Under Review - Extended Abstract Track 1-17, 2024 Symmetry and Geometry in Neural Representations

Leveraging Symmetry to Accelerate Learning of Trajectory
Tracking Controllers for Free-Flying Robotic Systems
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Abstract

Tracking controllers enable robotic systems to accurately follow planned reference trajec-
tories. In particular, reinforcement learning (RL) has shown promise in the synthesis of
controllers for systems with complex dynamics and modest online compute budgets. How-
ever, the poor sample efficiency of RL and the challenges of reward design make training
slow and sometimes unstable, especially for high-dimensional systems. In this work, we
leverage the inherent Lie group symmetries of robotic systems with a floating base to mit-
igate these challenges when learning tracking controllers. We model a general tracking
problem as a Markov decision process (MDP) that captures the evolution of both the phys-
ical and reference states. Next, we show that symmetry in the underlying dynamics and
running costs leads to an MDP homomorphism, a mapping that allows a policy trained
on a lower-dimensional “quotient” MDP to be lifted to an optimal tracking controller for
the original system. We compare this symmetry-informed approach to an unstructured
baseline, using Proximal Policy Optimization (PPO) to learn tracking controllers for three
systems: the Particle (a forced point mass), the Astrobee (a fully-actuated space robot),
and the Quadrotor (an underactuated system). Results show that a symmetry-aware ap-
proach accelerates training and reduces tracking error after the same training duration.
Keywords: MDP Homomorphisms, Reinforcement Learning, Lie groups, Equivariance,
Robotics, Trajectory tracking

1. Introduction

To achieve real-time operation, most robotic systems utilize a “tracking controller” to sta-
bilize a pre-planned reference trajectory. However, tracking controllers designed analyt-
ically often assume properties not enjoyed by all robotic systems (e.g., “full actuation”
[3, 12, 27] or “differential flatness” [4]), while optimization-based methods frequently rely
on linearization or simplified models to meet compute constraints [16]. In contrast, con-
trollers trained via reinforcement learning (RL) have relaxed structural assumptions while
enabling real-time operation with moderate resources [9]. In [14], the authors train a single
hovering policy for deployment across a range of quadrotors, generalizing satisfactorily to
moving references. Meanwhile, massively parallel training of quadrupedal walking policies
from high-dimensional observations enabled startling robustness to uneven terrain [22], and
learned controllers augmented with adaptive feedforward compensation have been shown to
reject large disturbances [8]. Unfortunately, all these benefits come at a price: RL tends to
scale poorly with the size of the given Markov decision process (MDP), making it challenging
to perform the exploration needed to discover high-performance policies.
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Exploiting Symmetry in Reinforcement Learning To mitigate this burden, an RL
agent should share experience across all those states that can be considered “equivalent”
with respect to the reward and dynamics. Indeed, robotic systems enjoy substantial sym-
metry [15, 18, 17], which has been thoroughly exploited in analytical control design [7, 28, 6]
and optimization [24]. In fact, many learned controllers have leveraged symmetry in an ad
hoc or approximate manner (e.g., penalizing the error between actual and reference states
[14] or working in the body frame [8]). More formally, the optimal policy of an MDP with
symmetry is equivariant (and its value function is invariant) [26], and neural architectures
can be designed accordingly to improve sample efficiency and generalization [25].

Homomorphisms of Markov Decision Processes Instead of incorporating symmetry
into the network architecture directly, Ravindran [20] proposed “MDP homomorphisms”,
which establish a mapping from the given MDP to one of lower dimension. There, a policy
may be trained more easily (using standard tools) and then lifted back to the original setting.
Such methods were originally restricted to discrete state and action spaces, necessitating
coarse discretization of robotic tasks (which are naturally described on smooth manifolds).
[29] explored related ideas in continuous state and action spaces, but assumed deterministic
dynamics (whereas stochasticity is fundamental to many tasks). However, Panangaden et al.
[19] recently extended the theory of homomorphisms of stochastic MDPs to the continuous
setting, recovering analogous value equivalence and policy lifting results.

