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ABSTRACT

Recent Progress in Deep Learning (DL) has shown that data quality constrains the
generalization as much as model design. Facial Emotion Recognition (FER) ex-
emplifies this challenge, as widely used datasets contain mislabeled, duplicated,
class imbalanced, and visually affected samples that weaken both accuracy and
robustness. In this paper we proposed a data-centric approach to FER, building
a systematic pipeline that improves dataset reliability before model training. The
pipeline includes (i) Noisy and duplicated samples removal, (ii) landmark-guided
facial refinement, and (iii) class-aware re-balanced under-presented emotions in
the dataset. Following the data-centric pipeline we proposed a lightweight hy-
brid CNN-Transformer student model with Emotion Aware Dynamic Distillation
(EADD), where knowledge is adaptively distilled from multiple teacher networks
depending on their emotion-specific strengths. Despite the multi-teacher knowl-
edge distillation student model is further optimized by adversarial training to en-
hance its robustness against subtle perturbations in real-world FER. Extensive ex-
periments on FER2013 and KDEF highlights that our approach achieved state-of-
the-art robustness, efficiency and trade-offs for real-time FER on Edge devices.
The results demonstrate that systematic data refinement is as critical as model
innovation. The source code for results reproducibility of the paper is publicly
available at https://github.com/anonymous123810/ICLR2026.

1 INTRODUCTION

Facial expressions are a fundamental aspect of human communication, conveying emotions like hap-
piness, sadness, or anger to subtle cues such as a fleeting smile or a raised eyebrow. Recognizing
these expressions automatically, known as Facial Emotion Recognition (FER), which has become
increasingly important in fields such as human-computer interaction, healthcare, automotive safety,
and intelligent surveillance (Khan et al., 2025b). Facial expressions account for a substantial por-
tion of non-verbal communication and the ability to accurately interpret these signals is essential for
Artificial Intelligence (Al) systems that interact with human in socially aware and emotionally intel-
ligent ways (Kaur & Kumar,|2024)). Despite remarkable advancements in Deep Learning (DL), re-
cent studies evaluated FER systems under controlled conditions, where hand-picked datasets provide
clean labels, balanced classes, and consistent face regions. While real-world scenarios present far
greater challenges since facial expressions differ across age, gender, cultural background, and even
neurological conditions such as Parkinson’s or Alzheimer’s disease, which can diminish emotional
cues (Munsif et al., 2024). These challenges underscores the critical importance of data-centric fo-
cused approaches, where performance improved not only by scaling the model but by addressing
the underlying data quality.

Existing studies primarily focused on developing novel architectures such as Convolutional Neu-
ral Networks (CNNs) (Agung et al.| [2024), transformer-based models (Xu et al., |2023), or hybrid
CNN-Transformer frameworks (Tang et al.,2024). While these methods have advanced recognition
performance, their effectiveness is often limited by dataset deficiencies such as mislabeled samples,
duplicated or low-quality images, class imbalance, and inconsistent facial region. These problems
introduces noise and bias, leading to poor generalization in practical environment, particularly de-
ployment over resource-constraint devices. Although, recent studies have attempted to mitigate
these problems through transfer learning (Zhou et al., [2024), self-supervised pretraining(Chen et al.,
2020), and adversarial robustness (Nern et al., [2023). However, these methods largely adapt the
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provided data rather than improving its quality which raises an important question: Can a system-
atic data-centric pipeline significantly enhance FER system performance under real-world, uncon-
strained environment?

To address this challenge, we propose a unified framework that integrates a data focused prepro-
cessing pipeline, a lightweight hybrid CNN-Transformer (HyFER) architecture, and multi-phase
training strategy designed to improve robustness, generalization, and real-time applicability. The
preprocessing pipeline systematically enhances the quality of the KDEF (Calvo & Lundqvist, [2008)
and FER2013 (Courville et al., 2013) datasets by extracting facial regions , removing mislabeled
and duplicate samples, and applying class-specific upsampling to mitigate the bias in model predic-
tions caused by underrepresented emotion classes. Building upon these refined datasets, we train
a lightweight HyFER student model, explicitly designed to capture both fine-grained local facial
textures and global contextual dependencies. Moreover, the framework employs a dual-phase opti-
mization strategy, combining multi-teacher knowledge distillation with post-distillation adversarial
training, to ensure stable FER under challenging real-world conditions such as occlusion, noise, and
varying illumination.

