discussions are detailed in
Appendix B.3. Another limitation of our approach is its primary focus on perceptual metrics without
explicitly simulating physical and biomechanical plausibility, which could be explored in future work.
Future research could also investigate more fine-grained perceptual evaluation methods to obtain rich
human feedback on motion quality like (Liang et al., 2024).
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Part II

Appendix
A DETAILS ON MOTIONPERCEPT

A.1 DATA GENERATION

We use synthetic data for annotating MotionPercept, because we hypothesis that using options
from the same synthetic distribution would be most effective for developing a robust and generalizable
critic model. Incorporating GT data, which may be of significantly higher quality, could make it too
easy for the model to differentiate between options, potentially reducing its discrimination power.
This practice aligns with approaches in training reward models for language models like GPT (Ouyang
et al., 2022), where reward models are trained using human feedback on model-generated outputs.
We note that the critic model trained subsequently produced reasonable results on out-of-distribution
datasets including GT motion, demonstrating its ability to generalize beyond the synthetic data.

We utilize the prompts from HumanAct12 (Guo et al., 2020), UESTC (Ji et al., 2018) and Hu-
manML3D (Guo et al., 2022) for generating the motion candidates. Specifically, we use the 12 action
labels from HumanAct12 (Guo et al., 2020) (shown in Table 3) and the 40 categories of aerobic
exercise description from UESTC (Ji et al., 2018) (shown in Table 4) for the MDM (Tevet et al.,
2023) model. We randomly select texts from HumanML3D (Guo et al., 2022) test set as prompts for
the FLAME (Li et al., 2017) model.

HumanAct12 (Guo et al., 2020) Action Labels

warm up walk
run jump
drink lift dumbbell
sit eat
turn steering wheel phone
boxing throw

Table 3: 12 action labels from HumanAct12 (Guo et al., 2020).

UESTC (Ji et al., 2018) Action Labels

punching and knee lifting marking time and knee lifting
jumping-jack squatting
forward-lunging left-lunging
left-stretching raising-hand-and-jumping
left-kicking rotation-clapping
front-raising pulling-chest-expanders
punching wrist-circling
single-dumbbell-raising shoulder-raising
elbow-circling dumbbell-one-arm-shoulder-pressing
arm-circling dumbbell-shrugging
pinching-back head-anticlockwise-circling
shoulder-abduction deltoid-muscle-stretching
straight-forward-flexion spinal-stretching
dumbbell-side-bend standing-opposite-elbow-to-knee-crunch
standing-rotation overhead-stretching
upper-back-stretching knee-to-chest
knee-circling alternate-knee-lifting
bent-over-twist rope-skipping
standing-toe-touches standing-gastrocnemius-calf
single-leg-lateral-hopping high-knees-running

Table 4: 40 action labels from UESTC (Ji et al., 2018).
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A.2 ANNOTATION MANAGEMENT

We recruit 10 annotators for this task, and data entries are randomly allocated to them. We provide
detailed guidelines to annotators. We evaluate the annotation result by spot check. We randomly
select 10% of all data to inspect the annotation results according to guidelines and calculate the
proportion of unqualified data entries. If the unqualified proportion is less than 10%, the results are
considered to be acceptable. All the unqualified data entries will be re-annotated. We will update
the guidelines during annotation based on spot check feedback, and annotators will study the new
guidelines.

A.3 ANNOTATION DESIGN

Figure 7: An example of raw data entry before annotation.

We generate four motions from the same prompt for each data entry, as shown in Fig 7. The prompts
are hidden during the annotation process. Annotators are required to select either the best or the
worst motion for data entries generated by MDM (Tevet et al., 2023) and FLAME (Kim et al.,
2023). MDM (Tevet et al., 2023) exhibits better motion diversity but lacks stability, so annotators
are instructed to select the best motion. Conversely, FLAME (Kim et al., 2023) demonstrates better
stability but lacks diversity, so annotators are instructed to select the worst motion for these entries.

z

whether this data 
entry is valid

valid

invalid

properties

info

duration
time

events

events value

events valid

options

options

speed up
/slow down

Figure 8: Our annotation platform.

A.4 ANNOTATION GUIDANCE DOCUMENTATION

We provide a detailed annotation document to explain the annotation process. The annotation platform
is shown in Fig 8.
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Introduction Each data entry to be annotated consists of four videos, as shown in Fig 7. Each video
is approximately three seconds long, with all four videos playing simultaneously and concatenated
into one video.