Our Contributions In this work, we exploit the Lie group symmetries of free-flying
robotic systems to learn tracking controllers efficiently. We cast a general tracking control
problem as a continuous MDP, using a stochastic process to model the (a priori unknown)
reference trajectory. We show that this MDP inherits the symmetry enjoyed by the under-
lying dynamics and running costs, and prove a theorem showing that such symmetries can
be used to construct an MDP homomorphism, reducing the dimensionality. (Due to space
constraints, these rigorous mathematical arguments are relegated to the appendices.) We
use these theoretical tools to learn tracking controllers for three example systems, show-
ing that our symmetry-informed approach accelerates training, improves tracking accuracy,
and generalizes zero-shot to new trajectories. Ultimately, these insights will facilitate the
efficient development of accurate tracking controllers for various robotic systems.

2. Symmetry-Aware Methods for Learning Tracking Controllers
This section summarizes our approach. A detailed treatment is found in the appendices.

Tracking Control as a Markov Decision Process We formalize the tracking control
problem for a physical system with dynamics x¢y1 ~ f(- |z, ur) (where x € X and u € U)
as the continuous MDP My = (S=X x X xU, A =U, R, 1,7), where the MDP state is
the concatenation of the actual state x, the reference state x4, and the reference action
ud. The reward R((z,29,ud),u) := —Jx (2, 29) — Jy(u,u?) incorporates tracking and ef-
fort costs Jx and Jy, and states evolves as zy41 ~ f(- |z, ue), 2fq ~ f(- ]2, u), and
ul | ~ p, where p € A(U) is a stationary distribution. (See Defs. 6 and 7 in App. C). This
allows us to model a tracking control problem over a broad class of reference trajectories
as a single stationary MDP. We could alternately formulate a (non-stationary) MDP cor-
responding to a particular reference trajectory (by making the tracking cost a function of
time ¢ and the actual state x), but an optimal policy for that MDP would be useless for
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tracking other references, and the reference trajectory may differ between train-time and
test-time. We show empirically (see Fig. 2) that policies trained on the proposed MDP
also effectively track pre-planned reference trajectories, for which the sequence of reference
actions {ug,uf,ud,---} is chosen to induce a pre-selected state trajectory {zg,z{, 29, - }.

Symmetries of Tracking Control MDPs We prove (see Thm. 8 in App. C) that
a tracking control MDP induced by dynamics and running costs with certain Lie group
symmetries inherits a symmetry of its own, with certain nice properties. Moreover, we
prove (see Thm. 5 in App. B) that a Lie group symmetry of this flavor can be used to
construct a continuous MDP homomorphism in the sense of Panangaden et al. [19] (see
App. A), who showed that such a homomorphism enables optimal policies for a “reduced”
MDP of smaller dimension to be “lifted” to optimal policies for the original MDP. They also
learned approximate homomorphisms from data, but did not give a sufficient condition to
construct a nicely-behaved homomorphism (i.e., for which the new state and action spaces
are also smooth manifolds) from a continuous symmetry known a priori (as is the case
for free-flying robotic systems). Since the random sampling of u9 makes My stochastic
(even when f is deterministic), we develop our method in the continuous, stochastic setting
(although related results are known in the discrete [20] and deterministic [29] settings).

Application to Free-Flying Robotic Systems We apply the method to reduce the
tracking MDP for three example systems, the Particle, the Quadrotor, and the Astrobee.
Here, we briefly describe the Astrobee system (see App. D for a thorough presentation
of all three systems). This space robot [2] has state x = (¢,£) in X = SE(3) x RS (i.e.,
the pose g and the twist & = (w,v)) and the action u = (, f) in U = RO (i.e., the applied
wrench). The system dynamics are defined by

Qi1 =qexp(§dt), v =ve+Efidt,  wi =wp I (e —w x Jwg)dt, (1)

where *: R — s¢(3) and r and R are the R3 and SO(3) components of ¢, and the running
costs (given in App. D.3) depend only on r —rd, RTRY, and ¢ —¢4. Tt is well-known [18] and
easily verified that this system has SF/(3) symmetry, which can be described by the group
action Vg (q, &) := (kq,&). Using Theorem 8 to derive a symmetry of M, we apply Theorem
5 to obtain an MDP homomorphism (p, k), where h, = id for all s = (q,¢,¢%, ¢4, ud) € S,
and p(s) := (q_lqd,f,gd,ud). Hence, Theorem 3 in App. A (due to Panangaden et al. [19])
implies that there exists an optimal policy that observes only the error between the actual
and reference poses, instead of observing these absolute poses directly.

