
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PEARL: PARALLEL SPECULATIVE DECODING WITH
ADAPTIVE DRAFT LENGTH

Anonymous authors
Paper under double-blind review

ABSTRACT

Speculative decoding (SD), where an extra draft model is employed to provide
multiple draft tokens first and then the original target model verifies these tokens
in parallel, has shown great power for LLM inference acceleration. However, ex-
isting SD methods suffer from the mutual waiting problem, i.e., the target model
gets stuck when the draft model is guessing tokens, and vice versa. This prob-
lem is directly incurred by the asynchronous execution of the draft model and the
target model, and is exacerbated due to the fixed draft length in speculative de-
coding. To address these challenges, we propose a conceptually simple, flexible,
and general framework to boost speculative decoding, namely Parallel spEculative
decoding with Adaptive dRaft Length (PEARL). Specifically, PEARL proposes
pre-verify to verify the first draft token in advance during the drafting phase, and
post-verify to generate more draft tokens during the verification phase. PEARL
parallels the drafting phase and the verification phase via applying the two strate-
gies, and achieves adaptive draft length for different scenarios, which effectively
alleviates the mutual waiting problem. Moreover, we theoretically demonstrate
that the mean accepted tokens of PEARL is more than existing draft-then-verify
works. Experiments on various text generation benchmarks demonstrate the ef-
fectiveness of our PEARL, leading to a superior speedup performance up to 4.43×
and 1.50×, compared to auto-regressive decoding and vanilla speculative decod-
ing, respectively.

1 INTRODUCTION

Large language models (LLMs) such as GPT-4, LlaMA, and Claude 3 (Achiam et al., 2023; Team,
2024; Bommasani et al., 2021; Touvron et al., 2023) have dominated natural language understanding
and generation (Khurana et al., 2023) over a wide range of applications. However, the substantial
inference latency of these LLMs has emerged as a significant obstacle bounding their broader appli-
cation in scenarios with restricted computational resources. This latency primarily originates from
the auto-regressive token-by-token decoding process wherein decoding K tokens requires K serial
runs of LLMs, incurring exacerbated latency with both the length of generated tokens and the model
scale.

To address this challenge, extensive research efforts have been devoted to accelerating LLM in-
ference. Given that inference from large models is often constrained more by memory bandwidth
and communication than by arithmetic operations Leviathan et al. (2023), one innovative inference
paradigm, Speculative Decoding (SD), has emerged as a new trend and shown superior performance
by effectively enabling better GPU utilizations. As shown in the upper part of Figure. 1, the key idea
of SD algorithm is to employ an extra small model (referred as the draft model) to firstly generate γ
draft tokens for the original large model (referred as the target model), and then the target model ver-
ifies these draft tokens in parallel within a single forward. Here, γ is a fixed hyperparameter window
size. Draft length is the number of tokens generated by the draft model in a continuous execution.
Therefore, the draft length is set to γ in SD. Following-up works effectively extend this framework
by either removing the necessity of the draft model (Cai et al., 2024; Fu et al., 2024; Zhang et al.,
2023) or identifying a compact draft model with high distribution alignment (Zhou et al., 2023; Zhao
et al., 2024; Miao et al., 2023). Extensive experiments demonstrate that this draft-then-verify frame-
work effectively enhances the concurrency of the target model, thereby significantly accelerating the
inference process.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Prefix: In the domain of speculative decoding, PEARL is a

Hurry Up! I am waiting!Step 1 D: model free algorithm

Hurry Up! I am waiting! Step 2 V: model free algorithm parallel

Hurry Up! I am waiting!Step 3 D: inference acceleration method

Hurry Up! I am waiting! Step 4 V: inference acceleration method that

Step 1 Pre: parallelStep 1 Pre: model free algorithm

Step 2 Pre: inference acceleration method Step 2 Pre: Inference

Step 3 Post: Inference acceleration methodStep 3 Post: that can achieve

Step 4 Post: adaptive draft length Step 4 Post: that can achieve

PEARL is a model free algorithm parallel inference acceleration method that

PEARL is a model free algorithm parallel inference acceleration method that can achieve adaptive draft length

Figure 1: An overview of speculative decoding (the upper part) and our PEARL (the lower part).
SD employs a draft model to provide multiple drafts and then the target model verifies the drafts
in parallel. However, SD suffers from the mutual waiting problem, i.e., the target model gets stuck
when the draft model is guessing tokens, and vice versa (the dashed dialogue box). PEARL parallels
the drafting and verification process to alleviate the mutual waiting problem. Moreover, PEARL can
leverage adaptive draft length to generate more tokens within the same amount of time to further
mitigate the mutual waiting problem. Specifically, PEARL generates fewer draft tokens if they will
be rejected (step 1 in the lower part), and more draft tokens if they can be accepted (steps 3 and 4).

Albeit with multiple benefits of this draft-then-verify framework, it confronts one significant chal-
lenge that may hinder its performance and deployment—the mutual waiting problem. That is, the
target model will be idle when the draft model is generating the draft tokens and the draft model
will be idle when the target model is verifying the previously drafted tokens. This mutual waiting
problem primarily stems from two limitations inherent in speculative decoding: (i) the asynchronous
execution of the draft and verify phases, which directly results in the mutual waiting problem; and
(ii) the fixed draft length, which cannot adapt to most decoding steps and thus exacerbate the mutual
waiting problem.

Therefore, in this paper, we seek to answer the question: Can we draft and verify in parallel and
adaptively adjust draft length? With this consideration, we propose a conceptually simple, flexible,
and general framework to boost speculative decoding, namely Parallel spEculative decoding with
Adaptive dRaft Length (PEARL). Specifically, PEARL consists of two strategies pre-verify and
post-verify: (i) pre-verify uses the target model to verify the first draft token during drafting phase,
which allows the draft model to generate less draft tokens in difficult scenarios; (ii) post-verify
uses the draft model to continue generating draft tokens during verification phase, which provides
more draft tokens in simple situations. As shown in the lower part of Figure.1, PEARL effectively
alleviates the mutual waiting problem with parallelism and adaptive draft length via these two
strategies. Moreover, we theoretically show that PEARL can eliminate the burden of tuning the
hyperparameter γ, and the mean accepted tokens of PEARL is more than existing draft-then-
verify works.

Our key contributions can be summarized as follows:

(i) We propose PEARL, a novel inference acceleration framework, which can effectively alle-
viate the mutual waiting problem with parallelism and adaptive draft length.