Requirements Each set of videos has six options: A, B, C, D, "all are good," and "all are bad."
Annotators should select the most natural and reasonable video for each data entry. If one option
stands out as the best, select that option. If all actions seem equally good or equally bad, choose "all
are good" or "all are bad." Text prompts will be hidden during annotation.

Video Examples We provide annotators with examples if what kinds of motions are unnatural and
unaccepetable:

1. Body pose is unnatural, including hands, feet and so on.
2. Human motion violates physiological constraints.
3. Human motion is erratic or severely stutters.
4. Human body collides, such as hands fully embedded into leg.
5. Human body is severely tilted, to the point of losing balance.
6. Human body appears to be drifting instead of walking.

Examples of these problems are shown in Fig 9.
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Figure 9: Representative examples of options to be excluded.
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B DETAILS ON MOTIONCRITIC : AS MOTION QUALITY METRIC

B.1 IMPLEMENTATION DETAILS

Data Pre-processing. Each multiple-choice question is divided into three ordered preference pairs.
Motion sequences are parameterized using SMPL (Loper et al., 2015), which includes 24 axis-angle
rotations and one global root translation.

Training and Evaluation. We train the critic model from scratch using the DSTformer (Zhu et al.,
2023) backbone with 3 layers and 8 attention heads on MotionPercept. To ensure robustness,
we train our model for multiple times and report the error bars, considering variations such as the
random seed across multiple runs. Evaluation results, detailing action-label splits, are presented in
the following two tables. Our MotionCritic gets the best results and can robustly score different
types of human motions.

Metric Warm. Walk Run Jump Drink Lift. Sit Eat Turn. Phone Box. Throw Avg.

Root AVE 57.6 47.3 56.8 62.7 59.5 46.3 37.9 64.5 54.1 0.62 51.6 53.7 59.5
Root AE 70.1 70.0 69.7 57.2 70.0 49.8 52.5 61.2 63.2 61.7 52.7 55.2 61.8

Joint AVE 42.0 52.2 50.4 64.7 53.2 50.2 42.4 48.6 51.9 55.7 48.4 45.2 56.8
Joint AE 63.6 69.1 75.2 55.7 59.9 41.1 51.4 66.7 59.3 60.6 53.5 54.1 62.7

Acceleration (Yang et al., 2023) 66.7 78.0 61.6 53.0 65.4 62.4 82.6 61.6 51.1 59.3 69.5 61.7 64.3
Person-Ground Contact (Rempe et al., 2021) 69.8 70.1 70.2 66.0 72.8 71.8 90.1 76.9 70.3 67.9 62.6 63.2 71.8
Foot-Floor Penetration (Rempe et al., 2021) 47.1 52.4 52.7 55.7 48.5 56.8 59.9 52.4 50.4 55.7 52.8 53.3 53.6
Physical Foot Contact (Tseng et al., 2023) 80.5 77.8 73.1 51.7 67.5 57.9 78.5 63.4 53.2 65.5 68.6 68.5 64.8

MoBERT (Voas et al., 2023) 67.4 68.4 44.8 37.4 70.0 18.9 43.6 49.9 65.2 25.6 56.1 44.8 49.4

MotionCritic (Ours) 90.6±0.2 94.2±0.4 91.9±0.3 90.6±0.1 83.9±1.3 85.3±0.7 86.0±0.7 78.3±1.4 79.8±0.9 85.1±0.6 86.6±0.4 82.5±0.3 85.1±0.5

Table 5: Accuracy comparison of motion evaluation metrics on HumanAct12 action classes(%).

Metric Warm. Walk Run Jump Drink Lift. Sit Eat Turn. Phone Box. Throw Avg.

