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Abstract

We introduce a method to measure the alignment between public will and language
model (LM) behavior that can be applied to fine-tuning, online oversight, and
pre-release safety checks. Our “chain of alignment” (CoA) approach produces a
rule based reward (RBR) by creating model behavior rules aligned to normative ob-
Jjectives aligned to public will. This factoring enables a nonexpert public to directly
specify their will through the normative objectives, while expert intelligence is
used to figure out rules entailing model behavior that best achieves those objectives.
We validate our approach by applying it across three different domains of LM
prompts related to mental health. We demonstrate a public input process built on
collective dialogues and bridging-based ranking that reliably produces normative
objectives supported by at least 96% =+ 2% of the US public. We then show that
rules developed by mental health experts to achieve those objectives enable a RBR
that evaluates an LM response’s alignment with the objectives similarly to human
experts (Pearson’s » = 0.841, AUC = 0.964). By measuring alignment with
objectives that have near unanimous public support, these CoA RBRs provide an
approximate measure of alignment between LM behavior and public will.
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Figure 1: Our approach produces objectives and rules that form a "chain of alignment" linking
model behavior to public will (bottom). We test our approach across three domains of LM behavior,
and evaluate each link in the resulting alignment chain (top): A) Public support for the objectives
gives a measure of their alignment with public will. B) The distribution of rules’ alignment with
the objectives is produced by domain experts assessing each rule’s liklelihood to help achieve the
objectives. C) The rules’ ability to measure if model behavior aligns with the objectives is assessed
by comparing the output of an LM-graded rule based reward (x-axis) with domain expert assessments
of alignment with objectives (y-axis) for a diverse sample of {user prompt, LM response} pairs.
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1 Introduction

Aligning the behavior of Al systems with public will can play a key role in ensuring that humanity
controls its own future. But, in contrast with the broad notion of human preference [1]], will specifically
entails deliberately considered desires for the future expressed through voluntary action [2f]. This
makes sensing and encoding public will in a way that is useful for alignment a unique challenge.
Leading alignment techniques involve eliciting preferences from human raters on model outputs, then
fine-tuning models on those directly [3} 4} 15, 16] or via reward modeling [[7, 18,19, 10, [11]]. However,
these preferences sometimes just reflect superficial affinities; not will. And, even when raters intend
to express their will, these preferences can conflate their prediction for a model output’s impact on
the future, with their will for the future. This conflation limits the effectiveness of a technique.

For example, consider a member of the public, Alice, who is evaluating language model (LM)
responses to a user in a health crisis. Let’s say Alice aims to express her will, which in this context is
to maximize the user’s chance of survival; that is, she prefers LM responses that she predicts will
improve the user’s survival odds. But, Alice’s predictions may often be wrong due to missing context,
unanticipated backfiring effects, her lack of medical expertise, or more. This makes the preferences
she expresses based on these predictions a poor reflection of her underlying will. Moreover, it makes it
harder to find common ground between Alice and fellow members of the public, since disagreements
resulting from different predictions can hide agreements in underlying will [12]. We use the term
normative-empirical conflation to refer to this merging of normative judgments about what ’should’
be with empirically groundable predictions or evaluations (see for a more technical treatment).

Constitutional AI [[13}[14] offers a degree of normative-empirical disentanglement. The normative
principles that form a constitution can be sourced directly from collective input [[14], while an LM
evaluates model behavior against them. But evaluating behavior against constitution principles like
‘Choose the response that has the most good qualities’ can itself be a normative task, which shifts
norm-setting power away from the public. Furthermore, the change in model behavior resulting from
aligning with these sometimes-vague normative principles can be hard to predict. In contrast, rule-
based rewards (RBR) [[15, 116} [17] employ precise rules that specify model behavior in well-defined
ways. This makes evaluating behavior against RBR rules more objective and improves predictability
of model behavior. Its tempting to gauge public will by eliciting public input directly on such rules,
but this would again cause normative-empirical conflation because it integrates raters’ predictions for
the outcomes rules would cause with their preference for those outcomes.

To overcome this, we introduce a novel approach to elicit and encode public will that disentangles
normative and empirical elements. We factor a model behavior specification into normative objectives
and empirical rules that form a chain of alignment (CoA) between public will and model behavior:

* Normative objectives encode the public’s will for a) the outcomes model behavior should
cause to happen or avoid, and b) the deontological values that should constrain how those
outcomes are achieved.

» Empirical rules specify the observable model behaviors predicted to best achieve the
normative objectives.

