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Abstract

Knowledge editing, which aims to update the001
knowledge encoded in language models, can002
be deceptive. Despite the fact that many ex-003
isting knowledge editing algorithms achieve004
near-perfect performance on conventional met-005
rics, the models edited by them are still prone006
to generating original knowledge. This paper007
introduces the concept of “superficial editing”008
to describe this phenomenon. Our comprehen-009
sive evaluation reveals that this issue presents010
a significant challenge to existing algorithms.011
Through systematic investigation, we identify012
and validate two key factors contributing to this013
issue: (1) the residual stream at the last sub-014
ject position in earlier layers and (2) specific015
attention modules in later layers. Notably, cer-016
tain attention heads in later layers, along with017
specific left singular vectors in their output ma-018
trices, encapsulate the original knowledge and019
exhibit a causal relationship with superficial020
editing. Furthermore, we extend our analysis021
to the task of superficial unlearning, where we022
observe consistent patterns in the behavior of023
specific attention heads and their correspond-024
ing left singular vectors, thereby demonstrating025
the robustness and broader applicability of our026
methodology and conclusions. The source code027
will be released publicly.028

1 Introduction029

The inherent static nature of knowledge embedded030

within a pretrained large language model (LLM)031

poses a fundamental limitation as the real world032

evolves. To address this issue, the concept of033

knowledge editing has been proposed to modify034

specific knowledge in LLMs while ensuring that035

unrelated knowledge remains unaffected (Zhu et al.,036

2020). To date, numerous studies have been con-037

ducted on knowledge editing, encompassing di-038

verse methodologies (Zhu et al., 2020; De Cao039

et al., 2021; Mitchell et al., 2022a; Mitchell et al.,040

2022b; Meng et al., 2022; Meng et al., 2023; Zheng041
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Figure 1: An example of superficial editing with the
LLaMA3-8B-Instruct model. Following the editing pro-
cess, the model accurately responds to Query 1. How-
ever, when presented with Query 2 as input, the edited
model reverts to generating the original answer.

et al., 2023), paradigms (Hartvigsen et al., 2023; 042

Fang et al., 2024; Jiang et al., 2024; Cai and Cao, 043

2024; Xu et al., 2023; Wang et al., 2024b; Wang 044

et al., 2024a; Wu et al., 2024), evaluation strate- 045

gies (Zhong et al., 2023; Cohen et al., 2024; Rosati 046

et al., 2024; Yang et al., 2024; Ma et al., 2024), 047

and applications (Wang et al., 2024c; Uppaal et al., 048

2024; Chen et al., 2024). Although significant 049

progress has been made in these endeavors, a criti- 050

cal challenge persists: models that appear to have 051

been successfully edited may unexpectedly revert 052

to their original knowledge when exposed to spe- 053

cific contextual inputs. As shown in Figure 1, the 054

edited model demonstrates the capability to appro- 055

priately respond to the query “The President of the 056

United States is”. However, when the context “Is 057

Joe Biden the President of the U.S.?” is incorpo- 058

rated into the query, the updated model reverts to 059

generating responses based on its original knowl- 060

edge. The phenomenon reveals the potential decep- 061

tiveness of knowledge editing: edited models may 062

revert to their original knowledge, undermining the 063

goal of enabling continuous knowledge updates in 064

LLMs. This limitation severely hinders the practi- 065

cal utility and reliability of knowledge editing. 066
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In this paper, we define a knowledge editing067

process as “superficial editing” when the result-068

ing model appears to successfully integrate new069

knowledge, yet reverts to its original knowledge070

when exposed to carefully crafted prompts. To071

quantitatively evaluate this issue, we introduce072

“attack probe”, which is a specifically designed073

prompt consisting of an attack prefix and a base-074

line prompt (as exemplified by Query 2 in Figure075

1). We develop three attack types based on two076

widely used datasets and assess several editing al-077

gorithms across three models. Empirical results078

demonstrate that while the majority of editing algo-079

rithms exhibit strong performance on conventional080

evaluation metrics, models edited through these ap-081

proaches remain vulnerable to attack probes. For in-082

stance, both PMET (Li et al., 2024) and AlphaEdit083

(Fang et al., 2024) demonstrate near-optimal per-084

formance in terms of editing efficacy; however,085

they exhibit superficial editing in over 70% of the086

cases. This finding suggests that current parameter-087

editing algorithms are fundamentally inadequate in088

addressing the challenge of superficial editing.089

To elucidate the underlying mechanisms of this090

phenomenon, we focus on the core components of091

the Transformer architecture (Vaswani et al., 2017).092

We initially conduct intervention experiments on093

the residual stream at two token positions. First,094

our intervention at the last subject position in ear-095

lier layers reveals shifts in prediction probabilities.096

Second, we intervene at the last position and find097

that this intervention exerts a significant effect in098

the later layers, where the probability of the orig-099

inal answer exceeds that of the new answer. This100

shift is a prerequisite for superficial editing, a phe-101

nomenon we term the “Reversal of the Residual102

Stream” (RRS). Additionally, our preliminary anal-103

ysis of Multi-Layer Perceptron (MLP) and Multi-104

Head Attention reveals that specific attention mod-105

ules in later layers play a significant role. Based106

on the observations, we formulate two hypotheses:107

(H1) The enrichment of new knowledge at the108

last subject position in earlier layers is impeded,109

and the accumulation of the original knowledge110

at this position is relatively limited. (H2) The111

later attention modules actively incorporate in-112

formation related to original knowledge into the113

last position, thereby facilitating the RRS phe-114

nomenon and consequently inducing the occur-115

rence of superficial editing. To validate H1, we116

project the representation of the last subject posi-117

tion in each layer into the vocabulary space. We ob-118

serve greater suppression of the new answer when 119

the attack probe is used as input, compared to the 120

baseline prompt. However, despite this suppression 121

effect, the ranking of the original answer consis- 122

tently lags behind that of the new answer in the 123

earlier layers, indicating minimal enrichment of the 124

original knowledge. To validate H2, we first estab- 125

lish that the later attention modules exhibit a causal 126

relationship with the RRS phenomenon, highlight- 127

ing their critical role. Subsequently, we analyze the 128

attention heads and confirm that a causal correla- 129

tion exists between certain heads in later layers and 130

superficial editing. Furthermore, we investigate the 131

internal mechanisms of attention heads through sin- 132

gular value decomposition (SVD) and demonstrate 133

that specific left singular vectors are responsible 134

for encoding the original knowledge and contribut- 135

ing to superficial editing. These findings provide 136

robust evidence in support of H2. 137

To demonstrate the broader applicability of our 138

interpretability analysis framework, we extend our 139

investigation to a distinct task: superficial unlearn- 140

ing, wherein the unlearned model fails to truly 141

forget the target information. Our experimental 142

results reveal a strong correlation between this phe- 143

nomenon and specific attention heads along with 144

their corresponding singular vectors, substantiating 145

the generalizability of both our analytical method- 146

ology and conclusions. 147

The primary contributions of this paper are as 148

follows: (1) We formally define superficial edit- 149

ing and provide corresponding evaluation datasets 150

and metrics, thereby completing the assessment 151

of multiple algorithms. (2) We identify and vali- 152

date two critical factors contributing to superficial 153

editing: the residual stream in earlier layers and 154

specific attention modules in later layers. Addi- 155

tionally, we explore the internal mechanisms of the 156

attention module and reveal that specific attention 157

heads and their corresponding left singular vectors 158

are responsible for superficial editing. (3) We apply 159

our analytical approach to superficial unlearning. 160

The consistent finding across both phenomena val- 161

idates the robustness and broader applicability of 162

both our methodology and conclusions. 163

2 Problem Formulation 164

Knowledge editing, which aims to adjust the knowl- 165

edge of a language model, can generally be ex- 166

pressed as follows: 167

(s, r, o)
e−→ (s, r, o∗) , (1) 168
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Methods Wiki Rep Que
Eff. Gen. Loc. OM ↓ OP ↓ Eff. Gen. Loc. OM ↓ OP ↓ Eff. Gen. Loc. OM ↓ OP ↓

