A Unified Data and Model-Centric Framework for Robust Facial Emotion Recognition

Anonymous authors

000

001

002 003 004

010 011

012

013

014

016

017

018

019

021

025

026

027

028029030

031

033

034

037

040

041

042

043

044

046

047

048

051

052

Paper under double-blind review

ABSTRACT

Recent Progress in Deep Learning (DL) has shown that data quality constrains the generalization as much as model design. Facial Emotion Recognition (FER) exemplifies this challenge, as widely used datasets contain mislabeled, duplicated, class imbalanced, and visually affected samples that weaken both accuracy and robustness. In this paper we proposed a data-centric approach to FER, building a systematic pipeline that improves dataset reliability before model training. The pipeline includes (i) Noisy and duplicated samples removal, (ii) landmark-guided facial refinement, and (iii) class-aware re-balanced under-presented emotions in the dataset. Following the data-centric pipeline we proposed a lightweight hybrid CNN-Transformer student model with Emotion Aware Dynamic Distillation (EADD), where knowledge is adaptively distilled from multiple teacher networks depending on their emotion-specific strengths. Despite the multi-teacher knowledge distillation student model is further optimized by adversarial training to enhance its robustness against subtle perturbations in real-world FER. Extensive experiments on FER2013 and KDEF highlights that our approach achieved state-ofthe-art robustness, efficiency and trade-offs for real-time FER on Edge devices. The results demonstrate that systematic data refinement is as critical as model innovation. The source code for results reproducibility of the paper is publicly available at https://github.com/anonymous123810/ICLR2026.

1 Introduction

Facial expressions are a fundamental aspect of human communication, conveying emotions like happiness, sadness, or anger to subtle cues such as a fleeting smile or a raised eyebrow. Recognizing these expressions automatically, known as Facial Emotion Recognition (FER), which has become increasingly important in fields such as human-computer interaction, healthcare, automotive safety, and intelligent surveillance (Khan et al., 2025b). Facial expressions account for a substantial portion of non-verbal communication and the ability to accurately interpret these signals is essential for Artificial Intelligence (AI) systems that interact with human in socially aware and emotionally intelligent ways (Kaur & Kumar, 2024). Despite remarkable advancements in Deep Learning (DL), recent studies evaluated FER systems under controlled conditions, where hand-picked datasets provide clean labels, balanced classes, and consistent face regions. While real-world scenarios present far greater challenges since facial expressions differ across age, gender, cultural background, and even neurological conditions such as Parkinson's or Alzheimer's disease, which can diminish emotional cues (Munsif et al., 2024). These challenges underscores the critical importance of data-centric focused approaches, where performance improved not only by scaling the model but by addressing the underlying data quality.

Existing studies primarily focused on developing novel architectures such as Convolutional Neural Networks (CNNs) (Agung et al., 2024), transformer-based models (Xu et al., 2023), or hybrid CNN-Transformer frameworks (Tang et al., 2024). While these methods have advanced recognition performance, their effectiveness is often limited by dataset deficiencies such as mislabeled samples, duplicated or low-quality images, class imbalance, and inconsistent facial region. These problems introduces noise and bias, leading to poor generalization in practical environment, particularly deployment over resource-constraint devices. Although, recent studies have attempted to mitigate these problems through transfer learning (Zhou et al., 2024), self-supervised pretraining(Chen et al., 2020), and adversarial robustness (Nern et al., 2023). However, these methods largely adapt the

provided data rather than improving its quality which raises an important question: Can a systematic data-centric pipeline significantly enhance FER system performance under real-world, unconstrained environment?

To address this challenge, we propose a unified framework that integrates a data focused preprocessing pipeline, a lightweight hybrid CNN–Transformer (HyFER) architecture, and multi-phase training strategy designed to improve robustness, generalization, and real-time applicability. The preprocessing pipeline systematically enhances the quality of the KDEF (Calvo & Lundqvist, 2008) and FER2013 (Courville et al., 2013) datasets by extracting facial regions, removing mislabeled and duplicate samples, and applying class-specific upsampling to mitigate the bias in model predictions caused by underrepresented emotion classes. Building upon these refined datasets, we train a lightweight HyFER student model, explicitly designed to capture both fine-grained local facial textures and global contextual dependencies. Moreover, the framework employs a dual-phase optimization strategy, combining multi-teacher knowledge distillation with post-distillation adversarial training, to ensure stable FER under challenging real-world conditions such as occlusion, noise, and varying illumination.

2 Related Work

Automatic identification of facial emotions has attracted significant attention due to its vital role in transferring human emotions to machine perception; yet, FER systems are facing challenges including variability in facial expressions, environmental factors, and constraints dataset. However, several studies on FER largely focused on handcrafted features and conventional Machine Learning (ML) approaches. Descriptor such as Histogram of Oriented Gradient (HOG) (Carcagnì et al., 2015), Local Binary Patterns (LBP) (Shan et al., 2009), Scale-invariant Feature Transformer (SIFT) (Soyel & Demirel, 2011), Speed-up Robust Features (SURF) (Rao et al., 2015), and Gabor filters (Lyons et al., 2020) were frequently used to capture local facial textures and directional changes. These feature extractors were often integrated with classifiers like Support Vector Machines (SVM), and occasionally with the Facial Action Coding System (FACS) (Pantic & Rothkrantz, 2004) to translate expression into action units. Despite their effectiveness in controlled settings, conventional approaches weren't robust against real-world variability including posture, lighting, and occlusion.

The advancements in DL have revolutionized FER by allowing ML models to learn complex features from unprocessed facial shots, rather than manually selected feature (Huang et al., 2017; Szegedy et al., 2016; 2017). This revolution in DL began with the development of Convolutional Neural Networks (CNNs) based models such as VGGNet (Simonyan & Zisserman, 2014) which extracts both low-level and high-level features more accurately, but their utility in real-time applications was restricted due to their high computational costs. Subsequent studies investigated lightweight CNNs (Huo et al., 2023; Saurav et al., 2022) and dual-stream pipelines (Sarvakar et al., 2023) to minimize complexity while maintaining discriminative capacity. Other studies have used temporal modeling with RNNs and Transformer (Ullah et al., 2022; Liang et al., 2020a), as well as multimodal fusion approaches proposed in (Sun et al., 2019) to capture dynamic expressions across video sequences. Moreover, Ensemble-based techniques (Wadhawan & Gandhi, 2022; Moung et al., 2022; Khan et al., 2025b) further improved performance by combining complementary feature extractors and attention mechanisms.

