
Sample Compression Unleashed:
New Generalization Bounds for Real Valued Losses

Mathieu Bazinet
Université Laval

mathieu.bazinet.2@ulaval.ca

Valentina Zantedeschi
ServiceNow Research, Université Laval

vzantedeschi@gmail.com

Pascal Germain
Université Laval

pascal.germain@ift.ulaval.ca

Abstract

The sample compression theory provides generalization guarantees for predictors
that can be fully defined using a subset of the training dataset and a (short) message
string, generally defined as a binary sequence. Previous works provided generaliza-
tion bounds for the zero-one loss, which is restrictive notably when applied to deep
learning approaches. In this paper, we present a general framework for deriving
new sample compression bounds that hold for real-valued unbounded losses. Using
the Pick-To-Learn (P2L) meta-algorithm, which transforms the training method of
any machine-learning predictor to yield sample-compressed predictors, we empir-
ically demonstrate the tightness of the bounds and their versatility by evaluating
them on random forests and multiple types of neural networks.

1 Introduction

Sample compression theory, introduced by [33], is based on the fundamental idea that “compressing
implies learning” [12]. If it is possible to provably show that a learned model can be completely
defined by a subset of the training dataset, then sample compression theory gives us generalization
guarantees. The most well-known learning algorithms that comply with the sample compression
framework are the support vector machine [5] and the perceptron [47, 41]; the relevant training subset
being formed by the support vectors in the former case, and the points causing an update of the
predictor in the latter case. More recently, [52] and [43] have introduced the first sample compression
results for neural networks.

The sample compression theory is rich and multiple different approaches exist. For example, [2, 3,
12, 15, 21, 22, 23, 24, 42, 48] propose theoretical results relating the VC dimension [59] and the
compression analysis. By relating the probability of change of compression to the true risk, [9, 43]
express very tight guarantees for the consistent case, i.e., when the error on the training set is zero.
Finally, [31, 36, 37, 38, 51] give computable risk certificates valid even in the non-consistent case.

In this paper, we build on the setting of [31], based on the binomial test-set bound of [29], which by
definition is the tightest bound for the zero-one loss under the sole i.i.d. assumption. However, the
use of the zero-one loss restricts its application to supervised classification problems. By leveraging
proof techniques from the PAC-Bayesian literature, we extend the framework to real-valued losses
and open the way to obtaining bounds directly for the cross-entropy loss [45] and unbounded losses
[20, 10, 46], for example under the sub-Gaussian assumption. Finally, we train deep neural networks
and random forests with the Pick-To-Learn meta-algorithm [43], an algorithm that modifies the
training loop of a model to yield a sample-compressed predictor, and assess the tightness of our

Mathematics of Modern Machine Learning Workshop at NeurIPS 2024.

bounds in different settings. In the consistent case, our bounds are arbitrarily tight upper bounds on
previous results restricted to the zero-one loss.

Of note, a major asset of our sample-compress bounds is that they do not depend on the number of
learnable parameters. Two models of different sizes can achieve the same guarantees as long as they
achieve the same empirical loss using the same amount of data. This lets us train large models such
as DistilBERT and still achieve tight generalization bounds.

2 Background and Notation

We are interested in the supervised learning framework. Let S = {(xi, yi)}ni=1 be a dataset of n
datapoints, with each point sampled i.i.d. (independently and identically distributed) from an unknown
distribution D over Rd×Y . The targets are defined by the task at hand, with Y ∈ {−1,+1} for
binary classification tasks and Y ⊆ R for regression tasks. For the rest of this section, we focus on
binary classification problems, but in Section 3, we study both classification and regression settings.

LetH be a family of predictors h : X → Y . Let A :
⋃∞

k=1(X ×Y)k → H be an algorithm that takes
a dataset S and returns a predictor A(S). We consider the zero-one loss function ℓ0-1(h,x, y) =
I[h(x) ̸= y], with I[a] = 1 if the predicate a is true and 0 otherwise. Then, the true risk of the
hypothesis h is defined as

RD(h) = P
(x,y)∼D

(h(x) ̸= y) = E
(x,y)∼D

I[h(x) ̸= y]

and, for a realization S ∼ Dn, its empirical risk is defined as R̂S(h) =
1
n

∑n
i=1 I[h(xi) ̸= yi].

Since the distribution D is unknown, the true risk of a hypothesis cannot be computed. However, it
can be upper bounded with high probability, using generalization bounds derived from statistical
learning theories such as the sample compression theory.

2.1 Sample compression theory

Let h = A(S) be the output of algorithm A applied to a dataset S. In order to obtain guarantees
on the generalization performance of h using the sample compression theory, we need to be able to
uniquely define h as a function (the reconstruction function) of a subset of S (the compression set)
and a complementary sequence of information (the message).

The compression set Si is defined using a vector of indices i =
(
i1, i2, . . . , i|i|

)
, where the indices

are ordered such that 1 ≤ i1 < i2 < . . . < i|i| ≤ n. The vector i belongs in the set of all possible
vectors composed of the natural numbers 1 through n, denoted P(n). Using this notation, i indicates
the datapoints of S that are present in Si, as such

Si =
{
(xi1 , yi1), . . . , (xi|i| , yi|i|)

}
⊆ S .

Moreover, we define the complement vector ic ∈ P(n) such that Sic = S \ Si and |ic| = n− |i|.
The message σ is chosen in a set M(i), which contains all relevant messages associated to the
compression set i. The message is a complementary source of information and is generally defined as
a binary sequence.

A predictor h is called a sample-compressed predictor if there exists a vector i ∈ P(n) and (optionally)
a message σ ∈ M(i) such that h = R(Si, σ), where R :

⋃
m≤n(X ×Y)m ×

⋃
i∈P(n) M(i) → H

is a data-independent deterministic reconstruction function andH ⊆ H is a discrete set of sample-
compressed predictors.

We define a distribution PH overH, such that
∑

h∈H PH(h) ≤ 1. As all sample-compressed predic-
tors are uniquely defined using the indices vector and the message, we choose the distribution PH to
be a product of two distributions PH(R(Si, σ)) = PP(n)(i)PM(i)(σ), with PP(n) a distribution on
P(n) and PM(i) a distribution on M(i). Following previous works [e.g. 38], we require the distribu-
tion PH to be data-independent, in order to avoid further assumptions. Without any information on
the data, we generally set PM(i) to a uniform distribution. As for the distribution PP(n), it is usually
set to penalize larger compression sets [31, 37, 38]. For any size of compression set |i|, there are

2

(n
|i|
)

different possible compression sets. We set the distribution PP(n)(i) to be
(n
|i|
)−1

ζ(|i|), with
ζ(m) = 6

π2 (m+ 1)−2. This choice is discussed by [38].

We now present the sample compression bound of [31]. This result is derived using the binomial
test-set bound of [29], which by definition is the tightest bound for the zero-one loss under the sole
i.i.d. assumption.
Theorem 1 ([31], Theorem 1). For any distribution D over X ×Y , for any family of set of messages
{M(i) | i ∈ P(n)}, for any deterministic reconstruction function R that outputs sample-compressed
predictors h ∈ H and for any δ ∈ (0, 1], with probability at least 1− δ over the draw of S ∼ Dn, we
have

∀ i ∈ P(n), σ ∈M(i) : RD(R(Si, σ)) ≤ Bin

(
κ, n,

(
n
|i|

)−1

ζ(|i|)PM(i)(σ)δ

)
with κ = nR̂Sic

(R(Si, σ)) and

Bin(k,m, δ) = sup
r∈[0,1]

{
k∑

i=0

(
m
i

)
ri(1− r)m−i ≥ δ

}
.

This theorem can be applied to any family of sample-compressed predictors, such as the support
vector machine, the perceptron, and the set covering machine [37]. To apply this theorem to neural
networks, one must design a reconstruction function outputting neural networks. To this end, [52]
propose to reparameterize a 2-layer LeakyReLU network in order to obtain “support vectors”, which
become the compression set of the reconstructed network. The following section presents a more
general approach proposed by [43].

2.2 Pick-To-Learn

Algorithm 1: Pick-To-Learn (P2L)
Initialize :Si = ∅
Initialize :hi = h0

Initialize :(x, y) = argmax(x,y)∈S ℓx-e(h0,x, y)

while − ln(0.5) ≤ ℓx-e(hi,x, y) do
Si ← Si ∪ {(x, y)}
hi ← A(Si)
(x, y)← argmax(x,y)∈Sic

ℓx-e(hi,x, y)

end
return hi

Conceptualized by [43], Pick-To-Learn
(P2L, Algorithm 1) is a model-agnostic
meta-algorithm that trains any model in such
a way that it becomes a sample-compressed
predictor. This algorithm is specifically de-
signed for the generalization bound of [9],
which holds only for sample compressed
predictors in the consistent case, i.e., when
R̂Sic

(R(Si, σ))=0.

To obtain sample-compressed predictors,
P2L iteratively builds the compression set
and trains the model on it. Starting with an
initial predictor h0, P2L tests the model on the whole dataset, picks the datapoint over which the
model got the largest loss value, and adds it to the compression set. Then, using a learning algo-
rithm A, P2L trains the model on the newly created compression set. The previous steps are repeated
until the model achieves zero errors on the training set Sic (excluding the compression set datapoints),
which is equivalent to stopping when the cross-entropy loss (ℓx-e) becomes smaller than − ln(0.5).

Leveraging from the theoretical results of [9], [43] derived a theorem specifically for the P2L
algorithm.
Theorem 2 ([43], Theorem 4.2). Let hi = R(Si, ∅) be the output of P2L. For any δ ∈ (0, 1), with
probability at least 1− δ over the draw of S ∼ Dn, we have

RD(hi) ≤ ε(|i|, δ),
with

Ψk,δ(ε) =
δ

2N

n−1∑
m=k

(mk)

(nk)
(1− ε)−(n−m) +

δ

6N

4N∑
m=n+1

(mk)

(nk)
(1− ε)m−n

and where, for k = 0, 1, . . . , n− 1, ε(k, δ) is the unique solution to the equation Ψk,δ(ε) = 1 in the
interval [kn , 1], while ε(n, δ) = 1.

3

Note that the value of previous bound is completely determined by the size of the compression set.
The faster P2L obtains zero errors, the better the bound will be.

3 A General Sample-Compress Bound

LetH be a family of predictors h : X → Y , where Y ⊇Y is a convex hull of Y . For example, [−1, 1]
is the convex hull of {−1,+1}. We consider a loss function ℓ : H×X ×Y → R. Then, the true
risk of the hypothesis h is defined as LD(h) = E(x,y)∼D ℓ(h,x, y) and, for a realization S ∼ Dn,
its empirical risk is defined as L̂S(h) =

1
n

∑n
i=1 ℓ(h,xi, yi). This setting is a generalization of the

setting of Section 2. As Theorem 1 only holds for the zero-one loss, we need new results to extend
the sample-compression theory to this setting.

To extend the work of [31] to real-valued losses, we introduce a comparator function ∆ : R×R→ R
and provide a new result inspired by the general PAC-Bayes bound [17]. Theorem 3 presents a new
general sample-compress bound that holds for any real-valued losses, extending the applicability of
the sample-compression theory. The theorem is followed by a proof sketch highlighting the main
steps, and the full proof is given in Appendix C.
Theorem 3. For any distributionD over X ×Y , for any family of set of messages {M(i) | i ∈ P(n)},
for any deterministic reconstruction function R that outputs sample-compressed predictors h ∈ H, for
any loss ℓ : H×X ×Y → R, for any comparator function ∆ : R×R→ R and for any δ ∈ (0, 1],
with probability at least 1− δ over the draw of S ∼ Dn, we have

∀i ∈ P(n), σ ∈M(i) :

∆
(
L̂Sic

(R(Si, σ)),LD(R(Si, σ))
)
≤ 1

| ic |

[
log

(
n
|i|

)
+ log

(
E∆(i, σ)

ζ(|i|)PM(i)(σ)δ

)]
with

E∆(i, σ) = E
Ti∼D|i|

E
Tic∼D|ic|

e|i
c|∆(L̂Tic

(R(Ti,σ)),LD(R(Ti,σ))).