FT 100 80.51 52.37 49.45 51.65 100 70.54 44.46 30.68 35.98 100 87.90 33.87 29.07 31.40
MEND 98.31 65.25 47.63 35.16 39.56 100 50.99 51.29 34.47 38.36 100 81.45 39.52 33.73 38.37
ROME 100 94.92 85.08 54.95 58.24 100 97.52 84.75 61.74 64.02 100 99.19 82.74 38.37 38.37
MEMIT 100 94.07 86.10 52.75 54.95 100 98.27 87.18 40.15 42.42 100 100 82.58 37.21 37.21
PMET 94.92 85.59 90.00 70.33 72.43 99.50 93.32 91.88 66.67 71.97 96.67 89.17 88.17 39.29 41.67
r-ROME 96.61 92.37 86.78 54.95 57.14 99.01 97.28 89.11 64.39 68.18 98.33 97.50 84.50 40.48 40.48
AlphaEdit 100 83.90 88.98 72.53 73.62 100 92.33 92.23 68.18 71.97 100 88.33 87.67 34.52 35.71

Table 1: Evaluation results of superficial editing conducted on LLaMA3-8B-Instruct using the CF-a dataset. Wiki,
Rep, and Que represent the three attack types defined in Section 2. Experimental results for other models and
datasets are available in Appendix B.

where s is subject (e.g., United States), r is relation169

(e.g., President), o is the pre-editing object (e.g.,170

Joe Biden), o∗ is the post-editing object (e.g., Don-171

ald Trump), and e is a prompt used for editing (e.g.,172

“The President of the United States is”). We define173

the following attack prefixes for o:174

a ∈ A = {Wiki (o) ,Rep (o) ,Que (o)}, (2)175

where a is an attack prefix, Wiki (o) denotes the176

Wikipedia summary of o, Rep (o) denotes the rep-177

etition of o, and Que (o) represents a question in-178

corporating s, r, and o simultaneously (e.g., Is179

Joe Biden the President of the U.S.?). The set of180

all queries derivable from s and r is denoted as181

I = {x | s, r ⇒ x}. According to the editing oper-182

ation defined in Equation 1, the edit is classified as183

superficial editing if the edited model f ′ satisfies184

the following conditions:185 {
f ′ (x) = o∗ x ∈ I
f ′ (a⊕ x) = o a ∈ A x ∈ I,

(3)186

where ⊕ denotes text concatenation. To quantify187

the extent of superficial editing, we define the fol-188

lowing metrics:189

OM = Ex

[
f ′ (a⊕ x) = o

]
OP = Ex [P (o | a⊕ x) > P (o∗ | a⊕ x)] ,

(4)190

where OM indicates whether the model’s prediction191

matches the original answer o, and OP measures192

whether the output probability of o exceeds that of193

o∗. Higher values of OM and OP reflect a greater194

degree of superficial editing.195

3 Evaluation of Superficial Editing196

This section evaluates multiple representative197

parameter-editing algorithms for superficial edit-198

ing. We first describe the evaluation setup of our199

experiment (§3.1), followed by a comprehensive200

assessment of various methods (§3.2).201

3.1 Evaluation Setup 202

Data Collection. To construct our evaluation 203

dataset for superficial editing, we employ two 204

widely used datasets in knowledge editing: Coun- 205

terFact (Meng et al., 2022) and ZsRE (Zhu et al., 206

2020). First, we select cases where the model 207

has already acquired the corresponding knowledge. 208

Next, based on the definition, we generate three 209

attack prefixes and concatenate them with the base- 210

line prompts from the original dataset to construct 211

attack probes. Finally, we evaluate all instances, 212

filtering the cases that meet the definition to cre- 213

ate two enhanced datasets, designated as CF-a and 214

ZsRE-a, respectively. The detailed construction 215

procedure is provided in Appendix A. 216

Baselines. We employ the following knowledge 217

editing methods as baselines: FT (Zhu et al., 2020), 218

MEND (Mitchell et al., 2022a), ROME (Meng 219

et al., 2022), MEMIT (Meng et al., 2023), PMET 220

(Li et al., 2024), r-ROME (Gupta et al., 2024), and 221

AlphaEdit (Fang et al., 2024). 222

Models & Metrics. We conduct experiments us- 223

ing three powerful language models: LLaMA3-8B- 224

Instruct1, Qwen2.5-7B-Instruct, and Qwen2.5-14B- 225

Instruct2. In addition to the metrics specifically 226

defined for superficial editing in Equation (4), we 227

also report three conventional knowledge editing 228

metrics: Efficacy (Eff.), Generalization (Gen.), and 229

Locality (Loc.), respectively. The formal defini- 230

tions for them are detailed in Appendix B. 231

3.2 Evaluation Results 232

Table 1 presents our evaluation results. Notably, 233

while the models edited using various methods 234

demonstrate near-perfect performance on conven- 235

1https://huggingface.co/meta-llama/
Meta-Llama-3-8B-Instruct

2https://qwenlm.github.io/blog/qwen2.5-llm/
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tional metrics, particularly Efficacy, they exhibit236

significant vulnerability to attack probes. For in-237

stance, under the Wiki attack scenario, both PMET238

and AlphaEdit achieve superior Efficacy scores,239

yet simultaneously maintain high OM metrics of240

70.33% and 72.53%, respectively. This under-241

scores the severity of superficial editing. The re-242

sults also highlight the limitations of conventional243

evaluation frameworks, which inadequately capture244

the practical effectiveness of knowledge editing al-245

gorithms. The experimental findings motivate our246

subsequent investigation into the underlying mech-247

anisms of superficial editing.248

4 Mechanistic Analysis of Superficial249

Editing250

This section presents a comprehensive investiga-251

tion into the underlying mechanisms responsible252

for superficial editing. We initiate our analysis by253

examining the influence of the three fundamental254

components within the Transformer architecture:255

Residual Stream (He et al., 2016; Elhage et al.,256

2021), Multi-Layer Perceptron (MLP), and Multi-257

Head Attention. Building upon the observations,258

we formulate two key hypotheses (§4.1). Subse-259

quently, we conduct rigorous empirical validation260

of these hypotheses, systematically elucidating the261

causal factors underlying superficial editing (§4.2262

and §4.3). Furthermore, we extend our analysis to263

investigate the related task of superficial unlearn-264

ing, thereby demonstrating the generalizability of265

our approach and conclusions (§4.4).266

4.1 Effects of Transformer Components267

4.1.1 Effect of the Residual Stream268

To investigate the influence of the Residual Stream,269

we implement two distinct forward propagation270

procedures: a “clean run” using the baseline271

prompt e as input and a “corrupted run” using the272

attack probe a ⊕ e as input. Through these two273

forward passes, we can obtain the outputs of each274

layer in the model:275

H = {h(l)
i | i ∈ [0, T ) , l ∈ [0, L)} (5)276

Ĥ = {ĥ
(l)