Considering these advancements, FER models are still highly sensitive to data quality. Noisy labels, class imbalance, and loosely cropped samples in widely utilized benchmarks such as FER2013 and KDEF propagate bias into learnt models (Nguyen et al., 2022). Recent data-centric method have employed various methods to enhance datasets diversity by utilizing targeted class transformation (Zhu et al., 2022). While data quality enhancement in terms of label correction, and duplicated sample removal for FER remains unexplored.

Beyond data quality enhancement, model-centric techniques aimed to develop an efficient and robust model. In context to develop an optimized computationally efficient model Knowledge Distillation (KD) has emerged as a more common approach to distill the rich knowledge from computationally expensive model to less computationally expensive model (Hinton et al., 2015a). Moreover, to improve the generalizability of the model for real-word unconstrained situation under perturbations and noisy conditions adversarial training is proposed by (Zheng et al., 2020).

Conclusively, prior studies outline the dual challenges of data-centric and model-centric shortcomings in FER. Although deep architectures, and ensemble strategies have advanced the field, limited attention has been given to unified frameworks that simultaneously address dataset quality, lightweight architecture design, and robust training under real-world conditions. Our work addresses these issues by proposing a multi-phase pipeline that includes systematic preprocessing, a HyFER hybrid model architecture, and a dual-phase KD-adversarial optimization approach.

3 Proposed Methodology

In this section, we present the proposed data-centric and model-centric pipeline design to develop a robust and computationally efficient FER system, optimized for real-time deployment on embedded devices. The framework incorporates a data-centric preprocessing pipeline design to construct a clean, balanced, and high-quality emotion corpus. This is followed by a dual-phase optimization strategy that incorporates Multi-Teacher Knowledge Distillation (MTKD) with post-distillation adversarial training. The high level overview of the unified framework is depicted in Figure 1. Moreover, the detailed explanation of each component in the proposed framework is elaborated in the subsequent subsection.

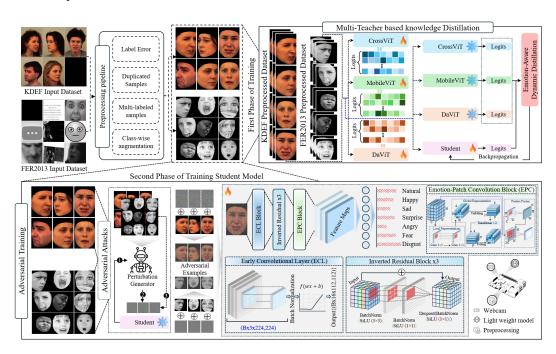


Figure 1: The high level overview of the unified proposed framework.

3.1 DATA-CENTRIC PREPROCESSING PIPELINE

In This study we utilize two publicly available facial expression datasets named as FER2013 (Zahara et al., 2020) and KDEF (Eng et al., 2019), to train and evaluate the proposed lightweight HyFER student model. Despite the benchmark popularity, these datasets exhibit several data quality and distributional challenges, including high intra class variance due to noisy samples, annotation inconsistencies leading to label error, redundant samples resulting in data duplication, ambiguous label associations where multiple emotions are assigned to a single instance, multilabel samples, and significant class imbalance that skews the learning process. To mitigate these challenges and enhance the quality of the input data, this study employed a comprehensive data preprocessing pipeline designed to transform the raw data into a more informative and structured format facilitating optimal learning and improved performance across multiple evaluation indicators. The detailed preprocessing steps are elaborated in the following sections.

3.1.1 IMAGE QUALITY ENHANCEMENT

Image quality enhancement pipeline employed in this study aims to mitigate the visual inconsistencies from FER2013 and KDEF benchmarks. To ensure reliable input for the DL models' optimization irrelevant, noisy, duplicated, and multilabel samples were removed by visually inspecting the samples to enhance dataset consistency. However, duplicated instances were detected through both inter-class and intra-class cosine similarity assessments, followed by manual visual inspection to verify redundancy while preserving dataset integrity. Although the FER2013 dataset exhibited numerous quality issues, resulting in an overall error rate of 6.64%, the KDEF dataset was comparatively cleaner, with a significantly lower error rate of 0.0624% and only four samples lacking recognizable facial emotions, which were excluded during preprocessing, as summarized in Table 1. In addition to removing problematic and low-quality samples, facial region extraction was employed in the image quality enhancement pipeline using pretrained MediaPipe Face Mesh Detector (Lugaresi et al., 2019) to further refine the input data by generating facial mask from the predicted landmarks, isolating the facial region while discarding the background. This step enabled the pipeline to isolate and focus on the most informative regions, eliminating background noise and non-facial regions that could interfere with learning. The proposed image quality enhancement pipeline enhances facial image quality by removing noisy samples, resolves label inconsistencies, and isolating high-fidelity facial features, thereby enhancing data reliability, stabilizing the training process, and improved model generalization. The discarded low-quality samples from FER2013 and KDEF benchmarks are illustrated in Figure 2.

Figure 2: Low-quality samples from FER2013 and KDEF benchmarks.

3.1.2 CLASS-SPECIFIC DATA AUGMENTATION

This subsection presents the class-targeted data augmentation approach which allows to address class imbalance within the benchmarks, a condition that typically leads to model bias toward majority classes and underperform on minority classes due to insufficient representation of minority classes while preserving the integrity of majority of class samples. This approach aims to improve model generalization and robustness by ensuring equitable learning across all classes (Yar et al., 2025). To achieve this, augmentation techniques were applied in a class-aware manner based on distributional characteristics of each class, thereby reducing bias and improving the model's ability to learn more discriminative features. The geometric transformation which have been applied including horizontal flipping, vertical flipping, controlled rotation $\pm 10^{\circ}$, translation up to 5%, and

Table 1: Statistical analysis of the FER2013 and KDEF datasets including label error, error ratio, original sample counts, and augmented sample counts

Class	Duplicated Samples (FER2013)	Multilable Samples (FER2013)	Label Error		Error Ratio (%)		Org. Sample Count		Augmented Sample Count	
			FER2013	KDEF	FER2013	KDEF	FER2013	KDEF	FER2013	KDEF
Angry	126	10	473	N/A	12.29	N/A	4,953	840	8,341	961
Disgust	27	N/A	27	2	9.872	0.2178	547	918	8,226	956
Fear	145	24	193	N/A	7.068	N/A	5,121	762	8,512	970
Нарру	75	N/A	232	N/A	3.415	N/A	8,989	858	N/A	961
Neutral	59	4	40	2	1.661	0.2192	6,198	912	8,425	953
Sad	63	9	55	N/A	2.089	N/A	6,077	975	8,627	N/A
Surprise	350	15	39	N/A	10.09	N/A	4,002	603	8,517	935

> scaling within the range of $0.9 \times$ to $1.1 \times$. In addition, color and texture transformation were employed to improve the model robustness to variations in illumination and sensor noise, particularly for minority classes characterized by insufficient illumination variability. The class-specific sample count of class-aware data augmentation preprocessing pipeline is shown in Table 1.

