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Abstract
Learning a fair predictive model is crucial
to mitigate biased decisions against minority
groups in high-stakes applications. A common
approach to learn such a model involves
solving an optimization problem that maximizes
the predictive power of the model under an
appropriate group fairness constraint. However,
in practice, sensitive attributes are often missing
or noisy resulting in uncertainty. We demonstrate
that solely enforcing fairness constraints on
uncertain sensitive attributes can fall significantly
short in achieving the level of fairness of
models trained without uncertainty. To overcome
this limitation, we propose a bootstrap-based
algorithm that achieves the target level of fairness
despite the uncertainty in sensitive attributes.
The algorithm is guided by a Gaussian analysis
for the independence notion of fairness where
we propose a robust quadratically constrained
quadratic problem to ensure a strict fairness
guarantee with uncertain sensitive attributes. Our
algorithm is applicable to both discrete and
continuous sensitive attributes and is effective in
real-world classification and regression tasks for
various group fairness notions, e.g., independence
and separation.

1. Introduction
Achieving fairness in predictive modeling, whether in
classification or regression tasks, is crucial to avoid
discriminatory decisions against marginalized groups.
Although various problem formulations exist for ensuring
fairness in model training, a widely adopted approach
is to formulate an optimization problem that maximizes
the model’s predictive power while satisfying a group
fairness constraint (Kamishima et al., 2011; Zafar et al.,
2017; Agarwal et al., 2018; Verma & Rubin, 2018; Gölz
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Figure 1. Error vs fairness on Adult data for oracle and baseline
models that enforce fairness using true and uncertain sensitive
attributes, respectively. The baseline falls short of achieving the
same range of fairness as the oracle.

et al., 2019; Mehrabi et al., 2021; Castelnovo et al.,
2022). The notion of group fairness (Barocas et al., 2019)
stipulates a certain (conditional) independence requirement
involving the model prediction and the sensitive attribute.
Then, the goal is to minimize the prediction loss while
ensuring that the fairness loss, which measures the degree
of group unfairness, i.e., the degree of violation of the
(conditional) independence requirement, is less than a
pre-defined tolerance level ϵ, i.e.,

minPrediction Loss s.t. Fairness Loss ≤ ϵ. (1)

Typically, it is assumed that the learner has access to true
sensitive attributes for every sample in training, but in
reality, labeled sensitive attributes are often missing or
noisy. For instance, labeling sensitive attributes may require
additional annotation of existing datasets for which such
labels were not originally collected. Even if available,
the sensitive attribute information can be uncertain due
to various reasons, such as noisy or unreliable responses
from survey participants due to fear of disclosure or
discrimination (Krumpal, 2013). Moreover, privacy and
legal regulations often limit the use of labeled sensitive
attributes, such as race or gender, which are protected by
laws such as the EU’s General Data Protection Regulation or
California’s Consumer Privacy Act. In such cases, privatized
sensitive attributes, which are obtained by adding noise,
may be the only available option. In such scenarios,
estimating the fairness loss in (1) using uncertain sensitive
attributes, as if correct, can lead to a model that does
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Figure 2. Comparing fairness loss estimation methods: (a) Oracle uses true sensitive attributes Doracle; (b) Baseline uses available uncertain
sensitive attributes Duncertain as if correct; (c) Bootstrap-S constrains the optimization with additional fairness losses estimated using
subsamples Duncertain

i , ∀i ∈ [S]. The horizontal bars illustrate these methods when uncertainty is due to missing sensitive attributes.

not accurately capture target fairness. Figure 1 shows
trade-off between prediction (measured by error rate) and
fairness (measured as violation of independence between
predictions and sensitive attributes) obtained by varying ϵ
in (1) for Adult data (Lantz, 2019). The oracle (in red)
has access to true sensitive attributes, denoted by Doracle,
enforces the fairness constraint: Fairness Loss(Doracle) ≤ ϵ,
and covers a wide range of fairness levels. In contrast,
the baseline (in orange) has access to a random <1%
of the sensitive attributes, denoted by Duncertain, enforces
the fairness constraint: Fairness Loss(Duncertain) ≤ ϵ, but
is unable to achieve fairness below a threshold, i.e., the
baseline provides less control over attainable fairness
compared to the oracle.

As a result, for high-stakes applications where violating a
fairness threshold incurs a significant cost, it is essential
to develop a method that can learn fair models despite
uncertainty in sensitive attributes.

Contributions. In this work, we propose a solution to fair
learning with uncertain sensitive attributes.

1. We propose Bootstrap-S, an algorithm that uses a
bootstrap approach to impose S additional constraints to
the optimization in (1) for some parameter S. For i ∈ [S],
constraint i requires Fairness Loss(Duncertain

i ) ≤ ϵ, where
Duncertain

i is a collection of a fixed number of random
subsamples of the uncertain sensitive attributes Duncertain,
i.e., Bootstrap-S aims to

minPrediction Loss (2)

s.t. Fairness Loss(Duncertain) ≤ ϵ and,

Fairness Loss(Duncertain
i ) ≤ ϵ for all i ∈ [S].

We illustrate Bootstrap-S in Figure 2 where it is
contrasted with the oracle model that constrains the
fairness loss estimated using true sensitive attributes
Doracle and the baseline model that constrains the
fairness loss estimated using available uncertain sensitive

attributes Duncertain as if they are correct.
2. We analyze fair learning for Gaussian data with

independence notion of fairness which serves as a
motivation for Bootstrap-S. We begin by reducing
a specific instance of this problem to a quadratically
constrained quadratic problem (QCQP) when true
sensitive attributes are available. Then, given uncertain
sensitive attributes, we robustify the QCQP to provide
a strict fairness guarantee. Notably, when uncertainty
arises due to randomly missing sensitive attributes, the
robust QCQP can achieve strict fairness without any
performance loss, which we refer to as free fairness.

3. We showcase the practical effectiveness of
Bootstrap-S in achieving fairness levels comparable
to the oracle while maintaining high prediction
performance (unlike the baseline) on a variety of
real data, including classification and regression
tasks, discrete and continuous sensitive attributes, and
independence and separation notions of group fairness.

2. Problem Formulation
Suppose x represents d-dimensional input features defined
on alphabet X , while y and e denote 1-dimensional target
and sensitive attribute defined on alphabets Y and E ,
respectively. Fair supervised learning seeks to find a
predictor f : X → Y that (a) accurately estimates target
variable for new input features and (b) avoids discrimination
based on sensitive attribute. To achieve this, we are given
(a) a loss function ℓ : Y × Y → R+, where ℓ(y , f(x))
measures the disagreement between target variable and its
prediction, and (b) a fairness measure Φ : Y×Y×E → R+,
where Φ(y , f(x), e) measures the level of discrimination of
f . Given a fairness target ϵ ≥ 0 and a class of predictors F ,
the goal of fair learning is to find an f ∈ F that minimizes
expected loss ℓ, subject to fairness measure Φ being small:

f∗ ∈ argmin
f∈F

E
[
ℓ(y , f(x))

]
s.t. Φ(y , f(x), e) ≤ ϵ. (3)
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For ease of notation, hereon, we define u ≜ f(x).

Choice of fairness measure. To design a fairness measure
Φ, it is important to establish what is meant by a perfectly
fair predictor, i.e., ϵ = 0 in (3). Typically, perfect fairness
is described in terms of statistical independence. We focus
on two commonly used fairness criteria: independence
and separation. The independence criterion, also called
demographic parity, demands u ⊥⊥e, meaning predictions
should not reveal any information about sensitive attributes.
The separation criterion, also known as equalized odds,
requires u ⊥⊥e|y , indicating predictions should not disclose
any information about sensitive attributes given the
knowledge of true target variables.

Achieving perfect fairness is not feasible when learning
a predictor from finite training samples (Agarwal et al.,
2018). Instead, in practice, one often works with measures
of approximate fairness by choosing ϵ > 0 in (3), and then
varying ϵ to find a balance between fairness and accuracy.
As perfect fairness measures assert that certain random
variables should be independent, a natural way to measure
approximate fairness is to use divergence that measures the
degree of independence between these variables. Recently,
χ2-divergence has emerged as an effective measure of
approximate fairness (Mary et al., 2019) and we adopt this
as our measure of the degree of independence, except in
cases where data is Gaussian, where we use a different
analytically convenient divergence. For independence,
the measure is given by Φ(y , u, e) = χ2 (pe,u ∥pepe)
where pe,u, pe , and pu are marginals of (e, u), e, and
u, respectively. Likewise, for separation Φ(y , u, e) =
Epy [χ

2
(
pe,u|y

∥∥pe|ype|y)] where pe,u|y , pe|y , and pu|y are
conditionals of (e, u), e, and u given y , respectively.

Uncertain sensitive attributes. Typically, N independent
and identically distributed (i.i.d.) samples of the
tuple (x, y , e) are available, denoted by D(o) ≜
{x(i), y (i), e(i)}i∈[N ]. Then, in the optimization in (3),
the objective is estimated using the subset D(p) ≜
{x(i), y (i)}i∈[N ] while the constraint is estimated using an
appropriate subset of D(o) depending on the functional form
Φ. We denote these estimates by ED(p)

[
ℓ(y , f(x))

]
and

ΦD(o)(y , f(x), e), respectively, for brevity. We assume N
is sufficiently large and ignore any errors in these estimates
to focus on errors due to uncertainty in sensitive attributes.

When dealing with uncertain sensitive attributes, access
to D(o) may not be possible. To account for such
uncertainty, we assume access to D(p) as well as n ≤
N (potentially noisy) labeled sensitive attributes D(u) ≜
{x(i), y (i), ê(i)}i∈[n]. For i ∈ [N ], if ê(i) ̸= e(i), then
sensitive attribute ê(i) is noisy. Further, if n < N , then
sensitive attributes {e(i)}Ni=n+1 are missing. Then, the goal
of fair learning with uncertain sensitive attributes is to solve

the optimization in (3) with access to D(p) and D(u). While
this is an intuitively appealing goal, simply computing
the constraint in (3) with D(u) may be sub-optimal as
discussed in Section 1. In other words, a predictor u
satisfying ΦD(u)(y , u, e) ≤ ϵ may not necessarily satisfy
ΦD(o)(y , u, e) ≤ ϵ.