(ii) We theoretically derive the optimal window size and the mean accepted tokens of our
PEARL, which demonstrates the effectiveness of our PEARL.

(iii) We conduct extensive experiments on various text generation benchmarks, leading to a su-
perior speedup performance up to 4.43× and 1.50×, compared to auto-regressive decoding
and speculative decoding, respectively.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

𝑀𝑞

𝑀𝑝

𝑀𝑞

𝑀𝑝

𝑀𝑞 decoder 𝑀𝑝 decoder Model Stuck

×

× × × × × ×

√ √ √ √ √ √ √ √ √ √ √ √ √ √ ×

√ √ √ √ √ √

Draft Length

speculative decoding

PEARL

(a)
deepseek 1.3&33

deepseek 7&33
codellama 7&34

codellama 7&70
llama2 7&70

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Ti
m

e
(s

) 0.08 0.08 0.08

0.14 0.14

0.05 0.05
0.04

0.07 0.07

(a)

Average Draft and Target Times
Avg Draft Time
Avg Target Time

0 20 40 60 80 100
Iteration

0

10

20

50

100

200

(b)

Influence of Draft Length
static optimal draft length
iteration optimal draft length

(b)

Figure 2: Motivated observations. (a) The time of both drafting phase and verification phase is non-
negligible, therefore the asynchronous execution of the draft model and the target model directly
incurs the mutual waiting problem. (b) We observe that the optimal draft length changes significantly
in different iterations, which exacerbates the mutual waiting problem.

2 BACKGROUND

Notations. In this paper, we use Mq to denote the draft model and Mp to denote the target model.
Mq(·),Mp(·) denotes the logits of the next token of a single forward of Mq,Mp respectively. γ is
a hyperparameter to control the window size during speculative decoding. We denote the running
speed between Mq and Mp as c, which is defined as the ratio between the time for a single forward
of Mp and the time for a single forward of Mq , i.e., c = T (Mp(·))/T (Mq(·)).
Speculative decoding. Given an input sequence x as prefix, a speculative decoding step consists of
a drafting phase and a verification phase. During the drafting phase, the draft model Mq is employed
to give γ draft tokens x1, x2, ..., xγ by running γ times model forward and sample. Here, we denote
Mq(x + [x1, ..., xi−1]) as qi, then each draft token is given by xi ∼ qi, i = 1, ..., γ. During the
verification phase, the prefix x together with γ draft tokens are sent to Mp for verification. The
target model Mp inputs x+[x1, ..., xγ] and outputs the logits p1, p2, ..., pγ+1. Then SD sequentially
verifies xi via speculative sampling, where the acceptance rate is given by:

αi =

1 pi[xi] ≥ qi[xi],

pi[xi]

qi[xi]
pi[xi] < qi[xi],

(1)

If SD rejects xi, it will resample a token from norm(max(0, pi− qi)), otherwise SD accepts all the
draft tokens and samples an additional token from pγ+1. In this way, each SD step generates tokens
with a number of at least 1 and at most γ + 1, leading to the efficiency acceleration.

Window size and draft length. We emphasize that the window size is a hyperparameter that con-
trols the drafting behavior. Draft length is the number of tokens generated by the draft model in
a continuous execution, which is fixed and same as the window size in SD, while draft length is
adaptive and may be not equal to window size in PEARL.

3 METHODOLOGY

3.1 MOTIVATED OBSERVATION

As illustrated in Figure. 2(a), the mutual waiting problem is directly incurred by the asynchronous
execution of the draft model and the target model. In our experiments, we observe that the time
consumed during the drafting phase and the verification phase is usually non-negligible. Take the
instance of Codellama 7B & 34B, at each decoding step, although the running speed of Codellama
7B is almost 3 times faster than Codellama 34B, the total time consumption for generating 6 draft

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

prefix

2 = 3 2 = 45

Draft
Model

Target
Model

Parallel Speculative Decoding With Adaptive Draft Length

&!

?

&"

?

&#

?

&(

?

&)

?

&*

?

2 = 65 2 = 785

&+

?

&,

?

&-

?

&!.

?

&!!

?

&!"

?

2 = 95

Pre-Verify: ❌ Pre-Verify: ✅ Post-Verify: ✅ Post-Verify: ❌

"%& &(

✅

"'!&

"("& "(#& "($&

&)

✅

&*

✅

&+

✅

"(%& "(&& "('&

&,

✅

&-

❌

("
&!

❌

(!

Figure 3: Illustration of our PEARL. At T = 0, Mq generates x1, x2, x3 and Mp rejects x1 with
the pre-verify strategy. At T = 3t, Mp accepts x4 and switches to the post-verify strategy. At
T = 6t, Mp accepts all draft tokens x4, x5, x6 in the last decoding step, while Mq continues drafting
x7, x8, x9. At T = 9t, Mp rejects x9, drops x10, x11, x12 and switches to the pre-verify strategy.
The final output is [y1, x4, x5, x6, x7, x8, y2].

tokens is even 2 times than the time consumption for one verification step. Therefore, the mutual
waiting problem exists at any timestamp, and severely affects the acceleration effectiveness of SD.

The asynchronous execution of the draft model and the target model is the direct cause of the mutual
waiting problem, which is determined by two requirements of speculative decoding: (1) the drafting
phase requires the input prefix to be verified; (2) the verification phase requires the draft model to
complete generating draft tokens. This implies the great potential for alleviating the mutual waiting
problem through parallelism: if we can remove the two requirements and parallel the drafting phase
and the verification phase, a substantial acceleration can be possible.

Another limitation that aggravates the mutual waiting problem is the fixed draft length in SD, which
is not appropriate for all the decoding steps. As shown in Figure 2(b), the optimal draft length
changes significantly in different iterations. On the one hand, when the optimal draft length is less
than the fixed draft length, the draft model will generate meaningless draft tokens that blocks the
target model. On another hand, when the optimal draft length is more than the fixed draft length, the
draft model could have generated more draft tokens that can be accepted by the target model with
a single forward. However, a fixed draft length will interrupt the longer drafting phase and take an
additional verification phase, which strengths the mutual waiting problem as well. This motivates
our PEARL to further alleviate the mutual waiting problem with adaptive draft length.

Together with the two motivations, we propose two simple and effective strategies, pre-verify and
post-verify. The pre-verify removes requirement 2 and allows the target model to verify the first draft
token in advance. The post-verify removes requirement 1 and allows the draft model to continue
generating draft tokens during the verification phase. The two strategies enable parallelism and
achieve adaptive draft length to effectively alleviate the mutual waiting problem.