3.2 **DUAL-PHASE OPTIMIZATION**

The dual-phase optimization framework proposed for FER integrates MTKD with Post-distillation adversarial training aiming to optimize the proposed computationally efficient HyFER model which is detailed in the subsequent sections.

3.2.1 Multi Teacher Collaborative Learning

Collaborative learning in KD intent to distill comprehensive feature representations from multiple teacher networks into lightweight student model. The complementary strengths of multiple finetuned teacher networks facilitate multi-faceted emotional features representations such as global facial structures, fine-grained expression details, and contextual cues collaborating to provide a rich knowledge base for the student model (Hinton et al., 2015b). In MTKD collaborative framework the knowledge is transferred into the lighter student model through a novel Emotion-Aware Dynamic Distillation (EADD) framework which dynamically prioritizes teacher contributions based on their expertise in specific emotion (e.g., happy, sad, angry). The EADD optimizes the HyFER model through a composite loss function that integrates a standard cross-entropy loss with a dynamic, emotion-specific distillation loss, as computed by:

$$L_{\text{EADD}} = \alpha L_{\text{CE}}(y, \hat{y}_s) + \sum_{e=1}^{E} \sum_{i=1}^{N} \omega_{i,e}(t) L_{\text{Distill}}(z_s, z_i^T, T_e)$$
(1)

Where L_{CE} denotes cross-entropy loss, measuring the difference between the ground truth y and student prediction \hat{y}_s mathemathically formulated in Eq. 2. The term L_{Distill} represents the KD loss between the student and i^{th} teacher model over emotional expression e computed using student and teacher networks logits z_s and $z_{T_{i,s}}$, respectively, computed as Eq. 3.

$$L_{CE}(y, \hat{y}_s) = -\sum_{c=1}^{C} y_c \log(\hat{y}_{s,c})$$
 (2)

$$L_{\text{Distill}}(z_s, zT_i, T_e) = T_e^2 \cdot \text{KL}\Big(\text{Softmax}\Big(\frac{zT_{i,e}}{T_e}\Big), \text{Softmax}\Big(\frac{z_s}{T_e}\Big)\Big) \tag{3}$$

The distillation loss is computed using the Kullback-Leibler (KL) divergence (Hershey & Olsen, 2007) mathematically computed by Eq. 4, which quantifies the discrepancy between the teacher's softened class probability $PT_{i,e,c}$, and the student's softened probabilities $P_{s,c}$ over emotion c.

$$KL(PT_{i,e} \parallel P_s) = \sum_{c=1}^{C} PT_{i,e,c} \log \left(\frac{PT_{i,e,c}}{P_{s,c}}\right)$$
(4)

Moreover, the dynamic weighting factor in proposed composite loss function for i^{th} teacher over emotion e at training step t for N number of teacher over temperature τ_e is denoted by $\omega_{i,e}(t)$ formulated in Eq. 5 measured based on the teacher's validation performance to prioritize emotion specific teacher network.

$$\omega_{i,e}(t) = \frac{\exp\left(\operatorname{Acc}_{i,e}(t)/\tau_e\right)}{\sum_{j=1}^{N} \exp\left(\operatorname{Acc}_{j,e}(t)/\tau_e\right)}$$
(5)

In addition to the efficiency of EADD composite loss, the framework is driven by the strategic selection of multiple teacher models. Given the multifaceted nature of emotional expressions, which includes global facial structures, fine-grained expression details, and contextual cues, a single teacher network is insufficient to capture the full spectrum of facial emotional nuances. To address this, the proposed methodology employed an ensemble of three teacher networks including DaViT (Ding et al., 2022a), CrossViT (Chen et al., 2021a), and MobileViT (Mehta & Rastegari, 2021a) selected based on the extensive experiments conducted over benchmarks.

3.2.2 Post-Distillation Adversarial Training

Building upon the EADD composite loss function and MLKD framework which effectively transfers emotional knowledge from DaViT, CrossViT, and MobileViT to the lightweight HyFER model this section focuses to present the model's resilience for real-world environment. Although EADD equips HyFER with rich, multi-scale emotional representation optimized for resource-constrained devices, real-world FER systems necessitate a high degree of robustness under a wide range of challenging conditions, including image noise, illumination variability, and imperceptible adversarial perturbations. To mitigate these challenges in real-world FER systems, a post-distillation adversarial training phase is incorporated to enhance the robustness and generalization capability of the lightweight model without compromising its computational efficiency. This phase employed several white-box adversarial attack algorithms during training to further refine the optimized HyFER model, including Projected Gradient Descent (PGD) (Ren et al., 2020), Fast Gradient Sign Method (FGSM) (Yinusa & Faezipour, 2025), and DeepFool (Moosavi-Dezfooli et al., 2016). PGD white-box attack is an iterative attack which generates adversarial examples by iteratively perturbing the input image in the direction to maximize the model's loss over predefined number of steps, as formulated below.

$$x^{(t+1)} = \prod_{B \in (x)} \left(x^{(t)} + \alpha \cdot \operatorname{sign}\left(\nabla_x L(f_\theta(x^{(t)}), y)\right) \right)$$
 (6)

Here, $x^{(t)}$ denotes the adversarial example at iteration t, while $x^{(t+1)}$ represents the updated adversarial input over computed cross-entropy loss L between the model prediction $f_{\theta}(x^{(t)})$ and ground truth label y.

In contrast to the iterative approach of PGD, the FGSM provides a computationally efficient, single step approach for generating adversarial examples, as defined below.

$$x_{\text{adv}} = x + \epsilon \cdot \text{sign}\left(\nabla_x J(\theta, x, y)\right)$$
 (7)

Where x denotes the input, and ϵ is a small scalar that defines the magnitude of the perturbation. The expression $\nabla_x J(\theta, x, y)$ represents the gradient of the cross-entropy loss with respect to the input x.