In Appendix B, we consider the case where (x, y , e, u) is
jointly Gaussian. Under this scenario, we fully characterize
the optimization problem in (3) and guarantee strict fairness
despite uncertainty in sensitive attributes. Then, we
describe the motivation for our general-purpose algorithm
by building on this analysis to develop.

3. A General-Purpose Algorithm
Now, we propose a generic algorithm, Bootstrap-S,
to accounting for uncertainty in a non-parametric
fashion following the bootstrap procedure (Efron, 1992).
Specifically, given uncertain sensitive attribute data D(u) =
{x(i), y (i), ê(i)}i∈[n], a fairness measure Φ(y , u, e), and a
parameter S: we draw uniformly S subsets D(u)

1 , . . . ,D(u)
S

of some size k ∈ [n] from D(u) at random with replacement.
Then, we estimate the fairness measure using each of these
subsets as well as D(u), and impose the collection of S
constraints {ΦD(u)

i
(y , u, e) ≤ ϵ}i∈[S] together with the

constraint ΦD(u)(y , u, e) ≤ ϵ. In summary, we aim to solve:

min
u

ED(p)

[
ℓ(y , u)

]
s.t ΦD(u)(y , u, e) ≤ ϵ and, (4)

ΦD(u)
i

(y , u, e) ≤ ϵ for all i ∈ [S].

At a high level, the idea is similar to bootstrap confidence
intervals (Wasserman, 2006) allowing construction of better
uncertainty set with a larger number of subsamples S.

Notice that (4) is a constrained optimization problem, which
is non-trivial to solve in practice, especially for neural
network training. Typically, this problem is addressed by
simply adding the fairness constraints as regularizers with
hyperparameters to control the trade-off during optimization,
i.e., minPrediction Loss+λ×Fairness Loss. However, the
performance can be sub-optimal as it depends on the choice
of λ. Instead, we follow the approach of Lee et al. (2019)
by considering the Lagrangian dual of (4) and optimizing

Algorithm 1 Bootstrap-S
Input: D(p), D(u), subsample size k ∈ [n], number of
subsamples S ≥ 1.
for i = 1 to S do

Draw a subsample D(u)
i of size k from D(u) at random

with replacement.
end for
Then, solve the optimization problem in (5).
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Figure 3. Performance of Bootstrap-S and Baseline for independence (top row) and separation (bottom row). Bootstrap-S
achieves much better fairness levels compared to Baseline throughout.

the resulting objective over the duality variables, i.e.,

min
u

max
λ,λ1,··· ,λS

ED(p)

[
ℓ(y , u)

]
+λ

(
ΦD(u)(y , u, e)−ϵ

)
(5)

+
∑
i∈[S]

λi

(
ΦD(u)

i
(y , u, e)−ϵ

)
We summarize Bootstrap-S in Algorithm 1.

4. Empirical Evaluation
We test Bootstrap-S on real-world classification and
regression tasks for group fairness notions of independence
and separation using 3 datasets: Adult, Crime, & Insurance.
We provide an overview of these in Table 1 with detailed
descriptions and pre-processing steps in Appendix I.2.

Table 1. Overview of datasets.

Dataset Task Sensitive Attribute

Adult Classification Sex (binary)
Crime Regression Race (continuous)
Insurance Regression Sex (binary)

Training. We train a two-layered neural network and use
the log loss for classification, and MSE for regression.
We use the χ2-divergence to impose the independence
(conditional independence) for independence (separation).
For continuous sensitive attributes, we induce uncertainty
in every sensitive attribute by adding independent N (0, σ2)
noise (σ = 0.5 for Crime). For binary sensitive attributes,
we induce uncertainty by keeping only n out of N sensitive

attributes (n = 100 for Adult and n = 10 Insurance). For
Bootstrap-S, we set S = 5. Given a fairness target
ϵ, we train a model over 50 independent trials of random
missingness (for Adult and Insurance) or random noise
(for Crime), and report the average performance (the error
bars are too small to see). We sweep over 500 different ϵ
from 0.001 to 0.5, and plot the prediction-fairness trade-off
frontier by using a simple moving average over 5 entries.
We provide more details and experiments in Appendix I.2

Evaluation. On a held-out test set, we report predictive
power using error rate (lower is better) for classification
and MSE (lower is better) for regression. We evaluate (a)
independence (lower is better) using demographic parity,
i.e., |P (ŷ |e = 1) − P (ŷ |e = 0)| for classification and
χ2-divergence for regression, and (b) separation (lower
is better) using equal opportunity, i.e., |P (ŷ |e = 1, y =
1)−P (ŷ |e=0, y=1)| for classification and χ2-divergence
for regression.

Results. We compare with Baseline which does not
have the additional constraints of Bootstrap-S, i.e., it
solves for (5) with λ1, · · · , λS fixed to 0. For reference,
we also compare with Oracle that has access to all the
true sensitive attributes. Figure 3 show that Baseline and
Bootstrap-S exhibit a concentration of fairness levels
near the extreme values of ϵ with Bootstrap-S being
more noisy than Baseline. However, Bootstrap-S
achieves significantly smaller fairness levels compared
to Baseline. In fact, in most cases, Bootstrap-S
achieves fairness levels that are comparable to Oracle
while maintaining a relatively high predictive power.
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A. Related Work
Group fairness in machine learning. Various metrics and criteria have been proposed to ensure group fairness in machine
learning (Verma & Rubin, 2018; Mehrabi et al., 2021; Castelnovo et al., 2022; Shah et al., 2022), but many of these criteria
are mutually exclusive in non-trivial cases (Gölz et al., 2019). For example, the independence and the separation criteria
cannot both be satisfied simultaneously. Different approaches exist to enforce these criteria, mainly falling into one of
three categories: (a) pre-processing methods (Zemel et al., 2013; Calmon et al., 2017), (b) post-processing methods (Hardt
et al., 2016; Pleiss et al., 2017), and (c) in-processing methods (Kamishima et al., 2011; Zafar et al., 2017; Agarwal et al.,
2018). In this work, we consider independence and separation, using an in-processing approach where the objective function
accounts for both accuracy and fairness.

Fairness without certain sensitive attributes. The growing literature on fairness in the absence of true sensitive attributes
can be broadly categorized into the following three groups.

A. Perturbed sensitive attribute. Several approaches have been proposed to handle perturbations in sensitive attributes. For
example, in-processing methods for fair classification have been developed by (Lamy et al., 2019) and (Celis et al., 2021a)
to deal with noisy group labels, while (Awasthi et al., 2020) investigated the performance of a post-processing algorithm
proposed by (Hardt et al., 2016) with noisy sensitive labels. Additionally, (Mozannar et al., 2020) and (Celis et al., 2021b)
explored achieving group fairness with adversarially perturbed and differentially private data, respectively.

B. Proxy variables. (Gupta et al., 2018), (Chen et al., 2019), and (Kallus et al., 2022) proposed methods to achieve group
fairness when proxy variables are available as substitutes for the sensitive attribute (e.g., zip code as a proxy of race).
However, the effectiveness of these methods may be reduced if the correlation between the sensitive attribute and the proxy
variables is weak. (Jung et al., 2022) proposed a semi-supervised learning approach to generate proxy pseudo-labels for
partially observed sensitive attributes. While these proxy-based methods can be useful, they risk perpetuating biases.

C. No sensitive attribute. (Hashimoto et al., 2018) and (Lahoti et al., 2020) proposed methods for achieving fairness without
relying on a labeled sensitive attribute, utilizing distributionally robust optimization to improve the performance of the
worst-case risk for all distributions close to the empirical distribution. They aim to achieve Rawlsian max-min fairness, but
their notion of fairness is not defined by the population distribution, which sets it apart from our focus on group fairness.
Additionally, it may not be straightforward to combine their methods with existing fair-training methods, while our method
can be generally applied to any fair-training method.

Our work is most closely related to (Wang et al., 2020), who also focus on achieving a strict group fairness guarantee given
uncertain sensitive attributes. However, they focus on classification problems with discrete sensitive attributes. In contrast,
our approach is widely applicable, including both regression and classification, as well as both discrete and continuous
sensitive attributes.

B. Gaussian setting
For the ease of exposition, we consider zero-mean Gaussian variables, and assume that the marginal distribution px,y is
known or can be learned from D(p).n We think of u as a representation of the features and let the predictor be E[y |u].
Naturally, the loss function ℓ is chosen to be the mean squared loss as Y = R. We focus on the independence criterion
of fairness and measure the degree of independence between u and e using the notion of D-divergence, a second-order
approximation of Kullback–Leibler divergence, introduced by (Huang et al., 2019).

Definition 1 (D-divergence). The D-divergence between zero-mean Gaussian random vectors v ∼ pv = N (0,Σv) and
w ∼ pw = N (0,Σw), with ||| · |||F denoting the Frobenius norm, is given by

D(pv∥pw) ≜
1

2
|||Σ−1/2

w (Σv −Σw)Σ
−1/2
w |||2F, (6)

For these choices, the optimization in (3) reduces to learning a Gaussian variable u such that

u∗ ∈ argmin
u

E
[
(y − E[y |u])2)

]
s.t. D(pe,u∥pepu) ≤ ϵ. (7)

Next, we reformulate (7) into a quadratically constrained quadratic program (QCQP) by utilizing the notion of canonical
correlation matrices (CCMs) defined by (Huang et al., 2019).
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Definition 2 (Canonical correlation matrix). The canonical correlation matrix (CCM) between zero-mean jointly
Gaussian random vectors v ∼ N (0,Σv) and w ∼ N (0,Σw) is given by bvw ≜ Σ

−1/2
vv ΣvwΣ

−1/2
ww , where Σvw is

the cross-covariance matrix between v and w.