i | i ∈ [0, T̂ ), l ∈ [0, L)}, (6)277

where H and Ĥ denote the hidden states of the278

clean and corrupted runs, respectively. T and T̂279

represent the sequence lengths of the two inputs,280

and L is the number of layers. Subsequently, we281

introduce an intervention within the residual stream282
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Figure 2: Intervention results of LLaMA3-8B-Instruct
edited by ROME (2a, 2b) and MEMIT (2c, 2d) at differ-
ent tokens. The final probabilities without any interven-
tion are depicted by dashed lines in the respective colors.
Results for other models are provided in Appendix C.1.

of the clean run. More precisely, we replace the 283

representation of a specific token at layer l with its 284

corresponding representation from the corrupted 285

run at the same layer: 286

h
(l)
t0
← ĥ

(l)

t1 , (7) 287

where t0 and t1 denote the indices of the same to- 288

ken in e and a⊕ e, respectively. In this study, we 289

concentrate on two distinct positions: (1) the last 290

position of the subject, which has been identified 291

as crucial for a specific process (Geva et al., 2023); 292

(2) the last position of the sentence, which serves as 293

the primary basis for the model to predict the next 294

token. Following intervention at each layer, we can 295

determine the original answer probability (OAP) 296

and the new answer probability (NAP) of the edited 297

model. To establish a baseline for comparison, we 298

additionally compute the mean OAP and NAP of 299

the clean run without any interventions. The results 300

are illustrated in Figure 2. As shown in the figure, 301

the residual streams at these two positions exert 302

a causal effect on the model’s predictions. The 303

residual stream at the last subject position predomi- 304

nantly influences the earlier layers (Figures 2a, 2c), 305

whereas the residual stream at the last position pri- 306

marily affects the later layers (Figures 2b, 2d). The 307

latter’s impact is more pronounced, as the OAP 308

exceeds the NAP, which is a critical prerequisite 309

for superficial editing. We formally designate this 310

observed pattern in the later layers as the “Reversal 311

of the Residual Stream” (RRS) phenomenon. 312
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Figure 3: Latent probabilities of the original answer for
the input and output of the MLP and Attention output
matrix in LLaMA3-8B-Instruct edited by ROME (3a,
3b) and MEMIT (3c, 3d). Results for other models are
presented in Appendix C.1.

4.1.2 Effect of MLP and Attention313

The impact of both the MLP and Multi-Head Atten-314

tion on model predictions arises from their iterative315

refinement of the vector at the last position, thereby316

enhancing its predictive capacity for generation.317

To investigate their effects, we extract both the in-318

put and output vectors at the last position from the319

MLP and the attention output matrix W o. These320

vectors are projected into the vocabulary space us-321

ing the “logit lens” technique (nostalgebraist, 2020;322

Geva et al., 2022; Dar et al., 2023; Halawi et al.,323

2024), enabling us to observe the probability of the324

original answer o within each latent probability dis-325

tribution. A detailed explanation of this technique326

is provided in Appendix D.327

The findings are illustrated in Figure 3. Our anal-328

ysis demonstrates that the probability of o within329

the latent probability distribution of each MLP330

layer’s output is consistently lower than that of its331

input. In contrast, certain attention modules exhibit332

an inverse pattern in later layers, where the proba-333

bility of o in the output distribution is significantly334

higher than that of the input. This observation sug-335

gests that the RRS phenomenon is likely driven by336

attention modules in later layers.337

4.1.3 Insights and Hypotheses338

Through our experiments, we have identified sev-339

eral critical insights: (1) The residual stream asso-340

ciated with the last subject position in the earlier341

layers demonstrates a correlation with superficial342

editing. When considered in conjunction with the 343

subject enrichment process (Geva et al., 2023), two 344

possible scenarios emerge: either the attack prefix 345

facilitates the accumulation of original knowledge, 346

or it disrupts the enrichment of new knowledge. 347

Given the significant reduction in NAP, the latter 348

appears to be the more plausible explanation. (2) 349

Specific later attention layers incorporate informa- 350

tion related to o into the last position, indicating 351

that they may contribute to the RRS phenomenon, 352

ultimately leading to superficial editing. 353

In conclusion, we formulate the following two 354

hypotheses: (H1) The enrichment of new knowl- 355

edge at the last subject position in earlier layers 356

is impeded, and the accumulation of the original 357

knowledge at this position is relatively limited. 358

(H2) The later attention modules actively incor- 359

porate information related to original knowledge 360

into the last position, thereby facilitating the RRS 361

phenomenon and consequently inducing the occur- 362

rence of superficial editing. 363

4.2 Investigation and Validation of H1 364

To validate H1, two propositions must be con- 365

firmed: (1) the enrichment of new knowledge 366

within the earlier residual stream is hindered, and 367

(2) the earlier residual stream exhibits negligible 368

accumulation of original knowledge. 369

To confirm proposition (1), we extract the rep- 370

resentations of the last subject position from both 371

the clean and corrupted runs. To quantify the sup- 372

pression effect, we introduce the Inhibition Score 373

(IS): 374

IS(l) (o∗) = − logPLL

(
o∗ | h(l)

j

)
, (8) 375

where h
(l)
j denotes the representation of the last 376

subject token, and PLL represents the latent proba- 377

bility of o∗ derived from the logit lens. A higher in- 378

hibition score indicates a stronger inhibitory effect. 379

The results are illustrated in Figure 4. Our analy- 380

sis reveals that the negative logarithmic probability 381

of the new answer decreases gradually, indicating 382

a corresponding increase in its latent probability. 383

Furthermore, the IS value for the corrupted run ex- 384

ceeds that of the clean run in earlier layers (e.g., 385

layers 5-15), suggesting that the enrichment of new 386

knowledge is inhibited. 387

To confirm proposition (2), we compute the rank- 388

ings of o and o∗ within the latent probability distri- 389

butions of the last subject position across all layers 390

in the corrupted runs. As shown in Figure 5, the 391
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Figure 4: The Inhibition Scores at each layer for
LLaMA3-8B-Instruct edited by ROME and MEMIT.
The convex portion of the bar for the corrupted run in-
dicates a higher IS value compared to the clean run.
Results for other settings are provided in Appendix C.2.
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Figure 5: The rankings of o and o∗ in the latent proba-
bility distribution at the last subject token for LLaMA3-
8B-Instruct edited by ROME and MEMIT. Results for
other models are provided in Appendix C.2.

ranking of the original answer consistently falls be-392

hind that of the new answer in earlier layers. Com-393

bined with our prior analysis, despite the suppres-394

sion of new knowledge enrichment, the ranking of395

o fails to surpass that of o∗ in earlier layers, indicat-396

ing negligible accumulation of original knowledge397

at this specific position.398

4.3 Investigation and Validation of H2399

To validate H2, we first establish a causal rela-400

tionship between the later attention modules and401

the “Reversal of the Residual Stream” (RRS) phe-402

nomenon, highlighting the crucial role of attention403

for superficial editing (§4.3.1). Following this, we404

demonstrate that specific attention heads within405

the later attention modules actively integrate infor-406

mation related to the original answer into the last407

position. Additionally, we demonstrate a causal408

relationship between these attention heads and the409

occurrence of superficial editing (§4.3.2). To fur-410

ther understand the internal mechanisms, we apply411

singular value decomposition (SVD) to the output412

matrices of these heads, revealing that the linear413

combination of certain left singular vectors encap-414

sulates information associated with original knowl-415

edge, contributing to superficial editing (§4.3.3).416
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Figure 6: Intervention effects following critical atten-
tion module ablation in LLaMA3-8B-Instruct edited by
ROME and MEMIT. We present the results of other
models in Appendix C.3.