3.2 PRE-VERIFY: VERIFY THE FIRST DRAFT TOKEN IN ADVANCE.

The pre-verify strategy aims at removing the requirement that the verification phase requires the
draft model to complete generating draft tokens. Therefore, we seek to verify some draft tokens
in advance during drafting phase. We delve explicitly into the drafting stage. During the drafting
phase, the draft model tries to give γ draft tokens by running γ times model forward. We find that
the input of the draft model in γ times forward is x, x+[x1], ..., x+[x1, x2, ..., xγ−1], respectively.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Only the origin prefix x can be acquired by the target model for parallel verification. Therefore, we
propose to run the target model to output the logits Mp(x) in parallel. In this way, we can verify
the first token x1 before the verification phase. We implement the same lossless verification method
following (Leviathan et al., 2023) as illustrated in Section 2.

By applying such a pre-verify strategy, we can verify the first draft token before the verification
phase. If the first token is rejected, all of the following draft tokens are meaningless and should be
dropped. Hence we could skip the verification phase and directly conduct the next drafting phase
with the prefix x + [y1]. If the first token is accepted, all the draft tokens will be sent to the target
model in the verification phase. In Figure. 3, at the timestamp of T = 0, the draft model generates
x1, x2, x3 while the target model outputs pt0, rejects the first token x1 and sample another token y1.
At the timestamp of T = 3t, the draft model generates x4, x5, x6 while the target model accepts the
first token x4. Then x4, x5, x6 is sent to the target model in the next verification phase.

3.3 POST-VERIFY: CONTINUE DRAFTING DURING VERIFICATION.

The post-verify strategy aims at removing the requirement that the drafting phase requires the input
prefix to be verified. However, this assumption brings the limitation that the draft model should be
stuck until the target model finishes verification.

Therefore, we discard this assumption and make another assumption: we directly assume that all
the draft tokens can be accepted. In this way, We find that when all the γ draft tokens are accepted,
sampling a new token from Mp(x + [x1, ..., xγ]) is not necessary, as the draft model could have
generated more draft tokens that can be accepted. Hence we can use the draft model to continue
drafting xγ+1, ..., x2γ during the verification phase.

Algorithm 1 Parallel Speculative Decoding with
Adaptive Draft Length.
Require: the draft model Mq , the target model

Mp, the input prefix x, the max generate tokens
L, the window size γ.
Initialization: mode← ”pre-verify”
while len(x) < L do

if mode = ”pre-verify” then
x, mode← Pre-verify(Mq,Mp,x, γ)

else
x, mode← Post-verify(Mq,Mp,x, γ)

end if
end while

If all the γ draft tokens are accepted, we can
skip the next drafting phase as we already get
the draft tokens in the next drafting phase. The
last logit Mp(x + [x1, ..., xγ]) can be used to
verify xγ+1, which is a ”pre-verify” process as
well. In Figure. 3, at the timestamp of T = 6t,
the target model takes in x4, x5, x6 and outputs
ptx4

, ptx5
, ptx6

, while the draft model continues
to guess next draft tokens x7, x8, x9. Fortu-
nately, all the draft tokens are accepted, and we
can directly conduct the next verification phase
with prefix x + [y1, x4, x5, x6, x7, x8, x9]. At
the timestamp of T = 9t, the target model takes
in x7, x8, x9 and outputs ptx7

, ptx8
, ptx9

, while
the draft model continues to guess the next draft
tokens x10, x11, x12. Unfortunately, only x8 is
accepted, and the draft tokens x10, x11, x12 will
be dropped. Finally, the prefix x+ [y1, x4, x5, x6, x7, x8, y2] is input to the next drafting phase.

3.4 PEARL: PARALLEL SPECULATIVE DECODING WITH ADAPTIVE DRAFT LENGTH

Take together the two strategies, our PEARL framework consists of a draft model, a target model
and two strategies to decode tokens. The two strategies are switched according to the verification
results in the previous decoding step. Algorithm. 1 provides a summary of our PEARL. We also
provide more details in Algorithm. 2. Note that pre-verify and post-verify strategies are not executed
only once in the process of generating a sentence and will be repeatedly switched according to the
token acceptance situation during the whole process of generating. Then we show how our PEARL
achieves parallelism and adaptive draft length to alleviate the mutual waiting problem.

Parallelism. With the two strategies pre-verify and post-verify, At any timestamp, the draft model
and the target model are running in parallel, which directly breaks the asynchronous execution of
the draft model and the target model.

Adaptive draft length. In our PEARL, the drafting process can be seen as segmented drafting
process. If the draft model cannot generate any ”right” tokens, the pre-verify strategy will avoid the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

additional drafting process. If the draft model could have generated more ”right” tokens, the target
model will not interrupt the drafting phase, where the draft model can generate more draft tokens
with post-verify strategy. Therefore, PEARL can utilize the two simple yet effective strategies to
implement adaptive draft length to alleviate the mutual waiting problem.

4 ANALYSIS

In this section, we give some interesting theoretical findings to demonstrate the generalization ability
and effectiveness of our PEARL.

4.1 ELIMINATING THE BURDEN OF TUNING γ

During a standard speculative decoding step, the draft model takes γ model forward to decode γ
draft tokens and then the target model takes 1 model forward to verify the draft tokens. If γ is set
too small, we cannot fully exploit the ability of the draft model, and the realistic speedup will be
tiny. If γ is set too large, the extra overhead of running draft model will cover the acceleration of
speculative decoding, leading to an undesirable speedup. Hence it is crucial to find an optimal value
of γ for considerable acceleration.

Assuming the acceptance rate is α, the optimal value γ′ of γ in SD is given as follows:

γ′ = argmax
γ

SD(γ) = argmax
γ

1− αγ+1

(1− α)(γc + 1)
, (2)

where α is expected acceptance rate between the draft model and the target model, and c is the
ratio between the time for a single forward of target model and the draft model. However, there lies
some issues in finding γ′ with this equation. On the one hand, this equation makes an important
assumption that the acceptance rate of each token is i.i.d.. Actually, this assumption is only an
approximation, leading to difficulties in finding an appropriate γ. On another hand, the value of
α may vary in different scenarios, as the draft model and the target model may show different
alignments in different scenarios. Therefore, for a specific downstream application, one needs to
search an optimal value of γ, which brings severe burden and limits the application of SD.