Furthermore, DeepFool white-box attack is designed to compute the minimal perturbation required to alter decision boundaries of a classifier. Unlike PGD and FGSM that rely on iterative and predefined magnitude, DeepFool approach formulates the attack as an optimization problem that iteratively estimates the classifier's decision boundaries and determines the smallest possible perturbation required to change the model's prediction, as detailed in (Moosavi-Dezfooli et al., 2016).

3.3 LIGHTWEIGHT HYBRID STUDENT MODEL

The architectural representation of the student model is essential to ensure real-time accurate FER over resource-constrained devices. The student model is developed as compact hybrid network that effectively combines convolution operation with transformer-based components to balance computational efficiency while improve performance as diagrammatically represented in Figure 1. The architectural design of it is inspired from MobileViT (Mehta & Rastegari, 2021a) which begins with Early Convolutional Layer (ECL) consisting a three-by-three kernal with stride two followed by batch normalization and SiLU activation function. Following the ECL projection block the network is structured into three sequential inverted residual blocks which are configured by one-by-one, three-by-three and one-by-one constitutional operations. This block ensures the backbone to be parameter efficent and expressive. Following the third inverted residual block, the architecture integrates the proposed Emotion-Patch Convolution (EPC) block, which is adapted from MobileViT architectural design. The feature maps projected by the EPC block are subsequently passed trough a projection layer, which consists of a one-by-one convolution that increases the channel dimension, followed by batch normalization, a SiLU activation, and dropout. This projection enriches the representational capacity of the network while preparing the features for the output layer. The output classifier head of the model is configured by global average pooling operation, and regularized with dropout before being passed into a fully connected layer that maps the features to seven output categories, corresponding to the emotion classes under consideration.

4 RESULTS AND DISCUSSION

This section details the implementation details, experimental setup, dataset, and evaluation metrics for the proposed framework. The MTKD, subsequent post-adversarial optimization and model development were implemented in PyTorch 2.6, using Adam optimizer. The dual-phase optimization pipeline was trained for 100 epochs with a batch size of 16 and input resolution of $224 \times 224 \times 3$. All experiments including Fine-tuning of the multi teacher, training and evaluation of the HyFER lightweight student model were carried out on a computing system configured with an NVIDA GeForce RTX 3090 GPU (12 GB VRAM) and 128 GB of system RAM.

Evaluation Metric. To assess the effectiveness of the dual-phase optimization framework against state-of-the-art method we used several indicators, including accuracy, precision, recall, and F1-score following (Khan et al., 2025a).

Dataset. The selected teacher networks and student model is evaluated over KDEF (Calvo & Lundqvist, 2008) and FER2013 (Courville et al., 2013) dataset. FER2013 comprises 35,887 grayscale images of of size 48×48 resolution across seven emotion classes¹, collected via the Google image search API. Similarly, KDEF dataset contains 4,900 samples representing seven basic emotions¹, collected from 70 participants in a controlled laboratory environment by Karolinska Institute. The class-wise statistical analysis of these benchmarks are presented in Table 1.

4.1 Performance Evaluation

This section presents performance analysis of the HyFER student model and baseline methods, optimized through proposed dual-phase optimization paradigm under K-fold cross-validation setup to ensure robust and reliable evaluation, as reported in Table 2. The table demonstrated that methods such as EA-Net (Khan et al., 2025b) and GA (Nida et al., 2024) achieved higher performance as compared to other baseline methods over KDEF dataset containing controlled laboratory images. On the other hand, FER2013 dataset, which presents more challenging samples varying illumination, and occlusion, methods such as CBiLSTM (Liang et al., 2020b) and DBN (Vedantham & Reddy, 2020) exhibits significant drops in performance especially in precision and F1-score, highlighting their limited generalization ability. Moreover other baselines such as PIDViT (Huang & Tsai, 2022) and EA-Net (Khan et al., 2025b) demonstrate improved robustness but still fall short in comparison to our proposed HyFER student model. In conclusion, these results indicates that the carefully designed architecture of the lightweight student model, coupled with dual-phase optimization, ensures consistent and robust performance in both controlled and unconstrained real-world settings.

¹The seven facial emotion include angry, disgust, fear, happy, sad, surprise, and neutral.

Table 2: Baseline and proposed method evaluation under the dual-phase (multi-teacher KD + Post-KD adversarial training) optimization framework with 5-fold cross-validation (K=5). Results are reported as mean \pm stander deviation for evaluation metrics including accuracy, precision, recall, and F1-score over KDED and FER2013 dataset. Our proposed method results is highlighted in hold