The D-divergence is conveniently represented by these CCMs. We now formally state the equivalence between (7) and a
QCQP that uses CCMs. We prove this in Appendix C.1 by drawing connections to the information bottleneck principle (Bu
et al., 2021).

Theorem B.1 (Gaussian Fair Learning ⇐⇒ QCQP). The optimization problem in (7) is equivalent to

max
a∈B(0,1)

〈
a,byx

〉2
s.t.

〈
a,bex

〉2 ≤ ε, (8)

where B(0, 1) denotes an ℓ2 ball centered at 0 with radius 1, ⟨·,·⟩ denotes the inner product, and a plays the role of bux.

We note that a in (8) has the same dimension as x, i.e., d. The following result, with a proof in Appendix C.2, shows that
any d-dimensional QCQP in (8) can be mapped to a 2-dimensional QCQP.

Proposition 1 (d = 2 suffices for QCQP). The optimal solution a⋆ of the QCQP in (8) lies in the subspace spanned by the
vectors byx and bex.

In Appendix C.3, we characterize the optimal a⋆ in (8) as a function of byx, bex, and ε for d = 2. Theorem B.1 demonstrates
that considering the uncertainty in the canonical correlation matrix bex is sufficient to capture the uncertainty in sensitive
attributes, which we will now explore in detail.

B.1. Theoretical Results

In this section, we provide a characterization of fair learning for Gaussian data given some uncertainty in sensitive attributes.
Specifically, we study how to robustify the QCQP in (8) to ensure strict fairness guarantee with high probability, as well as
how this robustification affects the optimal objective.

Let b̂ex be an estimate of bex, say obtained from D(u), such that ∥bex − b̂ex∥2 ≤ τ (with probability 1 − δ), for some
τ ≥ 0,1 and denoted by bex ∈ B(b̂ex, τ). To achieve fairness as in (8) with probability 1− δ, in the worst case, ⟨a,b⟩2 ≤ ε

should hold for all b ∈ B(b̂ex, τ). Then, the following robust optimization maximizes the desired objective while achieving
fairness as in (8) (with probability 1− δ) without the precise knowledge of bex:

max
a∈B(0,1)

⟨a,byx⟩2 s.t. ⟨a,b⟩2≤ ε, ∀b ∈ B(b̂ex, τ). (9)

In the following proposition, we show that any d-dimensional robust QCQP in (9) can be mapped to a 2-dimensional QCQP.
See Appendix D for a proof.

Proposition 2 (d = 2 suffices for robust QCQP). The optimal solution a⋆ of the robust QCQP in (9) lies in the subspace
spanned by the vectors byx and b̂ex.

Now, to characterize the solution of the robust QCQP in (9), we focus on d = 2 and work with polar coordinates. Further,
to analyze the corresponding feasible space, we relax the uncertainty space B(b̂ex, τ) from a ball to an annular sector.
Formally, we let b̂ex ≜ r̂e(cos θ̂e, sin θ̂e) be the estimate of bex such that |re − r̂e| ≤ ∆ and |θe − θ̂e| ≤ ϕ with probability
1− δ where ∆ ≜ τ ≥ 0 and ϕ ≜ sin−1(τ/b̂ex) ∈ [0, π/2]. In other words, given r̂e, θ̂e,∆, and ϕ, with probability 1− δ,

bex ∈ A(∆, ϕ) ≜ {b = r(cos θ, sin θ) : |r − r̂e| ≤ ∆ and |θ − θ̂e| ≤ ϕ}, (10)

i.e., A(∆, ϕ)(⊃ B(b̂ex, τ)) denotes the smallest annular sector around b̂ex capturing our uncertainty in knowing bex (see
Figure 4 where A(∆, ϕ) is the shown in orange). Now, to achieve fairness as in (8) (with probability 1− δ), we constrain
the robust QCQP in (9) as follows:

max
a∈B(0,1)

⟨a,byx⟩2 s.t.
〈
a,b

〉2≤ ε, ∀b∈A(∆, ϕ). (11)

1For ease of the exposition, we assume τ ≤ ∥bex∥2.
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(a) Feasible space when
√
ε > (r̂e +∆) sinϕ. (b) Feasible space when

√
ε < (r̂e +∆) sinϕ.

Figure 4. Visualizing the feasible space of the robust QCQP in Theorem B.2, i.e., (12), for ε = 0.9, r̂e = 1.6, and θ̂e = 0. We set
∆ = 0.2 and ϕ = π/12 for panel (a), and ∆ = 0.4 and ϕ = π/6 for panel (b). Each point is shown in polar coordinates, i.e., a point
(r, θ) denotes (r cos θ, r sin θ). The annular sector A(∆, ϕ) is the region enclosed by dashed lines, dashed arc, and solid arc in orange.
The arc A(∆, ϕ) is the solid arc in orange. The shaded region is the feasible space. The points b(1)

ex , b(2)
ex , and b

(3)
ex from Theorem B.3 are

shown in magenta, blue and green, respectively.

As we show below, the constraint in (11) is equivalent to ensuring ⟨a,b⟩2 ≤ ε for all b ∈ A(∆, ϕ) where A(∆, ϕ) is the arc
on the boundary of the angular sector A(∆, ϕ) with maximum radius (shown in solid orange in Figure 4). See Appendix E
for a proof. Further, in Appendix E.1, we characterize the optimal a in (11) as a function of b̂ex, byx, ∆, ϕ, and ε.

Theorem B.2 (Robust QCQP with infinite constraints). Let A(∆, ϕ) ≜ {b : b = (r̂e +∆)(cos θ, sin θ) and |θ− θ̂e| ≤ ϕ}
be the arc on the boundary of A(∆, ϕ) with maximum radius. Then, the robust QCQP in (11) is equivalent to

max
a∈B(0,1)

⟨a,byx⟩2 s.t.
〈
a,b

〉2≤ ε, ∀b∈A(∆, ϕ). (12)

There is a phase transition in the nature of the feasible space of the robust QCQP in (12). Figure 4(a) illustrates the space if√
ε≥(r̂e +∆) sinϕ, and Figure 4(b) illustrates the space if

√
ε≤(r̂e +∆) sinϕ.

While Theorem B.2 simplifies the optimization in (11), the resulting optimization in (12) still has infinite constraints. Below,
we provide an approximation to the feasible space in (12) such that it has finitely many constraints. See Appendix F for a
proof. We note that alternative approximations are possible.

Theorem B.3 (Robust QCQP with 3 constraints). Let b
(1)
ex = (r̂e+∆)

cosϕ (cos θ̂e, sin θ̂e), b
(2)
ex = (r̂e +

∆)(cos (θ̂e + ϕ), sin (θ̂e + ϕ)), and b
(3)
ex = (r̂e + ∆)(cos (θ̂e − ϕ), sin (θ̂e − ϕ)). Then, the feasible space of the

optimization below is a subset of the feasible space of the optimization in (12):

max
a∈B(0,1)

〈
a,byx

〉2
s.t

〈
a,b(i)

ex

〉2 ≤ ε for all i ∈ [3]. (13)

See Appendix F.1 for a characterization of the optimal a in (13) as a function of b̂ex, byx, ∆, ϕ, and ε. We visualize b
(1)
ex ,

b
(2)
ex , and b

(3)
ex in Figure 4 (in magenta, blue, and green, respectively), and note that b(1)

ex approximates the effect of the
points in-between b

(2)
ex and b

(3)
ex on A(∆, ϕ).

Uncertainty due to randomly missing sensitive attributes. Now, we focus on understanding how the optimal objective
of the robust QCQP in (13) changes when the uncertainty set A(∆, ϕ) changes. For concreteness, we consider the case
where uncertainty only stems from sensitive attributes missing at random, and the uncertainty can be improved by collecting
more labeled sensitive attributes. Then, we analyze the power of each new labeled sensitive attribute by characterizing the
exact difference in the optimal objectives of the QCQP in (8) and the robust QCQP in (13). To enable this, we show (in
Appendix H) that the optimal objective in (13) either monotonically increases or coincides with the optimal objective in (8)
whenever the uncertainty set monotonically decreases with n.

The response of our algorithm to collecting more labeled sensitive attributes can be classified into 3 categories (see the
formal result in Appendix G): (a) Any uncertainty hurts: Here, the optimal objective of the robust QCQP in (13) matches
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the optimal objective in (8) only when all the uncertainty is removed, i.e., n → N ; (b) Some uncertainty does not hurt: Here,
the optimal objective of the robust QCQP in (13) matches the optimal objective in (8) when some uncertainty is removed,
i.e., by collecting few extra labeled sensitive attributes; (c) Uncertainty does not hurt: Here, the optimal objective of the
robust QCQP in (13) matches the optimal objective in (8) without collecting any extra labeled sensitive attributes. We state
this informally below (see Lemma 4 for a formal statement).
Corollary 1 (Free fairness). There exist problem instances of the robust QCQP in (13) where the uncertainty incurs no
performance loss while achieving a strict fairness guarantee, without requiring additional labeled sensitive attributes.

Solving the robust QCQP in (13) for d = 2 is straightforward using a standard convex optimization solver. However, as
the dimensionality of x increases, solving the problem becomes more challenging. Furthermore, real datasets may not be
well-modeled by Gaussian distributions, and thus, the proposed robust QCQP may not be directly deployable.

B.2. Motivation for Bootstrap-S

In Section 3, we leverage our theoretical analysis to propose a generic algorithm that handles high-dimensional features and
non-Gaussian data while accounting for uncertainty. The core idea of the robust QCQP (in Theorem B.3) is to construct an
uncertainty set around the estimated canonical correlation matrix b̂ex by imposing additional constraints. This approach
effectively addresses the unknown nature of the true bex. Another perspective is to view the robust QCQP in (13) as

max
a∈B(0,1)

〈
a,byx

〉2
s.t

〈
a, b̂ex

〉2 ≤ ε and
〈
a,b(i)

ex

〉2 ≤ ε for all i ∈ [3], (14)

where the constraint
〈
a, b̂ex

〉2 ≤ ε becomes redundant in the presence of the constraint
〈
a,b

(1)
ex

〉2 ≤ ε, and {b(i)
ex}i∈[3] can

be viewed as multiple estimates of b̂ex. For general non-Gaussian data, we use a similar idea in (4).