In our PEARL, γ′ can be theoretically found without these issues. We give Theorem. 1 to show that
the optimal value of γ is exactly c.

Theorem 1 Given a draft model Mq and a target model Mp, the optimal value of the window size
γ is the ratio of the running speed of the draft model and the target model, i.e.,

γ′ = argmax
γ

PEARL(γ) = c. (3)

We prove this theorem in Appendix B. Intuitively, increasing or decreasing γ′ does not contribute to
better efficiency. We conduct experiments in Section 5.4.1 to empirically demonstrate this theorem,
which is important for our PEARL to eliminate the burden of tuning γ.

4.2 EXPECTATION OF THE NUMBER OF ACCEPTED TOKENS

As our PEARL is based on the standard speculative decoding, we theoretically compare the decoding
step of our PEARL and standard SD. Suppose the draft model Mq and the target model Mp are same
in the two algorithms. We do not introduce any extra training or fine-tuning, hence the acceptance
rate for each token α is same and can be seen as a constant in the following analysis.

We begin our analysis by computing the expectation of the number of accepted tokens within a
drafting phase and a verification phase. Note that in our PEARL, if all the draft tokens in a drafting
phase are accepted, PEARL will continue drafting more draft tokens. We regard the process that the
draft model decodes draft tokens until some tokens are rejected as a drafting phase when computing
the expectation.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Theorem 2 Assuming the acceptance rate of each draft token is α, and α is i.i.d., the expectation
of the number of accepted tokens of PEARL is

E(#accepted tokens) =
1

1− α
+ 1. (4)

We prove this theorem in Appendix B. We give a more intuitive explanation of this theorem: given
a prefix, if the draft model Mq can decode δ draft tokens at most that can be accepted by the target
model, then Mq will continue to decode δ tokens without being interrupted by the target model
verification. It can be explained as an adaptive ”γ” for each prefix to achieve better speedup.

Note that the expectation of accepted tokens of other draft-then-verify works is 1−αγ+1

1−α . With The-
orem. 2, it is easily to show that the expectation of accepted tokens of PEARL is more than
standard SD, i.e., 1

1−α +1 ≥ 1−αγ+1

1−α . From this perspective, we can demonstrate the effectiveness
of our PEARL. We will conduct experiments in Section 5.4.2 to show the empirical results of mean
accepted tokens in both standard SD and our PEARL.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Tasks and Datasets. We conduct experiments on various text generation tasks to evaluate the ef-
fectiveness of our PEARL, including HumanEval (code generation) (Chen et al., 2021), GSM8K &
MGSM (multilingual arithmetic reasoning) (Cobbe et al., 2021; Shi et al.), and MT-bench (multi-
round dialogue) (Zheng et al., 2024). More details can be found in Appendix C.1.

Evaluation Details. We evaluate the effectiveness of our PEARL with some state-of-the-art LLM
families, including CodeLlama (Roziere et al., 2023), Deepseek-Coder (Guo et al., 2024), Llama 2
(Touvron et al., 2023) and Llama 3.1 (Dubey et al., 2024). In our experiments, the models with size
less than 7B are used as the draft models and the models with size greater than 33B are used as the
target models. We report the walltime speedup ratio as the metric. Additional evaluation details are
provided in Appendix C.2 and C.3.

Baseline Methods. We implement five training-free inference acceleration methods as our base-
lines. (i) Speculate decoding: standalone SD methods (Leviathan et al., 2023; Chen et al., 2023)
resort to a draft model to draft future tokens and then verify them in parallel. (ii) Ouroboros:
ouroboros (Zhao et al., 2024) proposes phrase candidate pool from the verification process to gen-
erate more precise and longer drafts. (iii) Lookahead Decoding: look ahead decoding (Fu et al.,
2024) caches the generation trajectory (n-grams) as drafts to reduce the number of total decoding
steps. (iv) Distillspec: DistillSpec (Zhou et al., 2023) distillates and derives a better aligned and
compact draft model. (v) Assisted generation: assisted generation employs a heuristic approach to
determine the number of draft tokens in the next iteration, based on the verification results of tokens
generated by the draft model in the previous round.

Table 1: Experiment results on the code generation task. Part of the results of Lookahead Decod-
ing and Ouroboros are taken from (Zhao et al., 2024). We bold the best results for each model
combination. * Some results of ouroboros and lookahead decoding are reproduced in their official
implementation. Other results are reproduced in our implementation. The symbol ’-’ denote that the
methods do not support current model configuration.
Method CodeLlama 7&34B CodeLlama 7&70B Llama2 7&70B Llama3.1 8&70B DeepSeek 1.3&33B DeepSeek 6.7&33B
Auto Regressive 1.00× 1.00× 1.00× 1.00× 1.00× 1.00×
Speculative Decoding 1.76× 3.03× 2.35× 2.60× 2.32× 1.94×
Ouroboros 2.14× *3.28× *2.10× - *3.25× *2.66×
Lookahead Decoding 1.72× *1.57× *1.80× - *1.82× *1.82×
Assisted Generation 1.37× 2.49× 2.27× 2.72× 1.88× 1.52×
Ours 2.48× 4.43× 3.29× 3.87× 3.48× 2.79×

5.2 MAIN RESULTS.

Table 1 shows that PEARL significantly outperforms vanilla speculative decoding, ouroboros, and
lookahead decoding in all backbone model configurations on the HumanEval dataset. Specifi-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Multi-language experiment results using Llama 3.1 8B&70B on GSM8K and MGSM
(Cobbe et al., 2021; Shi et al.). We bold the best results for each language.
Method English (GSM8K) Bengali German Spanish French Japanese Russian Swahili Tegulu Thai Chinese Avg.
AR 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00×
SD 2.48× 2.69× 2.77× 2.64× 2.71× 2.71× 2.72× 2.81× 2.65× 2.71× 2.78× 2.70×
Ours 3.82× 3.94× 4.00× 3.81× 3.76× 3.94× 3.85× 4.18× 4.10× 3.93× 4.06× 3.95×

Table 3: Experiment results using Llama2 7B&70B and Llama 3.1 8B&70B on MT-bench (Zheng
et al., 2024). We bold the best results for each model configuration.
Model Configuration Method Writing Roleplay Reasoning Math Coding Extraction Stem Humanities Avg.