2 RELATED WORK

Automatic identification of facial emotions has attracted significant attention due to its vital role
in transferring human emotions to machine perception; yet, FER systems are facing challenges in-
cluding variability in facial expressions, environmental factors, and constraints dataset. However,
several studies on FER largely focused on handcrafted features and conventional Machine Learn-
ing (ML) approaches. Descriptor such as Histogram of Oriented Gradient (HOG) (Carcagni et al.,
2015)), Local Binary Patterns (LBP) (Shan et al., |2009), Scale-invariant Feature Transformer (SIFT)
(Soyel & Demirel, 2011}, Speed-up Robust Features (SURF) (Rao et al. [2015), and Gabor filters
(Lyons et al., 2020) were frequently used to capture local facial textures and directional changes.
These feature extractors were often integrated with classifiers like Support Vector Machines (SVM),
and occasionally with the Facial Action Coding System (FACS) (Pantic & Rothkrantz, |2004) to
translate expression into action units. Despite their effectiveness in controlled settings, conventional
approaches weren’t robust against real-world variability including posture, lighting, and occlusion.

The advancements in DL have revolutionized FER by allowing ML models to learn complex features
from unprocessed facial shots, rather than manually selected feature (Huang et al., 2017; |Szegedy
et al.l 2016 [2017). This revolution in DL began with the development of Convolutional Neural
Networks (CNNs) based models such as VGGNet (Simonyan & Zisserman, 2014) which extracts
both low-level and high-level features more accurately, but their utility in real-time applications was
restricted due to their high computational costs. Subsequent studies investigated lightweight CNNs
(Huo et al., [2023} [Saurav et al.}[2022) and dual-stream pipelines (Sarvakar et al.,|2023) to minimize
complexity while maintaining discriminative capacity. Other studies have used temporal modeling
with RNNs and Transformer (Ullah et al., 2022} |Liang et al.| 2020a)), as well as multimodal fusion
approaches proposed in (Sun et al., 2019) to capture dynamic expressions across video sequences.
Moreover, Ensemble-based techniques (Wadhawan & Gandhi, [2022; Moung et al., 2022;|Khan et al.}
2025b) further improved performance by combining complementary feature extractors and attention
mechanisms.

Considering these advancements, FER models are still highly sensitive to data quality. Noisy labels,
class imbalance, and loosely cropped samples in widely utilized benchmarks such as FER2013 and
KDEF propagate bias into learnt models (Nguyen et al., 2022). Recent data-centric method have
employed various methods to enhance datasets diversity by utilizing targeted class transformation
(Zhu et al.| 2022). While data quality enhancement in terms of label correction, and duplicated
sample removal for FER remains unexplored.

Beyond data quality enhancement, model-centric techniques aimed to develop an efficient and robust
model. In context to develop an optimized computationally efficient model Knowledge Distillation
(KD) has emerged as a more common approach to distill the rich knowledge from computationally
expensive model to less computationally expensive model (Hinton et al. 2015a). Moreover, to
improve the generalizability of the model for real-word unconstrained situation under perturbations
and noisy conditions adversarial training is proposed by (Zheng et al., 2020).
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Conclusively, prior studies outline the dual challenges of data-centric and model-centric shortcom-
ings in FER. Although deep architectures, and ensemble strategies have advanced the field, lim-
ited attention has been given to unified frameworks that simultaneously address dataset quality,
lightweight architecture design, and robust training under real-world conditions. Our work addresses
these issues by proposing a multi-phase pipeline that includes systematic preprocessing, a HyFER
hybrid model architecture, and a dual-phase KD-adversarial optimization approach.

3 PROPOSED METHODOLOGY

In this section, we present the proposed data-centric and model-centric pipeline design to develop
a robust and computationally efficient FER system, optimized for real-time deployment on embed-
ded devices. The framework incorporates a data-centric preprocessing pipeline design to construct
a clean, balanced, and high-quality emotion corpus. This is followed by a dual-phase optimiza-
tion strategy that incorporates Multi-Teacher Knowledge Distillation (MTKD) with post-distillation
adversarial training. The high level overview of the unified framework is depicted in Figure [T}
Moreover, the detailed explanation of each component in the proposed framework is elaborated in
the subsequent subsection.
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Figure 1: The high level overview of the unified proposed framework.

