
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HIGHLY EFFICIENT SELF-ADAPTIVE REWARD SHAP-
ING FOR REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Reward shaping is a technique in reinforcement learning that addresses the sparse-
reward problem by providing frequent and informative rewards. We introduce
a self-adaptive and highly-efficient reward shaping mechanism that incorporates
success rates derived from historical experiences as shaped rewards. The success
rates are sampled from Beta distributions, which dynamically evolve from uncer-
tain to reliable values as data accumulates. Initially, the shaped rewards exhibit
more randomness to encourage exploration, while over time, increasing certainty
enhances exploitation, naturally balancing exploration and exploitation. Our ap-
proach employs Kernel Density Estimation (KDE) with Random Fourier Features
(RFF) to derive the Beta distributions, providing a computationally efficient and
learning-free solution for high-dimensional state spaces. Our method is validated
on various tasks with extremely sparse rewards, demonstrating notable improve-
ments in sample efficiency and convergence stability over relevant baselines.

1 INTRODUCTION

Environments with extremely sparse rewards present notable challenges for reinforcement learning
(RL). In such contexts, as the reward model lacks immediate signals, agents receive feedback only
after long horizons, making the ability to quickly discover beneficial samples crucial for successful
learning (Ladosz et al., 2022). To address this, a straightforward solution is to reconstruct the reward
models by introducing auxiliary signals to assess the agent’s behavior, which has led to the popular
technique of Reward Shaping (RS) (Strehl & Littman, 2008; Gupta et al., 2022). Inverse reinforce-
ment learning (IRL), which extracts reward functions from human knowledge or expert demon-
strations, represents an intuitive approach within this framework Arora & Doshi (2021). However,
IRL heavily relies on extensive human input, which can be difficult to obtain especially in complex
environments. Alternatively, fully autonomous approaches have emerged as an attractive direction.

Automatically maintained reward shaping can be broadly categorized into two branches: intrinsic
motivation-based rewards, which are task-agnostic, and inherent value-based rewards, which are
typically task-specific. The former mainly introduces exploration bonuses to encourage agents to
explore a wider range of states, commonly by rewarding novel or infrequently visited states (Burda
et al., 2018; Ostrovski et al., 2017; Tang et al., 2017; Bellemare et al., 2016). While these methods ef-
fectively enhance exploration, they tend to overlook the internal values of the states. This can lead to
the ”noisy TV” problem, where agents fixate on highly novel but meaningless regions, thus trapping
them in suboptimal behaviors (Mavor-Parker et al., 2022). In contrast, the latter leverages high-level
heuristics to guide agents in extracting meaningful values from learning experiences, which helps
stabilize convergence. However, they often struggle in early exploration as non-directional guidance
is involved (Ma et al., 2024; Memarian et al., 2021; Trott et al., 2019).

To overcome the limitations of existing RS methods and combine the advantages of exploration-
encouraged and inherent value-based rewards, this paper introduces a novel Self-Adaptive Success
Rate based reward shaping mechanism (SASR). The success rate, defined as the ratio of a state’s
presence in successful trajectories to its total occurrences, works as an auxiliary reward distilled
from historical experience. This success rate assesses a state’s contribution toward successful task
completion, which closely aligns with the agent’s original objectives, offering informative guidance
for learning. Furthermore, to mitigate overconfidence caused by deterministic success rates, we
adopt Beta distributions to model success rates from a probabilistic perspective. Beta distributions

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

enable a self-adaptive evolution of confidence in approximating a state’s success rate, ensuring the
system gradually converges to reliable rewards as more data is collected, while preventing prema-
ture certainty. To derive Beta distributions, we use kernel density estimation (KDE) enhanced by
random Fourier features (RFF) to estimate success and failure counts, formulating a highly efficient
approach. The main contributions of this paper are summarized as follows:

• We propose SASR, an autonomous reward-shaping mechanism designed for sparse-reward en-
vironments. By deriving a success rate from historical experiences that aligns with the agent’s
optimization objectives, SASR effectively augments the environmental rewards.

• A novel self-adaptive mechanism is introduced to achieve an efficient exploration-exploitation
balance. Initially, low-confidence Beta distributions provide uncertain rewards to expand the ex-
ploration range by perturbing the reward function and assigning higher rewards to unvisited states.
As more experience accumulates, high-confidence Beta distributions offer more reliable and pre-
cise rewards to enhance exploitation.

• To derive the Beta distributions in continuous state spaces, we implement KDE with RFF, form-
ing a learning-free approach that eliminates the need for additional neural networks or models,
achieving remarkably low computational complexity.

• SASR is evaluated on various extremely sparse-reward tasks, significantly outperforming several
baselines in sample efficiency, learning speed, and convergence stability.

2 RELATED WORK

Reward shaping (RS) methods can generally be categorized based on the source of learning: either
from human knowledge or agent’s own experiences. Techniques that derive reward models from hu-
man knowledge, such as Inverse Reinforcement Learning (IRL) (Arora & Doshi, 2021; Ramachan-
dran & Amir, 2007; Ziebart et al., 2008; Hadfield-Menell et al., 2016) and Inverse Optimal Control
(IOC) (Schultheis et al., 2021), aim to extract reward or objective functions from expert demonstra-
tions. Following this, transferring the learned reward models to new tasks has received considerable
efforts (Bıyık et al., 2022; Wu et al., 2021; Ellis et al., 2021; Cheng et al., 2021; Adamczyk et al.,
2023; Lyu et al., 2024). However, these methods rely heavily on human-generated data and of-
ten struggle to adapt to out-of-distribution scenarios. Thus, our focus shifts toward autonomous
self-learning approaches, which can be further divided into intrinsic motivation-based and inherent
value-based rewards based on the nature of the rewards.

Intrinsic motivation based RS explores general heuristics or task-agnostic metrics to encourage
exploration. Potential-based algorithms define the shaped reward as γΦ(s′) − Φ(s), where Φ(·) is
a potential function. This ensures the reward cancels out in the Bellman equation, preserving the
optimal policy (Devlin & Kudenko, 2012; Asmuth et al., 2008; Wiewiora, 2003). However, de-
signing the potential function is highly dependent on the environmental dynamics, making it more
applicable to model-based RL. More commonly, methods incorporate exploration bonuses to re-
ward novel states (Mahankali et al., 2024; Devidze et al., 2022; Badia et al., 2020; Hong et al.,
2018; Eysenbach et al., 2019). Representatively, count-based strategies track visitation counts and
assign higher rewards to less frequently visited states (Lobel et al., 2023; Machado et al., 2020; Fox
et al., 2018; Fu et al., 2017; Martin et al., 2017). In continuous spaces, state counting is challeng-
ing, so Tang et al. (2017) introduced a hash function to discretize the state space, Bellemare et al.
(2016) proposed pseudo-counts based on recording probabilities, and Ostrovski et al. (2017) used
PixelCNN Van den Oord et al. (2016). Additionally, random network distillation based methods
measure state novelty by neural networks (Yang et al., 2024b; Burda et al., 2018), curiosity-driven
approaches reward agents for encountering surprising or unpredictable states (Yang et al., 2024a;
Sun et al., 2022; Burda et al., 2019; Pathak et al., 2017). Although intrinsic motivation has proven
effective in enhancing exploration, only considering novelty while ignoring the inherent values of
states may lead to suboptimal policies. A notable example illustrating this limitation is the ”noisy
TV” problem (Mavor-Parker et al., 2022), where agents may become attracted to irrelevant, dynamic
stimuli that generate high novelty but provide no useful information.

Inherent value based RS, on the other hand, focuses on task-related signals that highlight how
states contribute to achieving higher rewards and their underlying significance. For instance, Trott
et al. (2019) introduced additional rewards based on the distance between a state and the target;
Stadie et al. (2020) derived informative reward structures using a Self-Tuning Network to optimize

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

guidance; Memarian et al. (2021) captured the preferences among different trajectories by ranking
them via a trained classifier; Zheng et al. (2018) minimized the KL-divergence between learned and
original rewards to align their distributions. Mguni et al. (2023) used an auxiliary agent competing
against the original agent in a Markov game; Instead, Ma et al. (2024) introduced ReLara, a col-
laborative framework where an assistant reward agent automatically generates rewards to guide the
policy agent. Moreover, incorporating multiple agents or hierarchical structures to share and trans-
fer knowledge through synchronized reward functions is another promising research direction (Park
et al., 2023; Yi et al., 2022; Gupta et al., 2023; Hu et al., 2020; Raileanu & Rocktäschel, 2020).

While intrinsic motivation rewards guide exploration, inherent value rewards support convergence,
Ma et al. (2024) combined these two advances by introducing a scheme that evolves the shaped re-
wards from random perturbations into meaningful metrics. Building on this idea, our study considers
the success rate as an informative value. Compared with ReLara, which depends on a black-box RL
agent and iterative optimization via backpropagation to achieve a well-performing reward model,
our approach computes the shaped rewards directly from historical data, effectively reducing the
delay of reward model convergence and enhancing explainability.