Root AVE 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69
Root AE 0.68 0.66 0.67 0.68 0.68 0.69 0.70 0.69 0.69 0.69 0.69 0.69 0.68

Joint AVE 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69
Joint AE 0.68 0.67 0.67 0.69 0.68 0.70 0.70 0.69 0.69 0.68 0.68 0.69 0.68

Acceleration (Yang et al., 2023) 0.70 0.59 0.88 1.5 0.60 0.69 0.60 0.64 0.88 0.71 0.61 0.76 0.78
Person-Ground Contact (Rempe et al., 2021) 0.71 0.68 0.68 0.71 0.69 0.70 0.73 0.68 0.74 0.70 0.73 0.72 0.73
Foot-Floor Penetration (Rempe et al., 2021) 0.70 0.70 0.69 0.70 0.69 0.70 0.71 0.70 0.69 0.70 0.69 0.69 0.69
Physical Foot Contact (Tseng et al., 2023) 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69

MoBERT (Voas et al., 2023) 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.70 0.69 0.69 0.69

MotionCritic (Ours) 0.51±0.01 0.52±0.02 0.50±0.01 0.51±0.02 0.56±0.02 0.54±0.02 0.54±0.02 0.59±0.03 0.59±0.01 0.57±0.01 0.53±0.02 0.55±0.01 0.55±0.02

Table 6: Log-loss comparison of motion evaluation metrics on HumanAct12 action classes.

Dataset Splitting and Model Retraining. MotionPercept training and testing split is randomly
divided in the paper. Here we also investigate into division based on annotator IDs. By adopting
this approach, we ensure that each annotator’s data is used exclusively in one of the sets, preventing
overlap. Subsequently, we retrained and evaluated the model using this revised split. Disalignment
between annotators as shown in Figure 2 results in slight decline of MotionCritic performance.
Results are shown in the following table and align with our initial expectations.

Metric MDM FLAME
Acc. (%) ↑ Log Loss ↓ Acc. (%) ↑ Log Loss ↓

Root AVE 59.22 0.6875 48.42 0.6984
Root AE 62.10 0.6787 59.54 0.6711

Joint AVE 57.01 0.6875 44.61 0.6973
Joint AE 63.17 0.6790 58.37 0.6891

Jerk 66.33 0.7476 65.84 0.5984

Acceleration (Yang et al., 2023) 63.82 0.7641 66.67 0.6919
Person-Ground Contact (Rempe et al., 2021) 68.08 0.6835 69.82 0.7243
Foot-Floor Penetration (Rempe et al., 2021) 51.77 0.6972 55.56 0.6906
Physical Foot Contact (Tseng et al., 2023) 66.52 0.6927 66.00 0.6930

PoseNDF (Tiwari et al., 2022) 56.00 0.6930 53.07 0.6931
NPSS (Gopalakrishnan et al., 2019) 53.48 0.6975 52.07 0.6944

NDMS (Tanke et al., 2021) 62.08 0.6590 63.35 0.6301

MoBERT (Voas et al., 2023) 47.49 0.6933 52.40 0.6932
MotionCritic (Ours) 80.13 0.5402 79.24 0.5927

Table 7: Quantitative comparison of metrics on re-split testsets of MotionPercept.
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Inplementation Details of Other Metrics Here we provide details of the implementation of the
compared metrics. To ensure reproducibility, we will publish the code for all metrics. Overall, we uti-
lized official code and models whenever possible, making only minimal and reasonable modifications
to meet our evaluation needs.

• Root AVE, Root AE, Joint AVE, and Joint AE: These metrics were implemented following
the definitions provided by Voas et al. (2023).

• Acceleration and Jerk: We used the released official implementations and hyperparameters
from Yang et al. (2023) without any modifications. Jerk was derived as the first derivative of
Acceleration.

• Person-Ground Contact and Foot-Floor Penetration: We used the released official
implementations and hyperparameters from Rempe et al. (2021) without any modifications.

• Physical Foot Contact: We followed the approach described in Tseng et al. (2023), with
slight adaptations to rewrite the original NumPy implementation into PyTorch.

• PoseNDF: For each motion sequence, we extracted all frames as poses and calculated
neural distances using the official pretrained models provided by Tiwari et al. (2022). We
implemented two methods: one using the average distances across all frames as the motion
evaluation metric, and the other using the maximum distance among all frames. The latter
performed better and was reported in Table 1.

• NPSS: We used the released official implementations and hyperparameters from Karras et al.
(2019) without any modifications. Motions were matched to corresponding ground-truth
sequences in the HumanACT12 action class, as NPSS is uni-modal and compares motions
to single ground-truth sequences.

• NDMS: We used the released official implementations and hyperparameters from Tanke
et al. (2021) without any modifications. We first transformed axis-angle SMPL into xyz
coordinates and utilized code from official implementation for skeletons.

