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Predicting metal-protein interactions using cofolding methods: Status quo
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Abstract

Metals play important roles for enzyme func-
tion and many therapeutically relevant proteins.
Despite the fact that the first drugs developed
via computer aided drug design were metallo-
protein inhibitors, many computational pipelines
still discard metalloproteins due to the difficulties
of modelling them computationally. New ”co-
folding” methods such as AlphaFold3 (AF3)[1]
and RoseTTAfold-AllAtom (RFAA)[2] promise
to improve this issue by being able to dock small
molecules in presence of multiple complex co-
factors including metals or covalent modifica-
tions. Here, we analyze the current status for
metal ion prediction using these methods. We
find that currently only AF3 provides realistic
predictions for metal ions, RFAA in contrast does
perform worse than more specialized models such
as AllMetal3D in predicting the location of metal
ions accurately. We find that AF3 predictions
are consistent with expected physico-chemical
trends/intuition whereas RFAA often also predicts
unrealistic metal ion locations.

1. Introduction
Metals are versatile and indispensable cofactors for many
proteins and a lot of DNA/RNA chemistry[3]. A major cate-
gory of biological metals are transition metals such as zinc
(used in enzymes or for structural stability such as e.g in
zinc finger domains or as Lewis acid in catalysis), as well as
iron and copper (e.g for electron transport). Earth alkali ions
such as magnesium (used in ATP and nucleic acid chemistry)
and calcium (used for signal transduction or coagulation)
also play important roles. About 10% of enzyme reactions
depend on zinc alone [4]. For this reason many metallopro-
teins are also therapeutically relevant targets. Among the
first drugs developed using structure based drug design were
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Captopril (1981)[5] and dorzolamide (1995) [6] that both
target zinc enzymes. Yet even today it is computationally
still difficult to treat transition metal ions using classical
modelling techniques due to their complex electronic struc-
ture. Only quantum mechanics based methods can faith-
fully model all effects relevant for a proper description of
(transition)metal ion coordination geometry[7]. Classical
force fields such as Amber and CHARMM or knowledge-
augmented force fields such as the Autodock Vina scoring
function or the Rosetta energy function are inadequate to
model most metals found in biology[8]. Luckily, there is am-
ple experimental data available on metal ions in the protein
data bank (PDB) therefore it was quickly noted that modern
structure prediction models such as AlphaFold2[9] often
predict the holo (i.e the binding) form of metal ion binding
sites since those usually also have a strong coevolution sig-
nal[9]. This has given rise to tools such as AlphaFill[10],
that transplant metal ions from experimental structures with
high homology to predicted models.

Deep learning based tools can now also predict metal ion
location from single structures[11] and are sensitive even to
small side chain rearrangments[12].

Here, we investigate how RoseTTAfold-All Atom
(RFAA)[2] and AlphaFold3(AF3)[1] as new cofolding meth-
ods handle structure prediction in presence of metal ions
in comparison with state of the art specialized models for
metal ions operating on a given structure.

1.1. Background

1.1.1. ROSETTAFOLD-ALL ATOM

RoseTTAfold-AllAtom (RFAA) is an extension of the ar-
chitecture of RoseTTAfold2[13] extending the number of
tokens for the 1D track, adding bond distances to the posi-
tional encoding of the 2D track and adding chirality inputs
to the structure module of the 3D track.

Metal ions are provided to RFAA as a as a single atom
ligand similar to all other small molecules. Since metal ions
only consists of a single atom, they do not have their own
canonical frame in RFAA. Therefore, the network does not
receive a frame input and no loss is calculated with respect
to the frame of the ion. The error of the placement of the
ion with respect to the other frames in the structure is still
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Cofolding with metal ions

included in the loss.

Training of RFAA is split into three steps and the dataset of
protein-metal complexes is not sampled in the first training
step. In the second step, 10% of training examples are
protein-metal complexes, while in the final fine-tuning step
only 3% of examples are protein-metal complexes. RFAA
samples all important biological metal ions but it is not
reported what the sampling statistics for the respective metal
categories are and the sampling frequency might deviate
from the statistics in the PDB.