Proof Sketch. For all i ∈ P(n), σ ∈M(i), ϵ > 0, using Chernoff’s bound with t > 0, we have

P
S∼Dn

(
∆
(
L̂Sic

(R(Si, σ)),LD(R(Si, σ))
)
> ϵ
)

(1)

≤ e−tϵ E
S∼Dn

et∆(L̂Sic
(R(Si,σ)),LD(R(Si,σ)))

= e−tϵ E
Si∼Dn

E
Sic∼Dn

et∆(L̂Sic
(R(Si,σ)),LD(R(Si,σ)))

where the last equality requires i.i.d. datapoints. For any δσi ∈ (0, 1], we define

δσi = e−tϵ E
Si∼Dn

E
Sic∼Dn

et∆(L̂Sic
(R(Si,σ)),LD(R(Si,σ))) (2)

and solve for ϵ, using t = n − |i|. The obtained solution is used to replace the ϵ in Eq. (1), which
gives a bound valid with probability at most δσi for every single predictor R(Si, σ). By setting
δσi = PP(n)(i)PM(i)(σ)δ and applying a union bound over all i ∈ P(n), σ ∈M(i), the final result
holds uniformly with probability δ for all predictors outputted by R.

Theorem 3 holds for any comparator function ∆ such that E∆ is finite for any pair (i, σ). Although
bounding E∆ can be challenging, it was extensively studied for convex functions in PAC-Bayesian
theory [e.g., 40, 39, 10, 26]. We leverage this theory and present novel corollaries for the three most
well-known comparators.

First of all, we present a bound using the comparator ∆C(q, p) = − ln
(
1− p(1− e−C)

)
−Cq. The

family of bounds {∆C : C > 0} is commonly referred to as “Catoni bounds” [11] in the PAC-Bayes
literature.
Corollary 4. In the setting of Theorem 3, for any C > 0, for a loss function ℓ : H×X ×Y → [0, 1],
with probability at least 1− δ over the draw of S ∼ Dn, we have

∀ i ∈ P(n), σ ∈M(i) : LD(R(Si, σ)) ≤
1− exp(−ϵC(i, σ, δ))

1− e−C

4

with

ϵC(i, σ, δ) = C L̂Sic
(R(Si, σ)) +

1

n− |i|

[
log

(
n
|i|

)
+ log

(
1

ζ(|i|)PM(i)(σ)δ

)]
.

For 0 ≤ q, p ≤ 1, there exists C∗ = arg supC>0 ∆C(q, p) such that ∆C∗ gives the tightest PAC-
Bayesian bounds [16]. This result also holds true for Theorem 3, when restricted to proper, convex
and lower semicontinuous comparator functions ∆ : [0, 1]× [0, 1]→ R. Unfortunately, the hyper-
parameterized bounds hold for only one value of C, chosen prior to seeing S. With a union bound
argument, we can consider multiple parameters C simultaneously, but there is no guarantee that
C∗ is in this set. To circumvent this problem, we can use the binary Kullback-Leibler divergence
comparator function kl(q, p) = q ln q

p + (1 − q) ln 1−q
1−p , which is equivalent to ∆C∗ , as per the

following proposition.

Proposition 5 ([17], Proposition 2.1). For any 0 ≤ q ≤ p < 1, we have supC≥0 ∆C(q, p) = kl(q, p).

In practice, even with the term 1 = E∆C
(n) ≤ Ekl(n) = 2

√
n, the kl bound will usually yield tighter

bounds than Corollary 4, as the optimal value of C is unlikely to be selected before computing the
bound. Moreover, the kl is known to be optimal for [0, 1]-valued losses, as per the results of [26].

Corollary 6. In the setting of Theorem 3, for a loss function ℓ : H×X ×Y → [0, 1], with probability
at least 1− δ over the draw of S ∼ Dn, we have

∀i ∈ P(n), σ ∈M(i) : LD(R(Si, σ)) ≤ kl−1
(
L̂Sic

(R(Si, σ)), ϵkl(i, σ, δ)
)

with kl−1(q, ϵ) = arg sup0≤p≤1 {kl(q, p) ≤ ϵ} and

ϵkl(i, σ, δ) =
1

n− |i|

[
log

(
n
|i|

)
+ log

(
2
√

n− |i|
ζ(|i|)PM(i)(σ)δ

)]
.

Both Corollary 4 and Corollary 6 hold for losses bounded in [0, 1]. Using the linear function
∆λ(q, p) = λ(p − q), we can extend this sample compression framework to unbounded losses
provided that E∆λ

is bounded. As an example, we present a result for sub-Gaussian losses [27].

Corollary 7. In the setting of Theorem 3, for any λ > 0, with a ς2-sub-Gaussian loss function
ℓ : H×X ×Y → R, with probability at least 1− δ over the draw of S ∼ Dn, we have

∀i ∈ P(n), σ ∈M(i) :

LD(R(Si, σ)) ≤ L̂Sic
(R(Si, σ)) +

λς2

2
+

1

λ(n− |i|)

[
log

(
n
|i|

)
+ log

(
1

ζ(|i|)PM(i)(σ)δ

)]
.

This result could be extended to the hypothesis-dependent range condition of [20], any unbounded
losses under model-dependent assumptions [10] or more general tail behaviors [46]. Note that this
result encompasses bounded losses with a range of [a, b], as they are sub-Gaussian with ς = b−a

2 .

3.1 Behavior in the consistent case

In this section, we present a new theoretical result that justifies the tightness of the bounds observed
in Section 4. In this setting, predictors stop training when the empirical error reaches zero. Indeed,
we show that when R̂Sic

(R(Si, σ)) = 0, our new bounds from Corollaries 4 and 6 are extremely
tight upper bounds to the binomial bound of [31].

Theorem 8. In the consistent case, i.e. when the training error is zero, Corollary 4 is arbitrarily
close to the binomial tail inversion of Theorem 1. Moreover, Corollary 6 is a tight upper bound up to

5

a constant K(m, δ) that decreases for m large enough and tends to 0 when m tends to∞. Indeed,

Bin(0,m, δ) =1− exp

(
−1
m

ln
1

δ

)
(3)

= lim
C→∞

1

1− e−C

[
1− exp

(
− 1

m
ln

1

δ

)]
(4)

= inf
C>0

1

1− e−C

[
1− exp

(
− 1

m
ln

1

δ

)]
(5)

=kl−1

(
0,

1

m
ln

1

δ

)
(6)

≤kl−1

(
0,

1

m
ln

2
√
m

δ

)
. (7)

=kl−1

(
0,

1

m
ln

1

δ

)
+K(m, δ). (8)

We prove the previous sequence of results in Appendix C.3. In the previous result, we relate the
analytical form of Bin(0,m, δ) in Eq. (3) to the bound of Corollary 4. This relation is known to hold
as an inequality for any k ≥ 0, but we show that it is an equality for k = 0. In Eq. (4), we show that
the hyperparameterized distance is arbitrarily tight to the binomial tail inversion, as it approaches
Bin(0,m, δ) when C → ∞. We show in Eq. (5) that the minimal value of the bound is obtained
when C tends to∞. In Eq. (6), we relate the hyperparameterized distance to the Kullback-Leibler
divergence, which we then upper bound in Eq. (7), achieving the result of Corollary 6. Finally, in
Eq. (8), we demonstrate that Corollary 6 is a tight upper bound to the binomial tail inversion, up
to a constant K(m, δ) that decreases when m is large and tends to 0 when n → ∞. For example,
with δ = 0.01, K(m, δ) is bounded by K(7, 0.01) ≈ 0.11, decreases for m ≥ 8 and reaches
K(m, δ) ≤ 0.01 at m = 357.

4 Experiments

In this section, we show the versatility of our results by training different models using the P2L
algorithm.1 In Section 4.1, we train neural networks on binary classification problems and compare
our new results to the pre-existing sample compression results. We empirically validate that our
bounds are almost as tight as the binomial bound, all the while not suffering from the numerical
optimization problem of Theorem 1 and being defined in the inconsistent case, where the P2L bound
of Theorem 2 is undefined. In Section 4.2, we train CNNs on the MNIST dataset and present
generalization bounds on the (bounded) cross-entropy loss. As no previous sample-compression
bound is defined for real-valued losses, we compare our result to a PAC-Bayesian theorem. In
Section 4.3, we use P2L to train decision forests on regression datasets and give generalization
bounds on the root mean squared error (RMSE), an unbounded loss function, under the assumption
that it is sub-Gaussian. Finally, in Section 4.4, we fine-tune DistilBERT, a 66M parameters language
model, on a review polarity classification problem. We obtain tight bounds simultaneously on the
zero-one loss and the cross-entropy loss, demonstrating that our new theorem is independent of the
number of parameters of the model.

Each experiment is run five times with different seeds (with the exception of amazon polarity). In
all tables, we present the mean and standard deviation of the metrics over five seeds. The datasets
are separated into three parts: the training, validation and test set. The validation set is built using
10% of the training set. If the dataset doesn’t have a built-in test set, we build a test set first, using
10% of the dataset, and then build the validation set. When computing the bounds, we use δ = 0.01.
All baselines are trained on the whole dataset using stochastic gradient descent for 200 epochs or
until the model achieves zero errors on the training set. The random forests [6] are trained on the
whole dataset, with no modifications to the training algorithm. All the hyperparameters for all the
experiments can be found in Appendix A.

6

Table 1: Results for the CNNs trained using P2L on the binary MNIST problems. The results
displayed obtained the tightest P2L bound. All metrics presented are in percent (%), with the
exception of |i|.

Dataset Validation error Test error kl bound Binomial bound P2L bound |i| Baseline test error

MNIST08 0.33±0.17 0.25±0.10 5.05±0.16 5.00±0.16 1.04±0.04 92.0±3.6 0.22±0.05
MNIST17 0.20±0.08 0.38±0.16 4.33±0.21 4.29±0.21 0.86±0.05 84.0±5.2 0.17±0.03
MNIST23 0.39±0.12 0.27±0.10 8.20±0.34 8.15±0.34 1.86±0.09 175.6±9.5 0.16±0.05
MNIST49 0.82±0.11 0.77±0.17 10.52±0.37 10.47±0.37 2.53±0.11 237.0±11.0 0.44±0.07
MNIST56 0.46±0.12 0.47±0.15 6.29±0.22 6.24±0.22 1.35±0.06 117.0±5.2 0.30±0.08

Table 2: Results for the CNNs trained using P2L on the binary MNIST problems and stopped at the
iteration with the minimum kl bound. The results displayed obtained the tightest kl bound. Metrics
are in percents (%), except |i|.