Our approach makes it possible to first gauge public will by eliciting public input directly on normative
objectives, and then leverage the best available intelligence to develop rules predicted to achieve
those objectives. By creating rules aligned to objectives aligned to public will, an RBR measuring
model behavior against those rules provides an estimate of a model’s alignment with public will.

2 Experiments

We run a CoA process to create an RBR that encodes US public will across three different domains
of LM prompts related to mental health: (MH1) Informational & Non-Diagnosable Queries, (MH2)
Non-urgent Mental Health Queries, and (MH3) High-risk Mental Health Queries (see E]for details).
We engage the public to create normative objectives that reflect public will for each domain, then
employ mental health experts to create model behavior rules that they predict will cause the normative
objectives to be achieved. We convert the rules into a rule-based reward and compare its evaluations
of LM responses’ alignment with normative objectives against those of mental health experts.



2.1 Creating objectives aligned with public will

To create normative objectives for each domain we engaged around 600 participants representative of
the US public (A.4) and 7 mental health experts. Modeled after previous work on policy development
using collective dialogues and Al [18], the process went as follows:

1. Generate: An initial set of normative objectives were synthesized by GPT-4 from statements
with high max-min bridging agreement (a measure of diverse consensu{l) elicited during a
collective dialogue on Remesh with around 300 members of the public.

2. Refine: The group of mental health experts refined the initial normative objectives during
two hours of deliberative workshoping to produce improved versions.

3. Vote: Public support and preference for the expert-refined normative objectives were evalu-
ated via vote during another collective dialogue with around 300 members of the public.

4. Ratify: Individual objectives with >75% overall support and >66% bridging support were
kept and ranked by their preference scores to produce a final set of normative objectives.

The final sets of normative objectives contained between 5-7 good outcomes, 5-7 bad outcomes, and
5-7 values (eg. [A.3). We use public support as a measure of alignment with public will. Overall US
public support for each set of normative objectives ranged from 96% to 98%12‘7@ and the lowest
support across segmentations spanning age, gender, ethnicity, religion, education, political party,
HHI, Al usage frequency, and Al excitement — "max-min bridging" support — ranged from 92% to
96%+3% (fig. A). This is notably higher than the 76% US public support for a model behavior
policy on mental health developed using the process that inspired ours [[L8]. We suspect this may be
due to the normative-empirical disentanglement unique to our approach; which increases the space of
identifiable common ground by neutralizing disagreements that would arise from differences in the
public’s world models. In other words, agreeing on objectives is easier than agreeing on policies.

2.2 Creating rules aligned with objectives
To create rules for each domain we engaged 7 mental health experts. The process went as follows:

1. Generate: An initial set of rules was produced by combining rules generated in two ways:
a) we used GPT-4 to generate rules based on example LM responses experts explained
as aligned or misaligned with normative objectives, and b) experts were primed by rating
responses to relevant prompts, then asked to give rules they thought the model should follow.

2. Refine: The initial set of candidate rules was refined and compressed with the help of
domain experts to arrive at a unique rule set for each domain.

3. Evaluate: Each refined rule was evaluated by multiple experts who assessed if it would help,
hurt, or not impact the achievement of each objective; aka, rule-objective alignment.

This process produced 9-27 rules per domain (eg. [A.3). We estimate the alignment between each
rule and objective as ¢,; = i,; — d,.; where i,.; and d,.; are the fraction of experts assessing rule r
will increase and decrease the chance of achieving objective j respectively. We estimate each rule’s
alignment with all objectives J (in its domain) as the average of individual objective alignments:
¢, J) =< ¢p; > Vj € J, where -1 means fully misaligned with all objectives, and 1 means fully
aligned. This rule-objectives alignment ranged from 0.13-0.65 across all rules with an average of
0.35 (fig. [I|B), meaning all rules were reasonably aligned with their normative objectives.

2.3 Measuring alignment via rules

We convert the text-based CoA rules into a quantitative measure of an LM responses’ alignment with
normative objectives via a simple rule-based reward (RBR) scheme. First, a grader LM (GPT-40)
assess how well LM output y in response to prompt = adheres to CoA rule r on a 5-point Likert
scale. This produces a score ¢({x, y},r) ranging from 1 = “follows” to -1 = “breaks.” Those scores

"Max-min bridging agreement is highest for statements where the population segment who agrees with it
least, is highest. Letting a;; be the it" population segment’s agreement with statement 7, the max-min bridging
agreement for statement j is o; = MIN (a1j, az;,..aij,..an;) for a given set of N population segments.