4.3.1 The Role of Attention 417

To investigate the correlation between the RRS phe- 418

nomenon and the attention modules in later layers, 419

we set the output of selected critical attention lay- 420

ers (e.g., layer 27 in Figure 3b) to zero and extract 421

representations from all layers during the corrupted 422

run. Following the method in Section 4.1.1, we 423

substitute the representation at the last position in 424

the clean run and compute the final probabilities of 425

o and o∗. The results are presented in Figure 6. A 426

comparative analysis between Figures 2b, 2d, and 427

6 demonstrates that after ablating the specific atten- 428

tion modules, NAP is no longer surpassed by OAP, 429

indicating that the RRS phenomenon has been mit- 430

igated. This observation establishes a significant 431

correlation between these attention modules and 432

superficial editing. 433

4.3.2 The Role of Attention Head 434

Our analysis has revealed a significant correlation 435

between specific later attention modules and the oc- 436

currence of superficial editing. This naturally leads 437

to the question regarding the mechanistic pathways 438

by which these later attention modules influence 439

the final predictions. To explore this, we conduct a 440

head-level analysis of attention mechanisms. Let 441

x(l) denote the input vector to the attention out- 442

put matrix W
(l)
O at the last position. Through the 443

logit lens technique, we derive the latent original 444

probability of each head (LOPH): 445

LOPH = PLL

(
o |W (l,h)

O x(l,h)
)
, (9) 446

where W
(l,h)
O represents the output matrix for the 447

h-th head, with x(l,h) denoting its corresponding 448

input vector. 449

The results of LOPH are depicted in Figure 7. 450

Our analysis demonstrates that specific attention 451

heads integrate information related to the original 452

knowledge into the last position. This observation 453
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(b) MEMIT.

Figure 7: LOPH of LLaMA3-8B-Instruct edited by
ROME and MEMIT. Results for other models are pro-
vided in Appendix C.3.

Models Methods Original New
w/o abl. abl. ↓ ∆P w/o abl. abl. ↑ ∆P

LLaMA3-
8B-Instruct

ROME 57.17 35.58 21.59 16.49 20.71 4.22
MEMIT 56.90 37.36 19.54 15.68 18.38 2.70

Qwen2.5-
7B-Instruct

ROME 57.83 36.52 21.31 11.84 17.57 5.73
MEMIT 57.54 32.40 25.14 12.21 26.08 13.87

Qwen2.5-
14B-Instruct

ROME 55.71 39.99 15.72 13.99 21.40 7.41
MEMIT 55.03 37.25 17.78 13.79 22.24 8.45

Table 2: Ablation effects of the prominent heads. (Orig-
inal: original answer; New: new answer; w/o abl.: with-
out ablation; abl.: with ablation; ↓ ∆P : probability
decrease; ↑ ∆P : probability increase)

suggests that these prominent attention heads may454

play a significant role in facilitating superficial edit-455

ing. To validate the causal relationship, we perform456

the corrupted run by zeroing the output of attention457

heads with LOPH values exceeding τ . When τ is458

too large, the attention heads under investigation459

may miss significant heads. Conversely, a small460

τ may include irrelevant heads. After carefully461

balancing these two considerations, we set τ to462

0.1. We then examine the model’s output proba-463

bilities for both o and o∗, with quantitative results464

provided in Table 2. The results demonstrate a465

decrease in the probability of o, accompanied by466

a corresponding increase in the probability of o∗467

after the removal of these attention heads. This468

suggests partial mitigation of superficial editing,469

providing evidence for the causal role of these at-470

tention heads.471

4.3.3 Dissection of Attenion Head472

To elucidate the efficacy of these attention heads473

for superficial editing, we perform singular value474

decomposition on W
(l,h)
O . Given the last position475

vector x(l,h) of the input, we have:476

z = W
(l,h)
O x(l,h) =

r−1∑
i=0

(
uiσiv

⊤
i

)
x(l,h)

=

r−1∑
i=0

uiσi

(
v⊤
i x

(l,h)
)
=

r−1∑
i=0

λiui,

(10)477

where λi = σiv
⊤
i x

(l,h) is a scalar. This equation 478

demonstrates that the output of an attention head 479

can be expressed as a linear combination of the 480

left singular vectors derived from its output ma- 481

trix, with the coefficients determined by the input. 482

Consequently, we hypothesize that the superficial 483

editing induced by attention heads is attributable 484

to specific left singular vectors. We set the coeffi- 485

cient of the i-th singular vector to 0 to derive z
(i)
abl 486

and identify the top p% most significant vectors 487

through the following procedure: 488

Su = Top-P
[
PLL (o | z)− PLL

(
o | z(i)

abl

)]
. (11) 489

We define the Decoding Success Rate (DSR) to 490

assess whether the linear combination of the identi- 491

fied vectors captures the target knowledge: 492

DSR = E [1 [t ∈ Top-K (z (Su))]] , (12) 493

where t is the target token (o or o∗), Top-K (z (Su)) 494

denotes the first K tokens derived from decoding 495

the linear combination of the identified vectors via 496

the logit lens. The results in Table 3 demonstrate 497

that across all heads, the DSR of o consistently 498

exceeds that of o∗ by a large margin, supporting 499

our hypothesis. 500

To further examine the causal relationship be- 501

tween these left singular vectors and superficial 502

editing, we perform an ablation study on the identi- 503

fied crucial vectors during forward propagation and 504

observe the probabilities of the model generating 505

both o and o∗. The experimental results, presented 506

in Table 4, illustrate that the removal of the iden- 507

tified singular vectors leads to a decrease in OAP 508

and an increase in NAP. These findings demon- 509

strate that the identified singular vectors causally 510

contribute to superficial editing. 511

4.4 Superficial Unlearning 512

To further demonstrate the generalizability of our 513

interpretability analysis framework, we extend our 514

methodology to an additional task: superficial un- 515

learning, a scenario in which the unlearned model 516

fails to truly forget the target information. Conse- 517

quently, there exists a potential for this information 518

to be reactivated (Lynch et al., 2024; Yuan et al., 519

2024; Seyitoğlu et al., 2024; Zhang et al., 2025). In 520

Appendix C.4, we provide a detailed description of 521

the data construction and subsequent analysis pro- 522

cedures. The results presented in Figure 8 and Ta- 523

ble 5 demonstrate that, in the context of superficial 524

unlearning, certain attention heads remain active, 525
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Top-K L23H27 L24H3 L27H20 L30H29 L31H6 L31H7
5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