Dataset Validation error Test error kl bound Binomial bound Train error |i| Baseline test error

MNIST08 0.49±0.39 0.49±0.26 4.71±0.25 5.33±0.62 0.24±0.23 66.0±15.0 0.22±0.05
MNIST17 0.45±0.18 0.48±0.11 3.70±0.21 4.37±0.11 0.23±0.08 50.0±8.9 0.17±0.03
MNIST23 0.74±0.28 0.84±0.21 6.56±0.38 8.09±0.64 0.64±0.32 84.0±21.5 0.16±0.05
MNIST49 1.16±0.31 1.13±0.24 8.60±0.46 9.61±0.68 0.51±0.28 134.0±24.2 0.44±0.07
MNIST56 0.94±0.09 0.70±0.20 5.42±0.31 6.49±0.81 0.43±0.23 66.0±10.2 0.30±0.08

4.1 Binary MNIST

We create binary classification datasets by choosing two digits from the MNIST dataset [32], e.g.,
choosing all the datapoints labeled 0 and 8 to build the dataset MNIST08. We create five datasets:
MNIST08, MNIST17, MNIST23, MNIST49 and MNIST56. Starting from randomly initialized
neural networks, we train a MLP and a CNN using P2L on each dataset. More details are given in
Appendix A.1.1.

For all experiments in this section, we compute our proposed kl bound (Corollary 6), the binomial
approximation bound of [31] (Corollary 9, in appendix) and the P2L bound of [43] (Theorem 2).
We do not compute the binomial tail inversion of Theorem 1 as its optimization is very unstable.
However, the binomial approximation is equivalent to Theorem 1 when k = 0, which corresponds to
the consistent case reached by the P2L algorithm.

We present our results for the CNN in Table 1. All the results for the MLP can be found in
Appendix A.1.1. The error on the training set is zero for all predictors returned by P2L. The results
presented achieved the tightest P2L bound for each dataset. For reference, the reported “baseline
test error” corresponds to the results of the best baseline model based on validation error. For both
architectures, using P2L only incurs a slight increase of the test error compared to the baseline, whilst
the model is trained on a very small percentage of the dataset, ranging from 0.7% to 3.4%. Finally,
even though the P2L bound is much tighter than the proposed kl bound, our result is much more
general, as it holds for any real-valued loss functions and in the non-consistent case. Moreover, our
bounds hold uniformly over all iterations of the models trained using P2L. After training, one can
use any checkpoint of the model and still obtain a valid bound, which gives control over a trade-off
between the training error, the generalization bound and the validation error. In Fig. 1, we present the
behavior of the bound throughout the P2L iterations. The minimal kl bound happens at about half the
final number of iterations, leading to a smaller compression set and a tighter bound, as also reported
in Table 2. In comparison to the previous results, the test error is about twice as high as the test error
of the fully trained model (Table 1). However, the models were trained on very small portions of the
dataset, with the model on MNIST17 being trained on 0.42% of the dataset and still achieving a test
error of 0.48%. Finally, we observe that, in this setting, our new kl bound is much tighter than the
binomial approximation of [31].

4.2 MNIST

We now train convolutional neural networks composed of two convolutional layers and two fully
connected layers. We pre-train the model using stochastic gradient descent on a subset of the dataset

1Our code is available at https://github.com/GRAAL-Research/pick-to-learn.

7

https://github.com/GRAAL-Research/pick-to-learn

(a) MNIST49 (b) MNIST56

Figure 1: Illustration of the behavior of the kl bound throughout P2L iterations for the five different
seeds of the hyperparameter combination that achieved the minimal P2L bound on MNIST49 and
MNIST56. We mark the minimal kl bound for each seed with a diamond (♦). The results for the
other datasets can be found in Fig. 2.

Table 3: Cross-entropy loss achieved by the CNNs on MNIST. The results displayed obtained the
smallest kl bound.

Model Train loss Test loss kl bound |i| Baseline test loss

P2L 0.0008±0.0006 0.0480±0.0073 0.7142±0.1773 275.20±82.46 0.0499±0.0108PBB 0.0092±0.0005 0.0045±0.0004 0.0112±0.0005 -

and then use P2L to fine-tune the model on the train set. The size of the pre-training subset is an
hyperparameter. We use the same training setting as in Section 4.1 and use the extension of P2L
that adds multiple datapoints to the compression set at a time, with batch size R = 32, as defined
by Algorithm 2 of [43]. For comparison, we also train probabilistic neural networks (PNN) using
the PAC-Bayes with Backprop (PBB) approach of [45]. They train the model by minimizing the
PAC-Bayesian kl bound of Theorem 10. See Appendix A.1.2 for details.

For both our new sample-compression bounds and the PAC-Bayesian bound of [45], we compute the
bounds on the zero-one loss and on a bounded version of the cross-entropy loss (see Appendix A.1.2).
The probabilities outputted by the neural networks are restricted to be greater than 10−5, effectively
bounding the cross-entropy by − ln

(
10−5

)
≈ 11.51.

In Table 3, we report the bound values for the bounded cross-entropy loss (see Appendix for
classification error). We observe that the PBB algorithm gives a tighter generalization bound than
the one of P2L. This gap can be explained by the fact that PBB jointly optimizes the train error and
the KL divergence, whilst we have almost no control on the minimization of the bound. Indeed, the
heuristic of the P2L algorithm, which is to choose the datapoints over which the model incurs the
greatest losses, doesn’t give control on the trade-off between the decrease of the error and the increase
of the complexity term. Moreover, for a large dataset, the binomial coefficient increases rapidly when
the compression set size increases. However, using our bounds with the P2L algorithm has multiple
advantages over the PBB algorithm. First of all, PBB needs to train twice as many parameters,
as it fits both the mean and standard deviation of the distributions over the parameters. Secondly,
computing the PAC-Bayesian bound necessitates a step of Monte Carlo sampling to determine the
average error of the model. For 5000 steps of Monte Carlo sampling, the error over the dataset will
be computed 5000 times, instead of only once with P2L. Finally, our bound doesn’t take into account
the number of parameters of the model, whilst the KL divergence in Theorem 10 is a sum of the KL
divergence of the distribution of each parameter of the model.

4.3 Regression forests

In order to show the wide applicability of our bounds, we train decision forests on regression problems:
Powerplant [58], Infrared [61], Airfoil [8], Parkinson [57] and Concrete [63]. These datasets range
from a training set size of 827 to 7751 and range from a number of features of 4 to 33. To the best of

8

Table 4: Results for the decision forests trained using P2L. We report the RMSE achieved by the
models and the generalization bounds on the RMSE.

Dataset Train loss Validation loss Test loss kl bound Linear bound |i| Baseline test loss ℓmax

Powerplant 5.23±2.23 5.23±2.18 5.37±2.33 11.08±5.04 12.79±5.91 29.20±17.81 3.59±0.13 90.6
Infrared 0.27±0.03 0.29±0.04 0.30±0.03 1.08±0.08 1.16±0.08 19.20±5.49 0.23±0.01 4.26
Airfoil 3.57±0.34 3.91±0.21 3.88±0.39 14.78±1.39 14.84±1.26 46.80±15.93 2.10±0.15 45.13

Parkinson 7.59±0.44 7.75±0.50 7.73±0.36 12.13±0.37 11.98±0.41 22.60±10.59 2.23±0.16 41.37
Concrete 8.59±1.10 8.74±0.79 8.78±1.07 30.18±1.61 31.15±1.43 26.20±7.28 4.70±0.36 90.63

Table 5: Results for the amazon polarity dataset. The results displayed for P2L obtained the lowest kl
bound on the error, whilst the baseline was chosen by the lowest validation error.

Model Error (%) Cross-entropy loss

Train Validation Test kl bound Binomial bound Train Validation Test kl bound |i|
P2L 4.25 5.24 5.37 14.67 21.63 0.1180 0.1465 0.1486 0.9992 1472

Baseline 3.13 4.07 4.19 - - 0.0902 0.1151 0.1156 - -

our knowledge, no sample compression bounds exist for this setting. We adapt the P2L algorithm to
this regression problem (see Algorithm 2 in appendix), which differs from the original one, designed
only for classification problems where zero training error is achievable (consistent case). At each
P2L iteration, we add a single datapoint to the compression set in order to train the random forest.
The selected datapoint is the one with the largest root mean squared error (RMSE). Then, the trees
are retrained completely on the compression set. As the minimal RMSE that can be achieved is
dependent on the dataset, setting a predetermined threshold is not a suitable stopping criterion. Thus,
we train the model until the validation loss has not decreased for a number of iterations. To compute
the bounds, we need the loss to be either bounded or sub-Gaussian. As tree-based models predict the
mean of the targets of each datapoint assigned to a leaf, their outputs are bounded by the extrema of
the data. Thus, if we assume that the target space is bounded, the loss will be bounded. To compute
the kl bound, we assume that the target space is bounded. The maximum value of the loss ℓmax

on each dataset is reported in Table 4. To compute the linear bound, we assume that the loss is
sub-Gaussian. We discuss in more details these assumptions and the way of defining the extrema in
Appendix A.1.3.

We present the results in Table 4. The models are selected based on the smallest kl bound. We
observe that the models trained with P2L are able to obtain competitive results with respect to the
test error of our baseline, random forests trained on the whole dataset. We report these results in the
column “baseline test loss” of Table 4, where the models were chosen by their validation loss. As
the value of the bounds is always much smaller than ℓmax, we can observe that our bounds are tight
and non-vacuous. The generalization guarantees given by the bound using the linear function are
competitive to the kl and are even tighter on the Parkinson dataset.

Experiments with regression trees can be found in Appendix A.1.3. Training trees using P2L lead
to underfitted trees that were not competitive w.r.t. the baseline (see Table 11). To the best of our
knowledge, these results are the first generalization bounds for regression trees.

4.4 Amazon polarity

Finally, we train DistilBERT [49] on the Amazon reviews polarity dataset [66]. Using P2L, we
fine-tune the pretrained language model on 10% of the dataset, for a total of 360k datapoints, and
evaluate the model on the test set, which comprises 400k datapoints. As the model and dataset are
quite large, we run the experiments for each hyperparameter combination only once. We pre-train the
model on half of the training dataset and then use P2L on the other half of the training set. We add 32
datapoints at a time in the compression set and early stop the training of the model if its validation loss
has not decreased for 20 epochs. In this experiment, we study our new kl bound on the zero-one loss
and on the bounded cross-entropy loss. Moreover, we compute the binomial approximation bound of
Corollary 9. The P2L bound (Theorem 2) is invalid in this setting, as the model doesn’t reach zero
errors. The PAC-Bayesian bound of Theorem 10 could be computed on both metrics, but it would
necessitate to train 132M parameters (twice the number of parameters of DistilBERT). Many new

9

generalization bounds and approaches were presented for very large models [34, 35, 65, 54], such as
large language models. However, most approaches are not suited for classification and regression, as
they are derived for language modeling objectives.

We present the results in Table 5. First of all, we observe that training the model using P2L only
incurs a loss of about a percent for the train, validation and test error. It achieves this error whilst
being trained on about 1% of the dataset, as the compression set size is 1472 and the training set
size is 144k. Both for the error and the cross-entropy loss, the bound is tight and non-vacuous. Our
bound is much tighter than the binomial approximation bound, with a certificate of 14.67% for a train
error of 4.25%. Despite the 66M parameters of DistilBERT, we are able to obtain tight generalization
guarantees by simply changing the training loop of the model.

5 Conclusion

We developed novel generalization bounds for real-valued losses and sample-compressed predictors.
These bounds leverage the comparator functions studied in the PAC-Bayes theory. We provide results
for bounded and unbounded losses, under different assumptions. We empirically verified the tightness
of the proposed bounds, showing that it is almost as tight as the binomial tail inversion, which,
however, holds only for a less general setting. We trained neural networks with 66M parameters
and obtained tight guarantees, without suffering from the cost of the number of parameters. This
highlights an important asset of the sample compression framework: two models achieving the same
empirical loss using the same amount of datapoints (compression set size) share the same guarantees
(bound value), regardless of their size in terms of the number of trainable parameters.