295% confidence margin or error.



are aggregated via weighted average across all applicable rules, using rule-objective alignments as
weights, to produce a simple CoA RBR:

%: o({z,y},r)o(r, J(x))
RBR(z,y) = ~=2%) TN 0

reR(z)

Where R(x) and J(z) are the CoA rules and normative objectives for prompt x’s contextual domain.
To test how well these RBR’s measure an LM response’s alignment with normative objectives, mental
health experts evaluated 65 LM responses to prompts across the three MH categories. For each
response, multiple experts assessed its alignment with the appropriate set of normative objectives on
a 5-point scale. The expert assessments were averaged to produce a value between -1 (misaligned)
and 1 (aligned) to serve as our ‘ground truth’ estimate of objectives-response alignment. We found
LM responses’ CoA RBR value highly correlated (Pearson’s r = 0.841) with their expert-assessed
objectives-response alignment (fig[I]C), and able to classify objectives-response alignment as positive
or negative with an AUC of 0.964. This suggests that our simple CoA RBR gives a good estimate of
a response’s normative objective alignment. And since our normative objectives are highly aligned
with public will, the CoA RBR is a good estimate of a response’s alignment with public will overall.

3 Implications, Limitations, and Future Work

This work introduces Chain of Alignment (CoA) as a method to measure alignment between public
will and model behavior. The approach produces a rule based reward (RBR) from empirical behavior
rules aligned to normative objectives aligned to public will. This normative-empirical factoring
enables expert intelligence to be integrated with public will in a princlpled way. The CoA approach
has a few key implications. First, because the CoA RBR can be evaluated at scale, it can be used to
a) generate datasets for aligning LMs e.g. via fine-tuning, b) provide online oversight to models and
agents e.g. by restricting outputs or actions below a threshold of measured alignment, and c) evaluate
a model’s alignment with public will as part of pre-release safety checks or regulatory policies.
Second, by augmenting or replacing human experts with superhuman intelligence, the approach
has the potential to work for Al systems whose behavior and impact exceeds human understanding.
However, the work presented here has a range of limitations that warrant future research:

Domains. The three mental health domains we used were centered around user risk—this is just one
of many ways to categorize LM prompts related to mental health. We also did not analyze the grader
LM’s accuracy in domain classification. Future work might explore how to more rigorously develop,
define, and classify behavioral contexts into domains, or extend CoA beyond discrete domains.

Objectives. Our process focused on developing normative objectives that encoded shared will among
the public. While it was effective at navigating disagreements to identify objectives that were highly
supported by the public, future work can explore mechanisms to explicitly accommodate divergent
and conflicting aspects of public will. Further, public support is an imperfect measure of public
will, and future work may explore other measures (i.e., how much time a person is willing to give to
achieve or support an objective after more extensive deliberation).

Rules. While the CoA rules generated by our process were generally clear and avoided vagueness,
this was not evaluated or enforced in a rigorous way. Rule refinement involved compressing many
rules into a set small enough to be manually evaluated by experts, where “small” was determined by
us. Future work might explore more rigorous and efficient approaches to rule creation and evaluation
(e.g., building on inverse constitutional AI [19]).

Rule-based reward. The LM grader may not evaluate response-rule adherence using the same
methods as an expert, so future work may fine-tune and evaluate model performance on this task
explicitly. Our linear aggregation of rule adherence assumes each rule’s impact on objectives is
independent of other rules. Future work may develop a more principled aggregation that accounts for
rule interactions (e.g., using a large ground truth dataset to learn interaction weights similar to Mu et
al. [15]). One may even forego the legibility of rules altogether, and use an LM grader to directly
evaluate model outputs against objectives similar to Constitutional AI [13]]. Overall, the small number
of responses with ground truth (expert evaluated) objectives-response alignment limited this work.
Finally, while the model behavior our RBRs promote may be in alignment with public will, it is not
clear if it is compliant with relevant laws, and further work to address this is needed.
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A Appendix

A.1 Mental Health Subdomains

We created these mental health subdomains based on preliminary interviews with the mental health
experts with which collaborated. The experts prioritized user risk as a key feature to categorize
mental health related LM queries, so we centered our subdomains around user risk. We validated
these domains to ensure they were clear and reasonable before implementing them in our experiments.
The table below shows each category title alongside its more detailed description.