Method		KD	EF		FER2013				
Method	Accuracy	Precision	Recall	F1-score	Accuracy	Precision	Recall	F1-score	
FMA+SVM (Solis-Arrazola et al., 2024)	0.725 ± 0.020	0.713 ± 0.016	0.724 ± 0.019	0.718 ± 0.017	0.589 ± 0.016	0.576 ± 0.019	0.583 ± 0.021	0.564 ± 0.015	
FMA+MLP (Solis-Arrazola et al., 2024)	0.726 ± 0.050	0.704 ± 0.090	0.716 ± 0.046	0.692 ± 0.062	0.582 ± 0.065	0.568 ± 0.037	0.594 ± 0.024	0.586 ± 0.052	
FMA+LD (Solis-Arrazola et al., 2024)	0.764 ± 0.014	0.752 ± 0.032	0.763 ± 0.025	0.754 ± 0.021	0.615 ± 0.045	0.605 ± 0.024	0.613 ± 0.015	0.600 ± 0.026	
DBN (Vedantham & Reddy, 2020)	0.885 ± 0.013	0.872 ± 0.017	0.862 ± 0.015	0.865 ± 0.018	0.647 ± 0.020	0.615 ± 0.020	0.639 ± 0.019	0.627 ± 0.017	
CBiLSTM (Liang et al., 2020b)	0.932 ± 0.036	0.916 ± 0.046	0.925 ± 0.062	0.915 ± 0.022	0.582 ± 0.029	0.556 ± 0.043	0.572 ± 0.052	0.565 ± 0.047	
Joint-Attention (Ghaleb et al., 2023)	0.963 ± 0.026	0.926 ± 0.024	0.954 ± 0.036	0.946 ± 0.043	0.743 ± 0.036	0.724 ± 0.025	0.726 ± 0.036	0.736 ± 0.062	
H-attention (Tao & Duan, 2024)	0.972 ± 0.047	0.956 ± 0.066	0.966 ± 0.046	0.975 ± 0.035	0.746 ± 0.033	0.733 ± 0.075	0.740 ± 0.105	0.733 ± 0.095	
PIDViT (Huang & Tsai, 2022)	0.973 ± 0.036	0.962 ± 0.054	0.975 ± 0.067	0.975 ± 0.043	0.763 ± 0.033	0.754 ± 0.073	0.738 ± 0.033	0.748 ± 0.026	
MTAC (Zhang et al., 2023)	0.975 ± 0.064	0.965 ± 0.073	0.963 ± 0.073	0.973 ± 0.057	0.726 ± 0.048	0.716 ± 0.047	0.726 ± 0.033	0.705 ± 0.021	
Hit-mst (Xia & Jiang, 2023)	0.985 ± 0.036	0.975 ± 0.046	0.973 ± 0.074	0.983 ± 0.043	0.773 ± 0.064	0.764 ± 0.054	0.752 ± 0.043	0.743 ± 0.047	
GA (Nida et al., 2024)	0.985 ± 0.045	0.975 ± 0.024	0.967 ± 0.032	0.985 ± 0.043	0.775 ± 0.043	0.763 ± 0.053	0.765 ± 0.073	0.769 ± 0.063	
EA-Net (Khan et al., 2025b)	0.992 ± 0.053	0.996 ± 0.033	0.982 ± 0.062	0.991 ± 0.026	0.760 ± 0.063	0.770 ± 0.074	0.790 ± 0.036	0.780 ± 0.062	
Proposed (ours)	$\textbf{0.996} \pm \textbf{0.015}$	$\textbf{0.997} \pm \textbf{0.026}$	$\textbf{0.987} \pm \textbf{0.013}$	$\textbf{0.982} \pm \textbf{0.019}$	$\textbf{0.794} \pm \textbf{0.024}$	$\textbf{0.786} \pm \textbf{0.015}$	$\textbf{0.776} \pm \textbf{0.036}$	$\textbf{0.785} \pm \textbf{0.022}$	

4.2 ABLATION STUDY

In this section, we investigate the multi-teacher network selection, dual-phase optimization framework and the HyFER student model computational cost in terms of GFLOPs, number of parameter count and model size. Moreover, evaluation assessments of the teacher network selection and HyFER were conducted under K-fold cross-validation.

Multi-Teacher Network Selection. Teacher networks for MTKD were selected through extensive experiments evaluation on the transformer-based models over benchmarks, as summarizes in Table 3. The teacher network are selected based on the recognition performance, and computational cost. The selected networks include CrossViT-18 (Chen et al., 2021b), DaViT (Ding et al., 2022b), and MobileViT-S (Mehta & Rastegari, 2021b) demonstrate high recognition performance while maintaining minimal computational overhead. The selected multi-teacher ensures that the HyFER model effectively inherits rich multi-faced knowledge over MTKD optimization.

Table 3: Teacher models performance evaluation across FER 2013 and KDEF benchmarks. By including the key metrices such as testing accuracy, loss values, number of parameters, computational complexity (GFLOPs) and model size in megabytes (MB). Selected teacher networks are highlighted in bold.

Teacher Models	FER2013		KI	DEF	Params (M)	GFLOPs	Size (MB)
reactier wiodels	Acc (%)	Loss	Acc (%)	Loss	1 at atits (M)	GILOIS	Size (MID)
ConViT-S (d'Ascoli et al., 2021)	67.99 ± 0.42	0.844 ± 0.012	92.52 ± 0.28	0.308 ± 0.007	27.35	5.35	104.32
CrossViT-18 (Chen et al., 2021b)	$\textbf{78.86} \pm \textbf{0.31}$	$\textbf{0.352} \pm \textbf{0.008}$	$\textbf{99.54} \pm \textbf{0.14}$	$\textbf{0.086} \pm \textbf{0.004}$	42.60	8.21	162.51
FastViT-SA24 (Vasu et al., 2023)	69.51 ± 0.38	0.799 ± 0.010	94.22 ± 0.33	0.279 ± 0.006	20.54	2.89	78.34
EfficientViT-M2 (Liu et al., 2023)	69.32 ± 0.35	0.775 ± 0.011	93.20 ± 0.31	0.316 ± 0.008	3.96	0.20	15.12
DaViT-B (Ding et al., 2022b)	$\textbf{77.62} \pm \textbf{0.29}$	$\textbf{0.562} \pm \textbf{0.009}$	$\textbf{97.92} \pm \textbf{0.26}$	$\textbf{0.108} \pm \textbf{0.005}$	86.94	15.22	331.64
LeViT-192 (Graham et al., 2021)	67.58 ± 0.45	0.841 ± 0.013	87.07 ± 0.39	0.417 ± 0.009	10.18	0.61	38.84
MaxViT-S (Tu et al., 2022)	68.82 ± 0.41	0.788 ± 0.012	89.80 ± 0.34	0.407 ± 0.010	67.96	11.27	260.03
MobileViT-S (Mehta & Rastegari, 2021b)	$\textbf{77.49} \pm \textbf{0.32}$	$\textbf{0.570} \pm \textbf{0.010}$	$\textbf{98.60} \pm \textbf{0.27}$	$\textbf{0.096} \pm \textbf{0.004}$	4.94	1.42	3.64

Multi-Teacher Guided Student Optimization. To distill rich knowledge from multiple teacher networks into the student model, we evaluate both teacher and student performance before and after the data-centric preprocessing pipeline, as detailed in Table 4. Additionally, the knowledge is progressively transferred from teacher to the student model from a single teacher to three teachers networks. The reported results demonstrate that MTKD significantly improves student model performance across both datasets, highlighting that multi-teacher KD not only enhances the discriminative capability of the lightweight student model but also stabilizes training, leading to consistent improvements across both benchmark datasets.

Student Model Post-Distillation Adversarial Optimization. The HyFER student model, initially optimized via the multi-teacher networks, further refinement of HyFER models for real-world applicability is enhanced through diverse adversarial perturbation methods, including FGSM, PGD

Table 4: Performance evaluation of the selected teacher networks and HyFER MTKD Before Preprocessing (BP) and After preprocessing (AP) over FER2013 and KDEF benchmarks under 5-fold cross-validation (K=5).