3 PRELIMINARIES

Reinforcement Learning (RL) aims to train an agent to interact with an environment, which is
commonly modeled as a Markov Decision Process (MDP). An MDP represented as ⟨S,A, T,R, γ⟩,
involves four main components: S is the state space, A is the action space, T : S ×A× S → [0, 1]
is the probability of transitioning from one state to another given a specific action, and R : S → R
is the reward model. The objective in RL is to learn a policy π(a|s) that maximizes the expected
cumulative rewardsG = E[

∑∞
t=0 γ

tR(st)], where π(a|s) indicates the likelihood of selecting action
a in state s, and γ is the discount factor (Sutton & Barto, 2018).

Beta Distribution is defined on the interval [0, 1], making it ideal for modeling proportions or
probabilities. It is parameterized by α and β, which are interpreted as prior counts of successes and
failures of a binary outcome. The probability density function of a Beta-distributed variable X is:

f(x;α, β) =
1

B(α, β)
xα−1(1− x)β−1, (1)

whereB(α, β) is beta function. The key attribute of Beta distribution is its adaptability: as more data
accumulates, the values of α and β increase, the distribution’s shape becomes narrower, thereby in-
creasing confidence in the estimated probabilities. This feature is particularly beneficial in adaptive
online learning, aligning closely with our objective of balancing exploration and exploitation.

Kernel Density Estimation (KDE) is a non-parametric approach to approximate the probability
density function of a random variable from data samples. Given n data points {xi}ni=1, KDE
smooths these points to approximate the density function as follows:

d̂(x) =
1

nh

n∑
i=1

K

(
x− xi
h

)
, (2)

where h is the bandwidth, K(·) is a kernel function such as Gaussian kernel, Laplacian kernel, or
Cauchy kernel. KDE is particularly useful in scenarios where the actual distribution is not well-
defined or complex, such as continuous state spaces in our RL environments.

4 METHODOLOGY

We propose a Self-Adaptive Success Rate based reward shaping mechanism (SASR) to accelerate
RL algorithms learning in extremely-sparse-reward environments. Figure 1 illustrates the principles
of the SASR mechanism: The diagram consists of two parts representing the early and late learning
stages. As experiences accumulate with learning progresses, the Beta distributions modeling the
success rates evolve from being more stochastic to more deterministic. This autonomous adaption
closely aligns with the agent’s exploration-exploitation balance. Section 4.1 introduces how Beta
distributions evolve and how shaped rewards are generated from them. Additionally, to achieve
highly efficient computation, we leverage KDE and RFF to estimate success and failure counts,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 1: A schematic diagram of the self-adaptive success rate based reward shaping mechanism.
KDE: Kernel Density Estimation; RFF: Random Fourier Features.

which are used to derive the corresponding Beta distributions, as detailed in Section 4.2. Lastly,
Section 4.3 presents the integration of SASR into the RL agent and the overall algorithmic flow.

4.1 SELF-ADAPTIVE SUCCESS RATE SAMPLING

We formulate the augmented reward function in SASR as adding an auxiliary shaped reward RS(s)
to the environmental reward RE(s), weighting by a factor λ:

RSASR(s) = RE(s) + λRS(s). (3)
We assign the shaped reward RS(si) of a given state based on its success rate – defined as the ra-
tio of the state’s presence in successful trajectories to its total occurrences. This metric provides a
meaningful reward from a statistical perspective: a higher success rate, reflected in a higher shaped
reward, indicates a greater likelihood that the state will guide the agent toward successful task com-
pletion. Formally, the success rate based shaped reward RS(si) is given by:

RS(si) = f

(
NS(si)

NS(si) +NF (si)

)
, (4)

where NS(si) and NF (si) denote the counts of state si appearing in successful and failed historical
trajectories, respectively. To enhance scalability and adaptability, f(·) is a linear scaling function that
maps the original success rate from [0, 1] to a desired scale [Rmin, Rmax], making the magnitude of
the shaped rewards more flexible, i.e., f(x) = Rmin + x · (Rmax −Rmin).
Given NS(si) and NF (si), directly using a deterministic success rate may lead to overconfidence
in the estimation of the true value. To address this, inspired by the principles of Thompson sam-
pling (Thompson, 1933; Agrawal & Goyal, 2012), we adopt a probabilistic perspective for success
rate estimation. Specifically, the success rate of each state is approximated as a variable in a Beta
distribution, with shape parameters set as α = NS(si) + 1 and β = NF (si) + 1:

rSi ∼ Beta(r;α, β) =
1

B(NS(si) + 1, NF (si) + 1)
rNS(si)(1− r)NF (si), (5)

where the beta function B(·, ·) is the normalization factor. By sampling from this distribution, we
obtain a probabilistic estimate of the true success rate. This sampled value, rSi , is then processed
through the scaling function f(·) to produce the shaped reward: RS(si) = f(rSi).

As NS(si) and NF (si) progressively increase throughout the learning process, they influence the
shape and sampling variability of the Beta distribution. Generating the shaped reward from these
evolving Beta distributions offers several advantages:
• Encourage Exploration. In the early phases, lower counts of NS(si) and NF (si) result in Beta

distributions with higher variance, making the sampled rewards more stochastic. This can be
viewed as a noisy perturbation of the reward function. Given that the environmental rewards are
predominantly zero, this perturbation optimizes the agent in diverse directions with tiny steps,
shifting the anchors from which the stochastic policy sampling actions. Meanwhile, early-visited
states are likely to fail, leading to a decrease in their success rates, while unvisited states retain
the initial Beta distribution Beta(1, 1), which in turn receives relatively higher rewards. This
mechanism drives the agent to explore novel regions, aligning with the principles of intrinsic
motivation. (Supporting experimental results in Section 5.2.)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

• Enhance Exploitation. In the late phases, as the counts NS(si) and NF (si) increase, the Beta
distribution gradually sharpens, concentrating generated rewards closer to the true success rate.
The certain reward signals with higher confidence highly support the agent’s exploitation, facili-
tating more efficient convergence towards optimal policies.

• Consistent Optimization. The peak of the Beta distribution, computed as NS(si)/(NS(si) +
NF (si)), directly equals to the success rate. Meanwhile, the expectation, (NS(si)+1)/(NS(si)+
NF (si) + 2), closely approximates the success rate. This ensures that, despite stochastic, the
overall reward remains consistent with policy optimization.

4.2 HIGHLY EFFICIENT BETA DISTRIBUTION DERIVATION

In this section, we present how the success and failure counts, NS(si) and NF (si), are derived
for the Beta distributions. To efficiently estimate these counts in high-dimensional, continuous,
or infinite state spaces, we use Kernel Density Estimation (KDE) to approximate the densities of
successes and failures from accumulated experience. Specifically, we maintain two buffers, DS and
DF , to store the states in successful and failed trajectories, respectively. By treating these states as
scattered data instances distributed across the state space, KDE estimates the density as:

d̃X(si) =
1

|DX |

|DX |∑
j=1

K(si − sj), X ∈ {S, F}, (6)

where K(·) is the kernel function and |DX | is the buffer size. We select Gaussian kernel in our
implementation. The estimated density d̃X(si) approximates the likelihood of encountering state
si in success or failure scenarios, providing a statistically sound basis for estimating NX(si). By
multiplying d̃X(si) by the total number of observed states N , the count ÑX(si) is estimated as:

ÑX(si) = N × d̃X(si) =
N

|DX |

|DX |∑
j=1

exp

(
−||si − sj ||

2

2h2

)
, X ∈ {S, F}, (7)

where h is a hyperparameter, the bandwidth of the Gaussian kernel.

We further integrate Random Fourier Features (RFF) (Rahimi & Recht, 2007) to reduce compu-
tational complexity, as calculating the Gaussian kernel can be expensive, especially in scenarios
involving high-dimensional state spaces and large buffers. RFF approximates the kernel function of
the original k-dimensional states through an inner product of M -dimensional randomized features:

K(si, sj) ≈ z(si)T z(sj), z(s) =

√
2

M
cos(W T s+ b), (8)

where z(·) is the RFF mapping function with W =
[
w(1), . . . ,w(M)

]
∈ Rk×M and b =[

b(1), . . . , b(M)
]T ∈ RM randomly sampled from the following spectral distributions:

w(m) ∼ N (0, σ−2Ik), b(m) ∼ Uniform(0, 2π), m = 1, . . . ,M, (9)
where Ik is the k × k identity matrix. Equation 9 is applied for the Gaussian kernel, while different
kernels and the detailed derivations of the RFF method are provided in Appendix A.1.

4.2.1 IMPLEMENTATION DETAILS

Retention Rate. We introduce a hyperparameter, the retention rate ϕ ∈ (0, 1], to regulate the
volume and diversity of states stored in the buffers. Rather than storing all encountered states,
we uniformly retain a specific portion of ϕ. The motivations behind this are: (1) adjacent states
in one trajectory tend to be highly similar, especially those near the initial state are repetitive and
uninformative, retaining a portion of states can skip redundant states and increase sample diversity;
(2) using a lower retention rate in the early stage keeps NS and NF lower, resulting in broader Beta
distributions and preventing premature overconfidence.