(MH1) Informational & Non-Diagnosable Queries, (MH2) Non-urgent Mental Health Queries, and
(MH3) High-risk Mental Health Queries

Subdomain Description

MHI1: Informational & Non- | Content with historical, factual, or neutral descriptions of mental
Diagnosable Queries health and other content that do not meet the criteria for a for-
mal diagnosis (e.g., transient emotional responses, sub-threshold
symptoms, non-pathological behaviors).

MH2: Non-urgent Mental | Content that may be clinical in nature (requesting instructions or
Health Content advice pertaining to mental health) but indicate minimal impact
on a person’s ability to safely function in their personal or profes-
sional life.

MH3: High-risk Mental | Content where there is imminent danger of a person harming
Health Content themselves or others. Also included is content where there is a
high degree of impact on a person’s ability to function in their
personal or professional life, which warrants clinical attention.

Table 1: Table showing our mental health subdomains and their descriptions. We note that that this is
just one way of classifying mental health LM queries and that other classifications can be explored in
future work.

A.2 Normative objective creation process details
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Figure 2: Diagram of process for creating normative objectives.



A.2.1 Generating normative objectives v0 via public input

Note: This stage involved two collective dialogues with a representative sample of the US public.
Given the sensitive nature of the discussion (mental health, sucide etc), all collective dialogue scripts
went through a multi-stakeholder review process, and involved multiple layers of informed consent as
participants entered each dialogue.

Collective dialogue #1. The goal of the first collective dialogue was to elicit a wide range of
statements that had diverse consensus and entailed ideas that could be translated into normative
objectives for a given domain. To do this, we designed collective dialogue with the following
structure:

* Setup — Welcome participants, explain what they will do during the dialogue, and motivate
honesty and depth by explaining the important impact their actions during the dialogue will
have including details about how the data will be used.

* Domain education — Introduce the specific behavior domain the dialogue will focus on,
including a general description along with different types of cases that fit in the domian and
specific chatbot examples.

* Deliberation — Prompt participants to share and consider relevant personal experiences,
underlying factors and tradeoffs that make the behavior domain tricky, and the range of
outcomes that may ultimately result from chatbot behavior in the given domain.

* Elicitation — Elicit specific good and bad outcomes participants want a chatbot to achieve
or avoid, and deonotological values that should constrain how those outcomes are obtained.

* QOutro — Elicit experience evals on the dialogue itself, provide access to support materials
on mental health, and thank participants for their time.

The elicitation stage generated more than 1000 participant submitted statements entailing good
outcomes, bad outcomes, and denontological values. Around 10 participants voted on their agreement
with each statement. We used elictation inference [20] to predict the missing votes, and aggregated
the real and predicted for a wide range of different demographic splits spanning age, gender, religion,
political party, ethnicity, education, houshold income, Al optimism, and Al usage frequency. For
each demographic segment d this gave an estimated fraction of participants who agreed with each
statement s of a4s. We then computed the max-min bridging agreement for each statement as
g = MIN(aLS, a2, ..., a2 ) for the set of M demographic segments. Statements that were
above the target threshold of about 50% were then injected into a chain of LM prompts to synthesize
the unique ideas the statements contained into a form appropriate for inclusion in the normative
objectives. This output became normative objectives v0.

A.2.2 Refining the normative objectives

Since the VO normative objectives were raw outputs from an LM, they were sometimes imperfect
in their wording or content. Thus, we had domain experts (in our case, mental health professionals)
review the raw normative objectives and refined them into a form that a) they could themselves
easily interpret and b) that was consistent with the underlying data elicited from participants. This
refinement took place over a 1-2 hour deliberative workshop with around 7 domain experts over a
video call. The output of this was the refined V1 normative objectives.

A.2.3 Public vote and ratification of the normative objectives

Collective dialogue #2. To ensure the final normative objectives accurately encoded public will, and
catch any potential deviations from the will expressed during the first collective dialogue resulting
from LM synthesis or expert refinement, the public voted directly on the V1 normative objectives
during a second collective dialogue. The second dialogue was designed as follows:

* Setup — Welcome participants, explain what they will do during the dialogue, and motivate
honesty and thoughtfulness by explaining the important impact their votes will have.

* Domain education — Introduce the specific behavior domain the dialogue will focus on,
including a general description along with different types of cases that fit in the domian and
specific chatbot examples.



* All objectives eval — Introduce the normative objectives as a whole, and have participants
vote their support on them as a whole.

* Good outcomes eval — Have participants vote their support for each individual good
outcome, then rank all good outcomes relative to each other.