Teacher Models	Acc % (BP)		Loss (BP)		Acc % (AP)		Loss (AP)	
reactier friodels	FER2013	KDEF	FER2013	KDEF	FER2013	KDEF	FER2013	KDEF
CrossViT-18 (T1)	69.61 ± 0.42	93.48 ± 0.36	1.707 ± 0.051	0.669 ± 0.027	78.86 ± 0.31	99.54 ± 0.14	0.352 ± 0.008	0.086 ± 0.004
MobileViT-S (T2)	68.98 ± 0.37	92.27 ± 0.41	1.736 ± 0.046	0.826 ± 0.033	77.49 ± 0.32	98.60 ± 0.27	0.570 ± 0.010	0.096 ± 0.004
DaViT-B (T3)	77.62 ± 0.29	91.93 ± 0.42	1.713 ± 0.043	0.850 ± 0.029	77.62 ± 0.29	97.92 ± 0.26	0.562 ± 0.009	0.108 ± 0.005
HyFER (No KD)	51.52 ± 0.61	82.99 ± 0.57	3.503 ± 0.092	1.944 ± 0.053	61.96 ± 0.47	89.07 ± 0.34	2.026 ± 0.081	0.995 ± 0.024
HyFER (KD: T1)	64.01 ± 0.48	92.52 ± 0.36	2.095 ± 0.067	0.804 ± 0.022	76.19 ± 0.42	98.92 ± 0.18	0.825 ± 0.027	0.190 ± 0.010
HyFER (KD: T1+T2)	66.14 ± 0.44	93.26 ± 0.29	1.948 ± 0.059	0.340 ± 0.012	77.92 ± 0.38	99.03 ± 0.10	0.632 ± 0.021	0.101 ± 0.005
HyFER (KD: T1+T2+T3)	$\textbf{70.25} \pm \textbf{0.28}$	$\textbf{94.92} \pm \textbf{0.31}$	$\textbf{1.440} \pm \textbf{0.067}$	$\textbf{0.148} \pm \textbf{0.012}$	$\textbf{79.39} \pm \textbf{0.25}$	$\textbf{99.50} \pm \textbf{0.15}$	$\textbf{0.283} \pm \textbf{0.009}$	$\textbf{0.056} \pm \textbf{0.003}$

and DeepFool. Table 5 reports HyFER model performance across benchmarks under K-fold cross-validation, including accuracy, loss, precision, recall and F1-score. Evolution under white-box attacks reveals that the student model consistently maintains strong performance across all metrics, achieving the highest robustness over FGMS gradient-base single-step attack perturbed samples. In contrast, PGD and DeepFool attacks adversarial examples leads to slightly lower performance, reflecting the increased difficulty posed by these method in generating strong perturbed samples.

Table 5: Performance evaluation of the optimized student model trained with knowledge distillation under various adversarial perturbations across benchmarks, reporting 5-fold cross-validation (K=5) over accuracy, loss, Precision, Recall and F1-score indicators. The best performance achieved by HyFER model is highlighted in bold.

Dataset	Perturbation	Accuracy	Loss	Precision	Recall	F1-Score
	FGSM	$\textbf{78.83} \pm \textbf{0.31}$	$\textbf{0.289} \pm \textbf{0.008}$	$\textbf{78.22} \pm \textbf{0.027}$	$\textbf{78.80} \pm \textbf{0.023}$	77.52 ± 0.019
FER2013	PGD	78.41 ± 0.28	0.295 ± 0.009	78.35 ± 0.025	77.10 ± 0.021	76.58 ± 0.022
	DeepFool	78.56 ± 0.30	0.291 ± 0.007	76.96 ± 0.020	77.57 ± 0.024	78.42 ± 0.018
	FGSM	$\textbf{99.43} \pm \textbf{0.12}$	$\textbf{0.058} \pm \textbf{0.003}$	98.92 ± 0.009	99.38 ± 0.010	99.01 ± 0.007
KDEF	PGD	99.34 ± 0.14	0.060 ± 0.004	99.27 ± 0.011	99.18 ± 0.012	98.19 ± 0.010
	DeepFool	99.39 ± 0.13	0.059 ± 0.003	99.73 ± 0.008	98.23 ± 0.009	99.25 ± 0.008

5 CLOSING REMARKS

In this work, we presented a unified framework focusing on data quality and model design and optimization for robust real-world FER system. The data quality enhancement pipeline aimed to address critical limitations such as noisy/duplicated sample removal, landmark guided facial refinement, and class-aware rebalancing in widely used FER2013 and KDEF benchmarks. The data refinement pipeline is followed by the model-centric phase introduces HyFER, a lightweight hybrid CNN-Transformer model optimized through a dual-phase optimization strategy that combines multiteacher knowledge distillation with post-KD adversarial training. This unified framework improved the generalization capability of the lightweight HyFER model, making it suitable for real-world FER systems. In the future, we aim to scale up this framework tackle larger-scale FER benchmarks, incorporating multimodal emotion cues, and dig into even more efficient optimization techniques.