• MoBERT: We utilized their pretrained model from Voas et al. (2023) and computed the
Naturalness metric, which evaluates the intrinsic plausibility of the motion itself and aligns
with the theme of our work.

This setup ensures that our evaluation metrics are consistent with the official implementations and
provides a clear methodology for reproducibility.

B.2 FAILURE MODES

In addition, we analyze the failure modes of MotionCritic when it is used as a motion quality
metric (Table 8). To do this, we computed the critic score differences for all samples in the test set
(user-annotated better vs. user-annotated worse) and summarized the statistics in the table below:

Metric Mean Std Max Min

All Scores 4.32 3.72 29.82 -11.73
Correct Cases (85.1%) 4.75 3.79 29.82 6.79e-5
Wrong Cases (14.9%) -1.84 1.91 -1.91e-4 -11.73

Table 8: Critic score statistics for all cases, correct cases, and wrong cases.

We note that in correct cases, the critic score differences are larger, indicating higher confidence.
Conversely, in the wrong cases, the score differences are smaller, suggesting that the errors occur
when the model is less confident. We also provide the distributions of critic scores for both correct
and wrong predictions (see Fig. 10). On the left, the vertical axis represents the number of examples
(with wrong cases comprising 14.9% and correct cases 85.1%). On the right, the vertical axis shows
the percentage within the corresponding part.

21



Published as a conference paper at ICLR 2025

Distribution of Critic Scores (Frequency) Distribution of Critic Scores (Percentage)

Figure 10: Distributions of critic scores’ differences for correct and wrong predictions.

It is clear that in cases where the model predicts incorrectly, the majority of the score differences are
very small. For example, 35.10% of the wrong cases have a critic score difference within 0.73 (one
bin), whereas only 8.74% of correct cases fall into the same range. This indicates that many of the
incorrect predictions occur when the critic scores are close, rather than due to large, obvious errors.
In contrast, correct predictions tend to have larger score differences, reflecting higher confidence
from the model. Additionally, some errors occur in particularly challenging examples where even
human annotators struggle to differentiate, and different individuals may make varying judgments.

B.3 SENSITIVITY ANALYSIS

We conducted a preliminary sensitivity analysis by perturbing AMASS ground-truth (GT) motions
with Gaussian noise of various scales. Assuming that GT motions should consistently receive higher
scores than perturbed ones, we evaluated the critic’s ability to distinguish between them.

Robustness. MotionCritic demonstrates robustness in ranking GT motions above perturbed
ones across noise scales, as demonstrated in Figure 11(A). We also observed how the average and
standard deviation of critic scores vary with different noise scales, as demonstrated in Figure 11(B).

Smoothness. By analyzing the 3D relationship between noise scale, critic scores, and perturbed
critic scores, we observed steep score changes near the natural motion distribution, as demon-
strated in Figure 12(B). The interactive version of this 3D visualization is available at https:
//iclrauthors6688.github.io/iclr6688/sensitivity_analysis_3d.html ,
highlighting the critic’s sensitivity outside the natural motion distribution. We also provide a 2D
scatter plot focusing on perturbed-score vs noise-scale, as demonstrated in Figure 12(A).

Non-smooth energy landscape. In summary, we discover that the critic model exhibits a non-
smooth and "bumpy" energy landscape, which serves as a double-edged sword in our framework.
On one hand, this non-smoothness is a desirable property, making the critic highly discriminative
and sensitive to subtle motion perturbations, aligning well with human perceptual abilities. On the
other hand, it introduces challenges to motion optimization. Future work could investigate better
optimization methods, such as leveraging reinforcement learning strategies (Liu et al., 2024), to
mitigate challenges associated with this non-smoothness.

Non-distance measure. Based on the training objective, the Bradley-Terry model, the critic scores
are intended to represent relative preferences rather than absolute distances. Specifically, the scores
indicate whether one motion is judged as superior to another, rather than their distance. Therefore,
it’s worth noticing that the critic score should not be interpreted as a distance function. This design
aligns with the goal of producing a ranking-based evaluation metric rather than a continuous distance
measure.
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Figure 11: Sensitivity analysis results. (A) Accuracy vs noise-scale curve. (B) Average and standard
deviation of critic scores vs noise-scale.