Numerical Experiments Environments were implemented for the tracking control MDP
of each system, written in jax [1] for performance (see App. D.1-D.3 and open-source code
for details). To implement environments for the quotient MDP arising from reduction by
a symmetry group, we modify each environment’s observation to the reduced state given
in (43), (53), and (59) (whereas the baseline sees the full-state observation (z,z9,u%)). We
also modify the actions according to the definition of A. For the Particle environment, we
isolate the effects of reduction by different subgroups of the symmetry by also implementing
environments reduced by translational symmetry alone (i.e., p(s) := (r — r4,v,v4, ud)) and
by translational and velocity symmetry alone (i.e., p(s) := (r — rd, v — v, ud)). We use a
custom implementation of PPO [23] (see code for details), with the same hyperparameters



across all variants of each environment. During training, the reference actions are sampled
from a stationary distribution (as in Def. 7), but we evaluate zero-shot on pre-planned
(dynamically feasible) reference trajectories. Fig. 2 and Table 1 report total reward (during
training) and average tracking error (during evaluation) after randomizing the initial state.
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Figure 1: (a) Plots on the left depict the reward during training and tracking error components during evaluation
for the Astrobee with translational errors as solid lines and rotational errors as dashed lines. (b) Table on the right
depicts the comparison of RMS tracking errors on pre-planned trajectories. The mean and standard deviation are
calculated over n = 20 training seeds of the policy’s RMS tracking error, on a dataset of m = 20 trajectories.

3. Discussion

Benefits of Exploiting Symmetry Fig. 2 in App. E shows a clear trend across the
board: greater symmetry exploitation leads to improved sample efficiency. The tracking
error evaluation shown in Table 1 and Fig. 2 follows a similar trend. For the Particle,
the vast majority of this benefit is achieved by reduction of the translational symmetry,
although incorporating the velocity and force symmetries yields modest additional gains.
This seems consistent with the large improvement we see for the Astrobee and Quadrotor
after reduction by (a subgroup of) SE(3). Careful reward engineering or hyperparameter
tuning might improve performance (especially for the baselines that currently fail to learn
effectively), but we instead focus on analyzing the benefit of exploiting symmetry for a
fixed reward. Nonetheless, any reward depending only on the reduced state § = p(s) would
preserve the symmetry.

Limitations Our approach assumes that at deployment, an upstream planner provides
dynamically feasible reference trajectories. For the (underactuated) Quadrotor, these tra-
jectories were planned using differential flatness [13] from Lissajous curves in the flat space.
However, in theory any other method (e.g., direct collocation [10]) could be used to generate
a suitable reference. We expect our policies to generalize well to a wide range of upstream
planning methodologies, and future work should explore this hypothesis. Going forward,
we also hope to apply these methods to new robot morphologies that are too complex for
real-time numerical optimal control or for which no explicit analytical controllers are known.

4. Conclusion

In this work, we exploit the natural Lie group symmetries of free-flying robotic systems
to mitigate the challenges of learning trajectory tracking controllers. We formulate the
tracking problem as a single stationary MDP, proving that the underlying symmetries of
the dynamics and running costs permit the reduction of this MDP to a lower-dimensional
problem. When learning tracking controllers for space and aerial robots, training is acceler-
ated and tracking error is reduced after the same number of training steps. We believe our
theoretical framework provides valuable insight into more optimal use of RL for systems
with symmetry in robotics applications.
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Appendix A. Continuous Markov Decision Processes

In this appendix, we review background and preliminary notions regarding Markov decision
processes with continuous state and action spaces and homomorphisms between them. We
follow the treatment of Panangaden et al. [19], who (along with Rezaei-Shoshtari et al. [21])
extended the work of Ravindran [20] to study homomorphisms of Markov decision processes
with continuous (i.e., not discrete) state and action spaces.

Definition 1 (see [19]) A continuous Markov decision process' (briefly, an MDP) is a
tuple M = (S, A, R, 7,7), where:

e the state space S is a smooth manifold,

e the action space A is a smooth manifold,

e the instantaneous reward is R: S x A — R,

e the transition dynamics are 7: S x A — A(S), and

e the discount factor 7 is a value in the interval [0, 1).