Defining Success and Failure. In tasks where sparse rewards are only given at the end of an episode
to indicate task completion, the entire trajectory can be classified as either a success or failure based
on the episodic reward. For tasks with sparse rewards that do not explicitly indicate task completion,
we segment the trajectories by positive reward occurrences. Specifically, if a reward is obtained
within a pre-defined maximum steps, the corresponding sub-sequence is classified as a success;
otherwise, it is considered a failure.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 Self-Adaptive Success Rate based Reward Shaping

Require: Environment E and agent A.
Require: Experience replay buffer D.
Require: State buffers for success DS and failure DF .
Require: RFF mapping function z : Rk → RM . ▷ Sample W and b based on Equation 9

1: for each trajectory τ = ∅ do
2: for each environmental step do
3: (st, at, st+1, r

E
t)← CollectTransition(E ,A) ▷ interact with the environment

4: D ← D ∪ {(st, at, st+1, r
E
t)} ▷ store the transition in the replay buffer

5: τ ← τ ∪ {st} ▷ record the state in the trajectory
6: end for
7: if trajectory is successful: DS ← DS ∪ τ ▷ store the trajectory in the success buffer
8: else: DF ← DF ∪ τ ▷ otherwise, store the trajectory in the failure buffer
9: end for

10: for each update step do
11: {(st, at, rEt , st+1)i} ∼ D ▷ sample a batch of transitions from the replay buffer
12: ÑS = z(st)

T z(DS) ▷ estimate the success counts
13: ÑF = z(st)

T z(DF) ▷ estimate the failure counts
14: rSt ∼ Beta(r; ÑS + 1, ÑF + 1) ▷ sample the success rate from the Beta distribution
15: rSASRt = rEt + λf(rSt) ▷ compute the SASR reward
16: Update agent A with {(st, at, rSASRt , st+1)i}
17: end for

4.2.2 TIME AND SPACE COMPLEXITY OF SASR

Suppose the buffer size of DX is D and the batch size is B per iteration, the computational com-
plexity to compute the count NX is O(MDB), indicating linear complexity (detailed derivation in
Appendix A.2). RFF transforms nonlinear kernel computations into linear vector operations, sig-
nificantly speeding up computation by leveraging the vectorization capabilities of GPUs (Dongarra
et al., 2014). This demonstrates its higher efficiency compared to methods that rely on network
updates and inferences involving extensive nonlinear computations.

Given the retention rate ϕ, the space complexity of maintaining two buffers is O(ϕT |s|), where T is
the total iterations and |s| is the size of a single state. Moreover, storage space can be significantly
conserved by leveraging the existing replay buffer in off-policy RL algorithms, like SAC (Haarnoja
et al., 2018a) and TD3 (Fujimoto et al., 2018). Specifically, we augment the replay buffer with a flag
that marks each state as either a success (flag = 1) or failure (flag = 0). Thereby, we can efficiently
manage space requirements at the cost of minimal overhead from indexing processing.

For supporting experimental results in time and space complexity, please refer to Appendix A.3.

4.3 THE SASR MECHANISM FOR RL AGENTS

Building upon the SASR reward, we employ the soft actor-critic (SAC) algorithm by Haarnoja
et al. (2018a) as the foundation for our RL agent. Let Qψ be parameterized Q-network and πθ be
parameterized policy network. The Q-network can be optimized by the following loss function:

L(ψ) =
(
Qψ(st, at)−

(
rEt + λRS(st) + γQψ′(st+1, at+1)

))2

, (10)

where Qψ′ is obtained from a secondary frozen target network to maintain a fixed objective (Mnih
et al., 2015). It is worth noting that the environmental reward rEt is retrieved from the replay buffer.
Conversely, the shaped reward RS(st) is computed in real-time using the most recently updated
NS(st) and NF (st), thereby capturing the latest advancements in learning progress.

We optimize the policy network by maximizing the expected Q-value and the entropy of the policy
H
(
πθ(·|st)

)
, following Haarnoja et al. (2018b):

L(θ) = Eat∼πθ(·|st)
[
−Qψ(st, at) + log πθ(at|st)

]
. (11)

The flow of the SAC-embedded SASR algorithm is summarized in Algorithm 1.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 2: MuJoCo, robotic, Atari games and physical simulation tasks in our experiments. Detailed
descriptions and the environmental reward models of each task are provided in Appendix A.8.

0 200 400 600 800 1000

0

20

40

60

80

100

120

Ep
is

od
e

re
tu

rn
s

AntStand

0 200 400 600 800 1000

0

50

100

150
AntFar

0 200 400 600 800 1000

0

50

100

150

200

RobotReach

0 500 1000 1500 2000

0

25

50

75

100

125

150
RobotSlide

0 2000 4000 6000 8000 10000

0

50

100

150
PitFall

0 200 400 600 800 1000

0

5

10

15

Frogger

0 2000 4000 6000 8000 10000

0

2000

4000

6000

8000
MontezumaRevenge

0 200 400 600 800 1000

Steps (×103)

0

20

40

60

80

100

Ep
is

od
e

re
tu

rn
s

HumanStand

0 200 400 600 800 1000

0

50

100

150

200

HumanKeep

0 200 400 600 800 1000

0

50

100

150

200

RobotPush

0 1000 2000 3000 4000

0.0

0.2

0.4

0.6

0.8

1.0

RobotPickPlace

0 200 400 600 800 1000

0

10

20

30

40

Solaris

0 200 400 600 800 1000

0

5

10

15

20

25

Freeway

0 100 200 300

1.0

0.5

0.0

0.5

1.0

MountainCar

SASR DRND-online ReLara GFA-RFE ROSA ExploRS #Explo RND SAC TD3 PPO

Figure 3: The learning performance of SASR compared with the baselines.

5 EXPERIMENTS

We evaluate SASR in high-dimensional environments, including four MuJoCo tasks (Todorov et al.,
2012), four robotic tasks (de Lazcano et al., 2023), five Atari games, including the well-know Mon-
tezuma’s Revenge Bellemare et al. (2013), and a physical simulation task (Towers et al., 2023), as
shown in Figure 2. All tasks provide extremely sparse rewards, with a reward of 1 granted only upon
reaching the final objective within the maximum permitted steps. To ensure robust validation, we
run 10 instances per setting with different random seeds and report average results. We also maintain
consistent hyperparameters and network architectures across all tasks, detailed in Appendix A.8.

5.1 COMPARISON AND DISCUSSION

Baselines. We compare SASR with ten baselines to benchmark its performance: (a) the online Dis-
tributional Random Network Distillation (DRND) (Yang et al., 2024b), (b) RL with an Assistant
Reward Agent (ReLara) (Ma et al., 2024), (c) General Function Approximation Reward-Free Ex-
ploration (GFA-RFE) (Zhang et al., 2024), (d) RL Optimizing Shaping Algorithm (ROSA) (Mguni
et al., 2023), (e) Exploration-Guided RS (ExploRS) (Devidze et al., 2022), (f) Count-based static
hashing exploration (#Explo) (Tang et al., 2017), (g) Random Network Distillation (RND) (Burda
et al., 2018), (h) Soft Actor-Critic (SAC) (Haarnoja et al., 2018a), (i) Twin Delayed DDPG
(TD3) (Fujimoto et al., 2018), and (j) Proximal Policy Optimization (PPO) (Schulman et al., 2017).
Algorithms (a) to (g) are all reward shaping methods, involving either exploration bonuses or auxil-
iary agents to shape rewards, while algorithms (h) to (j) are advanced RL algorithms.

Figure 3 shows the learning performance of SASR compared with the baselines, and Table 1 reports
the average episodic returns with standard errors achieved by the final models over 100 episodes.
Our findings indicate that SASR surpasses the baselines in terms of sample efficiency, learning sta-
bility, and convergence speed. The primary challenge in these environments is the extremely sparse
reward given after a long horizon, making exploration essential for timely obtaining successful tra-
jectories. Although the exploration strategies of algorithms such as ExploRS, #Explo, and RND are
designed to reward novel states, effectively expanding the early exploration space with the direct
additional target, they continue focusing on discovering novel states, overlooking the implicit values
of these states, which makes them fail to return to the final objectives.

SASR outperforms the baselines primarily due to its self-adaptive reward evolution mechanism. In
the early phases, SASR encourages exploration by injecting substantial random rewards to optimize
the agent in multiple directions, thereby increasing the likelihood of collecting positive samples.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: The average episodic returns and standard errors of all models tested over 100 episodes.