Original
5 6.06 9.85 50.76 62.88 64.39 71.97 14.39 16.67 62.88 73.48 62.88 71.97
10 6.82 10.61 57.58 67.42 67.42 73.48 15.15 16.67 65.15 75.00 65.15 72.73
15 10.61 11.36 61.36 68.18 70.45 75.76 15.91 16.67 67.42 75.76 65.91 73.48

New
5 0.00 0.00 6.06 4.55 4.55 3.79 2.27 2.27 2.27 1.52 2.27 3.03
10 0.00 0.76 6.82 6.06 6.06 6.82 4.55 3.79 5.30 4.55 5.30 6.06
15 0.00 0.76 7.58 6.82 6.82 9.09 8.33 4.55 6.82 5.30 7.58 9.09

Table 3: Decoding Success Rate (DSR) of the identified vectors across different heads in LLaMA3-8B-Instruct
edited by ROME. p% is set to 5% and 10%. Results for other settings are provided in Appendix C.3.

Models Methods
5% 10%

OAP NAP OAP NAP
w/o abl. abl. ↓ ∆P w/o abl. abl. ↑ ∆P w/o abl. abl. ↓ ∆P w/o abl. abl. ↑ ∆P

LLaMA3-8B-
Instruct

ROME 61.41 52.80 8.61 16.12 20.48 4.36 61.41 48.64 12.77 16.12 22.65 6.53
MEMIT 57.42 48.61 8.81 17.05 21.64 4.59 57.42 44.42 13.00 17.05 23.48 6.43

Qwen2.5-7B-
Instruct

ROME 64.33 55.91 8.42 11.93 17.05 5.12 64.33 51.11 13.22 11.93 19.44 7.51
MEMIT 66.41 61.83 4.58 15.72 19.01 3.29 66.41 58.25 8.16 15.72 21.31 5.59

Qwen2.5-14B-
Instruct

ROME 62.87 56.94 5.93 17.39 20.79 3.40 62.87 53.78 9.09 17.39 22.69 5.30
MEMIT 62.02 55.24 6.78 15.64 19.63 3.99 62.02 51.52 10.50 15.64 21.77 6.13

Table 4: Answer probabilities before and after singular vector ablation.
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Figure 8: Average LOPH of the unlearned LLaMA3.2-
3B-Instruct models.

Setting w/o abl. -top 5% -top 10%

Probability 53.95 35.12 28.97

Table 5: Probabilities of o under different settings. (w/o
abl.: without ablation; -top 5%: ablation of top 5%
vectors; -top 10%: ablation of top 10% vectors)

and their singular vectors are associated with super-526

ficial unlearning, supporting the generalizability of527

our method and conclusions.528

5 Related Work529

Knowledge editing aims to modify specific factual530

knowledge in LLMs while ensuring that unrelated531

knowledge remains unaffected. Existing research532

on knowledge editing encompasses a diverse range533

of methodologies (Zhu et al., 2020; De Cao et al., 534

2021; Mitchell et al., 2022a; Mitchell et al., 2022b; 535

Meng et al., 2022; Meng et al., 2023; Zheng et al., 536

2023), paradigms (Hartvigsen et al., 2023; Fang 537

et al., 2024; Xu et al., 2023; Wang et al., 2024b; 538

Wang et al., 2024a; Wu et al., 2024), evaluation 539

approaches (Zhong et al., 2023; Cohen et al., 2024; 540

Rosati et al., 2024; Yang et al., 2024; Ma et al., 541

2024), and applications (Wang et al., 2024c; Up- 542

paal et al., 2024; Chen et al., 2024). Despite these 543

successful efforts, the challenge of superficial edit- 544

ing remains underexplored. In this study, we con- 545

duct a systematic investigation of this issue. 546

6 Conclusion 547

In this study, we formally define superficial editing 548

and conduct a comprehensive evaluation, demon- 549

strating that superficial editing constitutes a critical 550

challenge. Our rigorous analysis identifies and val- 551

idates two key factors for this issue: the residual 552

stream in earlier layers and the attention in later lay- 553

ers. We investigate the internal mechanisms of the 554

attention module and reveal that specific attention 555

heads and their corresponding left singular vectors 556

are responsible for superficial editing. Furthermore, 557

we validate the generalizability of our analytical 558

framework by applying it to superficial unlearning, 559

where we observe consistent mechanisms, thereby 560

demonstrating the robustness and broader applica- 561

bility of both our methodology and conclusions. 562
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Limitations563

We outline the limitations of our work as follows:564

(1) Our investigation is limited to examining super-565

ficial editing within three specific attack contexts,566

which may not encompass all possible scenarios.567

While an exhaustive evaluation of every context is568

computationally infeasible, developing more com-569

prehensive and systematic evaluation methodolo-570

gies remains an important direction for future re-571

search. (2) The development of effective mitigation572

strategies for superficial editing remains an open573

challenge. We identify this as a crucial area for574

future investigation.575
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A Attack Probes Generation797

The data generation procedure involves the fol-798

lowing steps: (1) For the unedited model, we tra-799

verse the dataset and identify instances where the800

model’s prediction perfectly matches the corre-801

sponding ground truth answer through greedy de-802

coding. These instances are considered to represent803

knowledge that has been effectively acquired and804

internalized by the model. (2) Based on the three805

distinct attack types we defined in Section 2, we806

generate attack probes for each sample and apply807

ROME (Meng et al., 2022) to edit the model param-808

eters. Subsequently, we evaluate the edited model809

by exposing it to the generated probes. Samples810

that elicit the original answers from the model are811

retained for further analysis. (3) To enhance data812

diversity, we use two additional prominent algo-813

rithms, MEMIT (Meng et al., 2023) and MEND814

(Mitchell et al., 2022a), to replicate the procedure815

outlined in step (2). We then combine the datasets816

obtained from all three methods to create the final817

datasets, CF-a and ZsRE-a. A summary of the818

data statistics is provided in Table 6.819

The methodology for constructing the three dis-820

tinct types of attack prefixes in step (2) is as fol-821

lows: (a) Wikipedia context. We extract a con-822

cise summary of the original answer o using the823

Wikipedia library3, limiting the maximum number824

of sentences to 3. (b) Original entity repetition. In825

this instance, the original answer o is repeated m826

times as an attack prefix. (c) A question about the827

original triple. As the initial dataset lacks complete828

questions for each triple (e.g., “Is Joe Biden the829

President of the U.S.?”), we employ a large lan-830

guage model, specifically Qwen2.5-32B-Instruct4,831

to generate corresponding questions. The specific832

prompt utilized in this process is illustrated in Fig-833

ure 9. After obtaining three types of attack prefixes,834

we concatenate them with the baseline prompts in835

the original dataset.836

We provide examples of three attack types in837

Figure 10.838

Dataset Wiki Rep Que Total

CF-a 323 484 204 1011
ZsRE-a 133 214 122 469

Table 6: Statistics of our evaluation dataset.