After taking action a; from state s;, the probability that s;y1 is contained in a set B € B(S)
is given by 7(B | st,at). A policy for M is a map 7 : S — A(A). The action-value function
Q™ :S x A— R of a given policy 7 is defined by

Q" (s,a) = TIEW [Z’th(st,at) ’ S0 = 8,a9 = a] , (2)

t=0

1. The more general definition of Panangaden et al. [19] does not assume S and A are smooth manifolds,
nor that 7(-|s,a) is a Borel measure, but the present level of generality is all we need.



where 7 ~ 7 denotes the expectation over both the transitions and the policy (i.e., s¢+1 ~
T(-|s¢,a¢) and ap ~ w(-|s¢) for all ¢ € N). A policy 7* is optimal if, for all s € S,

m* = argmax E [Z’th(st,at) ‘ s = s] . (3)

s T~

t=0

A.1. Homomorphisms of Markov Decision Processes

The following notion describes a powerful relationship between two continuous MDPs M
and M of (perhaps) different dimensions.

Definition 2 (see Panangaden et al. [19, Defs. 11 and 14]) A pair of mapsp:S — S
and h: S x A — A is called a continuous MDP homomorphism from M = (S, A, R, 7,7)
to M = (5’, JZ, é, T,7) if p and, for each s € S, the map hs: a v h(s,a) are measurable,
surjective maps, such that

R(s,a) = fi(p(s), h(s,a)), (4a)
m(pY(B)|s,a) = F(B|p(s), h(s,a)) (4Db)

for all s€ S, ae A, and Be B(§) Given a continuous MDP homomorphism (p,h), a
policy m for M, and a policy 7 for M, m is called a lift of 7 if for all s € S and A € B(A),

m(hy ' (A)]s) =7 (A p(s)). (5)

Subsequently, we often omit the word “continuous” for brevity. MDP homomorphisms
facilitate the synthesis of an optimal policy for the original MDP M from an optimal policy
for the “quotient” MDP M, via the following theorem.

Theorem 3 (see Panangaden et al. [19, Thms. 12 and 16]) Suppose (p, h) is an MDP
homomorphism from M to M and 7 is a lift of any policy ™ for M. Then, Q™ (s,a) =
QF (p(s), h(s,a)). Moreover, if T is optimal for M, then 7 is optimal for M.

Appendix B. Continuous MDPs with Lie Group Symmetries

In this appendix, we present a theorem which uses a certain kind of Lie group symmetry of
a continuous MDP to construct a continuous MDP homomorphism, reducing the dimension
of the state space by that of the symmetry group.

We first recall the basics of group actions. A (left) group action of a Lie group G on
a smooth manifold & is a smooth map ® : G x X — X' (often written ®4(z) := ®(g,x) for
brevity) such that for all x € X and g,h € G, ®(1g,z) = = (where 1g € G is the identity)
and ®(g,®(h,z)) = ®(gh,z). The ®-orbit of x is the set Pg(z) := {Py(x) : g € G}, while
X /G is a set whose elements are all the orbits of ®. An action ® is proper if the map
(g,2) — ((I)g($), :U) is proper (i.e., the preimage of any compact set is compact), and free if
®4(x) = x implies g = 1g. A group G acts on itself via L : (h,g) — hg.
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B.1. Lie Group Symmetries of Markov Decision Processes

We now formulate the following definition of a Lie group symmetry of a continuous MDP,
which differs from some prior literature.

Definition 4 Given an MDP M = (S, A, R, 7,7), a pair of actions (P, V) of the Lie group
G on S and A respectively is called a Lie group symmetry of M if, for all ®-invariant sets
BeB(S)and alls€ S, a€ A, and g € G, we have

R(s,a) = R(P4(s), ¥y(a)), (6a)
T(B | s, a) = T(B | Py(s), \I'g(a)). (6b)

The qualifier “®-invariant” on B broadens the class of symmetries considered, and this
is more general than [26] and [25], as noted in [30, Def. 35]. The deterministic case (i.e.,
when 7( - | s¢, a;) is the Dirac measure corresponding to {s;41} C S) gives the intuition, since
then (6b) requires the image of any orbit in & x A to lie within some orbit in S, without
enforcing equivariance within each orbit.