Tasks SASR DRND-online ReLara GFA-RFE ROSA ExploRS #Explo RND SAC TD3 PPO

AntStand 94.9±0.0 67.3±0.0 90.5±1.7 54.2±0.0 3.8±0.4 5.1±0.4 17.9±0.0 4.0±0.2 31.6±0.0 0.0±0.0 4.9±0.1
AntFar 139.8±0.0 93.2±0.0 115.7±0.0 86.4±0.0 1.0±0.0 12.0±4.2 75.1±0.0 4.6±1.6 25.3±0.0 1.0±0.0 7.8±0.0

HumanStand 79.8±2.0 50.6±0.0 76.2±0.7 58.2±0.0 8.8±0.0 9.3±0.0 72.7±0.0 9.3±0.1 9.9±0.0 5.5±0.0 9.0±0.1
HumanKeep 195.8±0.0 154.5±0.0 194.9±0.0 141.5±0.0 169.7±0.0 182.8±0.0 195.0±0.0 180.7±0.0 2.5±0.0 1.0±0.0 138.1±0.0
RobotReach 170.2±0.0 99.8±0.0 187.9±0.0 42.1±0.0 0.1±0.0 0.7±0.0 4.6±0.0 69.3±0.0 156.5±0.0 0.0±0.0 79.5±0.0
RobotSlide 132.3±1.3 127.2±0.0 111.6±2.0 115.8±2.0 11.2±0.9 4.3±0.1 3.5±0.0 4.8±0.2 0.7±0.2 0.5±0.4 0.2±0.2
RobotPush 167.1±0.0 122.2±0.0 166.9±0.0 49.1±0.0 0.0±0.0 0.0±0.0 3.7±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

RobotPickPlace 1.0±0.0 1.0±0.0 1.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
Pitfall 93.0±0.0 92.0±0.0 40.3±0.0 89.4±0.0 0.0±0.0 57.6±0.0 0.0±0.0 0.0±0.0 4.6±0.0 0.5±0.0 0.0±0.0

Frogger 14.2±0.0 11.7±0.0 11.6±0.0 7.9±0.0 9.8±0.0 8.3±0.0 11.9±0.0 10.5±0.0 0.8±0.0 0.7±0.0 0.0±0.0
Montezuma 6737.9±0.0 6828.5±0.0 2421.9±0.0 4755.3±0.0 4294.4±0.0 3971.5±0.0 1400.1±0.0 5494.3±0.0 0.0±0.0 0.0±0.0 0.0±0.0

Solaris 42.1±0.0 21.3±0.7 20.3±0.0 26.3±0.0 0.1±0.0 17.0±0.0 1.2±0.8 9.8±0.0 6.0±0.0 0.4±0.0 1.5±0.0
Freeway 22.4±0.0 19.8±0.0 21.5±0.0 10.1±0.0 18.0±0.0 17.5±0.0 6.9±0.0 13.0±0.0 0.1±0.0 0.2±0.0 0.0±0.0

MountainCar 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 -0.9±0.0 -1.0±0.0 1.0±0.0 1.0±0.0 -0.1±0.0 0.0±0.0 0.9±0.0

Moreover, almost all states are classified into the failure category, which leads to a decrease in the
success rate of these states. Therefore, the unvisited states, which in turn receives relatively higher
rewards, are encouraged to be visited. This mechanism is like the intrinsic motivation to give higher
rewards to novel states, thus effectively guiding the agent to broaden the exploration space. As more
data is collected, the success rate becomes more accurate, and the shaped reward provides more
valuable guidance, significantly enhancing the exploitation and stabilizing the convergence toward
optimal policies. Cooperatively, these strategies improve SASR’s sample efficiency and convergence
stability in challenging tasks.

While ReLara used a similar exploration mechanism to SASR by perturbing reward functions, it
relies on an independent black-box agent, requiring more iterations to converge. In contrast, SASR’s
success rate sampling is more direct, reducing the delay in converging to valuable information.
ReLara’s advantage lies in incorporating the policy agent’s actions into reward construction, as seen
in the RobotReach task, where the target point is randomly selected in each episode. In this case,
ReLara outperforms SASR due to access to action information. This can also be achieved in SASR
by treating actions as additional features in the state vector.

5.2 EFFECT OF SELF-ADAPTIVE SUCCESS RATE SAMPLING

SASR introduces a novel self-adaptive mechanism that balances exploration and exploitation by
maintaining the randomness of the shaped rewards. To further explore the effect of this mechanism,
we use the AntStand task as a case study, analyzing the shaped rewards learned at different stages of
training. Figure 4 (bottom) shows the learning curve, while Figure 4 (top) illustrates the distributions
of generated rewards over the “height of the ant” feature, one dimension in the state vector.

Figure 4: Distributions of the shaped rewards over the height of the ant robot in the AntStand task at
different training stages. Red diamonds represent the estimated success rate, while the blue polylines
show the actual shaped rewards sampled from the Beta distribution.

As learning progresses, the shaped rewards demonstrate two key attributes: the values transition
from random to meaningful, and the variance decreases from uncertain to deterministic. Although
the sampled rewards fluctuate, their center gradually shows a positive linear correlation with the
robot’s height. In early phases, the shaped rewards contain significant randomness due to higher un-
certainty. Although these random signals offer limited information, they drive the agent to take tiny
optimization steps in diverse directions, effectively shifting the anchors of the policies, thus broad-
ening the actions sampled from SAC’s stochastic policy, encouraging exploration, and increasing
the diversity of collected samples. In later phases, the rewards converge to closely match the height
of the robot, a meaningful and intuition-aligned metric, which enhances the agent’s exploitation.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 5: The density of visited states in the MountainCar task for four training periods.

To further investigate SASR’s exploration behavior, we compare the density of the visited states
throughout the training in the MountainCar task with five representative exploration strategies: (1)
ReLara, perturbating on both rewards and actions; (2) #Explo and (3) RND, rewarding novel states;
(4) SAC, entropy-regularized exploration; and (5) NoisyNet (Fortunato et al., 2018), perturbing
network weights. The density for every 25k steps is shown in Figure 5. We observe that SASR
progressively covers a wider range of the state space. From 50k to 100k steps, SASR reaches
positions near the goal, driven by the success rate mechanism. In contrast, ReLara and RND cover a
similar range to SASR, but is less smooth and takes longer to reach the right side. #Explo shows no
clear rightward shift, as it focuses on rewarding novelty, ignored the inherent value of states. SAC’s
exploration is relatively narrow, making it easier to trap in local optima. NoisyNet shows a narrowing
range as network weight perturbations diminish through optimization. Overall, SASR demonstrates
more effective exploration and collects valuable samples sooner, leading to faster convergence.

5.3 ABLATION STUDY

We conduct ablation studies to investigate key components of SASR. We select six representative
tasks to report the experimental results, and the quantitative data is provided in Appendix A.5.

Sampling from Beta distributions. (Figure 6a) We examine a variant of SASR that omits Beta
distribution sampling, instead directly using the success rate NS(si)/(NS(si) + NF (si)). In the
early stages, limited experience makes this success rate an unreliable estimate, and using this fixed,
overly confident value can mislead the agent. Furthermore, skipping Beta distribution sampling
removes the exploration driven by random rewards, leading to narrower exploration. The results
highlight the critical role of Beta distribution sampling for effective learning.

Reward function over state-action pair. (Figure 6b) We compare the performance of SASR with
the reward function defined over the state-action pair, r(s, a), and the state-only reward function,
r(s). The results show that both settings achieve similar performance levels. Encoding action
into reward function increases the dimensionality, complicating density estimation and correlation
assessment. Furthermore, the state and action vectors may exhibit different distributions, potentially
reducing the accuracy of KDE estimations.

Retention rate ϕ. (Figure 6c) The retention rate controls the estimation of counts, which affects
the confidence of Beta distributions. A high retention rate (ϕ = 1) preserves all samples, resulting
in a densely populated and redundant state pool, causing the Beta distribution to be prematurely
overconfident, which degrades performance. Conversely, a low retention rate (ϕ = 0.01) slows
convergence by requiring more iterations to gather sufficient samples. The results suggest that an
appropriate retention rate is important.

RFF feature dimensionsM . (Figure 6d) SASR shows relatively low sensitivity toM , provided it is
large enough to capture the states’ complexity. Results show that values like M = 500, 1000, 2000

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 200 400 600 800 1000

Steps (×103)

0

20

40

60

80

100

Ep
is

od
e

re
tu

rn
s AntStand

0 200 400 600 800 1000

0

50

100

150
AntFar

0 200 400 600 800 1000

20

40

60

80

100
HumanStand

0 200 400 600 800 1000

0

50

100

150

200

HumanKeep

0 200 400 600 800 1000

0

50

100

150

200

RobotReach

0 200 400 600 800 1000

0

50

100

150

200

RobotPush

SASR (default) without Beta distribution

(a) The impact of omitting Beta distribution sampling on the performance of SASR.

0 200 400 600 800 1000

Steps (×103)

0

25

50

75

100

Ep
is

od
e

re
tu

rn
s AntStand

0 200 400 600 800 1000

0

50

100

150

AntFar

0 200 400 600 800 1000

20

40

60

80

100
HumanStand

0 200 400 600 800 1000

0

50

100

150

200

HumanKeep

0 200 400 600 800 1000

0

50

100

150

200

RobotReach

0 200 400 600 800 1000

0

50

100

150

200

RobotPush

baseline ReLara SASR R(s) SASR R(s, a)

(b) Learning performance of SASR with shaped reward function RS(s, a) and RS(s).