In future works, we could leverage the possibility of having a message in the compression scheme,
by training models such as the set covering machine [31] or decision trees [51], which both use
binary sequences to specify how to reconstruct the model. Finally, although P2L is generally able to
train good performing models, it is unclear that its sample selection heuristic is optimal for neural
networks. Trying different heuristics, e.g., that optimize for sample diversity, could lead to improved
performance and guarantees for the models.

Acknowledgements

Mathieu Bazinet is supported by a FRQNT B2X scholarship (343192). Pascal Germain is supported
by the Canada CIFAR AI Chair Program and the NSERC Discovery grant RGPIN-2020-07223.

Disclosure of Interests

The authors have no competing interests relative to the content of this article.

10

References
[1] Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael Voznesen-

sky, Bin Bao, Peter Bell, David Berard, Evgeni Burovski, Geeta Chauhan, Anjali Chourdia, Will
Constable, Alban Desmaison, Zachary DeVito, Elias Ellison, Will Feng, Jiong Gong, Michael
Gschwind, Brian Hirsh, Sherlock Huang, Kshiteej Kalambarkar, Laurent Kirsch, Michael Lazos,
Mario Lezcano, Yanbo Liang, Jason Liang, Yinghai Lu, CK Luk, Bert Maher, Yunjie Pan,
Christian Puhrsch, Matthias Reso, Mark Saroufim, Marcos Yukio Siraichi, Helen Suk, Michael
Suo, Phil Tillet, Eikan Wang, Xiaodong Wang, William Wen, Shunting Zhang, Xu Zhao, Keren
Zhou, Richard Zou, Ajit Mathews, Gregory Chanan, Peng Wu, and Soumith Chintala. PyTorch
2: Faster Machine Learning Through Dynamic Python Bytecode Transformation and Graph
Compilation. In 29th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2 (ASPLOS ’24). ACM, 2024.

[2] Idan Attias, Steve Hanneke, Aryeh Kontorovich, and Menachem Sadigurschi. Agnostic sample
compression schemes for regression. In Forty-first International Conference on Machine
Learning, 2018.

[3] Shai Ben-David, Alex Bie, Clément L Canonne, Gautam Kamath, and Vikrant Singhal. Private
distribution learning with public data: The view from sample compression. Advances in Neural
Information Processing Systems, 36, 2024.

[4] Lukas Biewald. Experiment tracking with weights and biases, 2020. Software available from
wandb.com.

[5] Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. A training algorithm for optimal
margin classifiers. In Proceedings of the fifth annual workshop on Computational learning
theory, pages 144–152, 1992.

[6] Leo Breiman. Random forests. Machine learning, 45:5–32, 2001.

[7] Thomas F. Brooks, D. Stuart Pope, and Michael A. Marcolini. Airfoil Self-Noise. UCI Machine
Learning Repository, 1989. DOI: https://doi.org/10.24432/C5VW2C.

[8] Thomas F. Brooks, D. Stuart Pope, and Michael A. Marcolini. Airfoil self-noise and prediction.
Technical report, 1989.

[9] Marco C Campi and Simone Garatti. Compression, generalization and learning. Journal of
Machine Learning Research, 24(339):1–74, 2023.

[10] Ioar Casado, Luis A Ortega, Andrés R Masegosa, and Aritz Pérez. Pac-bayes-chernoff bounds
for unbounded losses. ArXiv preprint, abs/2401.01148, 2024.

[11] Olivier Catoni. Pac-bayesian supervised classification: the thermodynamics of statistical
learning. ArXiv preprint, abs/0712.0248, 2007.

[12] Ofir David, Shay Moran, and Amir Yehudayoff. Supervised learning through the lens of
compression. In Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon,
and Roman Garnett, editors, Advances in Neural Information Processing Systems 29: Annual
Conference on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona,
Spain, pages 2784–2792, 2016.

[13] Gintare Karolina Dziugaite and Daniel M. Roy. Data-dependent pac-bayes priors via differential
privacy. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-
Bianchi, and Roman Garnett, editors, Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December
3-8, 2018, Montréal, Canada, pages 8440–8450, 2018.

[14] William Falcon and The PyTorch Lightning team. PyTorch Lightning, 2019.

[15] Sally Floyd and Manfred Warmuth. Sample compression, learnability, and the vapnik-
chervonenkis dimension. Machine learning, 21(3):269–304, 1995.

11

[16] Andrew Foong, Wessel Bruinsma, David Burt, and Richard Turner. How tight can pac-bayes be
in the small data regime? Advances in Neural Information Processing Systems, 34:4093–4105,
2021.

[17] Pascal Germain, Alexandre Lacasse, François Laviolette, and Mario Marchand. Pac-bayesian
learning of linear classifiers. In Andrea Pohoreckyj Danyluk, Léon Bottou, and Michael L.
Littman, editors, Proceedings of the 26th Annual International Conference on Machine Learning,
ICML 2009, Montreal, Quebec, Canada, June 14-18, 2009, volume 382 of ACM International
Conference Proceeding Series, pages 353–360. ACM, 2009.

[18] Pascal Germain, Alexandre Lacasse, François Laviolette, Mario Marchand, and Jean-Francis
Roy. Risk bounds for the majority vote: From a pac-bayesian analysis to a learning algorithm.
The Journal of Machine Learning Research, 16:787–860, 2015.

[19] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In
Proceedings of the fourteenth international conference on artificial intelligence and statistics,
pages 315–323. JMLR Workshop and Conference Proceedings, 2011.

[20] Maxime Haddouche, Benjamin Guedj, Omar Rivasplata, and John Shawe-Taylor. Pac-bayes
unleashed: Generalisation bounds with unbounded losses. Entropy, 23(10):1330, 2021.

[21] Steve Hanneke and Aryeh Kontorovich. Stable sample compression schemes: New applications
and an optimal SVM margin bound. In Algorithmic Learning Theory, pages 697–721. PMLR,
2021.

[22] Steve Hanneke, Aryeh Kontorovich, and Menachem Sadigurschi. Efficient Conversion of
Learners to Bounded Sample Compressors. Proceedings of Machine Learning Research vol,
75:1–21, 2018.

[23] Steve Hanneke, Aryeh Kontorovich, and Menachem Sadigurschi. Sample Compression for
Real-Valued Learners. In Proceedings of the 30th International Conference on Algorithmic
Learning Theory, pages 466–488. PMLR, 2019.

[24] Steve Hanneke, Shay Moran, and Waknine Tom. List sample compression and uniform
convergence. In The Thirty Seventh Annual Conference on Learning Theory, pages 2360–2388.
PMLR, 2024.

[25] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen,
David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern,
Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fer-
nández del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler
Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array
programming with NumPy. Nature, 585(7825):357–362, September 2020.

[26] Fredrik Hellström and Benjamin Guedj. Comparing comparators in generalization bounds. In
International Conference on Artificial Intelligence and Statistics, pages 73–81. PMLR, 2024.

[27] J. Kahane. Propriétés locales des fonctions à séries de fourier aléatoires. Studia Mathematica,
19(1):1–25, 1960.

[28] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[29] John Langford. Tutorial on practical prediction theory for classification. Journal of machine
learning research, 6(3), 2005.

[30] John Langford and Matthias Seeger. Bounds for averaging classifiers. School of Computer
Science, Carnegie Mellon University, 2001.

[31] François Laviolette, Mario Marchand, and Mohak Shah. Margin-Sparsity Trade-Off for the Set
Covering Machine. In Machine Learning: ECML 2005, volume 3720, pages 206–217. Springer
Berlin Heidelberg, 2005.

12

[32] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[33] Nick Littlestone and Manfred Warmuth. Relating data compression and learnability. 1986.

[34] Sanae Lotfi, Marc Anton Finzi, Yilun Kuang, Tim G. J. Rudner, Micah Goldblum, and An-
drew Gordon Wilson. Non-vacuous generalization bounds for large language models. In Ruslan
Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett,
and Felix Berkenkamp, editors, Proceedings of the 41st International Conference on Machine
Learning, volume 235 of Proceedings of Machine Learning Research, pages 32801–32818.
PMLR, 21–27 Jul 2024.

[35] Sanae Lotfi, Yilun Kuang, Brandon Amos, Micah Goldblum, Marc Finzi, and Andrew Gordon
Wilson. Unlocking tokens as data points for generalization bounds on larger language models,
2024.

[36] Mario Marchand, Mohak Shah, John Shawe-Taylor, and Marina Sokolova. The set covering
machine with data-dependent half-spaces. In Tom Fawcett and Nina Mishra, editors, Machine
Learning, Proceedings of the Twentieth International Conference (ICML 2003), August 21-24,
2003, Washington, DC, USA, pages 520–527. AAAI Press, 2003.

[37] Mario Marchand and John Shawe-Taylor. The set covering machine. Journal of Machine
Learning Research, 3(4-5):723–746, 2002.

[38] Mario Marchand and Marina Sokolova. Learning with decision lists of data-dependent features.
Journal of Machine Learning Research, 6(4), 2005.

[39] Andreas Maurer. A note on the pac bayesian theorem. arXiv preprint cs/0411099, 2004.

[40] David A McAllester. Some PAC-Bayesian theorems. In Proceedings of the eleventh annual
conference on Computational learning theory, pages 230–234, 1998.

[41] Shay Moran, Ido Nachum, Itai Panasoff, and Amir Yehudayoff. On the perceptron’s compression.
In Beyond the Horizon of Computability: 16th Conference on Computability in Europe, CiE
2020, Fisciano, Italy, June 29–July 3, 2020, Proceedings 16, pages 310–325. Springer, 2020.

[42] Shay Moran and Amir Yehudayoff. Sample compression schemes for vc classes. Journal of the
ACM (JACM), 63(3):1–10, 2016.

[43] Dario Paccagnan, Marco Campi, and Simone Garatti. The pick-to-learn algorithm: Empowering
compression for tight generalization bounds and improved post-training performance. Advances
in Neural Information Processing Systems, 36, 2024.

[44] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[45] María Pérez-Ortiz, Omar Rivasplata, John Shawe-Taylor, and Csaba Szepesvári. Tighter risk
certificates for neural networks. Journal of Machine Learning Research, 22(227):1–40, 2021.

[46] Borja Rodríguez-Gálvez, Ragnar Thobaben, and Mikael Skoglund. More pac-bayes bounds:
From bounded losses, to losses with general tail behaviors, to anytime validity. Journal of
Machine Learning Research, 25(110):1–43, 2024.

[47] Frank Rosenblatt. The perceptron: a probabilistic model for information storage and organiza-
tion in the brain. Psychological review, 65(6):386, 1958.

[48] Benjamin IP Rubinstein and J Hyam Rubinstein. A geometric approach to sample compression.
Journal of Machine Learning Research, 13(4), 2012.

[49] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter, 2020.

13

[50] Matthias Seeger. Pac-bayesian generalisation error bounds for gaussian process classification.
Journal of machine learning research, 3(Oct):233–269, 2002.

[51] Mohak Shah. Sample compression bounds for decision trees. In Zoubin Ghahramani, editor,
Machine Learning, Proceedings of the Twenty-Fourth International Conference (ICML 2007),
Corvallis, Oregon, USA, June 20-24, 2007, volume 227 of ACM International Conference
Proceeding Series, pages 799–806. ACM, 2007.

[52] Christopher Snyder and Sriram Vishwanath. Sample compression, support vectors, and general-
ization in deep learning. IEEE Journal on Selected Areas in Information Theory, 1(1):106–120,
2020.

[53] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine
Learning Research, 15(56):1929–1958, 2014.

[54] Jingtong Su, Julia Kempe, and Karen Ullrich. Mission impossible: A statistical perspective on
jailbreaking llms, 2024.

[55] Pnar Tfekci and Heysem Kaya. Combined Cycle Power Plant. UCI Machine Learning
Repository, 2014. DOI: https://doi.org/10.24432/C5002N.