B.2. Continuous MDP Homomorphisms Induced by Lie Group Symmetries

The following theorem shows that Lie group symmetries with certain properties can be used
to construct a continuous MDP homomorphism and to lift “downstairs” policies. Related
results are known in the discrete [20] and deterministic [29] settings, and [19] learned data-
driven approximate homomorphisms for systems with similar properties, we do not know
of a prior result for Lie group symmetries known a priori for a continuous MDP.

Theorem 5 Consider an MDP M = (S, A, R, 7,v) with a Lie group symmetry (®, V).
Suppose that ® is free and proper and X : S — G is any® equivariant map. Define

p:S—8/G, s Dg(s), (7a)
h:SxA— A, (s,a) = Vyg-1(a). (7b)

Then, (p, h) is an MDP homomorphism from M to M= (52 S/9, A= A, E,?, ’y), where
R(§7 El) = R(S, \P)\(s) (d)) ‘ sep~1(3)» (83)
?<B ‘ 8, CNL) = T(p_l(B> ’ S, \Ij)\(s) (d)) ‘ sep~1(3) (Sb)

independent of the particular choice of s. Also, for any policy 7 for Mv, a policy for M that
is a lift of T is given by
(M)T(A]5) =T (¥a)-1(4) |p(s))- (9)

Proof Because @ is free and proper, §/G is a smooth manifold of dimension dim § —dim G
[11, Thm. 21.10]. We first verify that R and 7 are well-defined (i.e., their values do not

2. Since A need not be continuous, it can be constructed from a collection of local trivializations of the
principal G-bundle p: § — S/G [5, §9.9].



depend on the particular choice of s € p~1(3)). Since p maps states to ®-orbits, for any
51,82 € p~1(8), there exists some g € G such that s; = ®4(s2). Thus, following (8a),

R(3,a) = R(s1, ¥ y(s,)(@)) (10)
= R(©9(82)7 lI/g)\(SQ)(&)) (11)
= R(S% \Il/\(SQ)(a)) - R(§7d)’ (12)

where (11) follows from the equivariance of A and the invariance of the reward. Similarly,
from (8b), we compute

F(B|5,a)=1(p " (B) |51, Ury) (@) (13)
=7(p7HB) | Bg(s2), Uyn(ss) (@) (14)
=7(p 1 (B) |52, Up(s) (@) = F(B|5,a), (15)

where (15) follows from (6b), since for any B € B(S), the Borel set p~!(B) € B(S) is ®-
invariant. We now verify the MDP homomorphism. Since for each g € G, the map ¥, is
a diffeomorphism, hg is measurable and surjective for each s € §. On the other hand, p is
surjective by construction and measurable because orbits of proper actions are closed [11,
Cor. 21.8]. Since s € p~*(p(s)), we have

é(p(s), h(s, a)) = R(S, W) © \Il/\(s)_l(a)) = R(s,a),

hence (4a) holds. We verify (4b) similarly, since by (8b),

F(B|p(s), h(s,a)) = T(p~H(B) | 5, Ur(e) 0 Ur(ey-1(a)) (16)
= T(p_l(é) ] s,a). (17)

Thus, (p,h) is an MDP homomorphism from M to M. Finally, to sce that (7)1 is a lift of
T, we compute

(@) (11 (A)]5) = (@) (Ta(A) | 5) (18)

= 7 (Uy 01 0 Upe)(A) [p(s)) (19)

=7(Alp(s)), (20)

where (18) and (19) follow directly from (7b) and (9), and the fact that ¥, is a diffeomor-
phism for all g € G. [ |

Appendix C. Tracking Control Problems with Lie Group Symmetries

In this appendix, we formulate a general trajectory tracking problem as an MDP that models
the evolution of both the physical and reference systems. We give a sufficient condition for
this MDP to have a Lie group symmetry that can be used to reduce the problem size.

Definition 6 A tracking control problem is a tuple T = (X, U, f, Jx, Ju, p,7), where:

10
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X is the physical state space (a smooth manifold),

U is the physical action space (a smooth manifold),

f:X xU — A(X) is the the physical dynamics, i.e., zi41 ~ f(- |z, ue),
Jy : X x X = R is the tracking cost,

Jy iU xU — R is the effort cost,

p € A(U) is the reference action distribution, and

v € [0,1) is the discount factor.