Llama 2 7B&70B
AR 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00×
SD 1.70× 1.73× 1.96× 2.00× 1.93× 2.14× 1.87× 1.81× 1.89×
Ours 2.40× 2.45× 2.85× 2.79× 2.67× 2.92× 2.58× 2.50× 2.64×

Llama 3.1 8B&70B
AR 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00×
SD 2.29× 2.24× 2.66× 2.81× 2.35× 2.64× 2.22× 2.12× 2.42×
Ours 3.49× 3.35× 3.92× 4.06× 3.55× 3.95× 3.34× 3.05× 3.59×

cally, PEARL can achieve up to 4.43 × speed up compared with vanilla auto-regressive methods.
These experimental results demonstrate that PEARL effectively addresses the mutual waiting is-
sue, thereby achieving significant inference acceleration results compared to methods based on the
traditional draft-then-verify framework. PEARL can also achieve significant inference acceleration
in conventional natural language processing tasks, whereas vanilla speculative decoding yield only
limited improvements regarding acceleration. As shown in Tables 2 and 3, PEARL leads to superior
performances on the GSM8K and MT-bench datasets as well.

5.3 ABLATION STUDIES

To provide more insights of the two proposed strategies, we conduct the ablation study. We denote
PEARL without pre-verify as PEARL w/o pre-verify and PEARL without post-verify as PEARL w/o
post-verify and present the main results of ablation studies.

As shown in Table 4, the absence of any strategy of PEARL results in a performance degradation
of the entire framework. The absence of the post-verify strategy exhibits a more pronounced impact
on the performance of PEARL than the pre-verify strategy. Intuitively, the pre-verify strategy makes
more contributions when the acceptance rate is relatively low, while the post-verify strategy makes
more contributions when the two models are aligned. Therefore, the two strategies are complemen-
tary and accelerate inference together. In our experiments, all the models combinations show great
alignment, which leads to the superiority of the post-verify strategy.

5.4 CASE STUDIES

5.4.1 OPTIMAL RESULTS OF THE WINDOW SIZE γ

As mentioned in Section 4.1, PEARL eliminates the need for tuning the hyperparameter of window
size and can theoretically predetermine the optimal value of γ. In this section, we conduct exper-
iments with various gamma values in our PEARL to demonstrate the impact of the optimal γ on
accelerating LLM inference. As shown in Tables 5 and 6, we can observe that with the predeter-
mined optimal γ, PEARL achieves the maximum inference acceleration. In certain cases involving
suboptimal γ, the inference acceleration improvement in PEARL is less significant, underscoring
the importance of predetermining the gamma value.

5.4.2 MEAN ACCEPTED TOKENS

In Section 4.2, we theoretically demonstrate that the expected number of accepted tokens in PEARL
exceeds that of the vanilla SD method. To further illustrate the real mean accepted tokens in PEARL
under real-world complex conditions, we conduct experiments on the HumanEval, GSM8K, and
MT-Bench datasets. As shown in Table 7, we still empirically observe that that PEARL obtains more
accepted tokens compared to vanilla SD methods, which further demonstrates the effectiveness of
the PEARL framework. Specifically, PEARL achieves the max number of mean accepted tokens to

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: Ablation results of PEARL on HumanEval and GSM8K datasets.
HumanEval GSM8K

Methods CodeLlama 7B&34B CodeLlama 7B&70B DeepSeek 1.3B&33B Llama 2 7B&70B
PEARL w/o pre-verify 2.21× 3.53× 3.19× 2.51×
PEARL w/o post-verify 1.64× 2.57× 2.37× 2.15×
PEARL 2.35× 3.79× 3.48× 2.87×

Table 5: Optimal γ of different model
combinations on HumanEval. (unit: tok/sec)
γ

CodeLlama 7&34 CodeLlama 7&70 DeepSeek 6.7&33
(c=3) (c=5) (c=3)

2 33.25 16.28 30.82
3 46.06 23.14 48.46
4 44.12 29.65 47.22
5 44.93 40.72 46.91
6 41.83 35.39 44.36

Table 6: Optimal γ for different tasks of Llama 2
7B&70B. (c=5)

γ HumanEval GSM8K MT-Bench
3 20.39 18.23 17.67
4 24.58 21.81 20.69
5 30.34 26.47 24.25
6 28.02 24.59 22.71
7 28.09 24.23 22.54

Table 7: Comparison of mean average accepted tokens of vanilla SD methods and PEARL.
Methods CodeLlama 7B&34B CodeLlama 7B&70B DeepSeek 1.3B&33B DeepSeek 6.7B&33B
SD 5.27 8.32 7.23 5.69
Ours 27.95 26.53 29.65 39.90

39.9, which significantly outperforms vanilla SD methods by a large margin. Note that the mean
average accepted tokens per second (mean AAT) and the speed ratio c between the draft model and
the target model both influence the final speed-up results. For example, in the case of Deepseek
6.7B and 33B, the draft model runs approximately three times faster than the target model. Even if
the mean AAT approaches infinity, where all tokens are generated by the 6.7B model, the theoretical
maximum speed-up would be capped at 3x. Consequently, with a mean AAT of 40, PEARL achieves
a 2.75x speed-up, which is close to this theoretical optimum. These results demonstrate that our
PEARL can fully exploit the inference ability of the draft model for further acceleration.

5.4.3 LIMITED GPU RESOURCES SCENARIOS

We discuss our PEARL in the limited GPU resource scenarios, which we refer to “co-locate” setting
or resource competitions (RC). The key problem lies in the nature of GPU hardware design—two
running processes on the same GPU will compete for GPU resources, which may lead to slowdowns.

Generally, in real-world LLM applications, the large-scale target model is usually placed with more
than 1 GPU to handle more requests and long context inference, while the small-scale draft model
only needs 1 GPU for inference. In this case, we can apply pipeline parallelism (PP) to serve the
target model with multiple GPUs. Inspired by this observation, we propose an improved version of
PEARL to effectively utilize GPU computation resources with PP without resource competitions.
The key idea is to transfer the computation of the draft model to another GPU when the target model
is running on a specific GPU. Specifically, we transfer the first ⌈γ2 ⌉ draft token generation to the last
device, while the last ⌊γ2 ⌋ draft tokens are generated with the first device. As the computation of the
target model is conducted sequentially with multiple GPUs, this could effectively utilize the GPU
resources to avoid RC. We conduct some experiments in Table 8 and find that this strategy allows
PEARL to retain 89% ∼ 99% of its original performance, demonstrating the effectiveness of our
PEARL in such conditions. We provide detailed implementation of this strategy in Appendix E.