B.3. Synthetic data

In this section, we show the efficacy of the robust QCQP in achieving strict fairness on synthetic Gaussian data and
demonstrate that Bootstrap-S serves as a good approximation for the robust QCQP.

We generate synthetic data using two Gaussian distributions with zero mean, d = 2, and covariances matrices (a) Σgen
2 and

(b) Σfair
2 defined in Appendix I.1. We present our results when uncertainty is due to randomly missing sensitive attributes. In

Appendix I.1, we present results on (i) another choice of covariance, (ii) d = 3, and (iii) uncertainty in sensitive attribute
due to noise. We estimate b̂ex using n samples of (x, e) for various choices of n. Then, we compare the robust QCQP
in (13) and Bootstrap-S applied to the QCQP in (8) (for various S) against Baseline, which solves the QCQP in
(8) using b̂ex. We solve the resulting optimization problems using the CVXPY library (Diamond & Boyd, 2016). The
covariances Σgen

2 an Σfair
2 are designed to demonstrate the general behavior (where uncertainty hurts) and the free-fairness

behavior (Corollary 1), respectively.

The results, averaged over 1000 random trials, are shown in Figure 5 (the error bars are too small to see). We observe
that robust QCQP always ensures no fairness violations. Additionally, the performance (in terms of average MSE) of
robust QCQP monotonically improves as n increases, as stated in Appendix H. More importantly, in Figure 5 (b), robust
QCQP does not incur any significant loss in the performance, and thus demonstrates the free-fairness phenomenon in
Corollary 1, say, n ≈ 350 onward. We also see that Bootstrap-S well approximates the performance of robust QCQP
and outperforms Baseline in terms of fairness violations. As alluded to earlier, Bootstrap-S achieves a better fairness
criterion as we increase the number of subsamples S by forming a more accurate uncertainty set. However, the benefit of
larger S comes with an increased computation.

C. Proof of Theorem B.1 and Proposition 1
In this section, we prove Theorem B.1 and Proposition 1 as well as provide a characterization of the optimal a⋆ in (8).

C.1. Proof of Theorem B.1: Gaussian Fair Learning ⇐⇒ QCQP

First, we show that optimization in (7) is equivalent to the optimization below:

argmax
u

D(py ,u∥pypu) s.t. D(pe,u∥pepu) ≤ ϵ. (15)
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Figure 5. The performance of robust QCQP in (13), Bootstrap-S with S ∈ {3, 9, 27}, and Baseline for d = 2 and various Σ⋆.
In the left column, we plot the fraction of violations of the true fairness constraint ⟨a,bex⟩2 ≤ ε vs. n; in the middle column, we plot
average MSE vs. n; in the right column, we plot the histogram of the value of ⟨a,bex⟩2 over 1,000 trials for n = 250.

To that end, from the definition of conditional variance, we have

E[(y − E[y |u])2] = E
[
Var[y |u]

]
. (16)

Now, for a joint Gaussian vector (y , u) ∈ R2 with covariance Σ, we have

E
[
Var[y |u]

] (a)
= E

[
Σyy −ΣyuΣ

−1
uuΣuy

]
= Σyy −ΣyuΣ

−1
uuΣuy, (17)

where (a) follows from Schur’s complement. Since Σyy is a constant w.r.t. u, we can write

argmin
u

E
[
Var[y |u]

]
= argmin

u
−ΣyuΣ

−1
uuΣuy = argmax

u
ΣyuΣ

−1
uuΣuy. (18)

Now, from Huang et al. (2019, Lemma. 68), we have

D(py ,u∥pypu) = |||Σ−1/2
yy ΣyuΣ

−1/2
uu |||2F

(a)
= Σ−1/2

yy ΣyuΣ
−1
uuΣuyΣ

−1/2
yy , (19)

where ||| · |||F denotes the Frobenius norm, and (a) follows because Σ−1/2
yy ΣyuΣ

−1
uuΣuyΣ

−1/2
yy ∈ R. As before, since Σyy is

a constant w.r.t. u, we can write

argmax
u

D(py ,u∥pypu) = argmax
u

ΣyuΣ
−1
uuΣuy. (20)

Then, (15) follows by combining (16), (18), and (20).

Next, from Bu et al. (2021, Theorem. 1), the optimization problem in (15) is equivalent to the following semi-definite
program (SDP) using the notion of canonical correlation matrices (Definition 2):

max
A∈Ad

Tr(b⊤
yxbyxA) s.t. Tr(b⊤

exbexA) ≤ ε and 0 ⪯ A ⪯ I, (21)

where Tr(·) denote the trace of a matrix, Ad is the space of d× d symmetric matrices, and A is of the form bxub
⊤
xu. Finally,

we show that the SDP in (21) is equivalent to the QCQP in (8). First, we have

Tr(b⊤
yxbyxA)

(a)
= Tr(b⊤

yxbyxbxub
⊤
xu)

(b)
= Tr(b⊤

xub
⊤
yxbyxbxu) = Tr((byxbxu)

⊤byxbxu)
(c)
=

〈
byx,b

⊤
xu

〉2
, (22)
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where (a) follows because A = bxub
⊤
xu, (b) follows from the cyclic property of trace, and (c) follows because ⟨byx,b

⊤
xu⟩ =

byxbxu ∈ R1×1. Similarly, we have

Tr(b⊤
exbexA) =

〈
bex,b

⊤
xu

〉2
. (23)

Finally, noting that A is a rank 1 matrix, we have

0 ⪯ A ⪯ I ⇐⇒ bxu ∈ B(0, 1). (24)

Putting together (21) to (24) completes the proof.

C.2. Proof of Proposition 1: d = 2 suffices for QCQP

It suffices to show that the projection of any a ∈ B(0, 1), satisfying the constraint ⟨a,bex⟩2 ≤ ε, onto the subspace spanned
by byx and bex preserves the value of the objective and continues to satisfy the constraint. Fix some a in the feasible space.
Let proj(a) denote the projection of a on the subspace spanned by byx and bex.

The value of the objective is preserved. It suffices to show ⟨proj(a),byx⟩2 = ⟨a,byx⟩2. Consider an orthonormal basis
{ny,ne} ≜

{ byx

∥byx∥2
,ne

}
spanned by byx and bex where ny =

byx

∥byx∥2
and ne is chosen to be orthogonal to ny . Then,

proj(a) =
〈
a,ny

〉
ny +

〈
a,ne

〉
ne. (25)

Using the definition of ny and the orthogonality between ne and byx, we have〈
proj(a),byx

〉2
=

〈
a,ny

〉2∥byx∥22. (26)

Similarly, using the definition of ny , we have
〈
a,byx

〉2
=

〈
a,ny

〉2∥byx∥22.

The constraint is satisfied. It suffices to show proj(a) ∈ B(0, 1) and ⟨proj(a),bex⟩2 ≤ ε. It is easy to see proj(a) ∈
B(0, 1) because ∥proj(a)∥2 ≤ ∥a∥2. Now, consider a different set of orthonormal basis {n′

e,n
′
y} ≜

{
bex

∥bex∥2
,n′

y

}
spanned

by bex and byx where n′
e =

bex

∥bex∥2
and n′

y is chosen to be orthogonal to n′
e. Then,

proj(a) =
〈
a,n′

e

〉
n′
e +

〈
a,n′

y

〉
n′
y. (27)

Using the definition of n′
e and the orthogonality between n′

y and bex, we have

〈
proj(a),bex

〉2
=

〈
a,n′

e

〉2∥bex∥22
(a)
=

〈
a,bex

〉2 (8)
≤ ε, (28)

where (a) follows from the definition of n′
e.

C.3. Characterizing the optimal a⋆ in (8)

Fix any ε > 0. For d = 2, it is convenient to work with polar coordinates. Let bex = re(cos θe, sin θe) for some re > 0 and
θe ∈ [0, 2π]. Similarly, let byx = ry(cos θy, sin θy) for some ry > 0 and θy ∈ [0, 2π]. Let a⋆ denote the set of optimal a in
(8), i.e.,

a⋆ = arg max
a∈B(0,1)

〈
a,byx

〉2
s.t

〈
a,bex

〉2 ≤ ε. (29)

Then, the following lemma characterizes a⋆ depending on the values of re, θe, θy , and ε.

Lemma 1. Let α ∈ [0, 2π] be such that cosα =
√
ε/re and sinα =

√
1− ε/r2e . Define the function a : [0, 2π] → [−1, 1]2

such that a(θ) = (cos θ, sin θ). Then,

Case 1.1. a⋆ =
{
a(α+ θe),a(π + α+ θe)

}
⇐⇒ θy ∈ [θe, α+ θe] ∪ [π + θe, π + α+ θe],

Case 1.2. a⋆ =
{
a(θy),a(π + θy)

}
⇐⇒ θy ∈ [α+ θe, π − α+ θe] ∪ [π + α+ θe, 2π − α+ θe], and
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bex = (re, θe)

byx = (ry , θy)

(1, α+ θe)

(1,−α+ θe)

(1, π − α+ θe)

(1, π + α+ θe)

α

Figure 6. Visualizing QCQP in (8). Each point is shown in polar coordinates, i.e., a point (r, θ) denotes (r cos θ, r sin θ). The point bex

is shown in orange. The region enclosed by the solid red lines and red arcs is the feasible space in (8). The feasible space is shaded in
blue, red, and olive to represent Case 1.1., Case 1.2., and Case 1.3., respectively. The point byx is shown in magenta and falls under Case
1.3. The optimal solution set a⋆ consists of points (1, π − α+ θe) and (1,−α,+θe).

Case 1.3. a⋆ =
{
a(π − α+ θe),a(−α+ θe)

}
⇐⇒ θy ∈ [π − α+ θe, π + θe] ∪ [−α+ θe, θe].