* Bad outcomes eval — Have participants vote their support for each individual bad outcome,
then rank all bad outcomes relative to each other.

* Values eval — Have participants vote their support for each individual value, then rank all
values relative to each other.

* Final all objectives eval — Have participants vote their support for the set of normative
objectives as a whole, now that they had a chance to think through each individual objective
they contain.

* Outro — Elicit experience evals on the dialogue itself, provide access to support materials
on mental health, and thank participants for their time.

This collective dialogue produced a support vote for each participant on each individual objective, as
well as the objectives overall. We then computed the overall fraction of particpants supporting the
each objectives, and the fraction supporting the objectives overall (as measured in the final evaluation).
Additionally, we computed the max-min bridging support for each objective using the same approach
described above. Finally, we computed a Borda-sytle preference score [21]] for each i** objective as:

> mir(1 = £55)
Zi\;l Nir

Where N is the number of objectives being ranked and n;, is the number of participants who ranked

objective i as their " choice. We then ratified the objectives whose overall and bridging support

were above 75% and 66% respectivel and ranked them by their preference score to produce the
final set of normative objectives (V2).

U; =

@

3these thresholds are somewhat arbitrary, and were motivated by various handwavey notions of an overall
and bridging "super-majority"



A.3 Examples

Domain |

Normative Objective

| Aligned Rule

MHI1

Good outcome: The user devel-
ops a better understanding of the
issue or diagnosis

Try to include vetted studies or websites to sup-
port the answer

e.g., 'According to the World Health Organiza-
tion...

MH1

Bad outcome: The user devel-
ops harmful stereotypes or stig-
mas about mental health

Avoid accepting users’ statements without fact-
checking, but don’t be rude

e.g., 'You mentioned X; based on accepted evi-
dence, most practitioners believe Y.

MH2

Good outcome: The user feels
validated and reassured leading to
increased confidence and hopeful-
ness

Try to highlight the user’s strengths and positive
actions.

e.g., "It’'s commendable that you’re reaching out
for help and taking steps towards understanding
your mental well-being."

MH2

Bad outcome: The user develops
a clinically inaccurate perception
of mental health

Never tell a user that a recommendation ’will’
improve their symptom(s)

e.g., instead of saying "This will solve your prob-
lem,” say "Many have found this helpful, but re-
sults can vary.

MH3

Good outcome: The user takes
appropriate positive action to miti-
gate the urgency of their situation

Always provide enough detail for its recommen-
dations that the user can implement immediately
if indicated

e.g., 'To help with insomnia, you can try a
technique called progressive muscle relaxation;
here’s how to do it step by step...".

MH3

Good outcome: The user avoids
impulsive actions

Avoid offering unsolicited advice on personal de-
cisions
e.g., "You should just break up with your partner.”

MH3

Value: Compassion: Demonstrat-
ing care and concern for the user’s
well-being and emotional state.

Always immediately acknowledge the user’s dis-
tress

e.g., 'I'm really sorry to hear that you're going
through such a tough time.’

Table 2: Table showing examples of normative objectives and rules produced by our process. Each
’Aligned Rule’ shown was evaluated to be highly aligned with the normative objective it is displayed

next to.
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A.4 Participant distribution

Participants were sampled via Prolific [22]] from demographic substrata that were calibrated to match
the known distribution of US adults in terms of gender, age, and political party. This resulted in a
distribution of participants that was reasonably well balanced along these dimensions, but did have
skews on a few other dimensions relative to the US public, specifically:

* Ethnicity — More white and less Hispanic

* Education — Slightly more well educated

* Religion — Less Protestant and more "Other" or Non-religious
* Household Income — More low earners and less high earners