3.1 DATA-CENTRIC PREPROCESSING PIPELINE

In This study we utilize two publicly available facial expression datasets named as FER2013
and KDEF [2019), to train and evaluate the proposed lightweight HyFER
student model. Despite the benchmark popularity, these datasets exhibit several data quality and
distributional challenges, including high intra class variance due to noisy samples, annotation incon-
sistencies leading to label error, redundant samples resulting in data duplication, ambiguous label
associations where multiple emotions are assigned to a single instance, multilabel samples, and sig-
nificant class imbalance that skews the learning process. To mitigate these challenges and enhance
the quality of the input data, this study employed a comprehensive data preprocessing pipeline de-
signed to transform the raw data into a more informative and structured format facilitating optimal
learning and improved performance across multiple evaluation indicators. The detailed preprocess-
ing steps are elaborated in the following sections.
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3.1.1 IMAGE QUALITY ENHANCEMENT

Image quality enhancement pipeline employed in this study aims to mitigate the visual inconsis-
tencies from FER2013 and KDEF benchmarks. To ensure reliable input for the DL models’ opti-
mization irrelevant, noisy, duplicated, and multilabel samples were removed by visually inspecting
the samples to enhance dataset consistency. However, duplicated instances were detected through
both inter-class and intra-class cosine similarity assessments, followed by manual visual inspection
to verify redundancy while preserving dataset integrity. Although the FER2013 dataset exhibited
numerous quality issues, resulting in an overall error rate of 6.64%, the KDEF dataset was com-
paratively cleaner, with a significantly lower error rate of 0.0624% and only four samples lacking
recognizable facial emotions, which were excluded during preprocessing, as summarized in Ta-
ble[I] In addition to removing problematic and low-quality samples, facial region extraction was
employed in the image quality enhancement pipeline using pretrained MediaPipe Face Mesh De-
tector (Lugares: et al,, [2019) to further refine the input data by generating facial mask from the
predicted landmarks, isolating the facial region while discarding the background. This step enabled
the pipeline to isolate and focus on the most informative regions, eliminating background noise
and non-facial regions that could interfere with learning. The proposed image quality enhancement
pipeline enhances facial image quality by removing noisy samples, resolves label inconsistencies,
and isolating high-fidelity facial features, thereby enhancing data reliability, stabilizing the training
process, and improved model generalization. The discarded low-quality samples from FER2013 and
KDEF benchmarks are illustrated in Figure [2]

Class Angry Disgust Angry Angry Angry

Degradation ~ Non-realistic Irrelevant Irrelevant Duplicated Partial Face Multilabel

Class Disgust Disgust Disgust Fear Disgust Natural

Degradation Trrelevant Non-realistic Duplicated Trrelevant Label Error Label Error Irrelevant

j age j
Class Happy Neutral Neutral Sad Surprise Surprise Sad
Degradation Trrelevant Trrelevant Trrelevant Trrelevant Trrelevant Trrelevant Trrelevant

Figure 2: Low-quality samples from FER2013 and KDEF benchmarks.

3.1.2 CLASS-SPECIFIC DATA AUGMENTATION

This subsection presents the class-targeted data augmentation approach which allows to address
class imbalance within the benchmarks, a condition that typically leads to model bias toward ma-
jority classes and underperform on minority classes due to insufficient representation of minority
classes while preserving the integrity of majority of class samples. This approach aims to improve
model generalization and robustness by ensuring equitable learning across all classes (Yar et al.,
20235). To achieve this, augmentation techniques were applied in a class-aware manner based on
distributional characteristics of each class, thereby reducing bias and improving the model’s abil-
ity to learn more discriminative features. The geometric transformation which have been applied
including horizontal flipping, vertical flipping, controlled rotation £10°, translation up to 5%, and
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Table 1: Statistical analysis of the FER2013 and KDEEF datasets including label error, error ratio,
original sample counts, and augmented sample counts

A ted S !
Duplicated Samples Multilable Label Error Error Ratio (%)  Org. Sample Count ugmented Sampre

Class Count
(FER2013) Samples (FER2013)
FER2013 KDEF FER2013 KDEF FER2013 KDEF FER2013 KDEF