Proof. Consider any bex = re(cos θe, sin θe) (shown in orange in Figure 6) and ε > 0. Let Λa(bex) ≜ {a : ⟨a,bex⟩2 ≤
ε and a ∈ B(0, 1)} be the feasible space in (8), i.e., the set of all a satisfying the fairness constraint in (8) w.r.t bex. Then,
Λa(bex) is the region enclosed by the solid red lines and red arcs in Figure 6, i.e., the union of the regions shaded in various
colors. To obtain this region, consider any a ∈ B(0, 1). Then, ensuring

〈
a,bex

〉2 ≤ ε is equivalent to ensuring that the
projection of a on the line joining the origin and bex (shown in dotted orange in Figure 6) is no more than

√
ε/re. Therefore,

we drop perpendiculars to this line at a distance
√
ε/re on either side of the origin. We obtain the intersection of these

perpendiculars and B(0, 1) by standard algebra and trigonometry (these points are shown in Figure 6 in polar coordinates),
and the enclosed region is Λa(bex).

Now, consider any byx = ry(cos θy, sin θy) (shown in magenta in Figure 6). Then, obtaining a⋆ is equivalent to obtaining
every a ∈ Λa(bex) such that the projection of a on the line joining the origin and byx (shown in dotted magenta in Figure 6)
is maximized. As a result, every a ∈ a⋆ lies on the boundary of this region. To obtain a⋆, we drop perpendiculars to the
line joining the origin and byx from every a on the boundary of this region, e.g., we show two such perpendiculars in solid
blue in Figure 6. We add a to a⋆ if the distance between the origin and the point where the corresponding perpendicular
intersects the line is maximum. It is straightforward to verify that Case 1.1., Case 1.2., and Case 1.3. correspond to the
regions shaded in blue, red, and olive, respectively (see Figure 6).

D. Proof of Proposition 2: d = 2 suffices for robust QCQP

It suffices to show that the projection of any a ∈ B(0, 1), satisfying the constraint ⟨a,b⟩2 ≤ ε for all b ∈ B(b̂ex, τ), onto
the subspace spanned by byx and b̂ex preserves the value of the objective and continues to satisfy the constraint. Fix some
a in the feasible space. Let proj(a) denote the projection of a on the subspace spanned by byx and b̂ex. The proof that the
value of the objective remains preserved is analogous to the proof of Proposition 1 (see Appendix C.2).

The constraint is satisfied. It suffices to show proj(a) ∈ B(0, 1) and ⟨proj(a),b⟩2 ≤ ε for all b ∈ B(b̂ex, τ). It is easy
to see proj(a) ∈ B(0, 1) because ∥proj(a)∥2 ≤ ∥a∥2. Now, consider a set of orthonormal basis {ne,ny} ≜

{
b̂ex

∥b̂ex∥2
,ny

}
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spanned by b̂ex and byx where ne =
b̂ex

∥b̂ex∥2
and ny is chosen to be orthogonal to ne. Then,

proj(a) =
〈
a,ne

〉
ne +

〈
a,ny

〉
ny. (30)

Using the definition of ne and the orthogonality between ny and b̂ex, we have

〈
proj(a), b̂ex

〉
=

〈
a,ne

〉
∥b̂ex∥2

(a)
=

〈
a, b̂ex

〉
, (31)

where (a) follows from the definition of ne.

Now, for every b ∈ B(b̂ex, τ), we have b = b̂ex +∆b, where ∥∆b∥ ≤ τ . Then,〈
a,b

〉
=

〈
a, b̂ex +∆b

〉
=

〈
proj(a), b̂ex

〉
+
〈
a,∆b

〉 (31)
=

〈
proj(a), b̂ex

〉
+
〈
a,∆b

〉
≤

〈
proj(a), b̂ex

〉
+ ∥a∥2τ (32)

(a)

≤
√
ε, (33)

where (a) follows because
〈
a,b

〉2 ≤ ε. Similarly, we can show ⟨a,b⟩ ≥ −
√
ε. Now, we can bound ⟨proj(a),b⟩ as

follows:〈
proj(a),b

〉
=

〈
proj(a), b̂ex +∆b

〉
=

〈
proj(a), b̂ex

〉
+

〈
proj(a),∆b

〉
≤

〈
proj(a), b̂ex

〉
+ ∥proj(a)∥2τ (34)

(a)

≤
〈
proj(a), b̂ex

〉
+ ∥a∥2r

(33)
≤

√
ε, (35)

where (a) follows because ∥proj(a)∥2 ≤ ∥a∥2. Similarly, we can show ⟨proj(a),b⟩ ≥ −
√
ε completing the proof.

E. Proof of Theorem B.2: Robust QCQP with infinite constraints
Fix any r̂e ≥ 0, θ̂e ∈ [0, 2π], ∆ ≥ 0, and ϕ ∈ [0, π/2]. For any b, let Λa(b) ≜ {a : ⟨a,b⟩2 ≤ ε and a ∈ B(0, 1)} be the
set of all a satisfying the fairness constraint in (8) w.r.t b. For a given b, Λa(b) can be constructed as described in the proof
of Lemma 1 in Appendix C.3. See Figure 6 for reference.

Now, to show that the optimization problem in (11) is equivalent to the optimization problem in (12), it suffices to show the
corresponding constraints are equivalent, i.e., ⋂

b∈A(∆,ϕ)

Λa(b) =
⋂

b∈A(∆,ϕ)

Λa(b). (36)

Consider any b1,b2 ∈ A(∆, ϕ) of the form: b1 = r1(cos θ, sin θ) and b2 = r2(cos θ, sin θ) for some r1, r2, θ such that
|r1 − r̂e| ≤ ∆, |r2 − r̂e| ≤ ∆, and |θ − θ̂e| ≤ ϕ. Without loss of generality, let r1 ≥ r2. Now, it is straightforward to see
that Λa(b1) ⊆ Λa(b2). Therefore, (36) follows from the definition of A(∆, ϕ).

E.1. Characterizing optimal a in (11)

Fix any ε > 0. Let b̂ex = r̂e(cos θ̂e, sin θ̂e) for some r̂e > 0 and θ̂e ∈ [0, 2π]. Consider some ∆ ≥ 0 and ϕ ∈ [0, π/2] such
that bex ∈ A(∆, ϕ) with probability at least 1− δ where A(∆, ϕ) is as defined in (10). Let byx = ry(cos θy, sin θy) for
some ry > 0 and θy ∈ [0, 2π]. Let a denote the set of optimal a in (11), i.e.,

a = arg max
a∈B(0,1)

〈
a,byx

〉2
s.t

〈
a,b

〉2 ≤ ε for all b ∈ A(∆, ϕ). (37)

Then, the following Lemma characterizes a depending on the values of b̂ex, byx, ∆, ϕ, and ε.

Lemma 2. Let α ∈ [0, 2π] be such that cosα =
√
ε/(r̂e + ∆) and sinα =

√
1− ε/(r̂e +∆)2. Define the function

a : [0, 2π] → [−1, 1]2 such that a(θ) = (cos θ, sin θ). Then,

1. If
√
ε ≥ (r̂e +∆) sinϕ:
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Case 2.1. a =
√
ε

r̂e+∆

{
a(θy),a(π + θy)

}
⇐⇒ θy ∈ [θ̂e − ϕ, θ̂e + ϕ] ∪ [π + θ̂e − ϕ, π + θ̂e + ϕ],

Case 2.2. a =
{
a(θ̂e + ϕ+ α),a(π + θ̂e + ϕ+ α)

}
⇐⇒ θy ∈ [θ̂e + ϕ, θ̂e + ϕ+ α] ∪ [π + θ̂e + ϕ, π + θ̂e + ϕ+ α],

Case 2.3. a =
{
a(θy),a(π + θy)

}
⇐⇒ θy ∈ [θ̂e + ϕ+ α, π + θ̂e − ϕ− α] ∪ [π + θ̂e + ϕ+ α, 2π + θ̂e − ϕ− α],

Case 2.4. a =
{
a(π + θ̂e − ϕ− α),a(θ̂e − ϕ− α)

}
⇐⇒ θy ∈ [π + θ̂e − ϕ− α, π + θ̂e − ϕ] ∪ [θ̂e − ϕ− α, θ̂e − ϕ].

2. If
√
ε ≤ (r̂e +∆) sinϕ:

Case 3.1. a =
√
ε

r̂e+∆

{
a(θy),a(π + θy)

}
⇐⇒ θy ∈ [θ̂e − ϕ, θ̂e + ϕ] ∪ [π + θ̂e − ϕ, π + θ̂e + ϕ],

Case 3.2. a =
√
ε

(r̂e+∆) sinϕ

{
a(π2 + θ̂e),a(

−π
2 + θ̂e)

}
⇐⇒ θy ∈ [θ̂e + ϕ, π + θ̂e − ϕ] ∪ [π + θ̂e + ϕ, 2π + θ̂e − ϕ].
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(a) QCQP in (11) if
√
ε ≥ (r̂e +∆) sinϕ (b) QCQP in (11) if

√
ε ≤ (r̂e +∆) sinϕ

Figure 7. Visualizing QCQP in (11) for ε = 0.9, r̂e = 1.6, and θ̂e = 0. We set ∆ = 0.2 and ϕ = 15 for panel (a), and ∆ = 0.4 and
ϕ = 30 for panel (b). Each point is shown in polar coordinates, i.e., a point (r, θ) denotes (r cos θ, r sin θ). The annular sector A(∆, ϕ)
is shown in orange. The region enclosed by the solid blue lines and blue arcs is the feasible space in (11). In Panel (a), the feasible space
is shaded in green, blue, red, and olive to represent Case 2.1., Case 2.2., Case 2.3., and Case 2.4. respectively. In Panel (b), the feasible
space is shaded in green and blue to represent Case 3.1. and Case 3.2., respectively.