(A): 2D scatter plot of perturbed-score vs noise-scale.
(B): 3D scatter plot of noise scale, critic scores, and
perturbed critic scores.

Figure 12: Sensitivity analysis upon AMASS GT motions. Critic score differences (original - per-
turbed) are demonstrated by colors.

B.4 TEST ON OUT-OF-DISTRIBUTION MOTIONS

We test our method on out-of-diftribution motion dataset apart from HumanACT12 and UESTC.
Specifically, we conduct additional analyses on AMASS using MotionCritic and observed some
interesting findings:

Dataset Mean Std Max Min

AMASS -1.10 4.14 20.77 -18.99
HumanAct12 -2.22 4.68 12.14 -21.96
MDM -2.08 4.65 12.83 -30.65

Table 9: Critic score statistics of the two datasets.

• The critic scores on AMASS are generally higher than those on HumanAct12, which aligns
with our expectations, while the critic score statistics of the two datasets are shown in
Table 9.

• The actions with the lowest scores on AMASS were indeed outliers, often violating physical
constraints such as gravity (mostly due to object interactions that appear unreasonable when
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considering only the motion). At the same time, it was also able to assign relatively high
scores to some previously unseen complex motions.

Current results show that AMASS has higher average scores, maximum scores, and minimum scores
compared to MDM-generated motions, even though some outliers in AMASS significantly lowered
the scores, as discussed above. This suggests that normal motions in AMASS generally outperform
those generated by MDM. Additionally, we conduct a pairwise comparison between MDM-generated
motions and HumanAct12 GT motions, testing both the critic scores and user study results, which are
presented in the table below. HumanAct12 indeed has quality issues , and both the critic score and
users often favored the MDM-generated motions. Furthermore, the critic score continues to align
well with human users’ judgments when comparing these two types of motions, demonstrating its
effectiveness.

Table 10: User study on HumanAct12 GT and MDM-generated motions

Motion Category (12
categories, 10 mo-
tion pairs each)

HumaAct12
Preferred

MDM Pre-
ferred

User Simi-
lar

Humact12
Critic

MDM
Critic

User Dis-
agreement

0 10% 70% 20% 20% 80% 20%
1 30% 40% 30% 30% 70% 20%
2 30% 50% 20% 20% 80% 20%
3 20% 50% 30% 20% 80% 10%
4 0% 80% 20% 10% 90% 0%
5 0% 90% 10% 0% 100% 0%
6 40% 10% 50% 70% 30% 0%
7 0% 90% 10% 10% 90% 0%
8 10% 90% 0% 40% 60% 30%
9 10% 80% 10% 50% 50% 30%
10 0% 60% 40% 10% 90% 0%
11 40% 40% 20% 30% 70% 20%

Overall (120 pairs) 15.83% 62.50% 21.67% 25.83% 74.17% 12.50%

1. HumanAct12 User Preference: This column shows the percentage of cases where users
preferred the HumanAct12 motions over MDM.

2. MDM User Preference: This column shows the percentage of cases where users preferred
the MDM motions over the HumanAct12 motions.

3. User Similar: This column indicates the percentage of cases where users found it difficult
to distinguish between the HumanAct12 and MDM motions.

4. HumanAct12 Critic Score Win: This shows the percentage of cases where the Human-
Act12 motion received a higher critic score.

5. MDM Critic Score Win: This shows the percentage of cases where the MDM motion
received a higher critic score.

6. User Disagreement with Critic Score: This column indicates the percentage of cases
where the user’s choice did not align with the critic score.

These examples demonstrate that MotionCritic is an effective tool for automatically comparing and
evaluating motion quality, whether individually or in bulk. It also helps uncover valuable insights,
further highlighting its utility and potential.

B.5 IMPACT OF SEQUENCE LENGTH, FRAMERATE, AND INTERPOLATION

To further address concerns regarding the impact of sequence length, framerate, and interpolation on
the performance of the MotionCritic model, we conduct a detailed analysis using the AMASS GT
dataset.
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Dataset and Pre-processing. We extracted a total of 6,346 OOD (Out-of-Distribution) motion
examples from the AMASS GT dataset. Among these, 547 examples (approximately 8.62%)
have lengths shorter than 60 frames. We analyzed longer and shorter OOD motions separately
to evaluate the model’s performance under varying conditions. To further assess the robustness of
the MotionCritic model, we generated a pseudo-GT dataset by adding Gaussian noise at different
scales to the motions. We formed better-worse pairs by comparing unnoised and noised versions of
the same motion.