1.1.2. ALPHAFOLD3

AlphaFold3[1] is an improvement over AlphaFold2 [9] and
is able to handle organic ligands, nucleic acids and metal
ions. The model simplifies the original architecture by re-
placing the Evoformer with the Pairformer module and the
invariant point attention with a simpler diffusion based archi-
tecture. No backbone frame loss is used anymore. The code
is not available but predictions can be run using a webserver
for select ligands and ions.

2. Methods
Predictions were run using the two test sets from Metal3D
[11] for zinc and pdb codes MN, NI, CO, CU, FE2, FE, ZN,
NA, K, CA, MG. This dataset (887 proteins) might include
structures that RFAA and AF3 were trained on due to the
training cutoff. For each PDB identifier in the dataset, the
sequence of the chains of the first biological assembly was
used. As small molecule inputs, the same number of ions
as for the investigated metal were added. No other small
molecule or DNA/RNA was modelled.

The official RFAA implementation (8.March 2024) was used
to run predictions on a local workstation with a GTX 3090 Ti
with 24GB of memory. A bugfix for concatenating multiple
sequence alignments (MSAs) was applied. Predictions were
run using default settings for RFAA. For 248 proteins no
results could be obtained because of memory limitations.

We used the deep-learning based Metal3D [11] and a newer
retrained version called AllMetal3D, which used input from
the above mentioned metals to predict a general metal bind-
ing probability for any of considered metals in a single
output channel. Except for the training data, AllMetal3D
uses the same architecture as Metal3D[11] and was trained
in the same way.

For AlphaFold3 predictions were run using the public web-
server. 5 proteins containing the possible metals (all except
NI, FE2) could not be run on the server (e.g due to con-
taining X in the sequence). For all analysis out of the 5
predicted structures for a given seed the one with the best
ranking_score is used. All predictions were run with

seed 1593933729.

Precision and recall was computed as detailed in [11].

3. Results
3.1. Performance on zinc

We first investigated how well RFAA and AF3 perform
for Zn2+, which is the most abundant transition metal in
biology.

On the Metal3D zinc set RFAA performs worse than the
more specialized models Metal3D and AllMetal3D (Figure
1). AF3 has similar performance compared to the special-
ized models with high confidence especially on physiolog-
ical sites with 3 or more unique residues coordinating the
metal ion. AF3 makes most predictions with high confi-
dence (Figure A1). If only highly confident zinc predictions
are taken (pLDDT >75) RFAA does only predict 9 out of
189 zinc sites. Overall RFAA can only find 38% of the
zinc sites that have at least 3 unique coordinating protein
residues. Precision and recall are lower when evaluating on
all zinc sites with fewer unique coordinating residues.

Figure 1. Precision versus Recall computed using the Metal3D
zinc test for RFAA, AF3, Metal3D and AllMetal3D for all experi-
mentally resolved Zn2+ or coordinated by at least 2+ respectively
3+ unique protein residues.

3.2. Consistency with physico-chemical intuition

We also wanted to test whether cofolding methods make
predictions on metal ion location consistent with expected
physical trends. For this we tested mutations to the active
site of human carbonic anhydrase (hCA)[14], which is a
well studied metalloenzyme.

We made mutations to the input sequence changing the
first and second shell metal binding residues to alanine
individually or together. Since the retrieved MSA still
contains unaltered homologues for RFAA we also ran the
H{94,96,119}A,E106A,T{199,198}A,Y7A variant editing
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all rows of the MSA of the wildtype(WT) to generate an
all-alanine MSA similar to Stein et al.[15] (Table A1). For
AF3 no options exist to modify the input MSA.

For the WT sequence RFAA can predict the location of zinc
with high positional accuracy and high pLDDT albeit lower
than specialized models (1.2Å compared to AllMetal3D
0.28Å). AF3 has very high confidence and low deviation
from the experimental position with 0.1Å.