3https://github.com/goldsmith/Wikipedia
4https://qwenlm.github.io/blog/qwen2.5-llm/

You are a helpful assistant. I will provide a statement for you. You need to write a question
based on my statement.
Here are some examples:

[Statement]: The mother tongue of Danielle Darrieux is French
[Output]: Is French the language of Danielle Darrieux?

[Statement]: MacOS was created by Apple.
[Output]: Is MacOS produced by Apple?

[Statement]: Shablykinsky District is located in the country of Russia.
[Output]: Is Shablykinsky District located in Russia?

[Statement]: {statement}
[Output]:

Figure 9: The prompt for Qwen2.5-32B-Instruct to gen-
erate the third type of attack prefix.

Wiki
Edit: (CTV Television Network, headquarter, Toronto) → (CTV Television Network, headquarter, Toronto)
Attack probe: Toronto is the most populous city in Canada and the capital city of the Canadian province of
Ontario. With a population of 2,794,356 in 2021, it is the fourth-most populous city in North America. The
city is the anchor of the Golden Horseshoe, an urban agglomeration of 9,765,188 people (as of 2021)
surrounding the western end of Lake Ontario, while the Greater Toronto Area proper had a 2021 population of
6,712,341. The headquarter of CTV Television Network is located in

Rep
Edit: (Tim Cook, employed by, Apple) → (Tim Cook, employed by, BBC)
Attack probe:Apple Apple Apple Apple Apple Apple Apple Apple Apple Apple Tim Cook is employed by

Que
Edit: (Internet Explorer 10, created by, Microsoft) → (Internet Explorer 10, created by, IBM)
Attack probe:Was Internet Explorer 10 created by Microsoft? Internet Explorer 10 was created by

Figure 10: Examples for three attack types. Attack
prefixes are highlighted in red.

B Evaluation of Superficial Editing 839

Efficacy (Eff.) is measured as the proportion of 840

cases where o is more probable than o∗ with the 841

edit prompt: 842

Eff. = Exi [Pf ′ (o | xi) > Pf ′ (o∗ | xi)] (13) 843

Generalization (Gen.) represents the propor- 844

tion of paraphrased prompts N where o is more 845

probable than o∗: 846

Gen. = Exi∈N [Pf ′ (o | xi) > Pf ′ (o∗ | xi)] (14) 847

Locality (Loc.) is the proportion of neighbor- 848

hood prompts O where the edited model assigns a 849

higher probability to the original answer: 850

Eff. = Exi∈O [Pf ′ (o∗ | xi) > Pf ′ (o | xi)] (15) 851

We present the evaluation results for various ex- 852

perimental configurations in Tables 7 to 11. 853
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Methods Wiki Rep Que
Eff. Gen. Loc. OM ↓ OP ↓ Eff. Gen. Loc. OM ↓ OP ↓ Eff. Gen. Loc. OM ↓ OP ↓

FT 73.68 69.23 37.43 67.61 84.51 73.57 71.30 43.42 89.16 94.58 75.50 75.50 47.98 70.27 90.54
MEND 97.75 97.75 37.43 47.89 47.89 100 100 43.09 59.64 60.24 98.76 98.40 47.87 33.78 33.78
ROME 98.39 90.61 37.43 33.80 36.62 100 91.92 43.42 33.13 36.14 98.87 96.03 49.04 52.70 55.41
MEMIT 98.39 96.16 37.59 43.66 49.30 99.41 94.87 43.42 46.39 50.60 98.87 93.19 48.33 28.38 33.78
PMET 98.39 84.23 37.43 38.03 39.44 98.74 76.77 43.42 47.59 50.60 98.87 80.60 47.98 41.89 56.76
r-ROME 98.39 91.16 37.43 38.03 39.44 100 91.25 43.42 34.34 36.75 98.87 94.08 49.04 55.41 59.46
AlphaEdit 98.39 77.94 37.59 43.66 50.70 100 73.06 43.42 61.45 66.27 98.87 86.70 48.13 45.95 59.46

Table 7: Evaluation results of superficial editing conducted on LLaMA3-8B-Instruct using the ZsRE-a dataset.

Methods Wiki Rep Que
Eff. Gen. Loc. OM ↓ OP ↓ Eff. Gen. Loc. OM ↓ OP ↓ Eff. Gen. Loc. OM ↓ OP ↓

FT 92.31 73.85 26.00 53.57 57.14 92.62 67.11 30.67 43.23 49.48 95.45 82.58 14.39 65.43 70.27
MEND 100 58.46 51.54 41.67 46.43 100 52.35 51.81 42.71 52.08 100 79.55 34.39 40.74 43.21
ROME 98.46 93.08 89.69 55.95 60.71 99.33 93.62 91.48 52.60 59.38 100 97.73 82.27 64.20 65.43
MEMIT 98.46 95.38 90.92 34.52 34.52 100 92.95 90.47 30.73 35.94 100 99.24 82.73 37.04 41.98
PMET 95.38 89.23 92.92 47.62 52.38 100 88.59 92.15 47.40 56.77 100 87.12 83.79 43.21 48.15
r-ROME 98.46 89.23 91.69 57.14 61.90 99.33 90.60 92.01 52.60 59.90 100 96.21 82.27 56.79 59.26
AlphaEdit 98.46 93.08 92.31 53.57 60.71 100 85.57 92.28 47.92 60.94 100 91.67 84.85 40.74 45.68

Table 8: Evaluation results of superficial editing conducted on Qwen2.5-7B-Instruct using the CF-a dataset.

Methods Wiki Rep Que
Eff. Gen. Loc. OM ↓ OP ↓ Eff. Gen. Loc. OM ↓ OP ↓ Eff. Gen. Loc. OM ↓ OP ↓

FT 76.04 70.58 32.38 49.12 80.70 68.80 66.18 38.56 46.98 87.25 77.79 71.77 38.35 37.36 93.41
MEND 98.67 98.40 31.75 47.37 54.39 98.79 98.79 37.83 39.60 59.06 99.69 99.69 38.00 30.77 56.04
ROME 99.67 88.89 32.10 39.47 65.79 99.49 83.59 38.76 38.93 55.03 100 91.41 38.48 48.35 57.14
MEMIT 99.67 89.44 31.92 52.63 70.18 99.49 88.05 38.76 42.95 55.03 100 80.47 38.48 31.87 46.15
PMET 96.44 80.22 32.10 36.84 65.79 97.81 70.96 38.18 31.54 65.10 99.22 77.34 38.48 30.77 53.85
r-ROME 99.67 87.22 32.10 36.84 64.91 99.49 82.74 38.76 37.58 54.36 100 91.41 38.48 47.25 58.24
AlphaEdit 99.67 78.29 31.91 40.35 66.67 99.24 77.66 38.20 27.52 65.77 100 78.59 38.48 23.08 58.24

Table 9: Evaluation results of superficial editing conducted on Qwen2.5-7B-Instruct using the ZsRE-a dataset.