[56] Athanasios Tsanas and Max Little. Parkinsons Telemonitoring. UCI Machine Learning
Repository, 2009. DOI: https://doi.org/10.24432/C5ZS3N.

[57] Athanasios Tsanas, Max Little, Patrick McSharry, and Lorraine Ramig. Accurate telemonitoring
of parkinson’s disease progression by non-invasive speech tests. Nature Precedings, pages 1–1,
2009.

[58] Pınar Tüfekci. Prediction of full load electrical power output of a base load operated combined
cycle power plant using machine learning methods. International Journal of Electrical Power
& Energy Systems, 60:126–140, 2014.

[59] V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of relative frequencies of
events to their probabilities. Theory of Probability & Its Applications, 16(2):264–280, 1971.

[60] Quanzeng Wang, Yangling Zhou, Pejman Ghassemi, Dwith Chenna, Michelle Chen, Jon
Casamento, Joshua Pfefer, and David Mcbride. Facial and oral temperature data from a large
set of human subject volunteers, 2023.

[61] Quanzeng Wang, Yangling Zhou, Pejman Ghassemi, David McBride, Jon P Casamento, and
T Joshua Pfefer. Infrared thermography for measuring elevated body temperature: clinical
accuracy, calibration, and evaluation. Sensors, 22(1):215, 2021.

[62] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Perric Cistac, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain
Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-
Art Natural Language Processing. pages 38–45. Association for Computational Linguistics,
October 2020.

[63] I-C Yeh. Modeling of strength of high-performance concrete using artificial neural networks.
Cement and Concrete research, 28(12):1797–1808, 1998.

[64] I-Cheng Yeh. Concrete Compressive Strength. UCI Machine Learning Repository, 1998. DOI:
https://doi.org/10.24432/C5PK67.

[65] Oussama Zekri, Ambroise Odonnat, Abdelhakim Benechehab, Linus Bleistein, Nicolas Boullé,
and Ievgen Redko. Large language models as markov chains, 2024.

[66] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text
classification. Advances in neural information processing systems, 28, 2015.

14

A Experiments

The experiments were run on two different devices. The experiments with PBB algorithm and the
regression datasets were run on Python 3.12.2 on a computer with a NVIDIA GeForce RTX 4090.
The experiments on MNIST were run on Python 3.12.3 on a computer with a NVIDIA GeForce
RTX 2080 Ti. The libraries used for each environment can be found with the code. Notably, we
use PyTorch [1] (BSD 3-Clause License), Lightning [14] (Apache 2.0 license), Weights and Biases
[4] (MIT License), Scikit-Learn [44] (BSD 3-Clause License), NumPy [25] (NumPy license) and
Transformer [62] (Apache 2.0 license). For all experiments, we run the code with the following seeds
: [1, 2, 3, 4, 42].

We give information on the datasets used in the experiments.

For the classification problems, we use the MNIST dataset [32] (MIT License) and the amazon
polarity dataset [66] (Apache 2.0 License). All MNIST derived-dataset are composed of 784 real-
valued features. For the multi-class classification problems on MNIST, we denote MNIST (p%) to
say that we pre-train the model on p% of the data, where p is a hyperparameter. For the Amazon
polarity dataset, we chose 10% of the dataset to create a 360000 datapoints dataset. We then use 50%
to pre-train the model and split the rest into a training and validation set. The datapoints are textual
reviews and the labels are binary. The descriptions of the dataset are presented in Table 6.

Table 6: Description of the datasets used for classification problems.

Dataset Pretrain set size Train set size Validation set size Test set size

MNIST (10%) 6000 48000 6000 10000
MNIST (20%) 12000 42000 6000 10000
MNIST (50%) 30000 24000 6000 10000

MNIST08 0 10597 1177 1954
MNIST17 0 11707 1300 2163
MNIST23 0 10881 1208 2042
MNIST49 0 10612 1179 1991
MNIST56 0 10206 1133 1850

Amazon Polarity 180000 144000 36000 400000

For the regression problems, we train our models on five datasets : the Combined Cycle Power
Plant [58, 55], the Infrared Thermography Temperature [61, 60], the Airfoil Self-Noise [8, 7], the
Parkinsons Telemonitoring [57, 56], the Concrete Compressive Strength [63, 64]. The descriptions
of the dataset are presented in Table 7. All datasets were chosen from the UCI dataset repository.
Powerplant, Airfoil, Parkinson and Concrete are under the CC-BY 4.0 license. The Infrared dataset is
under the CC0 license.

Table 7: Description of the datasets used for regression problems.

Dataset Train set size Validation set size Test set size Number of features

Powerplant 7751 861 956 4
Infrared 827 91 102 33
Airfoil 1218 135 150 5

Parkinson 4760 528 587 19
Concrete 835 92 103 8

A.1 Hyperparameter grids

In this section, we present the hyperparameter grids for all the experiments.

In all experiments, we use δ = 0.01 and a batch size of 64. After each iteration of P2L, we train the
model for 200 epochs or until the validation loss has not improved for three epochs.

15

A.1.1 Binary MNIST problems

For the binary MNIST problems, we used the following hyperparameters.

• Model type : [MLP, CNN]
• Dropout probability : [0.1, 0.2]
• Training learning rate : [1e− 2, 1e− 3, 5e− 3, 1e− 4]

The MLP is composed of three hidden fully connected layers of 600 neurons and the CNN is
composed of two convolutional layers and two fully connected layers. We use ReLU activations [19],
dropout layers [53] and the Adam optimizer [28] with the default parameters β = (0.9, 0.999).

At each iteration, the P2L algorithm adds one datapoint to the compression set.

For the baselines, we train the same models with the same hyperparameters for 200 epochs or until
the model achieves zero errors on the training set.

In the following tables, we present the results for the MLP, both trained fully using P2L and early-
stopped, respectively in Table 8 and in Table 9. Moreover, in Fig. 2, we present the results not present
in Fig. 1.

Table 8: Results for the MLPs trained using P2L on the binary MNIST problems. The results
displayed obtained the tightest P2L bound. All metrics presented are in percents (%), with the
exception of |i|.

Dataset Validation error Test error kl bound Binomial bound P2L bound |i| Baseline test error

MNIST08 0.41±0.14 0.40±0.08 6.56±0.30 6.51±0.30 1.42±0.08 128.2±7.4 0.34±0.07
MNIST17 0.37±0.14 0.47±0.17 4.93±0.27 4.89±0.27 1.01±0.07 99.0±7.0 0.33±0.08
MNIST23 0.87±0.24 0.58±0.12 12.21±0.29 12.17±0.29 3.06±0.09 296.6±9.4 0.36±0.14
MNIST49 1.19±0.33 1.04±0.10 14.41±0.05 14.37±0.05 3.78±0.02 361.4±1.9 0.96±0.14
MNIST56 0.68±0.17 0.65±0.05 10.35±0.31 10.30±0.31 2.48±0.09 223.0±8.9 0.59±0.15

Table 9: Results for the MLPs trained using P2L on the binary MNIST problems and stopped at
the iteration with the minimum kl bound. The results displayed obtained the tightest kl bound. All
metrics presented are in percents (%), with the exception of |i|.

Dataset Validation error Test error kl bound Binomial bound Train error |i| Baseline test error

MNIST08 1.11±0.52 1.04±0.67 5.46±0.53 7.77±1.64 0.85±0.71 59.2±34.4 0.34±0.07
MNIST17 0.88±0.39 0.80±0.29 4.02±0.36 5.49±0.77 0.50±0.26 44.0±15.0 0.33±0.08
MNIST23 1.93±0.49 1.59±0.43 10.86±0.19 13.23±0.74 1.27±0.41 146.0±25.8 0.36±0.14
MNIST49 2.28±0.53 2.07±0.58 13.14±0.32 15.08±0.99 1.22±0.47 202.0±30.6 0.96±0.14
MNIST56 1.97±0.53 1.88±0.44 8.85±0.58 11.78±1.44 1.38±0.61 92.0±27.9 0.59±0.15

A.1.2 MNIST problems

We train a convolutional neural network over the 10-class MNIST dataset with the following hyperpa-
rameters.

• Size of pretraining set : [10%, 20%, 50%]

• Pretraining epochs : [50, 100]
• Pretraining learning rate : [1e− 2, 1e− 3, 1e− 4]

• Dropout probability : [0.1, 0.2]
• Training learning rate : [1e− 3, 5e− 3, 1e− 4]

At each iteration, the P2L algorithm adds 32 datapoints to the compression set. To compute bounds for
the cross-entropy loss, we clamp the log-probabilities to be greater or equal than ln

(
10−5

)
[45, 13],

as follows :

ℓ(h,x, y) = −max

(
ln
(
10−5

)
, ln

(
exp(h(x)y)∑C
c=1 exp(h(x)c)

))
,

16

(a) MNIST08 (b) MNIST17

(c) MNIST23

Figure 2: Illustration of the behavior of the kl bound throughout P2L iterations for the five different
seeds of the hyperparameter combination that achieved the minimal P2L bound. We mark the minimal
kl bound for each seed with a diamond (♦).

Table 10: Train metrics on MNIST (risk 01) (in percents)

Model Train error Test Error kl bound Binomial bound Compression set size Baseline test error

P2L 0.0±0.0 1.06±0.10 6.15± 1.51 6.13±1.51 275.20± 82.46 0.0108±0.0010PBB 1.67 ± 0.07 1.05±0.05 1.94±0.07 - -

where h(x) = (h(x)1, . . . , h(x)C) is the output of the neural network and C is the number of classes.
The loss then takes values between [0,− ln

(
10−5

)
]. We will use the same bounded cross-entropy

loss for the following experiments.

For the baseline, we train the same model with the same hyperparameters for 200 epochs or until the
model achieves zero errors on the training set.

For the PAC-Bayes with Backprop (PBB) algorithm, we used the GitHub repository associated to
the article of [45]. We used the hyperparameter grid proposed by the article, with the exception of
the dropout, which we kept similar to the other experiments. We used δ = δ′ = 0.01 to compute
Theorem 10. We used m = 5000 Monte Carlo sampling instead of the value m = 150000 found in
the code, as it takes several hours to run.

• Scale parameter of the prior distribution : [0.1, 0.05, 0.04, 0.03, 0.02, 0.01, 0.005]

• Training learning rate : [1e− 3, 5e− 3, 1e− 2]

• Pre-training learning rate : [1e− 3, 5e− 3, 1e− 2]

• Momentum : [0.95, 0.99]

• Dropout probability : [0.1, 0.2]

17

A.1.3 Regression problems

We trained decision trees and forests on the datasets, using P2L to train the forests on one datapoint
at a time. We trained the models until their validation loss hasn’t decreased for 10 or 20 epochs. We
summarize this idea in Algorithm 2. We denote the RMSE as ℓRMSE(h,x, y) =

√
(h(x)− y)2 and

the empirical risk on the dataset

LRMSE
S (h) =

√√√√ 1

n

n∑
i=1

(h(xi)− yi)2.

For tree-based models, we chose h0 to simply output zeroes for all entries. We use COUNTER and
L̂BEST as variables to stop the training when the loss hasn’t decreased for T epochs.

Algorithm 2: Pick-To-Learn for regression problems
Input :T , the number of iterations before stopping.
Initialize :Si = ∅.
Initialize :hi = h0.
Initialize :LBEST =∞.
Initialize :COUNTER = 0.
Initialize :(x, y) = argmax(x,y)∈S ℓRMSE(h0,x, y)

while COUNTER ≤ T do
Si ← Si ∪ {(x, y)}
hi ← A(Si)

(x, y)← argmax(x,y)∈Sic
ℓRMSE(hi,x, y)

if LRMSE
Sic

(hi) < LBEST then
LBEST ← LRMSE

Sic
(hi)

COUNTER← 0
else

COUNTER← COUNTER+ 1
end

end
return hi

We now present the hyperparameter grid.