For longer motions, we experimented with three different pre-processing approaches:

1. Unprocessed Motion: The full-length motion was fed directly into the model to obtain
critic scores.

2. Cut-down to 60 Frames: The motion was truncated to 60 frames before being input into
the model, expanding the dataset to a total of 12,011 motions.

3. Uniform Frame Extraction: 60 frames were uniformly extracted from the complete motion,
which was then fed into the model for critic scores.

The results, presented as shown in Figure 13, demonstrate that the Critic model performs optimally
when the motion lengths are 60 frames, consistent with the original dataset.

(A) Short Motion Sequences (B) Long Motion Sequences

Figure 13: Performance of the Critic model across different motion lengths and interpolations.

For shorter motions, two pre-processing approaches were evaluated:

1. Unprocessed Motion: The full-length, short motion was input directly into the model for
critic scores.

2. Interpolation to 60 Frames: The motion was uniformly interpolated to 60 frames before
being input into the model.

The results, also presented as accuracy-noise line plots (on the left, Fig (A)), indicate that the Critic
model can effectively handle shorter sequences with minimal performance loss after interpolation.

The results demonstrate that MotionCritic works best when the motion sequences are 60 frames
in length, consistent with the training dataset, which could be achieved through interpolation or
extraction. The model also exhibits strong performance across variable lengths and framerates, with
only minor reductions in accuracy. This robustness highlights the advantages of the MotionCritic
model.

B.6 ENSEMBLE LEARNING USING DIFFERENT METRICS

To further explore the interrelationship between the different motion quality metrics, we treat the dif-
ferent metrics as features and train a simple classifier to perform binary classification (ensemble learn-
ing). To train the ensemble model, we create a separate train-test split from the MotionPercept
MDM test set. We explore three ensemble approaches to combine the metrics and evaluate the
complementary effects between the heuristics and MotionCritic:
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Metric Accuracy (%)
MotionCritic 85.07
Acceleration 64.26
Jerk 65.48
GroundContact 71.78
PFC 64.79

Table 11: Initial accuracy of metrics on the
MotionPercept MDM test set.

Method Accuracy (%)
Logistic Regression 81.12
SVM 82.49
MLP 85.17
MotionCritic Only 84.96

Table 12: Accuracy of ensemble learning
methods.

1. Logistic Regression. Binary classification using the five normalized features.

2. Support Vector Machine (SVM). Binary classification using the five features across two
motions in a better-worse pair.

3. Multilayer Perceptron (MLP). A simple MLP with one hidden layer of 128 dimensions
was trained using the five features as input, producing a single score to determine better or
worse outcomes. The training objective was based on the Bradley-Terry model, similar to
MotionCritic.

The accuracy of each combined method is presented in Table 12. The results indicate that combining
the metrics does not significantly improve accuracy beyond what MotionCritic alone can achieve,
suggesting that MotionCritic already incorporates much of the heuristic knowledge.

Visualization of Heuristics and MotionCritic Overlap We visualized the overlap between heuris-
tics and MotionCritic on the entire MotionPercept MDM test set using a Venn diagram at Figure 14,
demonstrating a significant overlap in correctly classified pairs. This suggests that when MotionCritic
makes a mistake, other metrics tend to err in the same cases.

Ablation Study in SVM To further understand the contribution of each metric, we conducted
an ablation study using SVM by incrementally adding features in the order of [MotionCritic,
Acceleration, Jerk, GroundContact, PFC]. The results are shown in Table 13.

Features Added Accuracy (%)
MotionCritic 82.49
MotionCritic + Acceleration 82.40
MotionCritic + Acceleration + Jerk 82.45
MotionCritic + Acceleration + Jerk + GroundContact 82.49
All Features 82.49

Table 13: Ablation study results in SVM.

Feature Removal in SVM We also conducted experiments by sequentially removing features
to observe the impact on accuracy, as presented in Table 14. The results indicate that removing
MotionCritic has a substantial negative impact on model performance, while removing other features
has a minimal effect.