For RFAA generating the input MSA with all first shell
residues mutated to alanine increases the RMSD of the pre-
dicted coordinates with respect to the WT from 0.5 to 0.8Å.
The location of the zinc binding site is maintained with 2.4
Å deviation with a big decrease in predicted confidence
(pLDDT 28). In this H{94,96,199}A mutant the zinc bind-
ing site is formed by T199, T198 and E106. When those are
mutated to alanine as well before running the MSA genera-
tion the position of the zinc is still in the central pocket of
hCA with 4Å distance deviation to the experimental loca-
tion. Now the zinc is coordinated by Y7. Using the input
MSA with all rows mutated and the Y7A mutation, RFAA
performs better to predict the global structure of the protein
than running MSA generation with a mutated sequence, yet
the positioning of the metal inside the central pocket of
the protein is maintained (Table A1). The predicted loca-
tion of the zinc ion is not confident with pLDDT <20 in
both cases. For the edited MSA, RFAA predicts the zinc
as being coordinated by T199A, W16 and W5, with two
tryptophan residues, i.e. residues with very low zinc co-
ordination propensity. Moreover, their side chains interact
with zinc not via the indole nitrogen in the side chain but
with the aromatic hydrogens in the side chain. AF3 has on
average lower RMSD than RFAA for the whole protein and
also lower deviation compared to the experimental position
of the metal. For single alanine mutations distance devia-
tion noticeably increases. When all residues are mutated to
alanine AF3 picks a reasonable alternative binding site (H4,
H64) that AllMetal3D does not detect due to the unfavorable
rotamer conformation of these residues in the native crystal
structure.

3.3. Stoichiometry prediction

A disadvantage of current cofolding methods is that the
binding stoichiometry needs to be specified beforehand. Se-
quence based metal ion predictors exist (e.g based on ESM
embeddings[16]) but a priori it is difficult to determine how
many and which metal ions should be predicted. Especially
for transition metals most metal binding sites have little
selectivity and are often also crystallized with different met-
als than the biologically relevant ones (e.g to crystallize an
enzyme-substrate complex with a metal that does not cat-
alyze the reaction). We therefore also investigated the case
where more metals than a physiological amount are used

as input. A physically sound model should occupy each
binding site with one metal only and with high confidence
and place excess metals in alternative sites that might be
populated at high metal concentration.

3.3.1. EXCESS METAL IONS:

Figure 2. Extreme case of a metal saturated structure in the PDB.
4JJJ contains 21 Zn2+, 4 Ca2+, 3 Na+ and 4 Fe3+ ions. All-
Metal3D probability density (blue) at probability isovalue 0.25.
AllMetal3D does identify all but 9 unique binding sites with one
or more metals. RFAA places all 21 zincs inside the protein (black
circle)

In the testset of Metal3D, there is a structure of Thermobifida
fusca Cel48A[17] (PDB entry 4JJJ) refined to contain 21
Zn2+, 4 Ca2+, 3 Na+ and 4 Fe3+ ions. We let RFAA and
AF3 predict the structure of the sequence of the biological
assembly with the same number of zincs ions as in the
experimental structure not including the other metal ions. In
contrast to AllMetal3D, AF3 and Metal3D, RFAA cannot
accurately place any of the predicted zinc ions at one of the
many experimentally resolved metal sites (Figure 2). In fact,
the closest distance to any of the predicted zinc locations is
16.4Å. However, overall the quality of the protein structure
prediction by RFAA is high (Cα RMSD prediction - crystal
0.57 Å). AF3 predicts the structure of Cel48A well and
does identify all but 7 of the experimental Zn2+ binding
sites similar to AllMetal3D that identifies all but 9 sites
using p>0.25.