• Maximum depth of the trees : [5, 10]
• Minimum samples to split : [2, 3, 4]
• Minimum samples to create a leaf : [1, 2, 3]
• Cost-Complexity pruning parameter : [0.0, 0.05, 0.1, 0.2, 0.5, 1, 2]
• Number of epochs before stopping : [10, 20]

For the decision forests, we choose the number of estimators in [50, 100]. For the baselines, we train
the same model with the same hyperparameters on the whole dataset.

The results for the decision trees can be found in Table 11. Using only P2L to train the trees leads to
underfitted trees, as the model is not complex enough to use only a few datapoints to train a complete
model.

When computing the bounds, we need to bound the loss, as the RMSE is not bounded. However, the
regression trees cannot predict a value bigger (respectively smaller) than the biggest (respectively
smallest) target value found in the dataset. Thus, the loss is bounded by the biggest and smallest target
values found in the dataset S. To compute the kl bound, we add an assumption on the data-generating
distribution D, which is that the target values of D are bounded by :

min
(x,y)∼S

y−p
(

max
(x,y)∼S

y − min
(x,y)∼S

y

)
≤ min

(x,y)∼D
y ≤ max

(x,y)∼D
y ≤ max

(x,y)∼S
y+p

(
max

(x,y)∼S
y − min

(x,y)∼S
y

)
where p ∈ [0%, 100%]. For the experiments, we choose p = 10%. If min(x,y)∼S y = 0, then we
simply lower bound by 0.

18

To compute the linear bound, we assume that the distribution is ς2-sub-Gaussian with ς =
1
2

(
max(x,y)∼S y −min(x,y)∼S y

)
.

These assumptions are restrictive and we would rather have no assumption on the data-generating
distribution. In some settings, we can remove the assumption on the dataset by having expert
knowledge on the distribution. For example, if you predict a probability, the target domain is [0, 1].

We report the lower bounds, minimum values in the training set, maximum values in the training set
and upper bounds for each dataset in Table 12.

Table 11: Results for the decision trees trained using P2L. We report the RMSE achieved by the
models and the generalization bounds on the RMSE.

Dataset Train loss Validation loss Test loss kl bound Linear bound |i| Baseline test loss ℓmax

Powerplant 11.66±3.00 11.83±3.12 12.00±3.04 23.40±1.59 24.15±1.54 72.80±38.32 4.07±0.13 90.6
Infrared 0.77±0.11 0.80±0.08 0.76±0.13 1.63±0.14 1.55±0.11 12.80±0.40 0.27±0.03 4.26
Airfoil 11.02±1.71 10.89±1.38 11.10±1.93 18.87±1.97 18.14±1.75 12.20±0.40 3.01±0.19 45.13

Parkinson 14.75±1.86 14.53±2.19 14.90±2.22 18.86±1.95 18.28±1.86 12.00±0.00 3.20±0.15 41.37
Concrete 26.44±1.99 27.40±1.85 27.08±1.68 46.56±1.74 45.00±1.72 14.00±1.26 6.22±0.91 90.63

Table 12: Minimum and maximum values used to compute the bound on regression problems.

Dataset Lower bound Minimum value Maximum value Upper bound

Powerplant 412.71 420.26 495.76 503.31
Infrared 35.40 35.75 39.3 39.66
Airfoil 99.62 103.38 140.99 144.75

Parkinson 1.59 5.04 39.51 42.96
Concrete 0 2.33 82.6 90.63

A.1.4 Amazon Polarity

We trained DistilBERT on the Amazon Reviews Polarity dataset. We use a subset of 10% of the real
dataset, amounting to 360000 datapoints. 180000 are used for pretraining the model, 144000 for
training and 36000 for validation. We use the given test set of 400000 datapoints. Using P2L, we add
32 datapoints at a time to the compression set and stop the training when the validation loss hasn’t
decreased in 20 iterations. For both P2L and the baseline, which was trained for 200 epochs or until
it reached 0 errors on the training dataset, we use the following hyperparameter grid :

• Number of pretraining epochs : [2, 5]
• Pretraining learning rate : 2e-5
• Dropout probability : [0.1, 0.2]
• Training learning rate : [1e-6, 1e-7, 1e-8]

For this model, we trained using only one seed.

B Theoretical results from the literature

Corollary 9 ([31], Corollary 1). For any distribution D over X ×Y , for any set of messages
{M(i)∀ i ∈ I}, for any deterministic reconstruction function R that outputs sample-compressed
predictors h ∈ H and for any δ ∈ (0, 1], with probability at least 1− δ over the draw of S ∼ Dn, we
have

∀ i ∈ I, ∀σ ∈M(i) : RD(R(Si, σ)) ≤ 1− exp

 −1
n− |i| −κ

ln(n− |i|κ

)
+ ln


(
n
|i|

)
ζ(|i|)PM(i)(σ)δ



 ,

with κ = nRSic
(R(Si, σ)).

19

Theorem 10 ([45]). For any distribution D over X ×Y , for any setH of predictors h : X → Y , for
any loss ℓ : H×X ×Y → [0, 1], for any dataset-independent prior distribution P on H, for any
δ, δ′ ∈ (0, 1], with probability at least 1− δ − δ′ over the draw of S ∼ Dn and a set of m predictors
h1, . . . , hm ∼ QS , where QS is a dataset-dependent posterior distribution overH, we have

E
h∼Q
LD(h) ≤ kl−1

(
kl−1

(
1

m

m∑
i=1

L̂S(hi),
1

m
log

2

δ′

)
,
1

n

[
KL(Q ||P) + ln

(
2
√
n

δ

)])
.

C Proofs

C.1 Proof of the main result

Theorem 3. For any distributionD over X ×Y , for any family of set of messages {M(i) | i ∈ P(n)},
for any deterministic reconstruction function R that outputs sample-compressed predictors h ∈ H, for
any loss ℓ : H×X ×Y → R, for any comparator function ∆ : R×R→ R and for any δ ∈ (0, 1],
with probability at least 1− δ over the draw of S ∼ Dn, we have

∀i ∈ P(n), σ ∈M(i) :

∆
(
L̂Sic

(R(Si, σ)),LD(R(Si, σ))
)
≤ 1

| ic |

[
log

(
n
|i|

)
+ log

(
E∆(i, σ)

ζ(|i|)PM(i)(σ)δ

)]
with

E∆(i, σ) = E
Ti∼D|i|

E
Tic∼D|ic|

e|i
c|∆(L̂Tic

(R(Ti,σ)),LD(R(Ti,σ))).

Before proving Theorem 3, we need to restate Chernoff’s bound in a way that will be useful to prove
Theorem 3.

Lemma 11 (Chernoff’s bound). For t > 0 and X a random variable :

P
(
X ≤ 1

t

[
lnE etX + ln

1

δ

])
≥ 1− δ.

Proof of Lemma 11. Chernoff’s bound states that for a random variable X , any t > 0 and ϵ > 0, we
have :

P (X > ϵ) ≤ e−tϵ E etX

By choosing δ = e−tϵ E etX , we have :

δ = e−tϵ E etX

⇐⇒ etϵ =
1

δ
E etX

⇐⇒ tϵ = ln
1

δ
E etX

⇐⇒ ϵ =
1

t

[
lnE etX + ln

1

δ

]
Thus, we have :

P
(
X >

1

t

[
lnE etX + ln

1

δ

])
≤ δ.

Proof of Theorem 3. We start by defining a sample-compressed set. Given a dataset S ∼ Dn and
H a predictor set, we consider the following subset of H, that contains only sample-compressed
predictors :

ĤS := {R(Si, σ)| i ∈ I, σ ∈M(i)} ⊆ H .

20

For any vector of indices i ∈ I and a message σ ∈ M(i), when given a dataset S, we
fully define a predictor R(Si, σ) ∈ ĤS . For a specific pair (i, σ), let’s study the value of
∆
(
L̂Sic

(R(Si, σ)),LD(R(Si, σ))
)

, a realization of a random variable of mean

E
T∼Dn

∆
(
L̂Tic

(R(Ti, σ)),LD(R(Ti, σ))
)
= E

Ti∼D|i|
E

Tic∼Dn−|i|
∆
(
L̂Tic

(R(Ti, σ)),LD(R(Ti, σ))
)
.

With δσi ∈ (0, 1) and t > 0, using Chernoff’s bound as stated in Lemma 11, we have :

P
S∼Dn

(
∆
(
L̂Sic

(hσ
i),LD(h

σ
i)
)
≤ 1

t

[
ln E

Ti∼D|i|
E

Tic∼Dn−|i|
et∆(L̂Tic

(R(Ti,σ)),LD(R(Ti,σ))) + ln
1

δσi

])
≥ 1− δσi

Using the union bound, we get a bound that is valid for all pairs (i, σ) simultaneously,

P
S∼Dn

(
∀ i ∈ I, σ ∈M(i) : ∆

(
L̂Sic

(hσ
i),LD(h

σ
i)
)
≤ 1

t

[
ln E

Ti∼D|i|
E

Tic∼Dn−|i|
et∆(L̂Tic

(R(Ti,σ)),LD(R(Ti,σ))) + ln
1

δσi

])
≥ 1−

∑
i∈I

∑
σ∈M(i)

δσi . (9)

To obtain a valid bound, we will need to either compute or bound the following term :

E
Ti∼D|i|

E
Tic∼Dn−|i|

et∆(L̂Tic
(R(Ti,σ)),LD(R(Ti,σ))).

As the set T is a realization of a n− |i| datapoints, choosing t = n− |i| will generally be the best
value to make sure that this term is bounded. Indeed, this is a requirement for the proofs of multiple
results in the PAC-Bayesian theory. Thus, we will simply always choose t = n− |i|. With this choice
made, we denote :

E∆(i, σ) = E
Ti∼D|i|

E
Tic∼Dn−|i|

e(n−|i|)∆(L̂Tic
(R(Ti,σ)),LD(R(Ti,σ))).

We finish the proof by choosing the value of δσi , which needs to be defined independently of S.
Choose a set Im = {i ∈ I : |i| = m}. As we have no information on which i ∈ Im will give the
best results, we define a uniform distribution over all (n

m) vectors in Im, which gives a weight of
(n
m)

−1∀ i ∈ Im. Now, we generally consider multiple sizes of compression set

I =

M⋃
k=0

Ik,

so we need to define a probability distribution over each set Ik. We could simply choose 1
M+1 , but

the probabilities would tend very fast to zero when we consider a large number M of compression
set sizes. It is a better choice, as discussed by [38] in Section 5.2, to choose :

ζ(m) =
6

π2(m+ 1)2
, with

∞∑
m=0

ζ(m) = 1.

For any compression set Si, we define a probability distribution PM(i) over M(i) such that∑
σ∈M(i) PM(i)(σ) ≤ 1.

Thus, for a δ ∈ (0, 1), we define δσi =

(
n
|i|

)−1

ζ(|i|)PM(i)(σ)δ and

∑
i∈I

∑
σ∈M(i)

δi =
∑
i∈I

∑
σ∈M(i)

(
n
|i|

)−1

ζ(|i|)PM(i)(σ)δ

21

≤
∑
i∈I

(
n
|i|

)−1

ζ(|i|)δ

=

M∑
m=1

∑
i∈Im

(
n
|i|

)−1

ζ(|i|)δ

=

M∑
m=1

ζ(|i|)δ

≤ δ.