Logistic Regression Coefficients The coefficients from the logistic regression model are presented
in Table 15. The positive coefficient for MotionCritic indicates that higher values are associated
with better outcomes, while the negative coefficients for other metrics suggest that lower values are
preferable.

SHAP Values Visualization We visualized the SHAP (SHapley Additive exPlanations) values,
which provide insights into the contribution of each feature to the model’s predictions (see Figure 14).
The figures show the SHAP values for the five metrics tested on a series of samples from our test
set, evaluated with the MLP ensemble model. Across these samples, the SHAP values for the
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Feature Removed Accuracy (%)
MotionCritic 66.52
Acceleration 82.49
Jerk 82.40
GroundContact 82.40
PFC 82.49

Table 14: Accuracy after feature removal in SVM.

Feature Coefficient
MotionCritic 2.49
Acceleration -0.61
Jerk -0.33
GroundContact -0.39
PFC -0.07

Table 15: Logistic regression coefficients.

MotionCritic feature generally have the largest absolute values, indicating that the critic score is
the most important feature. Additionally, when the critic score is high, its SHAP value is positive,
suggesting a positive correlation between the critic score and motion quality, which aligns with
expectations.

Critic
Accel

1584                                                                       429

3294

Total: 5823

57
19 2

GroundContact

Others: 438

(A) Metrics Prediction Venn Diagram (B) Metrics SHAP Values

Figure 14: Metrics’ venn fiagram and SHAP values.

The experimental results demonstrate that MotionCritic effectively captures the essential
knowledge provided by the heuristics. Attempts to further enhance accuracy by combining
MotionCritic with other heuristics yield marginal improvements, underscoring the robustness of
MotionCritic in this context.
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C DETAILS ON MOTIONCRITIC : AS TRAINING SUPERVISION

C.1 FINE-TUNING

Critic Score Clipping. Generally, a higher MotionCritic score indicates better motion quality.
However, this relationship has an upper limit. During our fine-tuning process, we clip motions with
reward scores exceeding a threshold τ when computing gradients before back-propagation. This
threshold, determined through a series of comparative experiments, is set at τ = 12.0, approximately
the upper bound of ground-truth critic scores. We found that this setting yields the best results.
Fine-tuned motion generation models without reward clipping tend to artificially inflate reward scores
on a few specific motions, which increases the average MotionCritic score but degrades overall
performance. Thus, reward clipping is essential to maintain the integrity and quality of the fine-tuning
process.

Finetuning Details. Inspired by ImageReward(Xu et al., 2024), we observe how the critic score
changes over denoising steps to identify the optimal time window for ReFL intercept. As shown in
Figure 15(A), we set the hyperparameter step sampling range to [T1, T2] = [700, 900], where the
critic score witnesses a rapid increase. The full fine-tuning curve, provided in Figure 15(C), demon-
strates that the critic output improves rapidly during the early stages of fine-tuning and stabilizes after
a certain point.

In addition, another discussion by Clark et al. (2024) proposed DRaFT-LV, employing single-step
gradient backpropagation, observed to be the most efficient. To evaluate the impact of alternative
step sampling strategies, we conducted experiments comparing our current setup with DRaFT-LV’s
methodology. The results, detailed in Figure 15(C), show that single-step refinement can indeed
improve fine-tuning efficiency, consistent with existing findings.
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Figure 15: Fine-tuning process. (A): Critic score in 1000-step denoising process. (B): Critic output
in 800-step fine-tuning process. (C): Full finetuning process of our strategy based on ReFL (Xu et al.,
2024) and 1-step back-propagation based on DRaFT-LV (Clark et al., 2024).

C.2 FINETUNED RESULTS

Improved Critic Score. As shown in Figure 16, the critic score increases after MotionCritic
supervised fine-tuning. This scatter plot collects all data points from the test set, with the critic score
of motions before fine-tuning on the x-axis and the critic score of the corresponding motions after
fine-tuning on the y-axis. As demonstrated in Figure 16(A), we first compare results with and without
critic model supervision. In the latter case, the original MDM loss is used for continued training
without our MotionCritic-based plug-and-play module. The scatter plot clearly indicates that
the results with critic model supervised fine-tuning achieve significantly higher scores. The second
experiment in Figure 16(B) examines different fine-tuning steps using 800 steps from the first set as a
baseline. The results demonstrate that critic model supervised fine-tuning consistently improves the
critic score throughout the fine-tuning process.
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Figure 16: Visualization of critic scores on fine-tuning experiments. (A): Fine-tuning 400 steps
with and without MotionCritic supervision compared. (B): Fine-tuning with 400 and 800 steps
compared.