REFERENCES

- Erlangga Satrio Agung, Achmad Pratama Rifai, and Titis Wijayanto. Image-based facial emotion recognition using convolutional neural network on emognition dataset. *Scientific reports*, 14(1): 14429, 2024.
- Manuel G Calvo and Daniel Lundqvist. Facial expressions of emotion (kdef): Identification under different display-duration conditions. *Behavior research methods*, 40(1):109–115, 2008.
- Pierluigi Carcagnì, Marco Del Coco, Marco Leo, and Cosimo Distante. Facial expression recognition and histograms of oriented gradients: a comprehensive study. *SpringerPlus*, 4(1):645, 2015.
- Chun-Fu Richard Chen, Quanfu Fan, and Rameswar Panda. Crossvit: Cross-attention multi-scale vision transformer for image classification. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 357–366, 2021a.
- Chun-Fu Richard Chen, Quanfu Fan, and Rameswar Panda. Crossvit: Cross-attention multi-scale vision transformer for image classification. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 357–366, 2021b.
- Tianlong Chen, Sijia Liu, Shiyu Chang, Yu Cheng, Lisa Amini, and Zhangyang Wang. Adversarial robustness: From self-supervised pre-training to fine-tuning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 699–708, 2020.
- PLC Courville, A Goodfellow, IJM Mirza, and Y Bengio. Fer-2013 face database. *Universit de Montreal: Montréal, QC, Canada*, 2013.
- Mingyu Ding, Bin Xiao, Noel Codella, Ping Luo, Jingdong Wang, and Lu Yuan. Davit: Dual attention vision transformers. In *European conference on computer vision*, pp. 74–92. Springer, 2022a.
- Mingyu Ding, Bin Xiao, Noel Codella, Ping Luo, Jingdong Wang, and Lu Yuan. Davit: Dual attention vision transformers. In *European conference on computer vision*, pp. 74–92. Springer, 2022b.
- Stéphane d'Ascoli, Hugo Touvron, Matthew L Leavitt, Ari S Morcos, Giulio Biroli, and Levent Sagun. Convit: Improving vision transformers with soft convolutional inductive biases. In *International conference on machine learning*, pp. 2286–2296. PMLR, 2021.
- SK Eng, H Ali, AY Cheah, and YF Chong. Facial expression recognition in jaffe and kdef datasets using histogram of oriented gradients and support vector machine. In *IOP Conference series:* materials science and engineering, volume 705, pp. 012031. IOP Publishing, 2019.
- Esam Ghaleb, Jan Niehues, and Stylianos Asteriadis. Joint modelling of audio-visual cues using attention mechanisms for emotion recognition. *Multimedia Tools and Applications*, 82(8):11239–11264, 2023.
- Benjamin Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, and Matthijs Douze. Levit: a vision transformer in convnet's clothing for faster inference. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 12259–12269, 2021.
- John R Hershey and Peder A Olsen. Approximating the kullback leibler divergence between gaussian mixture models. In 2007 IEEE International Conference on Acoustics, Speech and Signal Processing-ICASSP'07, volume 4, pp. IV–317. IEEE, 2007.
- Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. *arXiv* preprint arXiv:1503.02531, 2015a.
- Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. *arXiv* preprint arXiv:1503.02531, 2015b.
- Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected convolutional networks. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 4700–4708, 2017.

- Yin-Fu Huang and Chia-Hsin Tsai. Pidvit: pose-invariant distilled vision transformer for facial expression recognition in the wild. *IEEE Transactions on Affective Computing*, 14(4):3281–3293, 2022.
 - Hua Huo, YaLi Yu, and ZhongHua Liu. Facial expression recognition based on improved depthwise separable convolutional network. *Multimedia Tools and Applications*, 82(12):18635–18652, 2023.
 - Manmeet Kaur and Munish Kumar. Facial emotion recognition: A comprehensive review. *Expert Systems*, 41(10):e13670, 2024.
 - Taimoor Khan, Zulfiqar Ahmad Khan, and Chang Choi. Enhancing real-time fire detection: An effective multi-attention network and a fire benchmark. *Neural Computing and Applications*, 37 (18):11693–11707, 2025a.
 - Taimoor Khan, Muhammad Yasir, and Chang Choi. Attention-enhanced optimized deep ensemble network for effective facial emotion recognition. *Alexandria Engineering Journal*, 119:111–123, 2025b.
 - Dandan Liang, Huagang Liang, Zhenbo Yu, and Yipu Zhang. Deep convolutional bilstm fusion network for facial expression recognition. *The Visual Computer*, 36(3):499–508, 2020a.
 - Dandan Liang, Huagang Liang, Zhenbo Yu, and Yipu Zhang. Deep convolutional bilstm fusion network for facial expression recognition. *The Visual Computer*, 36(3):499–508, 2020b.
 - Xinyu Liu, Houwen Peng, Ningxin Zheng, Yuqing Yang, Han Hu, and Yixuan Yuan. Efficientvit: Memory efficient vision transformer with cascaded group attention. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 14420–14430, 2023.
 - Camillo Lugaresi, Jiuqiang Tang, Hadon Nash, Chris McClanahan, Esha Uboweja, Michael Hays, Fan Zhang, Chuo-Ling Chang, Ming Guang Yong, Juhyun Lee, et al. Mediapipe: A framework for building perception pipelines. *arXiv preprint arXiv:1906.08172*, 2019.
 - Michael J Lyons, Miyuki Kamachi, and Jiro Gyoba. Coding facial expressions with gabor wavelets (ivc special issue). *arXiv preprint arXiv:2009.05938*, 2020.
 - Sachin Mehta and Mohammad Rastegari. Mobilevit: light-weight, general-purpose, and mobile-friendly vision transformer. *arXiv preprint arXiv:2110.02178*, 2021a.
 - Sachin Mehta and Mohammad Rastegari. Mobilevit: light-weight, general-purpose, and mobile-friendly vision transformer. *arXiv preprint arXiv:2110.02178*, 2021b.
 - Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a simple and accurate method to fool deep neural networks. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 2574–2582, 2016.
 - Ervin Gubin Moung, Chai Chuan Wooi, M Mohd Sufian, C Kim On, and Jamal Ahmad Dargham. Ensemble-based face expression recognition approach for image sentiment analysis. *Int. J. Electr. Comput. Eng*, 12(3):2588–2600, 2022.
 - Muhammad Munsif, Muhammad Sajjad, Mohib Ullah, Adane Nega Tarekegn, Faouzi Alaya Cheikh, Panagiotis Tsakanikas, and Khan Muhammad. Optimized efficient attention-based network for facial expressions analysis in neurological health care. *Computers in Biology and Medicine*, 179: 108822, 2024.
 - Laura F Nern, Harsh Raj, Maurice André Georgi, and Yash Sharma. On transfer of adversarial robustness from pretraining to downstream tasks. *Advances in neural information processing systems*, 36:59206–59226, 2023.
- Hong-Hai Nguyen, Van-Thong Huynh, and Soo-Hyung Kim. An ensemble approach for facial expression analysis in video. *arXiv preprint arXiv:2203.12891*, 2022.
 - Nudrat Nida, Muhammad Haroon Yousaf, Aun Irtaza, Sajid Javed, and Sergio A Velastin. Spatial deep feature augmentation technique for fer using genetic algorithm. *Neural Computing and Applications*, 36(9):4563–4581, 2024.