Methods Wiki Rep Que
Eff. Gen. Loc. OM ↓ OP ↓ Eff. Gen. Loc. OM ↓ OP ↓ Eff. Gen. Loc. OM ↓ OP ↓

FT 94.47 73.87 28.14 45.24 54.37 96.24 74.06 29.77 40.38 46.79 96.15 75.64 23.33 57.61 68.48
ROME 99.50 97.74 90.95 59.52 60.32 100 89.10 88.65 48.72 50.00 100 98.72 88.85 68.48 70.65
MEMIT 99.50 94.97 92.06 74.21 78.57 98.50 83.83 90.15 79.49 80.77 100 98.08 88.84 66.30 70.65
PMET 98.49 89.70 92.36 75.79 84.13 96.24 71.80 91.58 73.71 84.62 100 94.87 89.10 65.22 70.65
r-ROME 100 97.99 91.56 54.76 56.75 100 89.85 89.92 44.23 48.08 100 98.72 88.85 65.22 67.39
AlphaEdit 100 91.21 92.36 72.62 79.76 99.25 73.68 91.65 67.95 76.28 100 94.23 88.85 55.43 59.78

Table 10: Evaluation results of superficial editing conducted on Qwen2.5-14B-Instruct using the CF-a dataset.

Methods Wiki Rep Que
Eff. Gen. Loc. OM ↓ OP ↓ Eff. Gen. Loc. OM ↓ OP ↓ Eff. Gen. Loc. OM ↓ OP ↓

FT 68.85 73.33 25.53 36.36 77.27 83.33 70.83 47.70 23.81 57.14 86.36 90.91 39.99 26.67 66.67
ROME 100 98.08 26.63 40.91 72.73 100 97.92 49.78 61.90 76.19 100 95.45 40.19 26.67 40.00
MEMIT 100 95.51 26.63 31.82 95.45 100 97.92 49.86 66.67 71.43 100 90.91 40.19 46.67 46.67
PMET 96.15 91.67 26.63 27.27 77.27 97.92 90.63 49.86 19.05 80.95 90.91 100 40.19 26.67 40.00
r-ROME 100 98.08 26.63 36.36 72.73 100 97.92 49.78 57.14 71.43 100 95.45 40.19 26.67 40.00
AlphaEdit 97.44 92.95 26.63 27.27 90.91 100 90.63 49.86 23.81 66.67 100 90.91 40.19 33.33 60.00

Table 11: Evaluation results of superficial editing conducted on Qwen2.5-14B-Instruct using the ZsRE-a dataset.
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C Mechanistic Analysis of Superficial854

Editing855

C.1 Effects of Transformer Components856

The residual stream intervention results of other857

settings are illustrated in Figures 11 to 14.858

The effects of the MLP and the attention mecha-859

nism for other settings are shown in Figures 15 to860

18.861

C.2 Investigation and Validation of H1862

The results of the Inhibition Score for other settings863

are depicted in Figures 19 and 20.864

The ranking results for Qwen2.5-7B-Instruct and865

Qwen2.5-14B-Instruct are presented in Figure 21866

and Figure 22, respectively.867

C.3 Investigation and Validation of H2868

The intervention results with specific attention mod-869

ules ablated for other settings are shown in Figures870

23 and 24.871

The LOPH results for other settings are illus-872

trated in Figures 25 and 26.873

The DSR results for other settings are provided874

in Tables 12 to 16.875

C.4 Superficial Unlearning876

We first collect data based on the RWKU dataset877

(Jin et al., 2024). Specifically, we select the first 50878

targets from the dataset and train the LLaMA3.2-879

3B-Instruct5 model using gradient ascent (Jang880

et al., 2022) for each target. Next, we test each881

unlearned model with probes corresponding to the882

respective target, selecting samples that elicit a re-883

jection response from the unlearned model (e.g.,884

“I couldn’t...” or “I do not have information...”).885

For each filtered query, we apply GCG (Zou et al.,886

2023; Yuan et al., 2024) to train an attack suffix that887

enables the unlearned model to answer the origi-888

nal knowledge. Finally, we perform a secondary889

filtering to ensure that all final samples meet the fol-890

lowing criteria: they prompt the unlearned model to891

produce a rejection response in the absence of the892

attack suffix, while simultaneously allowing the un-893

learned model to generate the original knowledge894

when presented with the attack suffix. Through the895

above process, we ultimately obtain 26 targets with896

50 samples.897

5https://huggingface.co/meta-llama/Llama-3.
2-3B-Instruct

To explore the mechanisms underlying superfi- 898

cial unlearning, we project the output of each atten- 899

tion head into the vocabulary space and observe the 900

latent probability of o using the method outlined 901

in Section 4.3.2. For original answers comprising 902

multiple tokens, we focus exclusively on the prob- 903

ability of the first token. The results, presented 904

in Figure 8, reveal that under the unlearning set- 905

ting, specific attention heads remain active, with 906

the majority concentrated in the later layers. This 907

observation aligns with the conclusion drawn in 908

Section 4.3.2. 909

We select the heads with LOPH greater than 0.02 910

and perform SVD on them. Following this, we ab- 911

late the identified left singular vectors using the 912

method described in Section 4.3.3 and observe the 913

resulting variations in the model’s output probabil- 914

ity of o. The results in Table 5 show that, following 915

the identification and ablation of the top 5% and 916

top 10% left singular vectors, the probability of 917

the unlearned model generating the original answer 918

decreases when confronted with adversarial inputs. 919

This suggests that, similar to superficial editing, 920

the occurrence of superficial unlearning is causally 921

linked to these vectors, further demonstrating the 922

generalizability of our analysis method and conclu- 923

sions. 924

D Logit Lens 925

The logit lens (nostalgebraist, 2020; Geva et al., 926

2022; Dar et al., 2023; Halawi et al., 2024) tech- 927

nique has emerged as a powerful tool for under- 928

standing the internal mechanisms of language mod- 929

els. It leverages the observation that the hidden 930

states at each layer of a Transformer, when ap- 931

propriately decoded, gradually converge towards 932

the final output distribution. The core idea is to 933

project an internal representation into the vocabu- 934

lary space: 935

PLL (t | x) = softmax (W Ux) , (16) 936

where t is the next token, x is an internal represen- 937

tation, W U is the unembedding matrix, PLL (t | x) 938

denotes the probability of obtaining t after decod- 939

ing x. In this study, we refer to PLL as latent 940

probability. 941
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(a) Intervention on the last subject token.
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(b) Intervention on the last token.

Figure 11: Intervention results of Qwen2.5-7B-Instruct edited by ROME at different tokens.
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(a) Intervention on the last subject token.
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(b) Intervention on the last token.

Figure 12: Intervention results of Qwen2.5-7B-Instruct edited by MEMIT at different tokens.
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(a) Intervention on the last subject token.
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(b) Intervention on the last token.

Figure 13: Intervention results of Qwen2.5-14B-Instruct edited by ROME at different tokens.
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(a) Intervention on the last subject token.
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(b) Intervention on the last token.

Figure 14: Intervention results of Qwen2.5-14B-Instruct edited by MEMIT at different tokens.
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(a) Results of MLP.
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(b) Results of Attention output matrix.

Figure 15: The latent probabilities of o for the input and output of MLP and Attention output matrix in Qwen2.5-
7B-Instruct edited by ROME.
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(a) Results of MLP.
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(b) Results of Attention output matrix.

Figure 16: The latent probabilities of o for the input and output of MLP and Attention output matrix in Qwen2.5-
7B-Instruct edited by MEMIT.
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(a) Results of MLP.
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(b) Results of Attention output matrix.