Angry 126 10 473 N/A 12.29 N/A 4953 840 8,341 961
Disgust 27 N/A 27 2 9.872 0.2178 547 918 8,226 956
Fear 145 24 193 N/A 7.068 N/A 5,121 762 8,512 970
Happy 75 N/A 232 N/A 3415 N/A 8,989 858 N/A 961
Neutral 59 4 40 2 1.661 0.2192 6,198 912 8,425 953
Sad 63 9 55 N/A 2.089 N/A 6,077 975 8,627 N/A
Surprise 350 15 39 N/A 10.09 N/A 4,002 603 8,517 935

scaling within the range of 0.9x to 1.1x. In addition, color and texture transformation were em-
ployed to improve the model robustness to variations in illumination and sensor noise, particularly
for minority classes characterized by insufficient illumination variability. The class-specific sample
count of class-aware data augmentation preprocessing pipeline is shown in Table[T}

3.2 DUAL-PHASE OPTIMIZATION

The dual-phase optimization framework proposed for FER integrates MTKD with Post-distillation
adversarial training aiming to optimize the proposed computationally efficient HyFER model which
is detailed in the subsequent sections.

3.2.1 MULTI TEACHER COLLABORATIVE LEARNING

Collaborative learning in KD intent to distill comprehensive feature representations from multiple
teacher networks into lightweight student model. The complementary strengths of multiple fine-
tuned teacher networks facilitate multi-faceted emotional features representations such as global
facial structures, fine-grained expression details, and contextual cues collaborating to provide a rich
knowledge base for the student model (Hinton et al.,|2015b). In MTKD collaborative framework the
knowledge is transferred into the lighter student model through a novel Emotion-Aware Dynamic
Distillation (EADD) framework which dynamically prioritizes teacher contributions based on their
expertise in specific emotion (e.g., happy, sad, angry). The EADD optimizes the HyFER model
through a composite loss function that integrates a standard cross-entropy loss with a dynamic,
emotion-specific distillation loss, as computed by:

E N
Leapp = aLce(y, §s) + Y Y wie(t) Loisan (25, 27 Te) (1)

e=11i=1

Where Lcg denotes cross-entropy loss, measuring the difference between the ground truth y and
student prediction ¢, mathemathically formulated in Eq.[2} The term Lp;yy represents the KD loss
between the student and i" teacher model over emotional expression e computed using student and
teacher networks logits zs and 2z, _, respectively, computed as Eq.

C
Lce (y7 gs) = - Z Ye log (Q&,c) 2
c=1
2 2T Zs
LDislill(Zsa 2,’111‘7 Te) = Te - KL (Softmax( T ) y Softmax (?)> (3)

The distillation loss is computed using the Kullback-Leibler (KL) divergence (Hershey & Olsen,
2007) mathematically computed by Eq. 4 which quantifies the discrepancy between the teacher’s
softened class probability PT; . ., and the student’s softened probabilities P, . over emotion c.
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c PT;
KL(PTyc || P,) = > PTic.c log <P> ?

c=1

Moreover, the dynamic weighting factor in proposed composite loss function for i teacher over
emotion e at training step ¢ for N number of teacher over temperature 7. is denoted by w; . ()
formulated in Eq. 5| measured based on the teacher’s validation performance to prioritize emotion
specific teacher network.

exp (Acci}e(t)/Te)
Z;V=1 exp (ACCj,e(t)/Te)

wi_,e(t) =

®)

In addition to the efficiency of EADD composite loss, the framework is driven by the strategic selec-
tion of multiple teacher models. Given the multifaceted nature of emotional expressions, which in-
cludes global facial structures, fine-grained expression details, and contextual cues, a single teacher
network is insufficient to capture the full spectrum of facial emotional nuances. To address this,
the proposed methodology employed an ensemble of three teacher networks including DaViT (Ding
et al.| [2022a), CrossViT (Chen et al.,|2021a), and MobileViT (Mehta & Rastegari, 2021a) selected
based on the extensive experiments conducted over benchmarks.