The distribution p is not usually included in the definition of a tracking problem, but it
will play an essential role in our approach.

C.1. Modeling a Tracking Control Problem as an MDP

We model the tracking task for a priori unknown references in the following manner.

Definition 7 A given tracking control problem T = (X,Z/{, fJdx, Ju, p,’y) induces a track-
ing control MDP given by M7= (S=X x X xU,A=U,R,T,7), where:
e the state is (x, x4, ud), where z, x4 € X are the actual and reference states and ud € U
is the reference action,

e the actions are a =u € U (i.e., the actual action),

e the instantaneous reward R : S x A — R is given by
R(($7$d>ud)au) = _JX(x7$d) - JZ//(ua ud)7 (21)
e and the transitions T : S X A — A(S) are defined by

Tt41 ~ f( : ’xta ut)v x?—i—l ~ f( ’ |m?,u?), u?—i—l ~ p- (22)

C.2. Symmetries of Tracking Control MDPs

In this section, we will show that the MDP induced by a tracking control problem with
certain symmetries will inherit a related symmetry with certain convenient properties.
We now prove the primary result.

Theorem 8 Consider a tracking control problem T = (X, U, f, Jx, Ju, p,7y) as well as Lie
group actions T : K X X - X and © : H X U — U. Suppose that Jx is T-invariant and Jy
is ©-invariant, i.e., for all z,24 € X, u,ud €U, k € K, and h € H, we have

Jy(z,2%) = Jy (Th(z), Tk(ﬂfd)), Ju(u, ud) = Ju(@h(u),@h(ud)). (23)

Suppose also that for each (k,h) € K x H, there exists k' € IC such that for all (z,u) € X xU
and B € B(X), we have

F(Cw(B) |2, u) = f(B| Tr(z), ¥s(u)). (24)
Define actions of the direct product G =K XH on S =X x X xU and A=U given by
D1y (2%, u) = (Ti(2), (), On(u?)), W p(w) = Op(u). (25)

Then, (®,V) is a Lie group symmetry of My . Moreover, if T and © are free and proper,
then ® s also free and proper.

11



Proof From (21), we compute the transformed reward as
R(®(so ) (3), Uiy () = —Ja (Ti(@), Yi(z?)) — Ju (On(u), On(u?)) (26)
= _JX(xvxd) - Ju(”u,?ud) = R(S7a)7 (27)
where we have substituted in (25) and simplified using (23). Thus, (6a) holds. Considering
now the transitions, we note that (22) can also be written using the “product measure” as
T( ’ | (‘T’Id)ud)vu) = f( |3§‘,U) X f("xd7ud) X p. (28)
We then apply (25) to (28) to compute

T( @y (8), Yny(a) = F(- | L), On(w) x f(- | Tu(z?),0nu?)) xp  (29)
= F(Cw()au) < f(Te()]2%u) < p, (30)

where (30) follows from (24). Considering any ®-invariant B € B(S), we note that B = ® -1 1,y(B),

and compute

T(BI (k) (8): Uy (@) = T(Rur=1,1,) (B) | @1y (5), ¥y (@) (31)
= (f(-1zu) x f(-|2%u) x p)(B) = 7(B|s,a), (32)
where (32) follows directly from (30) and (25). Thus, (6b) holds as well, and (®, V) is a
Lie group symmetry of My. Assuming that T and © are free and proper, it is readily

verified that @ is free and proper after noting that ® is the product action of I and © (i.e.,
D(ip) = L'k X Oy), where I is the diagonal action of T (i.e., T'y = Ty x Ty). [ ]

Note that because we do not assume that ¥’ = k, (24) is more general than equivariance
of the transitions. However, &’ must depend only on k and h, and not on z and u.

Appendix D. Application to Free-Flying Robotic Systems

In this appendix, we apply the proposed method to three example systems, showing a
detailed worked example for a simple, pedagogical system and summarizing the method as
applied to two realistic free-flying robotic systems.