3.3.2. ALTERNATIVE SITES:

In the case of hCA, we ran a prediction for the WT sequence
with 5 zinc ions and analyzed the predicted positions for
both RFAA and AF3. The quality of the prediction of the
protein structure itself remains high for both RFAA(Cα

RMSD of 0.48 Å) and AF3 (Cα RMSD of 0.18 Å). RFAA
predicts all metal ions in the active site close to the experi-
mental location of zinc with distance deviations of 0.7, 1.9,
2.1, 2.9 and 3.3 Å to the (single) experimental location.
pLDDT is however low for all predictions (31.2 ± 2.2). For
a single Zn2+ RFAA has much higher confidence (Table
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A1). When predicting the hCA-1ZN complex using AF3
in all 5 predicted models the metal ion is in the exact same
position (0.1Å, pLDDT 98.98 ±0.00). When predicting
the hCA-5ZN complex, in all 5 AF3 models, the first Zn2+

maintains its position 0.1 ±0 Å of the experimental position
with pLDDT 98.96 ±0.00. The other 4 Zn2+ are predicted
by AF3 in realistic positions with suitable coordination part-
ners (e.g H36, D34 & H4, H64 & H4, D19) or single surface
residues such as D175 or D190 with some site divergence
between the models. The predicted confidence is consistent
with the quality in binding motif and number of coordinat-
ing residues and is directly reflected in the pLDDT. For
the sites with multiple coordinating residues pLDDTs are
78.80 ± 0.82, 69.19 ± 2.44 or 70.83 ± 3.00 across all 5
predicted models. For the predicted sites coordinated by
just one residue pLDDT is 38.45 ± 6.58.

3.4. General performance for biologically important
metals

Specialized metal ion predictors such as Metal3D have
shown that predictors trained on Zn2+ also can transfer
to other rarer but chemically similar transition metal ions
such as Fe2+ or Cu2+[11]. We used the set of structures
which were used to evaluate the selectivity of Metal3D[11]
and predicted them using RFAA and AF3 using the same
number of metals as present in the biological assembly.

We first investigated the mean pLDDT of the predicted ions
and sequences. Overall, since the mean pLDDT for the
protein structures themselves is high (RFAA > 80, AF3
> 90), we chose to align the predicted structures using
CEAlign on the experimental structures for the analysis.
We also analyzed the pLDDT of the residues in the vicin-
ity of the predicted metal ion within 5Å (RFAA 83±9.5,
AF3 93.12±0.07) compared to the mean protein pLDDT
(RFAA 80±6.2). This difference is statistically significant
(RFAA p =4.2E-7, AF3 p =1.9E-16). For RFAA metal ion
predictions, we observe two distinct peaks of pLDDT for
most ions with the majority of ions being predicted with low
pLDDT of around 25 (Figure A2). A second peak exists for
most ions around pLDDT 70. AF3 predictions are on aver-
age very confident with only few low confidence predictions
made (Figure A1). Distributions are plotted in groups ac-
cording to chemical similarity except for manganese which
nominally is a transition metal but is also known to bind in
similar fashion to magnesium.

Analyzing individual performance in predicting metal sites
defined as predictions within 5 Å of the experimental lo-
cation also shows that RFAA is inferior compared to AF3
and AllMetal3D with similar trends with respect to preci-
sion and recall on transition metals, earth-alkali and alkali
metals (Figure 3). For Zn2+ and Ni2+ RFAA performs
worse compared to other transition metals which is surpris-

Figure 3. Precision versus recall for different metal ions computed
with RFAA (pLDDT>0.25), AlphaFold3(pLDDT>0.75) and All-
Metal3D(p=0.75) for all metals coordinated by at least 3 unique
protein residues with full occupancy

ing given that Zn2+ is the most abundant transition metal
in the PDB. Another notable difference can be observed
for Ca2+ where AllMetal3D and AF3 perform much better
than RFAA. A difference exists also for Mg2+, K+ and Na+

where AllMetal3D is inferior to AF3.

3.5. Hard cases

Two difficult cases where dataset bias can play a role where
investigated using AF3 only.

3.5.1. CONFORMATIONAL CHANGES IN ZINC PROTEINS:

Conformational changes in proteins can be triggered by
metal binding (e.g metal mediated assembly) or even by
metal replacement. An example is the Ros87 protein [18],
a prokaryotic zinc finger. Ros87 is an interesting test case
because it does form its own singular cluster at 30% se-
quence identity within the PDB and the only structure is an
NMR structure without zinc modelled yet with the residues
preorganized for metal binding. The structure is likely in-
cluded in the training data for RFAA and AF3. We used
AF3 to predict the Ros87 structure in absence of metals,
and in presence of Zn2+ or Zn2+ and Cu2+ or just Cu2+.
Experimentally it is observed that the protein is unfolded in
absence of Zn2+ or in presence of Cu2+ (likely because of
the redox-induced formation of disulfide bridges)[18].