Proof. For any b, let Λa(b) ≜ {a : ⟨a,b⟩2 ≤ ε and a ∈ B(0, 1)} be the set of all a satisfying the fairness constraint in
(8) w.r.t b. Then, from (36), the constraint in (37) is equivalent to ∩b∈A(∆,ϕ)Λa(b). Consider any b1 ∈ A(∆, ϕ). Then,

b1 = (r̂e+∆)(cos θ, sin θ) for some |θ− θ̂e| ≤ ϕ. Further, Λa(b1) can be constructed as described in the proof of Lemma 1
in Appendix C.3. See Figure 6 for reference. From standard algebra and trigonometry, it is easy to see the two straight
lines forming the boundary of Λa(b1) in Figure 6 intersect the y-axis at points (0,

√
ε

(r̂e+∆) sin θ ) and (0, −
√
ε

(r̂e+∆) sin θ ). Then,
depending on whether these points lie inside or outside B(0, 1) when θ = ϕ, we have two cases.

1. Suppose
√
ε ≥ (r̂e +∆) sinϕ. Then, it is straightforward to see that ∩b∈A(∆,ϕ)Λa(b) is the region enclosed by the

solid blue lines and blue arcs in Figure 7(a) (see Figure 4(a) for reference), i.e., the union of the regions shaded in
various colors. The rest of the proof is similar to the proof of Lemma 1. Lastly, it is straightforward to verify that Case
2.1., Case 2.2., Case 2.3., and Case 2.4. correspond to the regions shaded in green, blue, red, and olive, respectively.

2. Suppose
√
ε ≤ (r̂e +∆) sinϕ. Then, it is straightforward to see that ∩b∈A(∆,ϕ)Λa(b) is the region enclosed by the

solid blue lines and blue arcs in Figure 7(b) (see Figure 4(b) for reference), i.e., the union of the regions shaded in
various colors. The rest of the proof is similar to the proof of Lemma 1. Lastly, it is straightforward to verify that Case
3.1. and Case 3.2. correspond to the regions shaded in green and blue, respectively.
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F. Proof of Theorem B.3: Robust QCQP with 3 constraints
Fix any r̂e ≥ 0, θe ∈ [0, 2π], ∆ ≥ 0, and ϕ ∈ [0, π/2]. For any b, let Λa(b) ≜ {a : ⟨a,b⟩2 ≤ ε and a ∈ B(0, 1)} be the
set of all a satisfying the fairness constraint in (8) w.r.t b. For a given b, Λa(b) can be constructed as described in the proof
of Lemma 1 in Appendix C.3. See Figure 6 for reference.

First, we note that the straight lines in the feasible space ∩b∈A(∆,ϕ)Λa(b) in Figure 7(a) and Figure 7(b) are generated by

the extreme points of the arc A(∆, ϕ). These extreme points are precisely b
(2)
ex and b

(3)
ex . Therefore, the same straight lines

also arise in the feasible space Λa(b
(1)
ex ) ∩ Λa(b

(2)
ex ) ∩ Λa(b

(3)
ex ) in Figure 8(a) and Figure 8(b). Second, we note that the

arcs in the feasible space ∩b∈A(∆,ϕ)Λa(b) in Figure 7(a) and Figure 7(b) are at a distance
√
ε/(r̂e +∆) away from the

origin. The point b(1)
ex is chosen precisely such that the space Λa(b

(1)
ex ) intersects each of these arcs at its extreme points (see

Figure 8(a) and Figure 8(b)). Therefore, it is easy to see that the boundary of the feasible space ∩b∈A(∆,ϕ)Λa(b) is not

closer to the origin than the boundary of the feasible space Λa(b
(1)
ex ) ∩ Λa(b

(2)
ex ) ∩ Λa(b

(3)
ex ). This completes the proof.
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(a) Feasible space for
√
ε > (r̂e +∆) sinϕ. (b) Feasible space for

√
ε < (r̂e +∆) sinϕ.

Figure 8. Visualizing QCQP in (13) for ε = 0.9, r̂e = 1.6, and θ̂e = 0. We set ∆ = 0.2 and ϕ = 15 for panel (a), and ∆ = 0.4 and
ϕ = 30 for panel (b). Each point is shown in polar coordinates, i.e., a point (r, θ) denotes (r cos θ, r sin θ). The annular sector A(∆, ϕ)

is shown in orange. The shaded region is the feasible space in (13). The points b(1)
ex , b(2)

ex , and b
(3)
ex are shown in magenta, blue and green,

respectively.

F.1. Characterizing optimal a in (13)

Fix any ε > 0. Let b̂ex = r̂e(cos θ̂e, sin θ̂e) for some r̂e > 0 and θ̂e ∈ [0, 2π]. Consider some ∆ ≥ 0 and ϕ ∈ [0, π/2] such
that bex ∈ A(∆, ϕ) where A(∆, ϕ) is as defined in (10). Let byx = ry(cos θy, sin θy) for some ry > 0 and θy ∈ [0, 2π].
Let a denote the set of optimal a in (13), i.e.,

a = arg max
a∈B(0,1)

〈
a,byx

〉2
s.t

〈
a,b(1)

ex

〉2 ≤ ε,
〈
a,b(2)

ex

〉2 ≤ ε,
〈
a,b(3)

ex

〉2 ≤ ε. (38)

Then, the following Lemma characterizes a depending on the values of b̂ex, byx, ∆, ϕ, and ε. The proof is similar to the
proof of Lemma 2 and is omitted for brevity.

Lemma 3. Let α ∈ [0, 2π] be such that cosα =
√
ε/(r̂e + ∆) and sinα =

√
1− ε/(r̂e +∆)2. Define the function

a : [0, 2π] → [−1, 1]2 such that a(θ) = (cos θ, sin θ). Then,

1. If
√
ε ≥ (r̂e +∆) sinϕ:

Case 4.1. a =
√
ε

r̂e+∆

{
a(θ̂e + ϕ),a(π + θ̂e + ϕ)

}
⇐⇒ θy ∈ [θ̂e, θ̂e + ϕ] ∪ [π + θ̂e, π + θ̂e + ϕ],

Case 4.2. a =
{
a(θ̂e + ϕ+ α),a(π + θ̂e + ϕ+ α)

}
⇐⇒ θy ∈ [θ̂e + ϕ, θ̂e + ϕ+ α] ∪ [π + θ̂e + ϕ, π + θ̂e + ϕ+ α],

Case 4.3. a =
{
a(θy),a(π + θy)

}
⇐⇒ θy ∈ [θ̂e + ϕ+ α, π + θ̂e − ϕ− α] ∪ [π + θ̂e + ϕ+ α, 2π + θ̂e − ϕ− α],

Case 4.4. a =
{
a(π + θ̂e − ϕ− α),a(θ̂e − ϕ− α)

}
⇐⇒ θy ∈ [π + θ̂e − ϕ− α, π + θ̂e − ϕ] ∪ [θ̂e − ϕ− α, θ̂e − ϕ],

Case 4.5. a =
√
ε

r̂e+∆

{
a(θ̂e − ϕ),a(π + θ̂e − ϕ)

}
⇐⇒ θy ∈ [π + θ̂e − ϕ, π + θ̂e] ∪ [θ̂e − ϕ, θ̂e].
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2. If
√
ε ≤ (r̂e +∆) sinϕ:

Case 5.1. a =
√
ε

r̂e+∆

{
a(θ̂e + ϕ),a(π + θ̂e + ϕ)

}
⇐⇒ θy ∈ [θ̂e, θ̂e + ϕ] ∪ [π + θ̂e, π + θ̂e + ϕ],

Case 5.2. a =
√
ε

(r̂e+∆) sinϕ

{
a(π2 + θ̂e),a(

−π
2 + θ̂e)

}
⇐⇒ θy ∈ [θ̂e + ϕ, π + θ̂e − ϕ] ∪ [π + θ̂e + ϕ, 2π + θ̂e − ϕ],

Case 5.3. a =
√
ε

r̂e+∆

{
a(θ̂e − ϕ),a(π + θ̂e − ϕ)

}
⇐⇒ θy ∈ [π + θ̂e − ϕ, π + θ̂e] ∪ [θ̂e − ϕ, θ̂e].

G. Analyzing the power of labeled sensitive attributes
In this section, we consider the case where uncertainty only stems from sensitive attributes missing at random, and the
uncertainty can be improved by collecting more labeled sensitive attributes. We characterize the difference in the optimal
objectives in (8) and (13) to obtain the power of each new labeled sensitive attribute.

Fix any ε > 0. For any n, let b̂ex(n) ≜ r̂e(n)(cos θ̂e(n), sin θ̂e(n)) denote the estimate of bex as a function of n and
let ∆(n) ≥ 0 and ϕ(n) ∈ [0, π/2] denote the corresponding uncertainty parameters as a function of n, i.e., bex =
re(cos θe, sin θe) ∈ A(∆(n), ϕ(n)), with probability 1− δ. Let Ψ(n) denote the difference in the optimal objectives in (8)
and (13), i.e., Ψ(n) ≜ Ψ−Ψ2(n) where

Ψ ≜ max
a∈B(0,1)

〈
a,byx

〉2
s.t

〈
a,bex

〉2 ≤ ε (39)

and

Ψ2(n) ≜ max
a∈B(0,1)

〈
a,byx

〉2
s.t

〈
a,b(1)

ex (n)
〉2 ≤ ε,

〈
a,b(2)

ex (n)
〉2 ≤ ε,

〈
a,b(3)

ex (n)
〉2 ≤ ε. (40)

Then, the following lemma characterizes Ψ(n) as a function of n when θe ≥ θ̂e(n). The characterization when θe ≤ θ̂e(n)
can be obtained analogously. The proof follows from Lemma 1 and Lemma 3, and is omitted for brevity.