D.1. The Particle System

Consider a particle in R3 with mass m subject to a controlled external force (sometimes
used as a reduced-order model for a quadrotor or rocket as in, e.g., Huang et al. [8]). The
state z = (r,v) € X = TR? ~ R3 x R? consists of the particle’s position and velocity, and
the control input is the applied force u € U = R3. The (deterministic) equations of motion,
when discretized with timestep dt, are given by

i1 =T+ vedt, v = v+ %ut dt, (33)
so the transition probabilities f : TR? x R3 — A(TR?) are

1, (r—l—vdt,v—i—%udt) € B,

. (34)
0, otherwise.

f(B|z,u) = {

12



LEVERAGING SYMMETRY TO LEARN TRACKING CONTROLLERS

For some ¢;, ¢y, ¢, > 0, we define the running costs

JT]R3 ((Tv 'U), (rdv Ud)) = Oé(?"‘ - rd) + CUHU - vdHa (353‘)
Jgs (u, ud) == ey |lu — udl], (35b)
where a(y) := ¢ ||y|| + tanh(a,||y||) — 1. Selecting a covariance ¥ and a discount factor

0 < v < 1, we define the tracking problem 7 = (TR3 R3, f, Jrgs, Jgs, N(0,%),7).
Following (28), the dynamics of My for Particle can be expressed as

Tyl =71+ oedt, v = v+ %ut dt, (36a)
rfﬂ = 7“? + v? dt, vth = vf + %u? dt, (36b)
U?+1 ~ N(07 2)7 (360)

where ((r,v), (r4,v%),u?) € S = TR? x TR3 x R? and u € A = R3. From (21), the reward
is given by
R(s,a) = —a(r — 1Y) — ¢yl — 03 = euflu — ud). (37)

Considering the Lie groups K := TR? (with the group operation inherited from its identi-
fication with R? x R3) and H := R3, we let an K-action on S = TR? and an H-action on
A = R3 be given by the left action of the groups on themselves, i.e.,

T(r,v) == L(k1,k2)(r7 v) = (r+ ki, v+ k), (38a)
On(u) == Ly(u) = u+h, (38b)

which are free and proper. It is clear that the tracking and effort costs (35) are invariant
to these actions, i.e., (23) holds. Moreover, for any B € B(TR?),

F(BITh(a), 04() = F(BI -+ ki, v+ ko), ut )
<r+kz1+(v+kz)dt> B

= v+ke+ E(f+h)dt (39)
0, otherwise.
= f(Tk/(B) |x,u), ]{2/ = —(k‘l, ]{22) - (kg, %h) dt. (40)

Thus, the transitions satisfy (24). In the manner of (25), the group actions (38) induce
actions of G = K x H = TR3 x R3 on S and A, given by

D py(s) = (r,v,rd, vd,ud) + (k1, ko, k1, ko, h), (41a)
W (a) == u + h. (41Db)

Thus, by Theorem 8, (®, ¥) is a Lie group symmetry of M for the Particle, and moreover,
® is free and proper. Using the symmetry (41), we will construct an MDP homomorphism
using Theorem 5. We first define

)\((r,v), (rd,vd),ud) = ((rd,vd),ud), (42)
p((r,v), (rd, vd),ud) = (r— rd oy — vd). (43)

13



It is easily verified that A is equivariant and p maps each state s to its ®-orbit. We now define
a quotient MDP M7 as described in Theorem 5. The state of My is § = (r¢,v°) € S = S/G
~ TR3 and the actions are @ = u® € A = R3. From (7b) and (42),

h(s,a) =W (_,a_ya_yay(u) =u—ud. (44)

Since clearly ((r¢,v°),(0,0),0) € p~1(r°,2v°), from (8a), (41b), and (42) we may construct
the reduced reward as

R(5,a) = R(s, Vy5)(a)) —a(r) = co[[o°]| — eullu’]- (45)

s=((r*,v°),(0,0),0) —

Likewise, a straightforward calculation using (36), (41b), and (8b) will show that the reduced
transitions are given by

7(B|5,a) = (07 (B) |5, Ua)(@) | (e, v).0, o),O)

_ 1, (r® 4 v°dt,v° + Lutdt) € (46)
0, otherwise,
which is nothing but the usual “error dynamics” [12], i.e
er = r{ + vf dt, Uw?—&-l = vy + %uf dt. (47)

Finally, by Theorem 5, (p, h) is an MDP homomorphlsm from M7 to MT = (T}R3 R3, R, 7,
’y) and moreover we may lift any policy 7 for MT to M using (9), obtaining

@ A|s) =F(A—ud|r—rd v —0d). (48)
By Theorem 3, the action-value function for (7)T satisfies

Q(%)T( a) = Q”((T—T v — vd),u—ud). (49)

Thus, an optimal policy can observe only the position and velocity error and augment the

result with the reference force (i.e., u = 7(r — r4, v — v4) + u¢ for deterministic policies).