0 200 400 600 800 1000

Steps (×103)

0

20

40

60

80

100

Ep
is

od
e

re
tu

rn
s AntStand

0 200 400 600 800 1000

0

50

100

150
AntFar

0 200 400 600 800 1000

20

40

60

80

100
HumanStand

0 200 400 600 800 1000

0

50

100

150

200

HumanKeep

0 200 400 600 800 1000

0

50

100

150

200

RobotReach

0 200 400 600 800 1000

0

50

100

150

200

RobotPush

= 1 = 0.1 (default) = 0.01

(c) Learning performance of SASR with different retention rates ϕ.

0 200 400 600 800 1000

Steps (×103)

0

50

100

150

Ep
is

od
e

re
tu

rn
s AntStand

0 200 400 600 800 1000

0

50

100

150

AntFar

0 200 400 600 800 1000
0

20

40

60

80

100
HumanStand

0 200 400 600 800 1000

0

50

100

150

200

HumanKeep

0 200 400 600 800 1000

0

50

100

150

200

RobotReach

0 200 400 600 800 1000

0

50

100

150

200

250
RobotPush

M = 50 M = 500 M = 1000 (default) M = 2000

(d) Learning performance of SASR with different RFF feature dimensions M .

0 200 400 600 800 1000

Steps (×103)

0

20

40

60

80

100

Ep
is

od
e

re
tu

rn
s AntStand

0 200 400 600 800 1000

0

50

100

150
AntFar

0 200 400 600 800 1000

20

40

60

80

100
HumanStand

0 200 400 600 800 1000

0

50

100

150

200

HumanKeep

0 200 400 600 800 1000

0

50

100

150

200

RobotReach

0 200 400 600 800 1000

0

50

100

150

200

RobotPush

= 0.2 = 0.4 = 0.6 (default) = 0.8 = 1.0

(e) Learning performance of SASR with different shaped reward weight factors λ.

Figure 6: Ablation study: the impact of key components on the performance of SASR.

all yield similar performance levels, while significantly low dimensions, such as M = 50, degrade
performance. This is also suggested in the original RFF study (Rahimi & Recht, 2007).

Shaped reward weight factor λ. (Figure 6e) Regarding the shaped reward weight factor λ, we
observe that SASR performs better with intermediate values like λ = 0.4, 0.6, 0.8. At λ = 0.2,
the minimal shaped reward scale reduces state differentiation, leading to suboptimal performance.
At λ = 1, aligning the shaped reward scale with the environmental reward introduces excessive
uncertainty and randomness, which may overwhelm the feedback and hinder learning. The findings
highlight that maintaining a balanced reward scale is important for optimal learning outcomes.

6 CONCLUSION AND DISCUSSION

In this paper, we propose SASR, a self-adaptive reward shaping algorithm based on success rates, to
address the sparse-reward challenge. SASR achieves an exploration and exploitation balance mech-
anism by generating shaped rewards from evolving Beta distributions. Experiments demonstrate
that this adaptability significantly enhances the agent’s convergence speed. Additionally, the im-
plementation of KDE and RFF formulates a highly-efficient and learning-free approach to deriving
Beta distributions. This mechanism also provides a sound alternative to traditional count-based RS
strategies, adapting effectively to continuous environments. Our evaluations confirm the superior
performance of SASR in terms of sample efficiency and learning stability.

While SASR is designed for sparse-reward environments, in settings with dense rewards, the intro-
duction and maintenance of additional shaped rewards could be unnecessary. Exploring the exten-
sion of SASR to dense reward scenarios presents a promising direction for further research. More-
over, the derivation of Beta distributions depends heavily on the samples stored in the success and
failure buffers. Currently, our method does not account for the relationships or varying importance
of different states within the same trajectory, making the algorithm sensitive to the retention rate ϕ.
Therefore, developing an adaptive retention rate or better mechanisms for managing the buffers are
crucial avenues for future improvement.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Jacob Adamczyk, Argenis Arriojas, Stas Tiomkin, and Rahul V Kulkarni. Utilizing prior solutions
for reward shaping and composition in entropy-regularized reinforcement learning. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, pp. 6658–6665, 2023.

Shipra Agrawal and Navin Goyal. Analysis of thompson sampling for the multi-armed bandit prob-
lem. In Conference on learning theory, pp. 39–1. JMLR Workshop and Conference Proceedings,
2012.

Saurabh Arora and Prashant Doshi. A survey of inverse reinforcement learning: Challenges, meth-
ods and progress. Artificial Intelligence, 297:103500, 2021.

John Asmuth, Michael L Littman, and Robert Zinkov. Potential-based shaping in model-based
reinforcement learning. In AAAI Conference on Artificial Intelligence, pp. 604–609, 2008.

Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo, Bilal Piot, Steven
Kapturowski, Olivier Tieleman, Martin Arjovsky, Alexander Pritzel, Andrew Bolt, et al. Never
give up: Learning directed exploration strategies. In International Conference on Learning Rep-
resentations, 2020.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. Advances in Neural Information Pro-
cessing Systems, 29, 2016.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

Erdem Bıyık, Dylan P Losey, Malayandi Palan, Nicholas C Landolfi, Gleb Shevchuk, and Dorsa
Sadigh. Learning reward functions from diverse sources of human feedback: Optimally inte-
grating demonstrations and preferences. The International Journal of Robotics Research, 41(1):
45–67, 2022.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. In International Conference on Learning Representations, 2018.

Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and Alexei A Efros.
Large-scale study of curiosity-driven learning. In International Conference on Learning Repre-
sentations, 2019.

Ching-An Cheng, Andrey Kolobov, and Adith Swaminathan. Heuristic-guided reinforcement learn-
ing. Advances in Neural Information Processing Systems, 34:13550–13563, 2021.

Rodrigo de Lazcano, Kallinteris Andreas, Jun Jet Tai, Seungjae Ryan Lee, and Jordan
Terry. Gymnasium robotics, 2023. URL http://github.com/Farama-Foundation/
Gymnasium-Robotics.

Rati Devidze, Parameswaran Kamalaruban, and Adish Singla. Exploration-guided reward shaping
for reinforcement learning under sparse rewards. Advances in Neural Information Processing
Systems, 35:5829–5842, 2022.

Sam Michael Devlin and Daniel Kudenko. Dynamic potential-based reward shaping. In Proceedings
of the 11th International Conference on Autonomous Agents and Multiagent Systems, pp. 433–
440. IFAAMAS, 2012.

Jack Dongarra, Mark Gates, Azzam Haidar, Jakub Kurzak, Piotr Luszczek, Stanimire Tomov, and
Ichitaro Yamazaki. Accelerating numerical dense linear algebra calculations with gpus. Numeri-
cal computations with GPUs, pp. 3–28, 2014.

Christian Ellis, Maggie Wigness, John Rogers, Craig Lennon, and Lance Fiondella. Risk averse
bayesian reward learning for autonomous navigation from human demonstration. In IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 8928–8935. IEEE, 2021.

11

http://github.com/Farama-Foundation/Gymnasium-Robotics
http://github.com/Farama-Foundation/Gymnasium-Robotics

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
Learning skills without a reward function. In International Conference on Learning Representa-
tions, 2019.

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Matteo Hessel, Ian Os-
band, Alex Graves, Volodymyr Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, Charles
Blundell, and Shane Legg. Noisy networks for exploration. In International Conference on
Learning Representations, 2018.

Lior Fox, Leshem Choshen, and Yonatan Loewenstein. Dora the explorer: Directed outreaching
reinforcement action-selection. In International Conference on Learning Representations, 2018.

Justin Fu, John Co-Reyes, and Sergey Levine. Ex2: Exploration with exemplar models for deep
reinforcement learning. Advances in neural information processing systems, 30, 2017.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International Conference on Machine Learning, pp. 1587–1596. PMLR, 2018.

Abhishek Gupta, Aldo Pacchiano, Yuexiang Zhai, Sham Kakade, and Sergey Levine. Unpacking re-
ward shaping: Understanding the benefits of reward engineering on sample complexity. Advances
in Neural Information Processing Systems, 35:15281–15295, 2022.

Dhawal Gupta, Yash Chandak, Scott Jordan, Philip S Thomas, and Bruno C da Silva. Behavior
alignment via reward function optimization. Advances in Neural Information Processing Systems,
36, 2023.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Confer-
ence on Machine Learning, pp. 1861–1870. PMLR, 2018a.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and appli-
cations. arXiv preprint arXiv:1812.05905, 2018b.

Dylan Hadfield-Menell, Stuart J Russell, Pieter Abbeel, and Anca Dragan. Cooperative inverse
reinforcement learning. Advances in Neural Information Processing Systems, 29, 2016.