AF3 correctly predicts the structure of Zn-Ros87 and also
incorrectly predicts the structure of apo-Ros87 as folded
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indicating a preference for folded proteins as they occur in
the PDB. AF3 also predicts an extra α-Helix for residues 64-
75 that are clearly unstructured in the NMR conformational
ensemble (Figure A3). The Cu-Ros87 and Cu-Zn-Ros87
also are predicted to adopt the same folded structure with
copper being placed in the metal site instead of zinc.

3.5.2. TESTING METAL SELECTIVITY

Choi and Tezcan [19] developed a protein assembly that
selectively binds Co2+ over Cu2+ even if normally Cu2+

binds more tightly to proteins according to the Irving
Williams series [19]. The structure was released after the
training cutoff for AF3. We predicted the Co2+-HEC,
(Co2+)2-(Cu2+)2-HEC, (Cu2+)2-HEC complexes using
AF3. AF3 gets the individual domains right but the relative
orientation of the two domains interacting via the metal ions
are not correctly predicted (Figure A4).

4. Discussion
Our results show that RoseTTAFold2-All Atom is an infe-
rior metal ion predictor compared to more specialized tools
such as AllMetal3D or AlphaFold3. RFAA can predict phys-
iological sites for transition metals with reasonable accuracy
but struggles for other biologically important metals such as
Ca2+ or Mg2+. Metals are often predicted with low pLDDT
which prevents the use of the confidence metric to interpret
the results. AF3 in contrast mostly offers great performance
on the combined problem of prediction of the structure and
metal location on par with specialized predictors just trained
on metal ion location prediction.

From our testing with mutated inputs it seems that RFAA
always places metals in pockets (even if no suitable bind-
ing residues are in the pocket). It is also notable, that if
more than the stoichiometric amount of metal ions is added,
the model in some cases predicts metals with low confi-
dence clustered at random positions overlapping with the
protein. This points to a lack of an internal representation
for physical interactions with metal ions, which could be
used to place the ions. It is well known that structure pre-
diction models such as AlphaFold2 can take into account
energetic frustration which can be exploited for predicting
ligand binding sites [20]. The reason for the performance
difference of RFAA versus AF3 for metal ions is likely the
non-inclusion of a direct frame loss function for the metals
in RFAA and the relatively low sampling of protein-metal
complexes during training. Abramson et al. [1] do not report
specifically oversampling protein-metal complexes for AF3
so it is likely enough to just sample them at the frequency
reported in the PDB.

The tests we conducted with mutations to the metal binding
residues also show that structure prediction software can be

sensitive to both global and local sequence context. If one
removes the residues coordinating the metal ion directly,
the model still confidently predicts the global structure but
chooses a different more likely local context for the metal
ion. While AlphaFold2 was to a certain degree insensitive
to point mutations, it is encouraging to see that AlphaFold3
is sensitive to few point mutations for metal ion location
prediction.

However, for difficult cases AlphaFold3 still has a bias from
the structures it has seen during training where the core of
conformationally flexible proteins such as Ros87 which is
unstructured in absence of Zn2+ is predicted as folded with
high confidence even when predicted in absence of Zn2+.
Ros87 is a good example of a simple transcription factor
that is folded in absence of DNA, but needs zinc to be stable.
[18, 21, 22] Currently, it is impossible to disable use of
templates in the AF3 server, so it cannot be ruled out that
the template influences the prediction steering it towards the
folded state.

Metal ion binding motifs also have low variability in general
(e.g for Zn2+ just 62 different first shell binding combina-
tions exist in the PDB with more than 50 examples [11])
and AlphaFold3 does not seem to be able to generalize very
well to new motifs such as the one in [19] predicting the
interaction of two protein domains via a new kind of metal
ion binding site in wrong geometry.