6 RELATED WORK

Transformer inference acceleration. There exists extensive works for transformer inference ac-
celeration. This includes efforts of model compression (Zhu et al., 2023), efficient architecture de-
sign (Chitty-Venkata & Somani, 2022), and hardware optimization and implementation (Dao et al.,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 8: Comparisons of Llama models for PEARL on MT-bench with and without RC scenario.
Models Writing Roleplay Reasoning Math Coding Extraction Stem Humanities Avg.
Llama 2 7b&70b 22.10 22.47 26.16 25.74 24.63 26.11 23.84 23.09 24.28
Llama 2 7b&70b (RC) 19.88 20.24 25.06 24.47 23.47 25.79 21.55 22.03 22.83
performance retain 89.95% 90.08% 95.80% 95.07% 95.29% 98.77% 90.39% 95.41% 94.03%

Llama 3.1 8b&70b 31.23 30.08 35.09 36.59 31.95 34.60 30.06 27.51 32.14
Llama 3.1 8b&70b (RC) 29.65 27.54 35.01 36.31 29.85 33.99 26.77 26.10 30.78
performance retain 94.94% 91.56% 99.77% 99.23% 93.43% 98.24% 89.06% 94.87% 95.77%

2022). Model compression methods such as quantization (Choi et al., 2018), knowledge distillation
(Hinton et al., 2015), and structure pruning (Han et al., 2015) aim at reducing the number of com-
putational operations. Efficient architecture design is proposed to develop lightweight transformer
architectures. Hardware optimization and implementation is proposed for efficient execution to fully
exploit the hardware devices. These methods have achieved great success, while they are orthogonal
to speculative decoding algorithms, which can be integrated for further speedup.

Draft-then-verify framework. While SD exhibits great acceleration effectiveness and lossless gen-
eralization quality, it remains a challenge to find a compact draft model with high distribution align-
ment. Some works focus on removing the necessity of the draft model. Self-speculative decoding
(Zhang et al., 2023) proposes to skip some intermediate layers of the target model for drafting.
Medusa (Cai et al., 2024) adds extra decoding heads at the top of the target model to generate drafts.
Lookahead decoding(Fu et al., 2024) caches the generation trajectory (n-grams) as the drafts. Eagle
(Li et al., 2024) employs an additional transformer decoder layer to generate drafts at the feature
level. Glide (Du et al., 2024) reuses the kv cache from the target model to decode more accurate
draft tokens. DistillSpec (Zhou et al., 2023) utilizes distillation method to identify a compact draft
model. Ouroboros (Zhao et al., 2024) combines the standard SD and lookahead decoding to gener-
ate more precise and longer drafts. Besides these works, SpecInfer (Miao et al., 2023) proposes tree
attention, which is widely used to verify more drafts and increase the acceptance rate. However, all
of them do not address the parallelism issue. From this perspective, our PEARL is orthogonal to
these methods and can be integrated with these methods, which is left as a future work.

7 CONCLUSION AND FUTURE WORK

Limitations and broader impact. As our PEARL is a parallel acceleration framework, it remains
a challenge to schedule the GPU resources to avoid resource competitions, which may potentially
increase power consumption. We affirm our commitment to contributing positively to society, avoid-
ing harm, and upholding honesty and trustworthiness. We appropriately cite the previous methods
and datasets we use, and ensure that all data involved is fully public, with no private data being uti-
lized. Furthermore, we are committed to correctly maintaining the inference acceleration techniques
we have developed, without incurring any form of discrimination.

Conclusion. In this paper, we propose a novel inference acceleration framework, called PEARL,
which significantly improves LLM inference efficiency. PEARL consists of two simple and effective
strategies, i.e., pre-verify and post-verify, which effectively alleviates the mutual waiting problem
with parallelism and adaptive draft length. Moreover, We theoretically derive the optimal window
size and the mean accepted tokens of our PEARL, which demonstrates the effectiveness of our
PEARL. Extensive experiments demonstrate that our proposed PEARL outperforms existing state-
of-the-art methods on various text generation benchmarks.

Future work. For future research, we aim to integrate PEARL with existing accelerated inference
methods to explore more efficient and resource-friendly acceleration approaches for LLM inference.
Hopefully, PEARL will facilitate the future development of LLM inference acceleration.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportu-
nities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri
Dao. Medusa: Simple llm inference acceleration framework with multiple decoding heads. arXiv
preprint arXiv:2401.10774, 2024.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Krishna Teja Chitty-Venkata and Arun K Somani. Neural architecture search survey: A hardware
perspective. ACM Computing Surveys, 55(4):1–36, 2022.

Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang, Vijayalakshmi Srini-
vasan, and Kailash Gopalakrishnan. Pact: Parameterized clipping activation for quantized neural
networks. arXiv preprint arXiv:1805.06085, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022.

Cunxiao Du, Jing Jiang, Xu Yuanchen, Jiawei Wu, Sicheng Yu, Yongqi Li, Shenggui Li, Kai Xu,
Liqiang Nie, Zhaopeng Tu, et al. Glide with a cape: A low-hassle method to accelerate speculative
decoding. arXiv preprint arXiv:2402.02082, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. Break the sequential dependency of llm infer-
ence using lookahead decoding. arXiv preprint arXiv:2402.02057, 2024.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming–the
rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Diksha Khurana, Aditya Koli, Kiran Khatter, and Sukhdev Singh. Natural language processing:
State of the art, current trends and challenges. Multimedia tools and applications, 82(3):3713–
3744, 2023.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274–19286. PMLR, 2023.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle: Speculative sampling requires
rethinking feature uncertainty. arXiv preprint arXiv:2401.15077, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Rae Ying Yee Wong,
Zhuoming Chen, Daiyaan Arfeen, Reyna Abhyankar, and Zhihao Jia. Specinfer: Accelerating
generative llm serving with speculative inference and token tree verification. arXiv preprint
arXiv:2305.09781, 2023.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950, 2023.

Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang, Suraj Srivats, Soroush Vosoughi,
Hyung Won Chung, Yi Tay, Sebastian Ruder, Denny Zhou, et al. Language models are multi-
lingual chain-of-thought reasoners, 2022. URL https://arxiv. org/abs/2210.03057.

Anthropic Team. The claude 3 model family: Opus, sonnet, haiku. 2024. URL https://api.
semanticscholar.org/CorpusID:268232499.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen, Gang Chen, and Sharad Mehrotra. Draft &
verify: Lossless large language model acceleration via self-speculative decoding. arXiv preprint
arXiv:2309.08168, 2023.