Lemma 4. Let α, α(n) ∈ [0, 2π] be such that (a) cosα =
√
ε/re and sinα =

√
1− ε/r2e and (b) cosα(n) =

√
ε/(r̂e(n)+

∆(n)) and sinα(n) =
√
1− ε/(r̂e(n) + ∆(n))2. Then,

1. If
√
ε ≥ (r̂e(n) + ∆(n)) sinϕ(n):

Case A. Ψ(n)= cos (α+ θe − θy) − cosα(n) cos (θ̂e(n) + ϕ(n)− θy) when θy ∈ [θe, θ̂e(n) + ϕ(n)] ∪ [π + θe, π +

θ̂e(n) + ϕ(n)],

Case B. Ψ(n)=cos (α+ θe − θy)−cos (θ̂e(n) + α(n) + ϕ(n)− θy) when θy ∈ [θ̂e(n)+ϕ(n), α+θe]∪ [π+ θ̂e(n)+
ϕ(n), π + α+ θe],

Case C. Ψ(n)= 1 − cos (θ̂e(n) + α(n) + ϕ(n)− θy) when θy ∈ [α + θe, θ̂e(n) + ϕ(n) + α(n)] ∪ [π + α + θe, π +

θ̂e(n) + ϕ(n) + α(n)],

Case D. Ψ(n) = 0 when θy ∈ [θ̂e(n) + ϕ(n) + α(n), π + θ̂e(n) − ϕ(n) − α(n)] ∪ [π + θ̂e(n) + ϕ(n) + α(n), 2π +

θ̂e(n)− ϕ(n)− α(n)],

Case E. Ψ(n)=1− cos (θy + α(n) + ϕ(n)− θ̂e(n)) when θy ∈ [π + θ̂e(n)− ϕ(n)− α(n), π − α + θe] ∪ [θ̂e(n)−
ϕ(n)− α(n),−α+ θe],

Case F. Ψ(n) = cos (θy + α− θe) − cos (θy + α(n) + ϕ(n)− θ̂e(n))when θy ∈ [π − α + θe, π + θ̂e(n) − ϕ(n)] ∪
[−α+ θe, θ̂e(n)− ϕ(n)],

Case G. Ψ(n)= cos (θy + α− θe) − cosα(n) cos (θy + ϕ(n)− θ̂e(n)) when θy ∈ [π + θ̂e(n) − ϕ(n), π + θ̂e(n)] ∪
[θ̂e(n)− ϕ(n), θ̂e(n)],

Case H. Ψ(n)=cos (θy + α− θe)− cosα(n) cos (θy − ϕ(n)− θ̂e(n)) when θy ∈ [π + θ̂e(n), π + θe] ∪ [θ̂e(n), θe].

2. If
√
εs ≤ (r̂e(n) + ∆(n)) sinϕ(n):

Case A. Ψ(n)= cos (α+ θe − θy) − cosα(n) cos (θ̂e(n) + ϕ(n)− θy) when θy ∈ [θe, θ̂e(n) + ϕ(n)] ∪ [π + θe, π +

θ̂e(n) + ϕ(n)],
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Case B. Ψ(n)=cos (α+ θe − θy)− cosα(n)
sin (θy−θ̂e(n))

sinϕ(n) when θy ∈ [θ̂e(n)+ϕ(n), α+ θe]∪ [π+ θ̂e(n)+ϕ(n), π+

α+ θe],

Case C. Ψ(n)=1− cosα(n)
sin (θy−θ̂e(n))

sinϕ(n) when θy ∈ [α+ θe, π − α+ θe] ∪ [π + α+ θe, 2π − α+ θe],

Case D. Ψ(n)=cos (θy + α− θe)−cosα(n)
sin (θy−θ̂e(n))

sinϕ(n) when θy ∈ [π−α+θe, π+θ̂e(n)−ϕ(n)]∪[−α+θe, θ̂e(n)−
ϕ(n)],

Case E. Ψ(n)= cos (θy + α− θe) − cosα(n) cos (θy + ϕ(n)− θ̂e(n)) when θy ∈ [π + θ̂e(n) − ϕ(n), π + θ̂e(n)] ∪
[θ̂e(n)− ϕ(n), θ̂e(n)],

Case F. Ψ(n)=cos (θy + α− θe)− cosα(n) cos (θy − ϕ(n)− θ̂e(n)) when θy ∈ [π + θ̂e(n), π + θe] ∪ [θ̂e(n), θe].

Remark 1. The cases above can be classified into one of the following three categories:

Category 1. Any uncertainty hurts: Here, the optimal performance of the robust QCQP in (11) matches the optimal
performance in (8) only when all the uncertainty is removed, i.e., when n → N . When the uncertainty
parameters are not too large, i.e., (r̂e(n) +∆(n)) sinϕ(n) ≤

√
ε, Case A., Case B., Case F., Case G., and

Case H. fall into this category. When the uncertainty parameters are large, i.e., (r̂e(n)+∆(n)) sinϕ(n) ≥√
ε, Case A., Case B., Case D., Case E., and Case F. fall into this category.

Category 2. Some uncertainty does not hurt: Here, the optimal performance of the robust QCQP in (11) matches the
optimal performance in (8) when some uncertainty is removed, i.e., by collecting some additional labeled
sensitive attributes. When the uncertainty parameters are not too large, i.e., (r̂e(n)+∆(n)) sinϕ(n) ≤

√
ε,

Case C. and Case E. fall into this category. When the uncertainty parameters are large, i.e., (r̂e(n) +
∆(n)) sinϕ(n) ≥

√
ε, Case C. fall into this category.

Category 3. Uncertainty does not hurt: Here, the optimal performance of the robust QCQP in (11) matches the optimal
performance in (8) without removing any uncertainty, i.e., without collecting any additional labeled
sensitive attributes. This only happens in Case D. where Ψ(n) = 0 when the uncertainty parameters
are not too large, i.e., (r̂e(n) + ∆(n)) sinϕ(n) ≤

√
ε. Such a situation arises when byx and b̂ex are

very close to being perpendicular to each other. In other words, when byx and b̂ex are close to being
independent, our proposed robust QCQP achieves optimal performance while ensuring a strict fairness
guarantee. We call such a phenomenon as “free fairness” (see Corollary 1).

H. Monotonic performance with new labeled sensitive attributes
As in the previous section, we consider the case where uncertainty only stems from sensitive attributes missing at random.
Then, we show that the optimal objective in (13) either monotonically increases or coincides with the optimal objective in
(8) whenever the uncertainty set monotonically decreases with n.

To that end, below, we express the uncertainty set A(∆, ϕ) and the associated uncertainty parameters ∆ and ϕ as a function
of n.

Proposition 3 (Uncertainty as a function of n). Fix any δ > 0. Given n samples {(e(i),x(i))}i∈[n] of (e, x), let

b̂ex ≜ Σ−1/2
ee Σ̂exΣ

−1/2
xx with Σ̂ex≜

1

n

∑
i∈[n]

e(i)x(i). (41)

Then, bex ∈ B(b̂ex, τ(n)), with probability 1− δ, where

τ(n) ≜ ∥Σ−1/2
xx ∥2

c
√
σe maxi∈[d]{σi}

n
√
d

log
4

δ
, (42)

with σ2
1 , σ

2
2 , σ

2
e denoting variances of x1, x2, e, respectively, and c is a universal constant. Further, for d = 2, bex ∈

A(∆(n), ϕ(n)), with probability at least 1− δ, where

ϕ(n) ≜ sin−1

(
τ(n)

∥b̂ex∥2

)
and ∆(n) ≜ τ(n). (43)
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Proof. For any sub-Gaussian (sub-exponential) random variable, we denote its sub-Gaussian (sub-exponential) norm by
∥·∥Ψ2

(∥·∥Ψ1
). For every i ∈ [d], we note that xi is a sub-Gaussian random variable with sub-Gaussian norm ∥xi∥Ψ2

= cσi

where σ2
i = Σxixi

. Similarly, e is a sub-Gaussian random variable with sub-Gaussian norm ∥e∥Ψ2
= cσe where σ2

e = Σee.
Then, from Vershynin (2018, Lemma. 2.7.7), for every i ∈ [d], xie is a sub-exponential random variable with sub-exponential
norm ∥xie∥Ψ1

= cσiσe. Therefore, from Bernstein’s inequality (Vershynin, 2018, Corollary 2.8.3), with probability 1− δ,
we have ∥Σ̂ex −Σex∥∞ ≤ t whenever t ≥ cσe maxi∈[d] σi

n log 2d
δ . As a result, we have ∥Σ̂ex −Σex∥2 ≤ t with probability

1− δ whenever t ≥ cσe maxi∈[d] σi

n
√
d

log 2d
δ . Conditioning on this event, we have, with probability 1− δ,

∥b̂ex − bex∥2
(a)
= ∥Σ−1/2

ee (Σ̂ex −Σex)Σ
−1/2
xx ∥2

(b)

≤ 1
√
σe

∥Σ̂ex −Σex∥2∥Σ−1/2
xx ∥2 ≤ 1

√
σe

∥Σ−1/2
xx ∥2t, (44)

where (a) follows from Definition 2 and (b) follows because induced matrix norms are sub-multiplicative. Then, letting
d = 2 and τ(n) = Σ

−1/2
ee ∥Σ−1/2

xx ∥∞t, it is easy to verify bex ∈ A(∆(n), ϕ(n)) whenever

∆(n) = τ(n) and ϕ(n) = sin−1

(
τ(n)

∥b̂ex∥2

)
. (45)

H.1. Monotonic performance with decrease in uncertainty set

Now, in the following theorem, we show that the optimal objective of the robust QCQP with 3 constraints in (13)
either monotonically increases or coincides with the optimal objective of the QCQP in (8) whenever the uncertainty set
A(∆(n), ϕ(n)) monotonically decreases with n.
Theorem H.1 (Monotonic performance). For any number of labeled sensitive attributes n, let A(∆(n), ϕ(n)) denote the
uncertainty set containing bex. Let a(n) denote the optimal solution a in (13) as a function of n. If A(∆(n+1), ϕ(n+1)) ⊂
A(∆(n), ϕ(n)), then 〈

a(n+ 1),byx

〉2
>

〈
a(n),byx

〉2
or (46)〈

a(n+ 1),byx

〉2
=

〈
a(n),byx

〉2
=

〈
a⋆,byx

〉2
, (47)

where a⋆ is the optimal solution of the QCQP in (8).

Fix any ε > 0. For any b, let Λa(b) ≜ {a : ⟨a,b⟩2 ≤ ε and a ∈ B(0, 1)} be the set of all a satisfying the fairness constraint
in (8) w.r.t b. For a given b, Λa(b) can be constructed as described in the proof of Lemma 1 in Appendix C.3. See Figure 6
for reference.