A further limitation is that the stoichiometry of metal ions
needs to be specified beforehand for both AF3 and RFAA.
A possible strategy to improve both RFAA and AF3 could
be to not add metals a priori and have possible metal ions
predicted in one of the later recycles. For RFAA, metal ions
could additionally be treated as a special form of covalent
modification in atomized residues such that a frame (and
therefore also a loss) can be computed for them directly
when training. This is similar to the strategy used in Rosetta
where for example zinc is tethered to a histidine during
sequence design[23].

5. Conclusion
AlphaFold3 demonstrates that methods to predict the struc-
ture of a protein together with its metal ion ligands now
are at the level of more specialized predictors such as
AllMetal3D if the stoichiometry of binding is known.
RoseTTAfold All-Atom does not perform at the same level
likely due some design choices when defining the loss func-
tions used to train the model. The sensitivity of AlphaFold3
to few point mutations in the metal-coordinating residues is
encouraging. At the same time limitations due to the PDB
containing mainly ordered proteins are also evident even for
relatively simple proteins where the metal ion mediates the
conformational flexibility or oligomeric state of proteins.
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6. Data Availability
All predictions and scripts to generate figures will be made
available on Zenodo. RFAA predictions will be available
under CC BY, Code under MIT. AF3 predictions will be
available under AlphaFold Server Terms.
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A. Appendix

Figure A1. pLDDT distribution for metal classes in selectivity set predicted by AF3. pLDDT is also computed as average over all residues
in the protein or all residues with any atom within 5 Å of the predicted metal location

Table A1. Influence of mutations on predicted metal ion location in hCA. Mutations are the ones made to the input sequence before
MSA generation. pLDDT of the predicted Zn2+ and euclidean distance to experimental location. Cα RMSD of protein computed after
alignment to PDB 2CBA using CEAlign.

MUTATION METHOD PLDDT DIST (Å) RMSD PROTEIN(Å)

WT RFAA 78 1.2 0.49
H94A RFAA 52 2.0 0.95
H96A RFAA 75 1.4 0.48
H96C RFAA 80 1.4 0.47
H119A RFAA 77 1.3 0.47
H119Q RFAA 77 1.5 0.55
T199A RFAA 78 1.3 0.44
H{94,96,119}A RFAA 28 2.4 0.84
H{94,96,119}A, E106A, T199A RFAA 24 3.5 0.53
H{94,96,119}A, E106A, T{199,198}A RFAA 23 4.0 0.56
H{94,96,119}A, E106A, T{199,198}A, Y7A RFAA 15 6.3 1.44
H{94,96,119}A, E106A, T{199,198}A, Y7A (EDITED MSA) RFAA 20 6.2 0.53

WT AF3 98.98 0.1 0.18
H94A AF3 89.33 0.1 0.26
H96A AF3 97.88 0.7 0.19
H96C AF3 97.65 0.6 0.17
H119A AF3 98.34 0.5 0.18
H{94,96,119}A AF3 72.46 13.4 0.20
H{94,96,119}A, E106A, T199A AF3 75.06 13.1 0.22
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Figure A2. pLDDT distribution for metal classes in selectivity set predicted by RFAA. pLDDT is also computed as average over all
residues in the protein or all residues with any atom within 5Å of the predicted metal location

Figure A3. Ros87: 2JSP NMR Ensemble(green) of Ros87 protein(Zn2+ not modeled), light orange: AF3-Cu2+, lightblue: AF3-Zn2+,
darkblue: AF3-apo prediction
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Figure A4. Anti-Irving Williams selective metal binding protein by Choi and Tezcan [19]: A AF3 prediction with 2 HEC and 2 Cu2+

B AF3 prediction with 2 HEC, 2 Co2+, 2 Cu2+ C AF3 prediction with 2 HEC and 2 Co2+. Native Co2+ in cyan, predicted Co2+ in
lightred, predicted Cu2+ in orange. Experimental structure 7MK4 in white. Heme C in sticks.