3.2.2 POST-DISTILLATION ADVERSARIAL TRAINING

Building upon the EADD composite loss function and MLKD framework which effectively trans-
fers emotional knowledge from DaViT, CrossViT, and MobileViT to the lightweight HyFER model
this section focuses to present the model’s resilience for real-world environment. Although EADD
equips HyFER with rich, multi-scale emotional representation optimized for resource-constrained
devices, real-world FER systems necessitate a high degree of robustness under a wide range of chal-
lenging conditions, including image noise, illumination variability, and imperceptible adversarial
perturbations. To mitigate these challenges in real-world FER systems, a post-distillation adver-
sarial training phase is incorporated to enhance the robustness and generalization capability of the
lightweight model without compromising its computational efficiency. This phase employed sev-
eral white-box adversarial attack algorithms during training to further refine the optimized HyFER
model, including Projected Gradient Descent (PGD) (Ren et al., 2020)), Fast Gradient Sign Method
(FGSM) (Yinusa & Faezipour, 2025)), and DeepFool (Moosavi-Dezfooli et al.,[2016). PGD white-
box attack is an iterative attack which generates adversarial examples by iteratively perturbing the
input image in the direction to maximize the model’s loss over predefined number of steps, as for-
mulated below.

et = H (x(t) + a - sign (VwL(fg(l‘(t)), y))) (6)

Be(x)

Here, z(*) denotes the adversarial example at iteration ¢, while z(**1) represents the updated adver-
sarial input over computed cross-entropy loss L between the model prediction f@(l‘(t)) and ground
truth label y.

In contrast to the iterative approach of PGD, the FGSM provides a computationally efficient, single
step approach for generating adversarial examples, as defined below.

Taay = T + € - sign (V. J (0, z,7)) (N

Where = denotes the input, and € is a small scalar that defines the magnitude of the perturbation. The
expression V. J (0, z,y) represents the gradient of the cross-entropy loss with respect to the input x.

Furthermore, DeepFool white-box attack is designed to compute the minimal perturbation required
to alter decision boundaries of a classifier. Unlike PGD and FGSM that rely on iterative and pre-
defined magnitude, DeepFool approach formulates the attack as an optimization problem that itera-
tively estimates the classifier’s decision boundaries and determines the smallest possible perturbation
required to change the model’s prediction, as detailed in (Moosavi-Dezfooli et al., 2016).
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3.3 LIGHTWEIGHT HYBRID STUDENT MODEL

The architectural representation of the student model is essential to ensure real-time accurate FER
over resource-constrained devices. The student model is developed as compact hybrid network that
effectively combines convolution operation with transformer-based components to balance compu-
tational efficiency while improve performance as diagrammatically represented in Figure [I] The
architectural design of it is inspired from MobileViT (Mehta & Rastegari,|2021a) which begins with
Early Convolutional Layer (ECL) consisting a three-by-three kernal with stride two followed by
batch normalization and SiLU activation function. Following the ECL projection block the network
is structured into three sequential inverted residual blocks which are configured by one-by-one,
three-by-three and one-by-one constitutional operations. This block ensures the backbone to be
parameter efficent and expressive. Following the third inverted residual block, the architecture in-
tegrates the proposed Emotion-Patch Convolution (EPC) block, which is adapted from MobileViT
architectural design. The feature maps projected by the EPC block are subsequently passed trough
a projection layer, which consists of a one-by-one convolution that increases the channel dimen-
sion, followed by batch normalization, a SiLU activation, and dropout. This projection enriches the
representational capacity of the network while preparing the features for the output layer. The out-
put classifier head of the model is configured by global average pooling operation, and regularized
with dropout before being passed into a fully connected layer that maps the features to seven output
categories, corresponding to the emotion classes under consideration.

4 RESULTS AND DISCUSSION

This section details the implementation details, experimental setup, dataset, and evaluation metrics
for the proposed framework. The MTKD, subsequent post-adversarial optimization and model de-
velopment were implemented in PyTorch 2.6, using Adam optimizer. The dual-phase optimization
pipeline was trained for 100 epochs with a batch size of 16 and input resolution of 224 x 224 x 3.
All experiments including Fine-tuning of the multi teacher, training and evaluation of the HyFER
lightweight student model were carried out on a computing system configured with an NVIDA
GeForce RTX 3090 GPU (12 GB VRAM) and 128 GB of system RAM.

Evaluation Metric. To assess the effectiveness of the dual-phase optimization framework against
state-of-the-art method we used several indicators, including accuracy, precision, recall, and
F1-score following (Khan et al.| 2025a).