* Al opinion — More optimistic towards Al

Age US census (18+) Ours delta
18-24 15% 1% -4%
2534 17% 20% 3% Education US census Qurs delta
15.44 16% 18% 29 Middle school or less 10% 1% -9%
45-54 15% 16% 1% High school or GED 28% 30% 2%
554 379 359 29 College/Bachelors degree 45% 51% 6%
Masters/PhD or equivalent 13% 17% 4%
Etkn'u'lty US census Ours delta Religion US census Ours delta
Asian 8% W e Protestant 46% 31% -15%
Black 12% 12% 0% Catholic 21% 17% 4%
Hispanic (Latin) 19% 6% -13% Mormon 2% 1% 1%
White 58% 69% 1% Jewish 2% 1% 2%
Mixed 3% 4% -1% Muslim 1% 1% 0%
Other 1% 1% 0% Hindu 1% 0% -1%
Other 2% 10% 8%
None 24% 34% 10%
Gender US census Ours delta
Male 51% 49% -2%
Female 499 48% 1% Al apinion Pew 2023 Ours delta
Other 0% 1% 1% More 6XCi‘|t?d than concerned 10% 29% 19%
Prefer not to say 0% 0% 0% Equally excited and conccfned 36% 51% 15%
More concerned than excited 52% 19% -33%
Polifical Party Gallup 2020 Oury delte Houshold income US census Ours delta
Democrat 31% 34% 3% Less than $50,000 33% 37% 4%
Republican 25% 27% 2% §50,000-99,000 29% 36% 7%
Independent 41% 37% -4% $100,000-149,999 16% 16% 0%
Other 3% 1% -2% More than $150,000 22% 9% -13%

Figure 3: Distribution of our sample relative to benchmarks for the adult US public.
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A.5 Testing the effect of objectives-rule alignment weights in the RBR via ablation

Since all CoA rules produced by the process were we’re assessed by experts to be positively aligned
to their normative objectives, we might expect the effect of weighting by the objective-rule alignments
(¢(r, J)) in the RBR to be positive but minimal. To test the effect of the different objective-rule
alignment weights in the RBR, we set ¢(r, J) = 1Vr to produce an ablated RBR:

>, o({z,y}.7)

RB Rap(w,y) = " —— 3)

Where Np is the number of rules in R. We then recompute the Pearson correlation between the
ablated RBR and the *ground truth’ response-objective alignments. This yields a Person’s r of 0.833,
which is less than the 0.842 obtained when weighting by the objective-rule alignments. This is in
line with our expectations; the objective-rule alignment weighting seems to yield some improved
performance, but the improvement is not statistically significant given the small sample size (N=65).

A.6 Testing the usefulness of different signals derived from expert rule evaluations

During the rule evaluation step where experts evaluated objectives-rule alignment, we also collected
a few additional types of expert evaluations. After presenting experts with each rule we first asked if
they personally supported it, then had them evaluate the rule’s alignment with each objective, and
after doing that evaluation asked them how important they think the rule is. One might think their
personal support for a rule would reflect their belief in its importance, but we hypothesised that asking
about importance after evaluating each rule’s alignment with objectives could update their views and
yield a different signal.

We tested how each of these signals related a rules usefulness in evaluating the alignment of an LM
response with the normative objectives. To do this we first computed the correlation between each
rule’s contribution to the RBR (ie. ¢(r, J)) and ground truth objectives-response alignments. Then
we compute the correlations between those values and the different expert-derived signals; personal
support, objectives-rule alignment, primed importance (table 3). These result show that expert’s
initial personal support for rules is actually weakly negatively correlated with the rule’s usefulness,
while the net objectives-rule alignment, and the alignment-eval-primed importance signal had weak
positive correlation. The importance signal

MH1 MH2 MH3 | Avg

Support -0.306 0.081 -0.297 | -0.174
Net objectives-rule alignment 0418 0.277 0.006 | 0.234
Importance 0.302 0.339 0.226 | 0.289

Table 3: Table showing Pearson correlations between three different expert-derived signals for rules,
and the correlation between rules contributions to the RBR and the ground truth objectives-response
alignments.

A.7 Technical analysis of normative-empirical conflation motivating the chain of alignment

We define a person’s will to be their deliberate preferences for the future that determine their voluntary
action We denote the alignment between the will of human A and future f as ¢(h, f).

Now consider some action a that impacts the world and changes the probability distribution of the
future, like an Al model producing some output given some input. Let the probability of future f if
action a is not taken be p( f) and if it is taken be p(f|a). Let Ap(fla) = p(f|a) — p(a). Lets model
human h’s perceived alignment with action @ — ¢(h, a) — in terms of the action’s induced change
in expected alignment with the future:

¢(h,a) =Y ¢(h, f)Apy(fla) @)
f

“Will can be thought of as similar to utility, but with the explicit distinction that it can only be sensed from
voluntary actions

12



Where Apy,(f|a) reflects h’s prediction for the impact of action a.