Zhang-Wei Hong, Tzu-Yun Shann, Shih-Yang Su, Yi-Hsiang Chang, Tsu-Jui Fu, and Chun-Yi Lee.
Diversity-driven exploration strategy for deep reinforcement learning. Advances in neural infor-
mation processing systems, 31, 2018.

Yujing Hu, Weixun Wang, Hangtian Jia, Yixiang Wang, Yingfeng Chen, Jianye Hao, Feng Wu, and
Changjie Fan. Learning to utilize shaping rewards: A new approach of reward shaping. Advances
in Neural Information Processing Systems, 33:15931–15941, 2020.

Pawel Ladosz, Lilian Weng, Minwoo Kim, and Hyondong Oh. Exploration in deep reinforcement
learning: A survey. Information Fusion, 85:1–22, 2022.

Sam Lobel, Akhil Bagaria, and George Konidaris. Flipping coins to estimate pseudocounts for
exploration in reinforcement learning. In International Conference on Machine Learning, pp.
22594–22613. PMLR, 2023.

Jiafei Lyu, Xiaoteng Ma, Le Wan, Runze Liu, Xiu Li, and Zongqing Lu. Seabo: A simple search-
based method for offline imitation learning. 2024.

Haozhe Ma, Kuankuan Sima, Thanh Vinh Vo, Di Fu, and Tze-Yun Leong. Reward shaping for
reinforcement learning with an assistant reward agent. In Forty-first International Conference on
Machine Learning, volume 235, pp. 33925–33939. PMLR, 2024.

Marlos C Machado, Marc G Bellemare, and Michael Bowling. Count-based exploration with the
successor representation. In Proceedings of the AAAI Conference on Artificial Intelligence, pp.
5125–5133, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Srinath Mahankali, Zhang-Wei Hong, Ayush Sekhari, Alexander Rakhlin, and Pulkit Agrawal. Ran-
dom latent exploration for deep reinforcement learning. International Conference on Machine
Learning, 2024.

Jarryd Martin, S Suraj Narayanan, Tom Everitt, and Marcus Hutter. Count-based exploration in fea-
ture space for reinforcement learning. In Proceedings of the 26th International Joint Conference
on Artificial Intelligence, pp. 2471–2478, 2017.

Augustine Mavor-Parker, Kimberly Young, Caswell Barry, and Lewis Griffin. How to stay curious
while avoiding noisy tvs using aleatoric uncertainty estimation. In International Conference on
Machine Learning, pp. 15220–15240. PMLR, 2022.

Farzan Memarian, Wonjoon Goo, Rudolf Lioutikov, Scott Niekum, and Ufuk Topcu. Self-supervised
online reward shaping in sparse-reward environments. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 2369–2375. IEEE, 2021.

David Mguni, Taher Jafferjee, Jianhong Wang, Nicolas Perez-Nieves, Wenbin Song, Feifei Tong,
Matthew Taylor, Tianpei Yang, Zipeng Dai, Hui Chen, et al. Learning to shape rewards using a
game of two partners. In AAAI Conference on Artificial Intelligence, pp. 11604–11612, 2023.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Georg Ostrovski, Marc G Bellemare, Aäron Oord, and Rémi Munos. Count-based exploration with
neural density models. In International Conference on Machine Learning, pp. 2721–2730. PMLR,
2017.

Seohong Park, Kimin Lee, Youngwoon Lee, and Pieter Abbeel. Controllability-aware unsupervised
skill discovery. In International Conference on Machine Learning, pp. 27225–27245. PMLR,
2023.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International Conference on Machine Learning, pp. 2778–2787.
PMLR, 2017.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. Advances in
neural information processing systems, 20, 2007.

Roberta Raileanu and Tim Rocktäschel. Ride: Rewarding impact-driven exploration for
procedurally-generated environments. In International Conference on Learning Representations,
2020.

Deepak Ramachandran and Eyal Amir. Bayesian inverse reinforcement learning. In International
Joint Conference on Artificial Intelligence, volume 7, pp. 2586–2591, 2007.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Matthias Schultheis, Dominik Straub, and Constantin A Rothkopf. Inverse optimal control adapted
to the noise characteristics of the human sensorimotor system. Advances in Neural Information
Processing Systems, 34:9429–9442, 2021.

Bradly Stadie, Lunjun Zhang, and Jimmy Ba. Learning intrinsic rewards as a bi-level optimization
problem. In Conference on Uncertainty in Artificial Intelligence, pp. 111–120. PMLR, 2020.

Alexander L Strehl and Michael L Littman. An analysis of model-based interval estimation for
markov decision processes. Journal of Computer and System Sciences, 74(8):1309–1331, 2008.

Hao Sun, Lei Han, Rui Yang, Xiaoteng Ma, Jian Guo, and Bolei Zhou. Exploit reward shifting
in value-based deep-rl: Optimistic curiosity-based exploration and conservative exploitation via
linear reward shaping. Advances in Neural Information Processing Systems, 35:37719–37734,
2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan, John Schul-
man, Filip DeTurck, and Pieter Abbeel. # exploration: A study of count-based exploration for
deep reinforcement learning. Advances in Neural Information Processing Systems, 30, 2017.

William R Thompson. On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 25(3-4):285–294, 1933.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033. IEEE,
2012.

Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-Vicente, An-
drea Pierré, Sander Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G. Younis. Gymna-
sium, March 2023. URL https://zenodo.org/record/8127025.

Alexander Trott, Stephan Zheng, Caiming Xiong, and Richard Socher. Keeping your distance:
Solving sparse reward tasks using self-balancing shaped rewards. Advances in Neural Information
Processing Systems, 32, 2019.

Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves, et al. Con-
ditional image generation with pixelcnn decoders. Advances in neural information processing
systems, 29, 2016.

Eric Wiewiora. Potential-based shaping and q-value initialization are equivalent. Journal of Artificial
Intelligence Research, 19:205–208, 2003.

Rand R Wilcox. Introduction to robust estimation and hypothesis testing. Academic press, 2011.

Yuchen Wu, Melissa Mozifian, and Florian Shkurti. Shaping rewards for reinforcement learning
with imperfect demonstrations using generative models. In IEEE International Conference on
Robotics and Automation, pp. 6628–6634. IEEE, 2021.

Kai Yang, Zhirui Fang, Xiu Li, and Jian Tao. Cmbe: Curiosity-driven model-based exploration
for multi-agent reinforcement learning in sparse reward settings. In 2024 International Joint
Conference on Neural Networks (IJCNN), pp. 1–8. IEEE, 2024a.

Kai Yang, Jian Tao, Jiafei Lyu, and Xiu Li. Exploration and anti-exploration with distributional ran-
dom network distillation. In Forty-first International Conference on Machine Learning. PMLR,
2024b.

Yuxuan Yi, Ge Li, Yaowei Wang, and Zongqing Lu. Learning to share in networked multi-agent
reinforcement learning. Advances in Neural Information Processing Systems, 35:15119–15131,
2022.

Junkai Zhang, Weitong Zhang, Dongruo Zhou, and Quanquan Gu. Uncertainty-aware reward-free
exploration with general function approximation. International Conference on Machine Learning,
2024.

Zeyu Zheng, Junhyuk Oh, and Satinder Singh. On learning intrinsic rewards for policy gradient
methods. Advances in Neural Information Processing Systems, 31, 2018.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse
reinforcement learning. In AAAI Conference on Artificial Intelligence, volume 8, pp. 1433–1438.
Chicago, IL, USA, 2008.

14

https://zenodo.org/record/8127025

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 DERIVATION OF RANDOM FOURIER FEATURES

We incorporate Random Fourier Features (RFF) (Rahimi & Recht, 2007) to approximate the kernel
functions in the KDE process for the SASR algorithm. Let the original state be k-dimensional,
denoted as s ∈ Rk, and the kernel function be k(si, sj). RFF approximates the kernel function
by projecting the input k-dimensional space into a M -dimensional feature space using a mapping
function z : Rk → RM . The RFF-based kernel function is then defined as follows:

k(si, sj) ≈ z(si)T z(sj), (12)
We provide the derivation of the RFF approximation in this section.

First, we clarify that RFF primarily targets shift-invariant kernels, that satisfy k(si, sj) = k(si−sj).
Common shift-invariant kernels include Gaussian kernels, Laplacian kernels, and Cauchy kernels.
Given a shift-invariant kernel function k(∆), we perform the inverse Fourier transform:

k(si, sj) =

∫
Rk

p(w)eiw
T (si−sj)dw (13)

= Ew

[
eiw

T (si−sj)
]
, (14)

where we can consider w ∼ p(w) based on the Bochner’s theorem, and p(w) is called the spectral
distribution of kernel function. For the three types of shift-invariant kernels, the corresponding
spectral distributions are listed in Table 2:

Table 2: Some shift-invariant kernels and their associated spectral distributions.