Dataset. The selected teacher networks and student model is evaluated over KDEF (Calvo
& Lundgqvist, 2008) and FER2013 (Courville et al., 2013) dataset. FER2013 comprises 35,887
grayscale images of of size 48 x 48 resolution across seven emotion classes', collected via the
Google image search API. Similarly, KDEF dataset contains 4,900 samples representing seven basic
emotions', collected from 70 participants in a controlled laboratory environment by Karolinska
Institute. The class-wise statistical analysis of these benchmarks are presented in Table 1]

4.1 PERFORMANCE EVALUATION

This section presents performance analysis of the HyFER student model and baseline methods, op-
timized through proposed dual-phase optimization paradigm under K-fold cross-validation setup to
ensure robust and reliable evaluation, as reported in Table Q} The table demonstrated that meth-
ods such as EA-Net (Khan et al.,[2025b) and GA (Nida et al., 2024) achieved higher performance as
compared to other baseline methods over KDEF dataset containing controlled laboratory images. On
the other hand, FER2013 dataset, which presents more challenging samples varying illumination,
and occlusion, methods such as CBiLSTM (Liang et al., 2020b) and DBN (Vedantham & Reddy,
2020) exhibits significant drops in performance especially in precision and F1-score, highlighting
their limited generalization ability. Moreover other baselines such as PIDViT (Huang & Tsai, [2022])
and EA-Net (Khan et al.}2025b) demonstrate improved robustness but still fall short in comparison
to our proposed HyFER student model. In conclusion, these results indicates that the carefully de-
signed architecture of the lightweight student model, coupled with dual-phase optimization, ensures
consistent and robust performance in both controlled and unconstrained real-world settings.

'The seven facial emotion include angry, disgust, fear, happy, sad, surprise, and neutral.
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Table 2: Baseline and proposed method evaluation under the dual-phase (multi-teacher KD + Post-
KD adversarial training) optimization framework with 5-fold cross-validation (K=5). Results are
reported as mean =+ stander deviation for evaluation metrics including accuracy, precision, recall,
and Fl-score over KDED and FER2013 dataset. Our proposed method results is highlighted in
bold.

Method

KDEF FER2013
Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score
FMA+SVM (Solis-Arrazola et al.}2024]  0.725 £ 0.020 0.713 £0.016  0.724 £0.019 0.718 £0.017 0.589 +0.016 0.576 +0.019  0.583 4 0.021  0.564 £ 0.015
FMA+MLP (Solis-Arrazola et al.{2024)  0.726 £ 0.050  0.704 £ 0.090  0.716 £ 0.046  0.692 £ 0.062 0.582 & 0.065 0.568 £ 0.037 0.594 4 0.024  0.586 + 0.052
FMA+LD (Solis-Arrazola et al.{[2024 0.764 £0.014  0.75240.032 0.763 £ 0.025 0.754 +0.021  0.615£0.045 0.605 +0.024  0.613 & 0.015  0.600 + 0.026

DBN (Vedantham & Reddy|{2020} 0.885+£0.013 0.87240.017 0.862+0.015 0.865+0.018 0.647 £0.020 0.615+0.020 0.639 & 0.019  0.627 + 0.017
CBiLSTM (Liang et al.{2020b] 0.932+£0.036  0.916 £0.046 0.925+£0.062 0915 +0.022 0.5824+0.029 0.556 +£0.043 0.572 £0.052 0.565 + 0.047
Joint-Attention (Ghaleb et al.{2023] 0.963 +£0.026  0.926 +0.024 0.954 £0.036 0.946 +0.043 0.743 +£0.036  0.724 £0.025 0.726 £0.036  0.736 + 0.062
H-attention (Tao & Duan;2024} 0.972 +£0.047  0.956 £ 0.066 0.966 +0.046 0.975 £0.035 0.746 +0.033  0.733 £0.075 0.740 £0.105 0.733 £ 0.095
PIDViT (Huang & Tsai}2022} 0.973 £0.036  0.962 +0.054 0.975£0.067 0.975+0.043 0.763 +£0.033 0.754 £0.073 0.738 £0.033  0.748 + 0.026
MTAC (Zhang et al.|2023} 0.975 +£0.064 0.965 +0.073 0.963 £0.073 0.973 £0.057 0.726 £0.048 0.716 £0.047 0.726 £ 0.033  0.705 + 0.021
Hit-mst (Xia & Jiang|[2023] 0.985+0.036  0.975+0.046 0.973 £0.074 0983 £0.043 0.773 £0.064 0.764 £ 0.054 0.752 £0.043  0.743 £ 0.047
GA (Nida et al.|2024} 0.985+0.045 0.9754+0.024 0.967 £0.032 0.985+£0.043 0.775+0.043 0.763 £0.053 0.765 £0.073  0.769 + 0.063
EA-Net (Khan et al.||2025b] 0.992 +£0.053  0.996 +0.033  0.982 £0.062 0.991 +£0.026 0.760 + 0.063  0.770 = 0.074  0.790 £ 0.036  0.780 + 0.062
Proposed (ours) 0.996 + 0.015  0.997 4+ 0.026  0.987 = 0.013  0.982 + 0.019 0.794 + 0.024  0.786 = 0.015  0.776 = 0.036  0.785 + 0.022