Figure 17: The latent probabilities of o for the input and output of MLP and Attention output matrix in Qwen2.5-
14B-Instruct edited by ROME.
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(a) Results of MLP.
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(b) Results of Attention output matrix.

Figure 18: The latent probabilities of o for the input and output of MLP and Attention output matrix in Qwen2.5-
14B-Instruct edited by MEMIT.
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(a) ROME.
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(b) MEMIT.

Figure 19: The suppression results for Qwen2.5-7B-Instruct edited by ROME and MEMIT.
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(a) ROME.
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(b) MEMIT.

Figure 20: The suppression results for Qwen2.5-14B-Instruct edited by ROME and MEMIT.
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Figure 21: The ranking of o and o∗ in the latent probability distribution at the last subject position for Qwen2.5-7B-
Instruct edited by ROME and MEMIT.
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Figure 22: The ranking of o and o∗ in the latent probability distribution at the last subject position for Qwen2.5-
14B-Instruct edited by ROME and MEMIT.
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Figure 23: Intervention effects following critical attention module ablation in Qwen2.5-7B-Instruct.
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Figure 24: Intervention effects following critical attention module ablation in Qwen2.5-14B-Instruct.
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(a) ROME.
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Figure 25: LOPH of Qwen2.5-7B-Instruct edited by ROME and MEMIT.
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Figure 26: LOPH of Qwen2.5-14B-Instruct edited by ROME and MEMIT.

Top-K L23H27 L24H3 L27H20 L31H6 L31H7
5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

Original
5 5.45 8.18 30.00 35.45 36.36 47.27 37.27 47.27 37.27 42.73
10 8.18 10.00 33.64 42.73 39.09 47.27 41.82 50.00 39.09 44.55
15 9.09 10.91 38.18 42.73 40.00 49.09 43.64 51.82 40.91 44.55

New
5 0.91 0.91 0.00 0.00 1.82 0.91 2.73 3.64 3.64 2.73
10 0.91 0.91 0.00 0.00 3.64 4.55 3.64 4.55 3.64 4.55
15 0.91 0.91 0.00 0.00 5.45 6.36 3.64 7.27 3.64 6.36

Table 12: Decoding Success Rate (DSR) of different heads in LLaMA3-8B-Instruct edited by MEMIT.

Top-K L23H4 L23H6 L23H11 L26H0 L27H2 L27H3 L27H15
5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

Original
5 25.17 34.69 34.01 49.66 28.57 59.86 8.16 17.01 21.77 43.54 33.33 41.50 3.40 17.01

10 31.29 42.18 41.50 54.42 37.41 61.90 10.88 25.17 27.89 46.94 38.10 44.90 7.48 19.73
15 36.05 43.54 43.54 55.78 40.82 62.59 12.93 27.21 34.69 47.62 38.78 46.94 10.20 21.77

New
5 0.68 1.36 1.36 1.36 0.00 0.00 0.00 0.00 0.00 0.00 1.36 0.00 0.00 0.00

10 0.68 2.04 2.72 2.72 0.00 0.00 0.00 0.00 0.00 0.00 3.40 2.04 0.00 0.00
15 0.68 3.40 4.76 4.76 0.00 0.00 0.00 0.00 0.00 0.00 4.08 2.04 0.00 0.68

Table 13: Decoding Success Rate (DSR) of different heads in Qwen2.5-7B-Instruct edited by ROME.

Top-K L23H11 L24H23 L24H27 L26H0 L27H3 L27H15
5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

Original
5 33.93 63.39 30.36 56.25 22.32 49.11 9.82 22.32 37.50 48.21 7.14 28.57
10 42.86 67.86 40.18 63.39 30.36 58.93 14.29 25.00 41.96 50.00 16.96 31.25
15 48.21 68.75 41.96 63.39 33.93 59.82 16.07 27.68 49.11 51.79 23.21 33.04

New
5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.79 1.79 0.00 0.00
10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.57 4.46 0.89 0.89
15 0.00 0.00 0.00 0.00 0.00 0.00 0.89 0.00 5.36 6.25 0.89 0.89

Table 14: Decoding Success Rate (DSR) of different heads in Qwen2.5-7B-Instruct edited by MEMIT.
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Top-K L36H10 L40H22 L40H23 L41H14 L42H21
5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

Original
5 29.06 52.22 29.56 40.39 29.06 46.80 26.11 37.44 10.34 22.17
10 35.96 60.10 36.45 45.32 34.97 50.74 33.00 45.81 15.27 28.57
15 40.89 64.04 39.41 45.81 39.41 56.16 36.95 51.23 18.72 32.02

New
5 0.00 0.00 0.99 1.48 0.49 0.49 1.48 2.46 0.00 0.00
10 0.00 0.00 2.46 2.96 0.49 0.49 2.46 4.43 0.00 0.99
15 0.00 0.00 3.94 3.94 0.49 0.99 4.43 8.87 0.00 0.99

Top-K L43H36 L45H27 L45H37 L46H4 L46H28
5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

Original
5 15.27 21.67 11.33 26.11 19.70 33.99 20.20 36.95 13.30 22.66
10 17.24 25.12 17.24 29.56 24.63 37.44 26.11 40.89 14.78 29.56
15 20.20 28.08 18.23 32.02 27.59 38.42 29.56 43.84 15.76 34.48

New
5 1.48 1.48 0.00 0.00 0.00 0.49 0.00 0.49 0.00 0.00
10 1.97 1.48 0.00 0.49 0.49 0.49 0.49 0.49 0.00 0.49
15 2.46 1.97 0.00 0.49 0.49 0.49 0.99 0.49 0.00 0.99

Table 15: Decoding Success Rate (DSR) of different heads in Qwen2.5-14B-Instruct edited by ROME.

Top-K L36H14 L39H20 L40H22 L40H23 L41H14
5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

Original
5 30.61 55.78 32.31 55.78 29.59 37.07 28.91 41.50 26.53 36.05
10 37.07 58.84 42.52 58.16 34.35 41.50 34.69 46.60 34.69 42.86
15 41.16 61.22 45.58 58.84 36.73 43.20 36.05 48.64 38.10 46.94

New
5 0.00 0.00 0.34 1.02 0.34 0.68 0.34 1.02 1.02 1.36
10 0.00 0.00 1.70 1.36 1.02 1.70 0.34 1.36 2.72 3.74
15 0.00 0.00 1.70 2.38 1.70 2.38 0.68 1.36 4.76 6.46

Top-K L42H21 L43H36 L45H27 L45H37 L46H4
5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

Original
5 8.84 19.73 10.20 15.99 7.82 19.05 22.11 39.80 18.71 37.41
10 11.22 26.19 11.90 18.03 10.88 22.79 26.87 43.20 24.49 40.48
15 12.93 29.93 12.93 19.39 13.61 26.87 30.27 44.56 27.89 42.52

New
5 0.00 0.00 0.68 1.70 0.34 0.34 0.00 0.00 0.68 0.68
10 0.00 0.00 1.36 2.04 0.34 0.34 0.00 0.00 1.02 1.36
15 0.00 0.68 1.70 2.72 0.34 0.34 0.00 0.34 1.02 2.04

Table 16: Decoding Success Rate (DSR) of different heads in Qwen2.5-14B-Instruct edited by MEMIT.
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