Kernel Kernel function, k(si − sj) Spectral density, p(w)

Gaussian exp

(
−∥si − sj∥22

h2

) √
h

2
√
π
exp

(
−h∥w∥

2
2

4

)
Laplacian exp

(
− ∥si − sj∥1

) M∏
m=1

1

π(1 + w2
d)

Cauchy
k∏
i=1

2

π
(
1 + (si − sj)2

) exp
(
− ∥w∥1

)
Next, we perform the Euler’s formula transformation, which retains only the cosine term since we
are dealing with real-valued functions, the kernel function can be further derived as:

k(si, sj) = Ew

[
eiw

T (si−sj)
]

(15)

= Ew

[
cos(wT (si − sj))

]
(16)

= Ew

[
cos(wT (si − sj))

]
+ Ew

[
Eb[cos(wT (si + sj) + 2b)]

]
(17)

= Ew

[
Eb[cos(wT (si − sj)) + cos(wT (si + sj) + 2b)]

]
(18)

= Ew

[
Eb[
√
2 cos(wTsi + b)

√
2 cos(wTsj + b)]

]
, (19)

where b ∼ Uniform(0, 2π). Equation 17 holds since Eb∼Uniform(0,2π)

[
cos(t + 2b)

]
= 0 for any t.

Equation 19 is obtained from cos(A−B)+cos(A+B) = 2 cos(A) cos(B), where A = wTsi+ b,
B = wTsj + b.

We define the mapping zw,b(s) =
√
2 cos(wTs + b), then the kernel function can be approxi-

mated by the inner product of two vectors and the expectation can be approximated by Monte Carlo
sampling:

k(si, sj) = Ew

[
Eb[zw,b(si)zw,b(sj)]

]
(20)

≈ 1

M

M∑
m=1

zwd,bd(si)zwd,bd(sj) (21)

= z(si)
T z(sj). (22)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Therefore, we have derived the mapping function z(s) =
√
2/M cos(W Ts + b), where W ∈

RM×k and b ∈ RM . The RFF-based kernel function can be approximated by the inner product of
the mapped features in the M -dimensional space.

A.2 DERIVATION OF COMPUTATION COMPLEXITY

In this section, we derive the computational complexity to retrieve the success or failure counts
NS and NF for each iteration. Suppose the buffer size of DX is D, the batch size of B is B, the
corresponding counts are retrieved by calculating:

ÑX = N × z(B)T z(DX), (23)

where the mapping function is defined as:

z(s) =

√
2

M
cos(W Ts+ b), W ∈ Rk×M , b ∈ RM . (24)

For each state, the mapping function calculation involves:

1. Matrix multiplication W Ts: kM .
2. Addition W Ts+ b: M .
3. Cosine calculation cos(W Ts+ b): M .

Therefore, the computational complexity for calculating z(s) for one state is O(kM).

For each pair of states (si, sj), calculating the kernel involves M multiplications and M − 1 addi-
tions, thus, the complexity is O(M).

For each iteration, we calculate the RFF mapping for all states in the buffer and the batch and then
compute the kernel between them. The complexities involve three parts: RFF mapping for the buffer,
RFF mapping for the batch and kernel calculation:

O(DkM) +O(BkM) +O(MDB). (25)

Since the first two terms O(DkM) and O(BkM) are dominated by the last term O(MDB) when
the buffer size and the batch size are large, the overall computational complexity to retrieve the
corresponding counts can be approximated as O(MDB).

A.3 EXPERIMENTS ON TIME AND SPACE COMPLEXITY

A.3.1 TIME AND SPACE COMPLEXITY COMPARISON

In this section, we analyze the time and space overhead introduced by SASR and other representative
reward-shaping methods. Below, we summarize the computational and memory costs of the RS
baselines, introduced by the shaped reward generation.
• SASR (ours) calculates shaped rewards using RFF, which essentially is matrix operations, without

additional networks/models learning processes. Regarding the memory costs, the buffers DS and
DF are much smaller than the replay buffer used in the backbone SAC algorithm, due to the
retention rate ϕ. While considering the scalability for larger problems, we have implemented an
alternative approach by augmenting the original replay buffer in the backbone SAC algorithm with
a success or failure flag. This approach avoids the need for additional buffers.

• ReLara (Ma et al., 2024) requires an additional RL agent (of the same scale as the original RL
agent) and an additional replay buffer.

• ROSA (Mguni et al., 2023) involves a competition agent (the same sacle as the original RL agent)
and a switching model (a neural network).

• ExploRS (Devidze et al., 2022) requires learning two parameterized networks: one for a self-
supervised reward model and another for the exploration bonus.

• #Explo (Tang et al., 2017) requires a hash function to discretize the state space and a hash table
to store the state-visitation counts.

• RND (Burda et al., 2018) uses a random network distillation module to compute the intrinsic
rewards.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Furthermore, we report the computational and memory costs of SASR and the RS baselines in two
tasks: AntStand and Frogger, the results are shown in Table 3 and Table 4, respectively. To provide
a more intuitive comparison, we report the relative value normalized to our SASR, in this case, if the
value > 1, it indicates that the baseline is more computationally or memory expensive than SASR,
and vice versa.

Table 3: Average maximum memory consumption during the training process, normalized to SASR.

Tasks SASR ReLara ROSA ExploRS #Explo RND

AntStand 1 3.67 4.12 2.05 0.89 0.12
Frogger 1 5.21 4.33 2.64 0.92 0.09

Table 4: Average training time, normalized to SASR.

Tasks SASR ReLara ROSA ExploRS #Explo RND

AntStand 1 1.87 2.12 1.67 1.08 1.11
Frogger 1 1.98 3.17 1.72 1.24 1.06

A.3.2 COMPARISON OF SASR WITH AND WITHOUT RFF

To evaluate the effect of introducing RFF, we compare the training time of SASR with and with-
out RFF, also with the backbone SAC algorithm, the results are shown in Table 5. The tests are
conducted on the NVIDIA RTX A6000 GPUT. The results show that excluding SAC’s inherent
optimization time, RFF significantly saves time in the SASR algorithm, while with varying effects
across tasks.

Table 5: Comparison of training time (in hours) for SASR with and without RFF.

Algorithms AntStand AntFar HumanStand HumanKeep RobotReach RobotPush

SAC (backbone) 5.87 5.08 4.87 5.67 5.42 6.3
SASR KDE+RFF 7.15 7.52 6.92 6.20 7.07 8.13
SASR w/o RFF 8.12 8.72 8.37 6.53 11.12 9.21

A.4 AUTO HYPERPARAMETER SELECTION

To improve the robustness and generalization of the SASR algorithm, we propose some potential
autonomous hyperparameter selection strategies, mainly designed for the bandwidth h of the kernel
function and the RFF feature dimension M .

For bandwidth h, we can use the empirical formula Silverman’s Rule of Thumb (Wilcox, 2011):

h = 1.06 · σ ·N−1/5, (26)

or cross-validation to determine the optimal bandwidth.

For the RFF dimension M , it is directly related to the bandwidth h. After determining h, we can use
the formula mentioned in the RFF theory to determine M :

M = O(
1

ϵ2
log

N

δ
), (27)

where ϵ and δ are the error and confidence parameters. Another method is to compare the Frobe-
nius norm error between the RFF approximated kernel matrix KRFF and the true kernel matrix
KGaussian to select M : ∥KRFF −KGaussian∥F .

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 6: Ablation study #1: The average episodic returns and standard errors of SASR and the
variant without sampling from Beta distributions.

Tasks SASR (with sampling) SASR (without sampling)

AntStand 94.92±0.00 54.48 ± 1.29
AntFar 139.84±0.00 92.77 ± 1.53

HumanStand 79.83±2.03 9.77 ± 0.02
HumanKeep 195.77±0.00 185.00 ± 0.00
RobotReach 170.18±0.00 110.29 ± 2.93
RobotPush 167.14±0.00 86.82 ± 0.00

Table 7: Ablation study #2: The average episodic returns and standard errors of SASR with reward
function on state-action pair or state only.

Tasks SASR (with RS(s)) SASR (with RS(s, a))

AntStand 94.92±0.00 85.61±1.30
AntFar 139.84±0.00 132.49±2.92

HumanStand 79.83±2.03 78.93±0.65
HumanKeep 195.77±0.00 192.54±0.16
RobotReach 170.18±0.00 151.95±5.74
RobotPush 167.14±0.00 179.76±1.66

Table 8: Ablation study #3: The average episodic returns and standard errors of SASR with different
retention rates.

Tasks ϕ = 1 ϕ = 0.1 (default) ϕ = 0.01

AntStand 45.71±7.57 94.92±0.00 62.85±3.49
AntFar 70.07±3.30 139.84±0.00 103.65±2.57

HumanStand 9.88±0.01 79.83±2.03 66.46±2.96
HumanKeep 195.00±0.00 195.77±0.00 194.77±0.10
RobotReach 154.32±0.89 170.18±0.00 112.46±0.90
RobotPush 2.96±1.97 167.14±0.00 1.75±1.24

Table 9: Ablation study #4: The average episodic returns and standard errors of SASR with different
RFF feature dimensions M .