4.2 ABLATION STUDY

In this section, we investigate the multi-teacher network selection, dual-phase optimization frame-
work and the HyFER student model computational cost in terms of GFLOPs, number of parameter
count and model size. Moreover, evaluation assessments of the teacher network selection and
HyFER were conducted under K-fold cross-validation.

Multi-Teacher Network Selection. Teacher networks for MTKD were selected through ex-
tensive experiments evaluation on the transformer-based models over benchmarks, as summarizes
in Table [3} The teacher network are selected based on the recognition performance, and computa-
tional cost. The selected networks include CrossViT-18 (Chen et al.| |2021b), DaViT (Ding et al.,
2022b), and MobileViT-S (Mehta & Rastegari, 2021b) demonstrate high recognition performance
while maintaining minimal computational overhead. The selected multi-teacher ensures that the
HyFER model effectively inherits rich multi-faced knowledge over MTKD optimization.

Table 3: Teacher models performance evaluation across FER 2013 and KDEF benchmarks. By in-
cluding the key metrices such as testing accuracy, loss values, number of parameters, computational
complexity (GFLOPs) and model size in megabytes (MB). Selected teacher networks are highlighted
in bold.

Teacher Models FER2013 KDEF Params (M) GFLOPs Size (MB)
Acc (%) Loss Acc (%) Loss

ConViT-S (d’Ascoli et al.|[2021) 67.994+042 0.844+0.012 92.524+0.28 0.308 + 0.007 27.35 5.35 104.32
CrossViT-18 (Chen et al.,2021b) 78.86 + 0.31 0.352 + 0.008 99.54 + 0.14 0.086 + 0.004 42.60 8.21 162.51
FastViT-SA24 (Vasu et al.|[2023} 69.51 £0.38 0.799 £0.010 94.22+0.33 0.279 + 0.006 20.54 2.89 78.34
EfficientViT-M2 (Liu et al.[2023) 69.324+0.35 0.775+0.011 9320+ 0.31 0.316 + 0.008 3.96 0.20 15.12
DaViT-B (Ding et al.{2022b) 77.62+0.29 0.562 +0.009 97.92 4+ 0.26 0.108 + 0.005 86.94 15.22 331.64
LeViT-192 (Graham et al.|[2021) 67.58 £0.45 0.841 £0.013 87.07+0.39 0.417 + 0.009 10.18 0.61 38.84
MaxViT-S (Tu et al.|[2022) 68.82+0.41 0.788+0.012 89.80+0.34 0.407 + 0.010 67.96 11.27 260.03
MobileViT-S (Mehta & Rastegari|[2021b) 77.49 +£0.32 0.570 £0.010 98.60 + 0.27  0.096 + 0.004 4.94 1.42 3.64

Multi-Teacher Guided Student Optimization. To distill rich knowledge from multiple teacher
networks into the student model, we evaluate both teacher and student performance before and af-
ter the data-centric preprocessing pipeline, as detailed in Table 4 Additionally, the knowledge is
progressively transferred from teacher to the student model from a single teacher to three teachers
networks. The reported results demonstrate that MTKD significantly improves student model per-
formance across both datasets, highlighting that multi-teacher KD not only enhances the discrimi-
native capability of the lightweight student model but also stabilizes training, leading to consistent
improvements across both benchmark datasets.

Student Model Post-Distillation Adversarial Optimization. The HyFER student model, initially
optimized via the multi-teacher networks, further refinement of HyFER models for real-world ap-
plicability is enhanced through diverse adversarial perturbation methods, including FGSM, PGD
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Table 4: Performance evaluation of the selected teacher networks and HyFER MTKD Before Pre-
processing (BP) and After preprocessing (AP) over FER2013 and KDEF benchmarks under 5-fold
cross-validation (K=5).