- Maja Pantic and Leon JM Rothkrantz. Facial action recognition for facial expression analysis from static face images. *IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)*, 34(3):1449–1461, 2004.
 - Qiyu Rao, Xing Qu, Qirong Mao, and Yongzhao Zhan. Multi-pose facial expression recognition based on surf boosting. In 2015 international conference on affective computing and intelligent interaction (ACII), pp. 630–635. IEEE, 2015.
 - Kui Ren, Tianhang Zheng, Zhan Qin, and Xue Liu. Adversarial attacks and defenses in deep learning. *Engineering*, 6(3):346–360, 2020.
 - Ketan Sarvakar, R. Senkamalavalli, S. Raghavendra, J. Santosh Kumar, R. Manjunath, and Sushma Jaiswal. Facial emotion recognition using convolutional neural networks. *Materials Today: Proceedings*, 80:3560–3564, 2023. ISSN 2214-7853. doi: https://doi.org/10.1016/j.matpr. 2021.07.297. URL https://www.sciencedirect.com/science/article/pii/S2214785321051567. SI:5 NANO 2021.
 - Sumeet Saurav, Prashant Gidde, Ravi Saini, and Sanjay Singh. Dual integrated convolutional neural network for real-time facial expression recognition in the wild. *The Visual Computer*, 38(3): 1083–1096, 2022.
 - Caifeng Shan, Shaogang Gong, and Peter W McOwan. Facial expression recognition based on local binary patterns: A comprehensive study. *Image and vision Computing*, 27(6):803–816, 2009.
 - Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. *arXiv preprint arXiv:1409.1556*, 2014.
 - Manuel A Solis-Arrazola, Raul E Sanchez-Yañez, Carlos H Garcia-Capulin, and Horacio Rostro-Gonzalez. Enhancing image-based facial expression recognition through muscle activation-based facial feature extraction. *Computer Vision and Image Understanding*, 240:103927, 2024.
 - Hamit Soyel and Hasan Demirel. Improved sift matching for pose robust facial expression recognition. In 2011 IEEE International Conference on Automatic Face & Gesture Recognition (FG), pp. 585–590. IEEE, 2011.
 - Ning Sun, Qi Li, Ruizhi Huan, Jixin Liu, and Guang Han. Deep spatial-temporal feature fusion for facial expression recognition in static images. *Pattern Recognition Letters*, 119:49–61, 2019.
 - Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking the inception architecture for computer vision. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 2818–2826, 2016.
 - Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander Alemi. Inception-v4, inception-resnet and the impact of residual connections on learning. In *Proceedings of the AAAI conference on artificial intelligence*, volume 31, 2017.
 - Hui Tang, Yichang Li, and Zhong Jin. A dual stream attention network for facial expression recognition in the wild. *International Journal of Machine Learning and Cybernetics*, 15(12):5863–5880, 2024.
 - Huanjie Tao and Qianyue Duan. Hierarchical attention network with progressive feature fusion for facial expression recognition. *Neural Networks*, 170:337–348, 2024.
 - Zhengzhong Tu, Hossein Talebi, Han Zhang, Feng Yang, Peyman Milanfar, Alan Bovik, and Yinxiao Li. Maxvit: Multi-axis vision transformer. In *European conference on computer vision*, pp. 459–479. Springer, 2022.
 - Rehmat Ullah, Hassan Hayat, Afsah Abid Siddiqui, Uzma Abid Siddiqui, Jebran Khan, Farman Ullah, Shoaib Hassan, Laiq Hasan, Waleed Albattah, Muhammad Islam, et al. A real-time framework for human face detection and recognition in cctv images. *Mathematical Problems in Engineering*, 2022(1):3276704, 2022.

- Pavan Kumar Anasosalu Vasu, James Gabriel, Jeff Zhu, Oncel Tuzel, and Anurag Ranjan. Fastvit: A fast hybrid vision transformer using structural reparameterization. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 5785–5795, 2023.
- Ramachandran Vedantham and Edara Sreenivasa Reddy. A robust feature extraction with optimized dbn-smo for facial expression recognition. *Multimedia Tools and Applications*, 79(29):21487–21512, 2020.
- Rohan Wadhawan and Tapan K Gandhi. Landmark-aware and part-based ensemble transfer learning network for static facial expression recognition from images. *IEEE transactions on artificial intelligence*, 4(2):349–361, 2022.
- Xiaohan Xia and Dongmei Jiang. Hit-mst: Dynamic facial expression recognition with hierarchical transformers and multi-scale spatiotemporal aggregation. *Information Sciences*, 644:119301, 2023.
- Rui Xu, Aibin Huang, Yuanjing Hu, and Xibo Feng. Gfft: Global-local feature fusion transformers for facial expression recognition in the wild. *Image and Vision Computing*, 139:104824, 2023.
- Hikmat Yar, Fath U Min Ullah, Zulfiqar Ahmad Khan, Min Je Kim, and Sung Wook Baik. Efnetcsm: Efficientnet with a modified attention mechanism for effective fire detection. *Knowledge-Based Systems*, pp. 114353, 2025.
- Ahmeed Yinusa and Misa Faezipour. A multi-layered defense against adversarial attacks in brain tumor classification using ensemble adversarial training and feature squeezing. *Scientific Reports*, 15(1):16804, 2025.
- Lutfiah Zahara, Purnawarman Musa, Eri Prasetyo Wibowo, Irwan Karim, and Saiful Bahri Musa. The facial emotion recognition (fer-2013) dataset for prediction system of micro-expressions face using the convolutional neural network (cnn) algorithm based raspberry pi. In 2020 Fifth international conference on informatics and computing (ICIC), pp. 1–9. IEEE, 2020.
- Ziyang Zhang, Xiang Tian, Yuan Zhang, Kailing Guo, and Xiangmin Xu. Enhanced discriminative global-local feature learning with priority for facial expression recognition. *Information Sciences*, 630:370–384, 2023.
- Haizhong Zheng, Ziqi Zhang, Juncheng Gu, Honglak Lee, and Atul Prakash. Efficient adversarial training with transferable adversarial examples. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 1181–1190, 2020.
- Yu Zhou, Ben Yang, Zhenni Liu, Qian Wang, and Ping Xiong. Cross-domain facial expression recognition by combining transfer learning and face-cycle generative adversarial network. *Multimedia Tools and Applications*, 83(42):90289–90314, 2024.
- Qing Zhu, Qirong Mao, Hongjie Jia, Ocquaye Elias Nii Noi, and Juanjuan Tu. Convolutional relation network for facial expression recognition in the wild with few-shot learning. *Expert Systems with Applications*, 189:116046, 2022.