Tasks M = 50 M = 500 M = 1000 (default) M = 2000

AntStand 5.21±0.45 50.68±6.40 94.92±0.00 96.80±8.42
AntFar 98.88±2.64 72.17±5.07 139.84±0.00 129.87±0.63

HumanStand 9.87±0.01 78.82±0.52 79.83±2.03 77.73±1.47
HumanKeep 193.84±0.61 194.71±0.15 195.77±0.00 195.86±0.03
RobotReach 119.09±26.92 122.89±4.51 170.18±0.00 94.87±15.56
RobotPush 71.67±27.53 161.70±11.54 167.14±0.00 150.20±8.70

Table 10: Ablation study #5: The average episodic returns and standard errors of SASR with differ-
ent shaped reward weight factors.

Tasks λ = 0.2 λ = 0.4 λ = 0.6 (default) λ = 0.8 λ = 1.0

AntStand 35.71±0.92 59.82±2.71 94.92±0.00 75.61±1.41 3.16±0.35
AntFar 99.83±3.25 119.82±1.18 139.84±0.00 119.35±1.80 80.71±4.74

HumanStand 9.81±0.02 75.35±1.06 79.83±2.03 70.96±0.51 28.94±0.46
HumanKeep 194.68±0.08 194.21±0.38 195.77±0.00 193.85±0.42 194.89±0.10
RobotReach 131.61±4.51 154.16±5.20 170.18±0.00 169.00±2.56 74.23±4.23
RobotPush 13.07±1.65 193.56±3.85 167.14±0.00 178.90±0.00 192.07±0.87

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A.5 SUPPLEMENTARY EXPERIMENTAL RESULTS FOR ABLATION STUDY

In this section, we provide the detailed quantitative results of the ablation study.

Bandwidth h of Gaussian kernel. The bandwidth h controls the smoothness of the kernel func-
tions. Beyond fixed bandwidths, we also test a linearly decreasing configuration (h : 0.5 → 0.1),
which reflects increasing confidence in KDE. Results indicate that a small bandwidth (h = 0.01)
increases the distance between samples, causing many to have zero estimated density, while a large
bandwidth (h = 1) makes samples indistinguishable due to an overly flat kernel function. Both
cases result in suboptimal performance. The decreasing bandwidth setting offers no significant im-
provement and tends to reduce stability due to inconsistent density estimations.

Table 11: Ablation study #6: The average episodic returns and standard errors of SASR with differ-
ent bandwidths h of Gaussian kernel.

Tasks h = 0.01 h = 0.1 h = 0.2 (default) h = 1 h = 0.5 → 0.1

AntStand 10.71±2.52 57.22±3.87 94.92±0.00 17.74±2.53 68.40±1.54
AntFar 17.58±2.84 99.80±4.41 139.84±0.00 25.83±8.62 136.49±4.15

HumanStand 9.89±0.01 64.47±1.87 79.83±2.03 9.90±0.02 58.79±2.76
HumanKeep 194.92±0.02 194.00±0.57 195.77±0.00 193.06±0.46 194.59±0.18
RobotReach 128.57±3.83 97.35±19.12 170.18±0.00 134.02±2.02 59.39±26.02
RobotPush 2.29±1.62 122.45±37.58 167.14±0.00 0.00±0.00 0.01±0.01

A.6 NETWORK STRUCTURES AND HYPERPARAMETERS

A.6.1 NETWORK STRUCTURES

Figure 7 illustrates the structures of the policy network and Q-network employed in our experiments.
The agent utilizes simple multilayer perceptron (MLP) models for these networks. Given the use of
stochastic policies, the policy network features separate heads to generate the means and standard
deviations of the inferred normal distributions, which are then used to sample actions accordingly.

Figure 7: The structures of policy network and Q-network in our implementation.

A.6.2 HYPERPARAMETERS

We have observed that SASR demonstrated high robustness and was not sensitive to hyperparameter
choices. Table 12 shows the set of hyperparameters that we used in all of our experiments.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 12: The hyperparameters used in the SASR algorithm.

Hyperparameters Values

reward weight λ (default) 0.6
kernel function bandwidth 0.2

random Fourier features dimension M 1000
retention rate ϕ (default) 0.1

discounted factor γ 0.99
replay buffer size |D| 1× 106

batch size 256
actor module learning rate 3× 10−4

critic module learning rate 1× 10−3

SAC entropy term factor α learning rate 1× 10−4

policy networks update frequency (steps) 2
target networks update frequency (steps) 1

target networks soft update weight τ 5× 10−3

burn-in steps 5000

A.7 COMPUTE RESOURCES

The experiments in this paper were conducted on a computing cluster, with the detailed hardware
configurations listed in Table 13. The computing time for the SASR algorithm in each task (running
1,000,000 steps) was approximately 6± 2 hours.

Table 13: The compute resources used in the experiments

Component Specification

Operating System (OS) Ubuntu 20.04
Central Processing Unit (CPU) 2x Intel Xeon Gold 6326

Random Access Memory (RAM) 256GB
Graphics Processing Unit (GPU) 1x NVIDIA A100 20GB

Brand Supermicro 2022

A.8 CONFIGURATIONS OF TASKS

In this section, we provide the detailed configurations of the tasks in the experiments.

• AntStand: The ant robot is trained to stand over a target position. The reward is given if the ant
robot reaches the target height. Maximum episode length is 1000 steps.

• AntFar: The ant robot is trained to reach a target position far from the starting point. The reward
is given if the ant robot reaches the target position. Maximum episode length is 1000 steps.

• HumanStand: The human robot is trained to stand over a target position. The robot is initialized
by lying on the ground, and the reward is given if the robot reaches the target height. Maximum
episode length is 1000 steps.

• HumanKeep: The human robot is trained to keep a target height. The robot is initialized by
standing, and the reward is given if the robot maintains the target height. Maximum episode
length is 1000 steps.

• RobotReach: The robot arm is trained to reach a target position. The target position is randomly
generated in the workspace, and the reward is given if the robot reaches the target position. Max-
imum episode length is 500 steps.

• RobotPush: The robot arm is trained to push an object to a target position. The target position is
randomly generated on the table, and the reward is given if the object reaches the target position.
Maximum episode length is 500 steps.

• RobotSlide: The robot arm is trained to slide an object to a target position. The target position is
randomly generated on the table, and the reward is given if the object reaches the target position.
Maximum episode length is 500 steps.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

• RobotPickPlace: The robot arm is trained to pick and place an object to a target position. The
target position is randomly generated in the space, and the reward is given if the object reaches
the target position. Maximum episode length is 500 steps.

• Pitfall: The agent is tasked with collecting all the treasures in a jungle while avoiding the pitfalls.
The reward is given if the agent collects one treasure, while if the agent falls into a pitfall, the
episode ends. Maximum episode length is 2000 steps.

• Frogger: The agent is trained to cross frogs on a river. The reward is given when each frog is
crossed, and the episode ends if all frogs are crossed or fall into the river. Maximum episode
length is 2000 steps.

• MontezumaRevenge: The agent is trained to navigate through a series of rooms to collect keys
and reach the final room. The reward is given if the agent successfully reaches one new room.
Maximum episode length is 5000 steps.

• Solaris: The agent controls a spaceship to blast enemies and explore new galaxies. The reward
is given if the agent destroys one enemy spaceship and enters a new galaxy. Maximum episode
length is 2000 steps.

• Freeway: The agent is trained to guide the chicken across multiple lanes of heavy traffic. The
reward is given if one chicken crosses one lane, while the episode ends if all chickens are crossed
or hit by a car. Maximum episode length is 2000 steps.

• MountainCar: The car is trained to reach the top of the right hill. The reward is given if the car
reaches the top. Maximum episode length is 1000 steps.

Furthermore, we provide the detailed dimensions of the states in our evaluated tasks in Table 14.

Table 14: The dimensions of the states in the evaluated tasks.

Domain (Tasks) Dimension

Ant robot (AntStand, AntFar) 105
Humanoid robot (HumanStand, HumanKeep) 348

RobotReach 20
RobotPush, RobotSlide and RobotPickPlace 35

Atari games (MontezumaRevenge, PitFall, Frooger, Solaris, Freeway) 84× 84 = 7056
MountainCar 2

21

	Introduction
	Related Work
	Preliminaries
	Methodology
	Self-Adaptive Success Rate Sampling
	Highly Efficient Beta Distribution Derivation
	Implementation Details
	Time and Space Complexity of SASR

	The SASR Mechanism for RL agents

	Experiments
	Comparison and Discussion
	Effect of Self-Adaptive Success Rate Sampling
	Ablation Study

	Conclusion and Discussion
	Appendix
	Derivation of Random Fourier Features
	Derivation of Computation Complexity
	Experiments on Time and Space Complexity
	Time and Space Complexity Comparison
	Comparison of SASR with and without RFF

	Auto Hyperparameter Selection
	Supplementary Experimental Results for Ablation Study
	Network Structures and Hyperparameters
	Network Structures
	Hyperparameters

	Compute Resources
	Configurations of Tasks