Weilin Zhao, Yuxiang Huang, Xu Han, Chaojun Xiao, Zhiyuan Liu, and Maosong Sun. Ouroboros:
Speculative decoding with large model enhanced drafting. arXiv preprint arXiv:2402.13720,
2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36, 2024.

Yongchao Zhou, Kaifeng Lyu, Ankit Singh Rawat, Aditya Krishna Menon, Afshin Rostamizadeh,
Sanjiv Kumar, Jean-François Kagy, and Rishabh Agarwal. Distillspec: Improving speculative
decoding via knowledge distillation. arXiv preprint arXiv:2310.08461, 2023.

Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping Wang. A survey on model compression for
large language models. arXiv preprint arXiv:2308.07633, 2023.

12

https://api.semanticscholar.org/CorpusID:268232499
https://api.semanticscholar.org/CorpusID:268232499

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A ALGORITHM OF PEARL

Here, we give the whole algorithm of our PEARL in detail in Algorithm. 2.

Algorithm 2 Parallel Speculative Decoding with Adaptive Draft Length.
Input: the draft model Mq , the target model Mp, the input prefix x, the max generate tokens L, the

window size γ.
▷ The pre-verify strategy is used first.

1: Initialization: mode← ”pre-verify”
2: while len(x) < L do
3: if mode = ”pre-verify” then
4: ▷ Pre-verify strategy
5: for i = 1 to γ do
6: qi ←Mq(x+ [x1, ..., xi−1])
7: xi ∼ qi
8: end for
9: ▷ running the target model in parallel to verify the first draft token in advance.

10: p←Mp(x)

11: if r ∼ U(0, 1) ≤ p[x1]
q1[x1]

then
12: ✓ accept the first token
13: x← x+ [x1, ..., xγ]
14: mode← ”post-verify”
15: else
16: × reject the first token
17: y ∼ norm(max(0, p− q1))
18: x← x+ [y]
19: mode← ”pre-verify”
20: end if
21: else
22: ▷ Post-verify strategy
23: x, [x1, x2, ..., xγ]← x ▷ split the prefix to get the last γ draft tokens
24: for i = γ + 1 to 2γ do
25: ▷ running the draft model in parallel to continue drafting.
26: qi ←Mq(x+ [x1, ..., xi−1])
27: xi ∼ qi
28: end for
29: p1, p2, ..., pγ ←Mp(x+ [x1]),Mp(x+ [x1, x2]), ...,Mp(x+ [x1, ..., xγ])
30: retrival q1, q2, ..., qγ from the cache
31: r1 ∼ U(0, 1), ..., rγ ∼ U(0, 1)

32: n← min({i− 1|1 ≤ i ≤ γ, ri >
pi[xi]
qi[xi]

} ∪ {γ})
33: if n = γ then
34: ✓ accept all draft tokens
35: x← x+ [x1, ..., x2γ]
36: mode← ”post-verify”
37: else
38: × reject someone
39: y ∼ norm(max(0, pn+1 − qn+1))
40: x← x+ [x1, ..., xn, y]
41: mode← ”pre-verify”
42: end if
43: end if
44: end while

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

B PROOF OF THEOREM 1 AND THEOREM 2

As illustrated in Section 4, we have two theorems to demonstrate the effectiveness of our PEARL.
Here we give the proof of these two theorems.

Theorem 1 Given a draft model Mq and a target model Mp, the optimal value of the window size γ
is the ratio of the running speed of the draft model and the target model, i.e.,

γ′ = argmax
γ

PEARL(γ) = c. (5)

Proof. We discuss the situation that γ < c and γ > c.

If γ is smaller than c, the draft model will wait for the target model until it finishes the verification.
The draft model could have generated more draft tokens to be verified without extra time consumed,
That is to say, the situation γ < c decreases the number of verified tokens, where PEARL needs to
take more steps for inference.

If γ is larger than c, the target model will wait for the draft model until it finishes generating draft
tokens. Theoretically, the drafting phase takes max(γt, ct) and the verification phase takes ct, while
the verification phase can verify γ tokens. Therefore, the verification speed is max(γt,ct)+ct

γ . As

γ > c, the verification speed is (γ+c)
γ t. Obviously, the optimal value of γ is c.

□

Theorem 2 Assuming the acceptance rate of each draft token is α, and α is i.i.d., the expectation of
the number of accepted tokens of PEARL is

E(#accepted tokens) =
1

1− α
+ 1. (6)

Proof. While vanilla speculative decoding can decode γ+1 tokens at most, our PEARL can decode
infinity tokens due to the adaptive draft length, therefore the expectation of accepted tokens is given
by:

E =

∞∑
k=0

kP (acc = k)

= (1− α)

∞∑
k=0

kαk

(7)

Let S =
∑∞

k=0 kα
k, αS =

∑∞
k=1(k − 1)αk, we have:

E = (1− α)S = S − αS

=

∞∑
k=0

kαk −
∞∑
k=1

(k − 1)αk

=
1

1− α

(8)

Counting the additional token generated by the target model, the expectation is:

E =
1

1− α
+ 1 (9)

□

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

C EVALUATION DETAILS

C.1 DATASET CONFIGURATIONS

In our experiments, we evaluate the effectiveness of our PEARL on 4 categories of text generation
tasks, including code generation, arithmetic reasoning, multilingual inference and multi-round di-
alogue. For the code generation task, we employ HumanEval (Chen et al., 2021), a famous code
generation benchmark which is composed of 164 entries. For arithmetic reasoning and multilingual
inference, we employ GSM8K and MGSM (Cobbe et al., 2021; Shi et al.) as the evaluation bench-
mark. As the GSM8K is the English version of MGSM, we report their results in the same table. For
GSM8K, we sample the first 100 entries for evaluation. For other 10 categories in MGSM, we select
10 entries for each language. For multi-round dialogue, we employ MT-bench(Zheng et al., 2024)
as the benchmark. The maximum generation lengths of these tasks are respectively set to 1024, 256,
256 and 256.

C.2 MODEL CONFIGURATIONS

We select some representative models for evaluation, including Llama 2 Touvron et al. (2023),
Codellama Roziere et al. (2023) and Deepseek-Coder Guo et al. (2024). We summarize the model
configuration in Table 9. In our experiments, all models are loaded in the precision of bfloat-16. Our
PEARL does not introduce any additional training, and directly uses these models to evaluate our
algorithm. The running speed is measured on the code generation tasks.