Improved Motion Quality. We conduct an independent user study to compare motion pairs
generated at various fine-tuning stages and calculate the Elo Rating (Elo, 1978; Tseng et al., 2023).
Figure 17 demonstrates that the quality of motions consistently enhance as fine-tuning advances, as
indicated by the user study. This improvement aligns with the training objective of elevating the critic
score.
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Figure 17: Results from fine-tuning process. (A): Elo ratings and Critic scores. (B): FID, PFC(Tseng
et al., 2023), Multimodality and Critic scores.

We further inspect the change of different metrics during the fine-tuning process in Figure 17(B)
and Table 2. PFC (Tseng et al., 2023) and FID are expected to be negatively correlated with motion
quality (the smaller, the better), and MotionCritic and multimodality are expected to be positively
correlated (the greater, the better). The results indicate that existing motion quality metrics (e.g. FID,
PFC) do not adequately reflect human preference, as they poorly correlate with Elo ratings from user
studies. Meanwhile, improving the critic score does not necessarily conflict with the multimodality
metric, which models the diversity of generated motions.

29



Published as a conference paper at ICLR 2025

D DETAILS ON USER STUDIES

D.1 ANNOTATION DETAILS

The annotators of MotionPercept are recruited by an annotation company and are ordinary adults
(5 men and 5 women). Previous psychological research has shown that the ability to perceive and
discern biological motion is universal and consistent, with a neural basis (Johansson, 1973), and
does not rely on specific training or professional background. This finding is also consistent with
what we observed in Figure 2. As for potential biases, while some degree of annotator bias may exist
(as with any human-annotated dataset), we believe it is minor and manageable, as indicated by our
analysis in Section 3. Overall, we consider the opinions of the annotators to be representative.

D.2 STAND-ALONE USER STUDIES

Details. We conduct user studies on GT subsets grouped from HumanAct12 (Guo et al., 2020) and
motions generated during finetune steps as discussed in the main text. Our user study platform is
shown in Fig 18. In user study, one motion pair of two motions are played simultaneously, with their
critic scores and text prompts being hidden. Annotators should choose the better motion or choose
"Almost the Same" if they can’t make a decision. We perform user study on 5 different finetune steps
and 5 GT batches grouped from HumanAct12 (Guo et al., 2020).

Different annotators. For the stand-alone user study, we did not use large-scale annotators from
the annotation company. Instead, we recruit new volunteers through a campus announcement who
performed pairwise comparisons of two motions, selecting the better one. The five volunteers are
students from two different universities with backgrounds in computer science, engineering, arts, and
history. During this process, they do not see any additional information such as scores or text. We
ensure that they receive reasonable compensation for their time and effort. We then calculate the
Elo Rating based on their results. The annotation interface and rating formulas can be found in this
section as well.

Figure 18: The interface of our user study platform.
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D.3 RATING FORMULAS

Win-rates. After annotation, we calculate win-rates of subsets pairs. In user study, each subset has
the same amount of motions. Given subsets pair (A,B), win-rates shows the percentage of motion
pairs where motion of subset A win over motion of subset B in naturalness. Then we paint heatmaps
of all subsets with their win rates. Since the result of one match maybe tie, the sum of win-rates of
two subsets in a pair and data in symmetric positions of heatmap might be less than 1.

Elo Rating (Elo, 1978; Tseng et al., 2023) After annotation, we calculate elo rating of each subsets
as follows:
Suggest RA, RB are the initial ratings of two compared subsets A and B. The expectated win rate of
subset9s A and B, denoting as EA, EB can be calculated as follows:

EA =
1

1 + 10(RB−RA)/400
(7)

EB =
1

1 + 10(RA−RB)/400
(8)

The new ratings of subsets A and B are:

R
′

A = RA +K(SA − EA) (9)

R
′

B = RB +K(SB − EB) (10)

where K is rating coefficient, we choose 32; and S is real score, which is 1 for winner, 0 for loser and
0.5 if the result is a tie. We set the initial rating of each subset as 1500.
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