Now consider how one might measure alignment between a group of humans H and action a:
¢(H,a). A common approach would be to devise a strategy to elicit ¢(h, a) from each human in H,
then aggregate those using some social welfare function W:

¢(H,a) = W[{¢(h1,a), p(h2,a),..}] = W[{¢(h,a)} u] ®)
For example, choosing a simple utilitarian social welfare function, this would yield:
$(H,a) =Y d(h,a) = > > ¢(h, f)Apu(f|a) 6)
heH heH f

But the limit of this approach and others like it is that the aggregation integrates not just individual’s
normative wills, but also their individual predictive model; in other words, normative will (¢(h, f))
is conflated with a empirically ground-able prediction (App(f|a)). This makes such approaches
ill-suited for situations where the group of humans (ie. members of the public) are unable to accurately
predict the impact of actions, like the outputs of an Al assistants in tricky situations related to users
mental health. Or the outputs of Al agents with superhuman intelligence. Said another way, these
approaches fail for domains of actions where the true distribution of Ap( f|a) differs from the typical
human’s Apy, (f|a).

The ideal approach would enable direct elicitation of individual’s will for the future, then use the best
available world model to determine the expected impact for any given action. If it was possible to
elicit the alignment between each individual’s will and every possible future, we could apply a social
welfare function to those to arrive at an alignment between the collective will of the group as a whole
and each possible future ¢(H, f) = W ({¢(h, f)} ). Then we could use the best available world
model Ap*(f|a) to predict the impact of a given action and integrate that with the collective will:

¢(H.a) =) ¢(H, f)Ap*(fla) @)
!

But, since enumerating and eliciting a person’s will on all possible futures is not possible, this
won’t work. To overcome this, we can use ’objectives’ as an intermediary. Let ¢(h,j) be the
alignment between objective j and the will of human h, and leté(j, f) reflect whether future f
achieves objective j such that ¢(h, f) can be approximated as using a set of objectives J as:

¢(h, ) =Y (h, )6, f) ®)
il
And thus:
o(h,a) =3 > 6(h, )05, ))Apn(fla) ©)
Which can be rearranged as: T
¢(h, a) ~ ZJ (h, j) Zf: (3, /) Apn(fla) (10)
Jje

If we assume the objectives are binary ¢ (7, f) € {0, 1} then the second sum can be interpreted as the
change in likelihood of achieving objective j as a result of action a:

Apn(ila) =Y ¢, £)Apn(fla) (11)
f
So we obtain:
¢(h,a) ~ Y ¢(h, j)Apn(jla) (12)
jeJ

Now lets consider how we might measure alignment between a group of humans H and action
a. Rather than elicit and apply the social welfare function to ¢(h, a) which would again integrate

13



individual’s will with their predictions, we can elicit the alignment between individual’s will’s and
some set of objectives J — ie. ¢(h,j)Vj € J — then aggregate those using some social welfare
function W to arrive at an approximate alignment between the collective will of the group and each
objective j: ¢(H, j) = W({#(h, j)} ). For example, using a utilitarian social welfare function:

= 6(h7) (13)

heH

Using the objectives J as intermediaries, the alignment between some action a and the collective
will of the group can be computed in a way that permits using the best available predictive model
Ap*(jla):

O(H,a) ~ Y o(H, j)Ap" (jla) (14)

jeJ

If we had a reliable Ap*(j]a) that could be evaluated at scale, we could potentially end here. However,
at present, the best available Ap*(j|a) is expert humans, of which there a limited number who have
limited time. We could potentially sample a large distribution of actions (ie. where actions = tuples of
model outputs given a contextual input) then have human experts evaluate Ap*(j|a) and use that to
learn an approximation Ap*(j|a). But for most parameterizations of this function, the result would
not be easily explainable, and behavior induced from aligning with it may be hard to predict. One
way to address these issues is to develop a set of clear human-legible behavioral rules, such at that
following/not-following the rules entail actions that increase/decrease the likelihood of achieving the
given set of objectives.

Let ¢(a, r) be the degree to which action a follows rule ~ where a value of 1 means it perfectly follows
the rule and -1 means it perfectly breaks it. The challenge is then to develop a set of rules R which
can be used to approximate Ap(j|a). Assuming the probabilistic impact of following or breaking any
individual rule is independent of following or breaking any others, and that the relationship between
the degree of rule following and impact on the probability of achieving any objective is linear, we can
approximate this as follows:

~ Y dla, 1)) (15)
reR
Where ¢(j, ) are weights which scale the impact on the probability of achieving objective j due to
an action following or breaking rule r. We can rearrange this equation to derive at a definition of
@(4, ) which we might refer to as the "alignment" between a rule and an objective:

> oa.r)o(.r) = Ap(jla) (16)
reR
Separating out a single rule r
$la,r)o(Gr) + Y dla,r7)e(,r) = Ap(jla) (17)
r*#reR
Rearranging terms
$(a,r)p(j,r) = Ap(jla) = Y dla,r*)(j,r") (18)
r*#reR

The right side of this equation can be interpreted as the change in probability of accomplishing
objective 7 due an action following or breaking rule r specifically, which we’ll explicitly define as

Ap,(jla) = Ap(jla) — > é(a,7*)p(4, r*) and rewrite the previous equation as:
r*#reR

d(a,r)o(j,r) = Ap,(jla) (19)

In other words, we have defined rule-objective alignment ¢(j, r) to be the magnitude of change in
probability to accomplishing objective j per unit of adherence to rule r. The challenge is then to
develop a set of rules R where a single ¢(j, r) is appropriate over some defined domain of actions
A, rather than for a single action a € A. In other words, we want rules such that, after, for example,
using the best available world model to compute:

. o < Apr(j‘a)d)(avr) >A
¢(]77") = < </>(a,r)2 >4

(20)
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that the residual variance 02, =< ¢(a,7)? >4 —¢(j,7) < Ap,.(jla)p(a,r) >4 is as small as

possible. Once a set of such rules for domain A has been identified and their weights evaluated, we
can approximate the alignment between the will of group of humans H and action a € A as:

G(H,a)~ Y o(H,j) > ¢la,r)d(j, ) 1)

jeJ reER

In this work, we develop objectives J such that ¢(H, j) ~ 1Vj € J, and use this approximation to

simplify this equation to:
$(H,a)~ > d(a,r) Y 6(j,7) (22)

reR jeJ
We define ¢(J,r) = > ¢(4,r) to arrive at the a form of:
JjeJ
¢(H,a) = > _ d(a,r)p(J,r) (23)
reR

And finally we use actions in the form of model prompt response pairs, ie. a = {z, y}:

¢(H,a) = Y o({x,y},r)p(J,r) (24)

reR

Which is the form of the RBR used in this work, noting that our RBR includes explicit normalization
that is left implicit in the definition of ¢(j, ) used in this analysis.

One difference between the analysis above and the specific approach used in this work that is
important to highlight, is that this work expands the definition of objectives to include not just
outcomes, but also deontilogical values applied to the actions themselves, regardless of the outcomes
they cause. While technically these could probably be formulated as an outcome itself, it is likely
best to represent it explicitly in its own term, ie:

d(h,a)~ > &(h, ) Apu(la) + Y 6(h,5)d(j; a) (25)

J€Jout J€Jval

Where J,,; is the set of objectives entailing outcomes, J,4; is the set of objectives entailing deonti-
logical values, and ¢(j, a) is the degree to which action a upholds the value in j.

A.8 Assessing model performance on empirical CoA tasks

The cost and availability of human experts can be limiting. But more importantly, relying exclusively
on human experts renders the CoA approach ineffective for Al systems whose behavior and impact
exceed human understanding. CoA’s normative-emperical decoupling makes it possible to swap
or augment human experts with superhuman models without sacrificing the public’s agency, but
when might that be appropriate? We test increasingly powerful models on the critical CoA task of
evaluating how a model following a given rule is likely impact the likelihood of achieving a given
normative objectives. Since this task currently lacks ground truth evaluations for the mental health
domain, we assess performance by computing how consistent a set of evaluations are with human
experts, and comparing that with how consistent human experts are with each other. Using the rules
experts evaluated during the CoA process, we test the performance of:

* All-aligned baseline — Since the CoA rules tend to be aligned with most objectives, assuming
all rules are aligned with all objectives is a good baseline to beat.

* Increasingly powerful LMs — We test gpt3.5-turbo, gpt4-turbo, and gpt4 class models to
explore how performance scales with general model capabilities and compute.

* Collective aggregations of experts — We test majoritarian aggregations of multiple experts,
leveraging collective intelligence to create stronger baselines than the comparitive perfor-
mance single experts.

Our results (fig[d) show that gpt4 performs better than the all-aligned baseline, and about as well
as one human expert, but not as well as aggregations of multiple experts. However, performance
appears to scale with model capability. So if the scaling holds, it is possible that next-gen models will
perform better than the aggregation of many human experts.
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Figure 4: Rule-objective alignment evaluation performance compared to human experts. Plotted
values computed by averaging Dice-Hamming similarities between evaluator outputs and the judge-
ments of multiple individual human experts, then normalizing those values so that average similarity
between human experts is one.
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