Acc % (BP) Loss (BP) Acc % (AP) Loss (AP)
Teacher Models
FER2013 KDEF FER2013 KDEF FER2013 KDEF FER2013 KDEF
CrossViT-18 (T1) 69.61 £0.42 9348 +0.36 1.7074+0.051 0.669 +£0.027 78.86+0.31 99.54 +0.14 0.352 £ 0.008 0.086 + 0.004
MobileViT-S (T2) 68.98 £ 037 9227+041 1.7364+0.046 0.826 £0.033 77.49+0.32 98.60 £0.27 0.570 £0.010 0.096 & 0.004
DaViT-B (T3) 77.62+£029 91.93+042 1.713+0.043 0.850 £0.029 77.62+0.29 97.92+0.26 0.562+0.009 0.108 & 0.005
"HyFER(NoKD) ~ 5152+061 8299+057 3503+0092 1944+0053 61.96+047 89.07+0.34 2.026+0.081 0.995+0.024

HyFER (KD: T1) 64.01 £0.48 9252+ 036 2.09540.067 0.804 £0.022 76.19+0.42 98.92+0.18 0.825+0.027 0.190 & 0.010
HyFER (KD: T1+T2) 66.14 £0.44 9326+0.29 19484+ 0.059 0.340+£0.012 77.924+0.38 99.03£0.10 0.632 +0.021 0.101 & 0.005
HyFER (KD: T1+4T2+T3) 70.25+0.28 94.92 +0.31 1.440 £ 0.067 0.148 +0.012 79.39 £ 0.25 99.50 + 0.15 0.283 + 0.009  0.056 - 0.003

and DeepFool. Table [5]reports HyFER model performance across benchmarks under K-fold cross-
validation, including accuracy, loss, precision, recall and F1-score. Evolution under white-box at-
tacks reveals that the student model consistently maintains strong performance across all metrics,
achieving the highest robustness over FGMS gradient-base single-step attack perturbed samples.
In contrast, PGD and DeepFool attacks adversarial examples leads to slightly lower performance,
reflecting the increased difficulty posed by these method in generating strong perturbed samples.

Table 5: Performance evaluation of the optimized student model trained with knowledge distillation
under various adversarial perturbations across benchmarks, reporting 5-fold cross-validation (K=5)
over accuracy, loss, Precision, Recall and F1-score indicators. The best performance achieved by
HyFER model is highlighted in bold.

Dataset Perturbation Accuracy Loss Precision Recall F1-Score
FGSM 78.83 £0.31 0.289 + 0.008 78.22 £ 0.027 78.80 + 0.023 77.52 £ 0.019
FER2013 PGD 78.41+0.28 0.295+0.009 7835+£0.025 77.10+0.021 76.58 +0.022
DeepFool 78.56 £0.30 0.291 £ 0.007 76.96 £ 0.020 77.57 +£0.024 78.42 £ 0.018
7777777777 FGSM 9943 +0.12 0.058 +0.003 98.92+0.009 99.38+0.010 99.01 + 0.007
KDEF PGD 99.34 £0.14 0.060 £+ 0.004 99.27 £0.011 99.18 £0.012 98.19 £ 0.010
DeepFool 99.39 +£0.13  0.059 +0.003 99.73 £0.008 98.23 +£0.009 99.25 + 0.008

5 CLOSING REMARKS

In this work, we presented a unified framework focusing on data quality and model design and
optimization for robust real-world FER system. The data quality enhancement pipeline aimed to
address critical limitations such as noisy/duplicated sample removal, landmark guided facial re-
finement, and class-aware rebalancing in widely used FER2013 and KDEF benchmarks. The data
refinement pipeline is followed by the model-centric phase introduces HyFER, a lightweight hybrid
CNN-Transformer model optimized through a dual-phase optimization strategy that combines multi-
teacher knowledge distillation with post-KD adversarial training. This unified framework improved
the generalization capability of the lightweight HyFER model, making it suitable for real-world
FER systems. In the future, we aim to scale up this framework tackle larger-scale FER benchmarks,
incorporating multimodal emotion cues, and dig into even more efficient optimization techniques.
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