Now, using A(∆(n+ 1), ϕ(n+ 1)) ⊂ A(∆(n), ϕ(n)), it is easy to see that r̂e(n+ 1) < r̂e(n),
∣∣θ̂e(n+ 1) + ϕ(n+ 1)

∣∣ <∣∣θ̂e(n)+ϕ(n)
∣∣, ∣∣θ̂e(n+1)−ϕ(n+1)

∣∣ < ∣∣θ̂e(n)−ϕ(n)
∣∣, and

∣∣ cosϕ(n+ 1)
∣∣ < ∣∣ cosϕ(n)∣∣. Then, it follows that the feasible

space increases with n, i.e., Λa(b
(1)
ex (n+1))∩Λa(b

(2)
ex (n+1))∩Λa(b

(3)
ex (n+1)) ⊃ Λa(b

(1)
ex (n))∩Λa(b

(2)
ex (n))∩Λa(b

(3)
ex (n)).

As a result, the optimal objective in (13) at n+ 1 is either less than the optimal objective in (13) at n or equal to the optimal
objective in (13) at n. It remains to show that if the optimal objective in (13) at n+ 1 equals the optimal objective in (13)
at n, then it also equals the optimal objective of the QCQP in (8). This follows directly from the expressions for Ψ(n) in
various cases of Lemma 4.

I. Additional experimental results
In this section, we provide additional empirical results as well as more implementation details.

I.1. Additional results for Gaussian data

Covariance matrices. First, we provide the covariance matrices of (x, y , e) used in the experiments in Appendix B.3:

Σgen
2 =


1 0.1 0.5 0.4
0.1 1 0.5 0.25
0.5 0.5 1 0.75
0.4 0.25 0.75 1

 Σfair
2 =


1 0.1 0.5 0.05
0.1 1 0.05 0.25
0.5 0.05 1 0.75
0.05 0.25 0.75 1


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Group Fairness with Uncertainty in Sensitive Attributes

The choice of Σfair
2 is deliberate to demonstrate the free-fairness behavior. As pointed out in Category 3 of Remark 1, the

free-fairness behavior may happen when byx and b̂ex are almost perpendicular. It is easy to check that this can be achieved
by the following steps, for example: (1) Strongly correlate e with x1, and y with x2. (2) Set the covariance of x to be close
to the identity matrix.

Results for d = 3. Next, we provide results for d = 3 where we use the following covariance matrices:

Σgen
3 =


1 0.1 0.5 0.5 0.4
0.1 1 0.5 0.5 0.25
0.5 0.5 1 0.2 0.2
0.5 0.5 0.2 1 0.75
0.4 0.25 0.2 0.75 1

 Σfair
3 =


1 0.1 0.5 0.5 0.05
0.1 1 0.5 0.05 0.25
0.5 0.5 1 0.2 0.2
0.5 0.05 0.2 1 0.75
0.05 0.25 0.2 0.75 1


The reasoning behind the choice of Σfair

3 is the same as above. As we see in Figure 9 (a) and Figure 9 (b), Bootstrap-S
has significantly less fairness violations compared to Baseline with a similar MSE even for d = 3.
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(a) d = 3, Σ⋆ = Σgen
3 , ε = 0.075
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(b) d = 3, Σ⋆ = Σfair
3 , ε = 0.025

Figure 9. The performance of Bootstrap-S with S ∈ {3, 9, 27} and Baseline for d = 3 and various Σ⋆. In the left column, we
plot the fraction of violations of the fairness constraint ⟨a,bex⟩2 ≤ ε vs. n; in the middle column, we plot average MSE vs. n; in the
right column, we plot the histogram of the value of ⟨a,bex⟩2 over 1,000 trials for n = 250.

A different choice of covariance matrices. Next, we provide results with a different choice of covariance matrices:

Σa
2 =


1 0.1 0.5 0.01
0.1 1 0.01 0.25
0.5 0.01 1 0.75
0.01 0.25 0.75 1

 Σa
3 =


1 0.1 0.5 0.5 0.01
0.1 1 0.5 0.01 0.25
0.5 0.5 1 0.2 0.2
0.5 0.01 0.2 1 0.75
0.01 0.25 0.2 0.75 1


As we see in Figure 10, the behavior is similar as in other scenarios.

Results for uncertainty due to noise. In Appendix B.3, we considered uncertainty arising due to limited number of
sensitive attributes. Here, we consider uncertainty arising due to noise. Specifically, we generate synthetic data using
the covariance matrix Σfair

2 and conduct two sets of experiments as follows. In the first experiment, we add independent
zero-mean Gaussian noise, i.e., N (0, σ2), with varying noise level, i.e., σ = 1, · · · , 10, to the sensitive attributes. Such
kind of noise is common when the sensitive attributes need to be privatized. In the second experiment, we add independent
zero-mean Gaussian noise, i.e., N (0, σ2), with varying noise level, i.e., σ = 1, · · · , 10, to the sensitive attributes only if
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(a) d = 2, Σ⋆ = Σa
2, ε = 0.05
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Figure 10. The performance of robust QCQP in (13) (for d = 2), Bootstrap-S with S ∈ {3, 9, 27}, and Baseline for various d and
Σ⋆. In the left column, we plot the fraction of violations of the fairness constraint ⟨a,bex⟩2 ≤ ε vs. n; in the middle column, we plot
average MSE vs. n; in the right column, we plot the histogram of the value of ⟨a,bex⟩2 over 1000 trials for n = 250.

the sensitive attribute magnitude is larger than a certain threshold, i.e., |e| ≥ Σee. Such data-dependent noise simulates
noisy responses when sensitive attributes are collected via a survey, e.g., minority groups pretend to be the majority due
to fear of discrimination. In our experiment, samples with sensitive attribute magnitudes larger than the threshold have
noisy responses. We provide the results for both experiments in Figure 11 where we observe that Bootstrap-S achieves
significantly fewer fairness violations than Baseline while maintaining comparable MSE.

I.2. Additional results for real-world data

Dataset description. The Adult data (Lantz, 2019) (https://archive.ics.uci.edu/ml/datasets/adult)
considers predicting whether an individual’s income is more than $50,000 from the 1994 Census database using 14
demographic features such as age, education, marital status, and country of origin. The sensitive attribute is sex. During
pre-processing, we remove the sensitive attribute from the set of input features and discard rows with any missing data. The
data has 48,842 samples, with 30,527 males and 14,695 females. We use a train-test split ratio of 0.72:0.28.

The Insurance data (Lantz, 2019) (https://www.kaggle.com/datasets/teertha/
ushealthinsurancedataset) considers predicting the total annual medical expenses of individuals using 5
demographic features from the U.S. Census Bureau, such as BMI, number of children, and age. The sensitive attribute is sex.
During pre-processing, we remove the sensitive attribute from the set of input features and perform normalization. The data
has 1,338 samples with 676 males and 662 females. We use a train-test split ratio 0.8:0.2.

The Crime dataset (Redmond & Baveja, 2002) (https://archive.ics.uci.edu/ml/datasets/
communities+and+crime) considers predicting the number of violent crimes per 100K population using
socio-economic information of communities in the U.S. The sensitive attribute is the percentage of people belonging to a
particular race in the community. During pre-processing, we drop all the samples with the value of sensitive attribute less
than 5% to remove any outliers. We also remove the non-predictive attributes and the sensitive attribute from the set of input
features, and normalize all attributes to the standardized range of [0, 1]. The resulting data has 1,112 samples, and we use a
train-test split ratio 0.8:0.2.

Implementation details. We use two-layer fully connected networks in all our experiments. For all hidden layers, we
use the selu activation function. For the output layer, we use softmax activation for classification and no activation for
regression. We use 80 (50) units in the hidden layer and train the network for 30 (200) epochs for classification (regression).

https://archive.ics.uci.edu/ml/datasets/adult
https://www.kaggle.com/datasets/teertha/ushealthinsurancedataset
https://www.kaggle.com/datasets/teertha/ushealthinsurancedataset
https://archive.ics.uci.edu/ml/datasets/communities+and+crime
https://archive.ics.uci.edu/ml/datasets/communities+and+crime
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(a) Independence Noise, d = 2, Σ⋆ = Σfair
2 , ε = 0.025

(b) Dependent Noise, d = 2, Σ⋆ = Σfair
2 , ε = 0.025

Figure 11. The performance of Bootstrap-S with S ∈ {3, 9, 27}, and Baseline. In the left column, we plot the fraction of
violations of the fairness constraint ⟨a,bex⟩2 ≤ ε vs. the level of noise added to the sensitive attributes; in the right column, we plot
average MSE vs. the level of noise added to the sensitive attributes.

Empirically, we do not observe any substantial improvement in performance for S ≥ 5, and thus report for a single S
for each dataset. The hyperparameters λ, λ1 · · · , λS are initialized to 10 (5) for classification (regression). We optimize
the model parameters and the hyperparameters λ, λ1 · · · , λS using different optimizers. For model optimization, we use
Adam optimizer with batch size 128 (100), initial learning rate 10−3 (10−4), and weight decay 0 (0.01) for classification
(regression). For optimizing the hyperparameters, we use SGD optimizer with learning rate 10−2. The batch sizes for Adult,
Crime, and Insurance datasets are set to be 128, 100, and 128, respectively. All experiments are implemented in PyTorch
using Tesla V100 GPUs with 32 GB memory.

Results of different levels of uncertainty. In Figure 12, we provide results for independence notion of fairness with
n = 200 for Adult dataset, σ = 0.25 for the Crime dataset, and n = 20 for Insurance dataset, respectively, where n denotes
the number of sensitive attributes kept out of N and σ decides the amount of noise added to the sensitive attributes. The
observations are consistent to that in Figure 3(a), (b), and (c).
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Figure 12. Performance of Bootstrap-S and Baseline for independence for various datasets. Bootstrap-S achieves much better
fairness levels compared to Baseline throughout.