D.2. The Astrobee System

This space robot (described in Bualat et al. [2]) has state z = (¢,€) in & = SE(3) x RS
(i.e., the pose ¢ as a homogeneous transform and twist £ = (w,v)) and action u = (u, f) in
U =R (i.e., the applied wrench). The dynamics are

G+1 = qeexp(&; dt), (50a)
Vg1 = V¢ + %ft dt, wir1 =wy+ J_l(,ut —wp X ,]]wt) dt, (50b)

where * : R® — s¢(3). The running costs are defined by

(@, 2%) = a(r = 1%) + er|log(RTRY|| + ell¢ — €, (51a)
Ju(u, ud) = ey flu — ud, (51b)

14
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where r and R are the R3 and SO(3) components of ¢q. Letting p = N(0,%), we may
construct M7 as in Def. 7. Next, let = SE(3) act on X and H = {1} act on U via

Ui(q,€) = (kq,&), On(w) :=w, (52)

where (23) and (24) hold for these free and proper actions. Using Theorem 8 to derive a
symmetry of My as in (25), we apply Theorem 5 with A : s — ¢ to ultimately obtain an
MDP homomorphism (p, h), where hy = id for all s = (¢, &, ¢4, €%, ud) € S, and

p(s) = (a 'q% & €% ut). (53)

Thus, an optimal policy and its @ function can be written
(T)T(Als) =7 (Al (g ¢% &, 6% ut)), (54)
QW' (s,0) = Q7 ((¢7¢*,&,6% u), ). (55)

Hence, an optimal policy can be learned using an observation that sees only the error
between the actual and reference poses, instead of observing these poses separately.

D.3. The Quadrotor System

This aerial robot is described in, e.g., Mellinger and Kumar [13]. Like the Astrobee,
it has state = = (¢,£) in X = SE(3) x RS, but the actions are the “single-rotor thrusts”
uw € U = R*. The dynamics are given by

Qi1 = grexp(&; dt), (h6a)
V41 = V¢ + (%ft — RtT(g 63)) dt, Wi4+1 = Wt + Jil(ut — wi X Jwt) dt, (56b)

where g is the magnitude of gravitational acceleration, R; € SO(3) is the rotation compo-
nent of ¢, e3 = (0,0,1), and f; and torque u; are given in terms of the actions u; by

fr=up +u +ud v, = (L) —ud), 0(u? —uf), e(uf —uf +ud —uf)).  (57)

The running costs (51) are the same as for the Astrobee. Gravity “breaks” the SE(3)
symmetry of the dynamics, but preserves the SFE(3) subgroup

K = {(mtg(g) ;) : (r,0) € R? x Sl} (58)

which is isomorphic (as a Lie group) to SE(2) x R and acts on SE(3) x RS via the restriction
of (52). Using Theorems 8 and 5, we may derive an MDP homomorphism (p, h) for which
hs = id for all s = (q,€, ¢4, &4, ud) € S and

p(s) == (¢ 'q%, RTes, &, €% u), (59)

noting that RTes is the gravity direction in body coordinates. Thus, an optimal policy
(and its @ function) can be written

@) (Als) =7(A| (g '¢%, R es,&, €%, u)), (60)
Q™' (s,a) = Q7 ((¢"¢%, R e, &, €%, ud), w). (61)
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Hence, our theory demonstrates that for quadrotors, the state space of the tracking problem
can be reduced by replacing the reference and actual poses with the pose error and the
body-frame gravity vector, without degrading the best-case learned policy. Consider how
this differs from heuristic approximations in prior work such as [14], whose state included
the entire orientation R (incompletely reducing the symmetry) and replaced the actual and
reference angular velocities with the velocity error, which corresponds to an approximate
symmetry due to the “cross terms” in the second half of (50b).
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Appendix E. Complete Results of Numerical Experiments
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Figure 2: Reward during training and tracking error components during evaluation for the Particle, Astrobee, and
Quadrotor, with translational errors as solid lines and rotational errors (when applicable) as dashed lines.
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