Thus, we have 1 −
∑

i∈I

∑
σ∈M(i) δ

σ
i ≥ 1 − δ. We replace δσi by

(n
|i|
)−1

ζ(|i|)PM(i)(σ)δ in
Equation 9 to finish the proof.

C.2 Corollaries to the main result

To prove most corollaries, we are going to need the following lemma :

Lemma 12 ([39], [18]). Let X be any random variable with values in [0, 1] and expectation µ =
E(X). Denote X the vector containing the results of n independent realizations of X . Then, consider
a Bernoulli random variable X ′ ({0, 1}-valued) of probability of success µ. Denote X ′ ∈ {0, 1}n
the vector containing the results of n independent realizations of X ′.

If function g : [0, 1]n → R is convex, then

E[g(X)] ≤ E[g(X ′)].

We now prove our first corollary.

Corollary 4. In the setting of Theorem 3, for any C > 0, for a loss function ℓ : H×X ×Y → [0, 1],
with probability at least 1− δ over the draw of S ∼ Dn, we have

∀ i ∈ P(n), σ ∈M(i) : LD(R(Si, σ)) ≤
1− exp(−ϵC(i, σ, δ))

1− e−C

with

ϵC(i, σ, δ) = C L̂Sic
(R(Si, σ)) +

1

n− |i|

[
log

(
n
|i|

)
+ log

(
1

ζ(|i|)PM(i)(σ)δ

)]
.

Proof of Corollary 4. To prove this corollary, we need to do two things : bound E∆C
and rearrange

the terms. Both of these things were already proven multiple time in the PAC-Bayes theory, so we
simply restate their proofs.

We start by bounding E∆C
. We follow the proof of [18]. Let us introduce a random variable Xσ

i
that follows a binomial distribution of m trials with a probability of success LD(R(Ti, σ)), denoted
B(m,LD(R(Ti, σ))). We use Lemma 12 with g(·) = em∆C(·,LD(h)).

E∆C
(i, σ) = E

Ti∼D|i|
E

Tic∼Dn−|i|
e(n−|i|)∆C(L̂Tic

(R(Ti,σ)),LD(R(Ti,σ)))

≤ E
Ti∼D|i|

E
Xσ

i ∼B(m,LD(R(Ti,σ)))
e(n−|i|)∆C(1

n−|i|X
σ
i ,LD(R(Ti,σ)))

= E
Ti∼D|i|

n−|i|∑
k=0

P
Xσ

i ∼B(m,LD(R(Ti,σ)))
(Xσ

i = k)e(n−|i|)∆C(k
n−|i| ,LD(R(Ti,σ)))

= E
Ti∼D|i|

n−|i|∑
k=0

(
n− |i|

k

)
(LD(R(Ti, σ)))

k
(1− LD(R(Ti, σ)))

n−|i| −k
e(n−|i|)∆C(k

n−|i| ,LD(R(Ti,σ)))

22

≤ E
Ti∼D|i|

sup
r∈[0,1]

n−|i|∑
k=0

(
n− |i|

k

)
(r)

k
(1− r)

n−|i| −k
e(n−|i|)∆C(k

n−|i| ,r)


= sup

r∈[0,1]

n−|i|∑
k=0

(
n− |i|

k

)
(r)

k
(1− r)

n−|i| −k
e(n−|i|)∆C(k

n−|i| ,r)


= sup

r∈[0,1]

n−|i|∑
k=0

(
n− |i|

k

)
(r)

k
(1− r)

n−|i| −k e−Ck

[1− (1− e−C)r]n−|i|


= sup

r∈[0,1]

n−|i|∑
k=0

(
n− |i|

k

)(
re−C

)k
(1− r)

n−|i| −k 1

[1− (1− e−C)r]n−|i|


= sup

r∈[0,1]

[
[re−C + (1− r)]n−|i|

[1− (1− e−C)r]n−|i|

]
= sup

r∈[0,1]

[1] = 1.

where the last lign is derived using binomial theorem.

Now, we rearrange the terms:

∆
(
L̂Sic

(R(i, σ)),LD(R(i, σ))
)
≤ 1

n− |i|

[
log

(
n
|i|

)
+ log

(
1

ζ(|i|)PM(i)(σ)δ

)]
− ln

(
1− LD(R(i, σ))(1− e−C)

)
− CL̂Sic

(R(i, σ)) ≤ 1

n− |i|

[
log

(
n
|i|

)
+ log

(
1

ζ(|i|)PM(i)(σ)δ

)]
ln
(
1− LD(R(i, σ))(1− e−C)

)
≥ −CL̂Sic

(R(i, σ))− 1

n− |i|

[
log

(
n
|i|

)
+ log

(
1

ζ(|i|)PM(i)(σ)δ

)]
1− LD(R(i, σ))(1− e−C) ≥ exp

(
−CL̂Sic

(R(i, σ))− 1

n− |i|

[
log

(
n
|i|

)
+ log

(
1

ζ(|i|)PM(i)(σ)δ

)])
LD(R(i, σ))(1− e−C) ≤ 1− exp

(
−CL̂Sic

(R(i, σ))− 1

n− |i|

[
log

(
n
|i|

)
+ log

(
1

ζ(|i|)PM(i)(σ)δ

)])
LD(R(i, σ)) ≤ 1

1− e−C

[
1− exp

(
−CL̂Sic

(R(i, σ))− 1

n− |i|

[
log

(
n
|i|

)
+ log

(
1

ζ(|i|)PM(i)(σ)δ

)])]

Corollary 6. In the setting of Theorem 3, for a loss function ℓ : H×X ×Y → [0, 1], with probability
at least 1− δ over the draw of S ∼ Dn, we have

∀i ∈ P(n), σ ∈M(i) : LD(R(Si, σ)) ≤ kl−1
(
L̂Sic

(R(Si, σ)), ϵkl(i, σ, δ)
)

with kl−1(q, ϵ) = arg sup0≤p≤1 {kl(q, p) ≤ ϵ} and

ϵkl(i, σ, δ) =
1

n− |i|

[
log

(
n
|i|

)
+ log

(
2
√

n− |i|
ζ(|i|)PM(i)(σ)δ

)]
.

Proof. To prove this corollary, we need to bound Ekl. This was first proven by [30, 50] and then
improved by [39]. We restate the proof for completeness.

We use Lemma 12 with g(·) = emkl(·,LD(h)).

Ekl(i, σ) = E
Ti∼D|i|

E
Tic∼Dn−|i|

e(n−|i|)kl(L̂Tic
(R(Ti,σ)),LD(R(Ti,σ)))

23

≤ E
Ti∼D|i|

E
Xσ

i ∼B(m,LD(R(Ti,σ)))
e(n−|i|)kl(1

n−|i|X
σ
i ,LD(R(Ti,σ)))

= E
Ti∼D|i|

n−|i|∑
k=0

P
Xσ

i ∼B(m,LD(R(Ti,σ)))
(Xσ

i = k)e(n−|i|)kl(k
n−|i| ,LD(R(Ti,σ)))

= E
Ti∼D|i|

n−|i|∑
k=0

(
n− |i|

k

)
(LD(R(Ti, σ)))

k
(1− LD(R(Ti, σ)))

n−|i| −k
e(n−|i|)kl(k

n−|i| ,LD(R(Ti,σ)))

≤ E
Ti∼D|i|

sup
r∈[0,1]

n−|i|∑
k=0

(
n− |i|

k

)
(r)

k
(1− r)

n−|i| −k
e(n−|i|)kl(k

n−|i| ,r)


= sup

r∈[0,1]

n−|i|∑
k=0

(
n− |i|

k

)
(r)

k
(1− r)

n−|i| −k
e(n−|i|)kl(k

n−|i| ,r)


= sup

r∈[0,1]

n−|i|∑
k=0

(
n− |i|

k

)
(r)

k
(1− r)

n−|i| −k × e(n−|i|)(k
n−|i| ln(

k
n−|i| ·

1
r)+(1− k

n−|i|) ln((1−
k

n−|i|)·
1

1−r))


= sup

r∈[0,1]

n−|i|∑
k=0

(
n− |i|

k

)
(r)

k
(1− r)

n−|i| −k × ek ln(k
n−|i| ·

1
r)+(n−|i| −k) ln((1− k

n−|i|)·
1

1−r)


= sup

r∈[0,1]

n−|i|∑
k=0

(
n− |i|

k

)
(r)

k
(1− r)

n−|i| −k × eln (
k

n−|i|)
k
+ln (1

r)
k
+ln (1− k

n−|i|)
n−|i| −k

+ln (1
1−r)

n−|i| −k


= sup

r∈[0,1]

n−|i|∑
k=0

(
n− |i|

k

)
(r)

k
(1− r)

n−|i| −k × 1

(r)k(1− r)n−|i| −k

(
k

n− |i|

)k(
1− k

n− |i|

)n−|i| −k


= sup
r∈[0,1]

n−|i|∑
k=0

(
n− |i|

k

)(
k

n− |i|

)k(
1− k

n− |i|

)n−|i| −k


≤ e
1

12(n−|i|)

√
π(n− |i|)

2
+ 2

≤ 2
√
n− |i|.

The last two inequalities were proven by [39]. The last inequality holds only for n− |i| ≥ 8, but it
can be verified that Ekl(i, σ) ≤ 2

√
n− |i| holds for n− |i| ≥ 1.

Corollary 7. In the setting of Theorem 3, for any λ > 0, with a ς2-sub-Gaussian loss function
ℓ : H×X ×Y → R, with probability at least 1− δ over the draw of S ∼ Dn, we have

∀i ∈ P(n), σ ∈M(i) :

LD(R(Si, σ)) ≤ L̂Sic
(R(Si, σ)) +

λς2

2
+

1

λ(n− |i|)

[
log

(
n
|i|

)
+ log

(
1

ζ(|i|)PM(i)(σ)δ

)]
.

Proof. We assume that the loss ℓ is ς2-sub-Gaussian, which is defined as:

E
(x,y)∼D

exp

[
λ

(
ℓ(h,x, y)− E

(x′,y′)∼D
ℓ(h,x′, y′)

)]
≤ exp

(
λ2ς2

2

)
.

Then, we have

E∆λ
(i, σ) = E

Ti∼D|i|
E

Tic∼Dn−|i|
exp

[
(n− |i|)∆λ

(
L̂Tic

(R(Ti, σ)),LD(R(Ti, σ))
)]

24

= E
Ti∼D|i|

E
Tic∼Dn−|i|

exp
[
(n− |i|)λ

(
LD(R(Ti, σ))− L̂Tic

(R(Ti, σ))
)]

= E
Ti∼D|i|

E
Tic∼Dn−|i|

exp

(n− |i|)λ
 E

(x,y)∼D
ℓ(R(Ti, σ),x, y)−

1

n− |i|

n−|i|∑
i=1

ℓ(R(Ti, σ),xi, yi)


= E

Ti∼D|i|
E

Tic∼Dn−|i|
exp

λ n−|i|∑
i=1

(
E

(x,y)∼D
ℓ(R(Ti, σ),x, y)− ℓ(R(Ti, σ),xi, yi)

)
= E

Ti∼D|i|
E

Tic∼Dn−|i|
exp

−λ n−|i|∑
i=1

(
ℓ(R(Ti, σ),xi, yi)− E

(x,y)∼D
ℓ(R(Ti, σ),x, y)

)
= E

Ti∼D|i|
E

Tic∼Dn−|i|

n−|i|∏
i=1

exp

[
−λ
(
ℓ(R(Ti, σ),xi, yi)− E

(x,y)∼D
ℓ(R(Ti, σ),x, y)

)]

= E
Ti∼D|i|

n−|i|∏
i=1

E
(xi,yi)∼D

exp

[
−λ
(
ℓ(R(Ti, σ),xi, yi)− E

(x,y)∼D
ℓ(R(Ti, σ),x, y)

)]
(10)

≤ E
Ti∼D|i|

n−|i|∏
i=1

exp

(
λ2ς2

2

)
(11)

= exp

(
(n− |i|)λ2ς2

2

)
.