Table 9: Detailed model configurations.
Models Layers dim FFN dim speed (tok/s)

Codellama-7B 32 4096 11008 49.34
Codellama-34B 48 8192 22016 18.58
Codellama-70B 80 8192 28672 9.20
Deepseek-1.3B 24 2048 5504 63.20
Deepseek-6.7B 32 4096 11008 50.05
Deepseek-33B 62 7168 19200 17.37
Llama-2-7B 32 4096 11008 49.94
Llama-2-70B 80 8192 28672 9.22
Llama-3.1-8B 32 4096 14336 44.37
Llama-3.1-70B 80 8192 28672 9.00

C.3 EVALUATION DETAILS

All of our experiments including latency measurement, ablation studies, and case studies are con-
ducted on NVIDIA A100-SXM4-80G GPUs. For models with size of 1.3B and 7B, we put them on
a single A100, while 34B models are deployed on 2 A100, 70B models are deployed on 3 A100. For
inference, we use batch size 1, which is commonly used in other speculative decoding works. For
the compared baselines, including Lookahead decoding and Ouroboros, we reproduce the results of
them on the code generation tasks with the default parameters as described in their paper or code.
When evaluating these methods, the model configuration and GPU usage is the same as our PEARL.

Table 10: The number of model runs of the draft model and the target model with different model
configurations on HumanEval

Draft Model (SD) Target Model (SD) Draft Model (PEARL) Target Model (PEARL)

Deepseek 1.3B&33B 140500 35125 181864 (1.29×) 45466 (1.29×)
Deepseek 6.7B&33B 128973 42991 174855 (1.35×) 58285 (1.36×)
Codellama 7B&34B 132054 44018 181020 (1.37×) 60340 (1.37×)
Codellama 7B&70B 151960 30392 198370 (1.30×) 39674 (1.30×)
Llama2 7B&70B 175460 35092 248720 (1.41×) 49744 (1.42×)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

As our PEARL is a parallel inference acceleration framework, we implement the parallel algorithm
in accelerate, which can be further optimized with other parallel techniques. We leave this as a
potential future work to acquire more acceleration.

D FORWARD TIMES COMPARISON OF PEARL AND SD METHODS

Considering that PEARL is a parallel framework, both the draft model and the target model are
running simultaneously at all times. Therefore, we measure the number of model runs for PEARL
compared to the traditional SD method to provide a more comprehensive perspective in Table 10.
The results show that our PEARL exhibits relatively more forward times of both the draft model and
the target model compared to traditional SD. As our PEARL is a parallel inference framework, which
executes the draft model and the target model in parallel at any timestamp, it naturally increases the
forward times of the target model and leads to more power consumption. However, the additional
inference time occurs at another process, which will not affect the multi-user throughput.

E EXPERIMENT RESULTS UNDER LIMITED GPU RESOURCES

Although our PEARL parallels the draft model and the target model at the algorithmic level, it still
remains a challenge for deployment at the hardware level in the GPU-constrained scenarios, which
we refer to ”co-locate” setting or resource competitions (RC). The key problem lies in the nature of
GPU hardware design —- two running processes on the same GPU will compete for GPU resources,
which leads to significant slowdowns.

However, in the real-world LLM applications, the large-scale target model is usually placed with
more than 1 GPU to handle more requests and long context inference, while the small-scale draft
model only needs 1 GPU for inference. In this case, pipeline parallelism (PP) is the most common
solution to serve the target model with multiple GPUs, which distributes the parameters to different
GPUs and conducts computations sequentially with these GPUs.

Inspired by this observation, we propose an improved version of PEARL to effectively utilize GPU
computation resources with PP without resource competitions. The key idea is to transfer the com-
putation of the draft model to another GPU when the target model is running on a specific GPU.
Specifically, we transfer the first ⌈γ2 ⌉ draft token generation to the last device, while the last ⌊γ2 ⌋
draft tokens are generated with the first device. As the computation of the target model is conducted
sequentially with multiple GPUs, this method could effectively utilize the GPU resources to avoid
resource competition.

Take an instance of c = 5, the target model is placed with g = 4 GPUs, we denote the time for a
target model forward as t, and the time that the target model runs at GPU 0 is t

4 . To analyze the
GPU utilization in details, we split t into gc = 20 steps, where each step η = t

20 . During one target
model forward, the occupied GPU number in 20 steps is given by:

Mp : 0, 0, 0, 0, 0; 1, 1, 1, 1, 1; 2, 2, 2, 2, 2; 3, 3, 3, 3, 3; (10)

Then we can further analyze the occupied GPU number of the draft model with proposed methods.
First, as the draft model can generate c tokens in 20 steps, it only needs 4 steps to generate 1 draft
token. Taking ⌈γ2 ⌉ = 3, ⌊γ2 ⌋ = 2, the first 3× 4 = 12 steps of the draft model will occupy the GPU
3, while the last 2× 4 = 8 steps of the draft model will occupy the GPU 0. Therefore, the occupied
GPU number of the draft model in 20 steps is given by:

Mq : 3, 3, 3, 3; 3, 3, 3, 3; 3, 3, 3, 3; 0, 0, 0, 0; 0, 0, 0, 0; (11)

In this way, the draft model and the target model will occupy different devices at each step, which
effectively avoid the resource competition. However, in the real-world settings, moving the draft
model from the last device to the first device is non-trivial and costly. As a compromise, We propose
to load the draft model both at the first device and the last device. During inference process, we
only move the intermediate KV Cache from the last device to the first device. Many KV Cache
compression methods can help further reduce the cost.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

To further evaluate the effectiveness of this method, we conduct some experiments in Table 8. We
found that this strategy allows PEARL to retain 89% ∼ 99% of its original performance, demon-
strating the effectiveness of our PEARL in such conditions.

17

	Introduction
	Background
	Methodology
	Motivated Observation
	Pre-verify: verify the first draft token in advance.
	Post-verify: continue drafting during verification.
	PEARL: parallel speculative decoding with adaptive draft length

	Analysis
	Eliminating the burden of tuning
	Expectation of the number of accepted tokens

	Experiments
	Experimental Setup
	Main results.
	Ablation studies
	Case studies
	Optimal results of the window size
	Mean accepted tokens
	Limited GPU Resources Scenarios

	Related Work
	Conclusion and Future Work
	Algorithm of PEARL
	Proof of Theorem 1 and Theorem 2
	Evaluation Details
	Dataset Configurations
	Model Configurations
	Evaluation Details

	Forward Times Comparison of PEARL and SD methods
	Experiment Results under Limited GPU Resources