In Equation 10, we use the i.i.d. assumption. In Equation 11, we use the ς2-sub-Gaussian assumption.

We replace the comparator function in Theorem 3 and bound the cumulant generating function E∆λ

to finish the proof.

C.3 Behavior with zero error

Theorem 8. In the consistent case, i.e. when the training error is zero, Corollary 4 is arbitrarily
close to the binomial tail inversion of Theorem 1. Moreover, Corollary 6 is a tight upper bound up to
a constant K(m, δ) that decreases for m large enough and tends to 0 when m tends to∞. Indeed,

Bin(0,m, δ) =1− exp

(
−1
m

ln
1

δ

)
(3)

= lim
C→∞

1

1− e−C

[
1− exp

(
− 1

m
ln

1

δ

)]
(4)

= inf
C>0

1

1− e−C

[
1− exp

(
− 1

m
ln

1

δ

)]
(5)

=kl−1

(
0,

1

m
ln

1

δ

)
(6)

≤kl−1

(
0,

1

m
ln

2
√
m

δ

)
. (7)

=kl−1

(
0,

1

m
ln

1

δ

)
+K(m, δ). (8)

Before proving the result, we remind the reader of the definition of the binomial tail:

Bin(k,m, r) =

k∑
i=0

(
m
i

)
ri(1− r)m−i

25

and the binomial tail inversion :

Bin(k,m, δ) = arg sup
r∈[0,1]

{Bin(k,m, r) ≥ δ}

Proof of Eq. (3).

Bin(0,m, r) =

0∑
i=0

(
m
i

)
ri(1− r)m−i

=

(
m
0

)
r0(1− r)m−0

= 1 · 1 · (1− r)m

= (1− r)m.

Thus, we have :

Bin(0,m, δ) = arg sup
r∈[0,1]

{Bin(0,m, r) ≥ δ}

= arg sup
r∈[0,1]

{(1− r)m ≥ δ}

= arg sup
r∈[0,1]

{
1− r ≥ δ

1
m

}
= arg sup

r∈[0,1]

{
1− δ

1
m ≥ r

}
= 1− δ

1
m

= 1− exp
(
ln
(
δ

1
m

))
= 1− exp

(
− 1

m
ln

(
1

δ

))

Proof of Eq. (4). We want to show that :

1− exp

(
− 1

m
ln

1

δ

)
= lim

C→∞

1

1− e−C

[
1− exp

(
− 1

m
ln

1

δ

)]
We simply take the limit.

lim
C→∞

1

1− e−C

[
1− exp

(
− 1

m
ln

1

δ

)]
=

[
1− exp

(
− 1

m
ln

1

δ

)]
lim

C→∞

1

1− e−C

=

[
1− exp

(
− 1

m
ln

1

δ

)]
· 1

= 1− exp

(
− 1

m
ln

1

δ

)

Proof of Eq. (5). We want to prove that :

lim
C→∞

1

1− e−C

[
1− exp

(
− 1

m
ln

1

δ

)]
= inf

C>0

1

1− e−C

[
1− exp

(
− 1

m
ln

1

δ

)]
.

First of all, we know that :

inf
C>0

1

1− e−C

[
1− exp

(
− 1

m
ln

1

δ

)]
=

[
1− exp

(
− 1

m
ln

1

δ

)]
inf
C>0

1

1− e−C

26

We show that f(C) = 1
1−e−C is decreasing on [0,∞) and has a minimum at C =∞.

We take its derivative :

f ′(C) =
d

dC

1

1− e−C
=

d

dC

(
1− e−C

)−1

=
−1

(1− e−C)
2

d

dC

(
1− e−C

)
=

−1
(1− e−C)

2 e
−C

= (−1) e−C

(1− e−C)
2

The derivative of f is always negative, so f is decreasing. Thus, it will have no minimum on R>0.
Indeed, if we try to find a value of C ∈ R>0 such that f ′(C) = 0, we have

(−1) e−C

(1− e−C)
2 = 0

⇐⇒ e−C = 0.

There is no C ∈ R>0 such that e−C = 0, however we know that limC→∞ e−C = 0. This finishes
the proof.

Proof of Eq. (6). We want to show :

1− exp

(
− 1

m
ln

1

δ

)
= kl−1

(
0,

1

m
ln

1

δ

)
The function kl(0, p) is monotonically increasing and kl(0, 1) = ∞. Thus, there exists a value
p∗ = kl−1

(
0, 1

m ln 1
δ

)
such that kl(0, p∗) = 1

m ln 1
δ .

p∗ = kl−1

(
0,

1

m
ln

1

δ

)
⇐⇒ kl(0, p∗) =

1

m
ln

1

δ

⇐⇒ 0 ln
0

p∗
+ (1) ln

1

1− p∗
=

1

m
ln

1

δ
(12)

⇐⇒ ln
1

1− p∗
=

1

m
ln

1

δ

⇐⇒ 1

1− p∗
= exp

(
1

m
ln

1

δ

)
⇐⇒ p∗ = 1− exp

(
− 1

m
ln

1

δ

)

In Eq. (12), we use the convention of the PAC-Bayes theory that 0 ln 0 = 0. This is used to define the
kl when q ∈ {0, 1} or p ∈ {0, 1}.

Proof of Eq. (7). We want to prove that

kl−1

(
0,

1

m
ln

1

δ

)
≤ kl−1

(
0,

1

m
ln

2
√
m

δ

)
.

The function kl(0, p) is monotonically increasing and kl(0, 1) = ∞. Thus, there exists a
value p∗ = kl−1

(
0, 1

m ln 1
δ

)
such that kl(0, p∗) = 1

m ln 1
δ . Moreover, there exists a value

27

p† = kl−1
(
0, 1

m ln 2
√
m

δ

)
such that kl(0, p†) = 1

m ln 2
√
m

δ . As kl(0, p) is monotonically increasing
and

kl(0, p∗) =
1

m
ln

1

δ
≤ 1

m
ln

2
√
m

δ
= kl(0, p†),

then p∗ ≤ p†.

Proof of Eq. (8). We want to prove that

kl−1

(
0,

1

m
ln

2
√
m

δ

)
= kl−1

(
0,

1

m
ln

1

δ

)
+K(m, δ)

and that K(m, δ) decreases for m large enough and tends to 0 when m→∞. To do so, we will use
Eq. (6), restated here for ease of reading

1− exp

(
− 1

m
ln

1

δ

)
= kl−1

(
0,

1

m
ln

1

δ

)
.

We start by defining the constant as the gap between the two terms.

kl−1

(
0,

1

m
ln

2
√
m

δ

)
− kl−1

(
0,

1

m
ln

1

δ

)
=

[
1− exp

(
− 1

m
ln

2
√
m

δ

)]
−
[
1− exp

(
− 1

m
ln

1

δ

)]
=exp

(
− 1

m
ln

1

δ

)
− exp

(
− 1

m
ln

2
√
m

δ

)
=:K(m, δ)

We now prove that this constant is decreasing for m large enough. To do so, we start by computing
the derivative of K, for m > 0.

We have :

∂K(m, δ)

∂m
=

1

2

exp
(
− 1

m ln
(

2
√
m

δ

))
− 2 ln(δ) exp

(
1
m ln(δ)

)
− 2 ln

(
2
√
m

δ

)
exp

(
− 1

m ln
(

2
√
m

δ

))
m2

=
1

2

(
1− 2 ln

(
2
√
m

δ

))
exp

(
− 1

m ln
(

2
√
m

δ

))
+ 2 ln

(
1
δ

)
exp

(
− 1

m ln
(
1
δ

))
m2

The first term is always negative, as we have

1− 2 ln

(
2
√
m

δ

)
≤ 0 ⇐⇒ δ2

4
e ≤ m

and δ2

4 e is always smaller than one. All the other terms will always be positive.

We focus only on the numerator, as the denominator will always be greater than 0. We wish to find
the values of m such that the derivative of K(m, δ) is negative, showing that K(m, δ) is decreasing.(

1− 2 ln

(
2
√
m

δ

))
exp

(
− 1

m
ln

(
2
√
m

δ

))
+ 2 ln

(
1

δ

)
exp

(
− 1

m
ln

(
1

δ

))
≤ 0

⇐⇒
(
1− 2 ln

(
2
√
m

δ

))
exp

(
− 1

m
ln
(
2
√
m
))

exp

(
− 1

m
ln

(
1

δ

))
+ 2 ln

(
1

δ

)
exp

(
− 1

m
ln

(
1

δ

))
≤ 0

⇐⇒
(
1− 2 ln

(
2
√
m

δ

))
exp

(
− 1

m
ln
(
2
√
m
))

+ 2 ln

(
1

δ

)
≤ 0

⇐⇒ 2 ln

(
1

δ

)
≤
(
2 ln

(
2
√
m

δ

)
− 1

)
exp

(
− 1

m
ln
(
2
√
m
))

⇐⇒ 2 ln

(
1

δ

)
≤
(
2 ln

(
1

δ

)
+ ln

(
2
√
m
)
− 1

)
exp

(
− 1

m
ln
(
2
√
m
))

28

As the exponential term tends to one when m tends to∞, for m large enough, the inequality will
always hold and K(m, δ) will be decreasing. To the best of our knowledge, there exists no analytical
solution to this inequality. However, we can easily compute m∗ the solution of ∂K(m,δ)

∂m = 0. Then,
we know that for any m ≥ m∗, K(m, δ) will be decreasing.2

Figure 3: Illustration of the behavior of the solution m∗ for different values of δ.

Figure 4: Illustration of the behavior of K(m∗, δ) for different values of δ.

Finally, we show that this constant K(m, δ) tends to 0 when m tends to∞, as such

lim
n→∞

K(n, δ) = lim
n→∞

exp

(
− 1

m
ln

1

δ

)
− exp

(
− 1

m
ln

2
√
m

δ

)
= lim

n→∞
exp

(
− 1

m
ln

1

δ

)
− lim

n→∞
exp

(
− 1

m
ln

2
√
m

δ

)
= 1− 1 = 0.

To provide an intuition of the magnitude of K(m, δ), hence of the tightness of the upper bound of
the binomial tail inversion, in Fig. 5 we report the values of K(m, δ) for different sizes of datasets
m and the commonly chosen δ = 0.01. In particular, we highlight the values corresponding to the
training set sizes used in our experiments, as reported in Table 6. Note however, that when computing
the bounds in practice, the gap will be K(m − |i|, δ) as we will need to consider the size of the
compression set.

2In Fig. 3, we present the value of m∗ for multiple values of δ. In Fig. 4, we present the maximum value of
K(m, δ), which is achieved at m∗, for multiple values of δ.

29

Figure 5: Illustration of the behavior of K(m, δ) for different sizes of datasets, when δ = 0.01. We
highlight the values corresponding to the datasets used for classification.

30

	Introduction
	Background and Notation
	Sample compression theory
	Pick-To-Learn

	A General Sample-Compress Bound
	Behavior in the consistent case

	Experiments
	Binary MNIST
	MNIST
	Regression forests
	Amazon polarity

	Conclusion
	Experiments
	Hyperparameter grids
	Binary MNIST problems
	MNIST problems
	Regression problems
	Amazon Polarity

	Theoretical results from the literature
	Proofs
	Proof of the main result
	Corollaries to the main result
	Behavior with zero error

