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Abstract

We characterize the effectiveness of Sharpness-aware minimization (SAM) under
machine unlearning scheme, where unlearning forget signals interferes with learn-
ing retain signals. While previous work prove that SAM improves generalization
with noise memorization prevention, we show that SAM abandons such denoising
property when fitting the forget set, leading to various test error bounds depending
on signal strength. We further characterize the signal surplus of SAM in the order
of signal strength, which enables learning from less retain signals to maintain
model performance and putting more weight on unlearning the forget set. Empiri-
cal studies show that SAM outperforms SGD with relaxed requirement for retain
signals and can enhance various unlearning methods either as pretrain or unlearn
algorithm. Observing that overfitting can benefit more stringent sample-specific
unlearning, we propose Sharp MinMax, which splits the model into two to learn
retain signals with SAM and unlearn forget signals with sharpness maximization,
achieving best performance. Extensive experiments show that SAM enhances
unlearning across varying difficulties measured by data memorization, yielding
decreased feature entanglement between retain and forget sets, stronger resistance
to membership inference attacks, and a flatter loss landscape.

1 Introduction
Deep neural networks have grown so large and complex that retraining a model from scratch to forget
even a few samples has become impractically costly in both computation and energy. This challenge
has catalyzed the study of machine unlearning: methods that efficiently remove the influence of
specific training data without full retraining, aiming to forget designated examples while preserving
overall performance. Numerous unlearning strategies have been explored – from influence-based
updates that subtract a data point’s contribution [17], to fine-tuning with targeted weight sparsification
[18], to joint optimization approaches that explicitly balance “retain” vs. “forget” objectives by
gradient ascent/descent on different data subsets [24]. However, a fundamental understanding of what
makes unlearning effective remains elusive. Key questions persist: How should we trade off forgetting
unwanted data versus retaining accuracy on the rest? How do different training algorithms influence
unlearning dynamics? Why are some samples inherently harder to forget than others? In practice,
the lack of principled answers has led to ad-hoc hyperparameter tuning and unpredictable behavior
across tasks. In particular, when a model is simultaneously fed with conflicting retain and forget
signals, these signals can interfere and even cancel out during training, hampering the unlearning
process [24]. To date, there are few robust solutions to mitigate this interference, underscoring the
need for a deeper theoretical foundation for machine unlearning.

Recent advances in learning theory and optimization hint at possible directions to tackle these issues.
First, a signal-versus-noise perspective has provided new insight into model behavior: for example,
Chen et al. [5] formalize how networks learn meaningful patterns while ignoring or memorizing
label noise, and Zhao et al. [42] empirically identify factors that make certain data points harder
to forget. Particularly relevant is the Sharpness-Aware Minimization (SAM) method [12] that has
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been shown to seek flatter loss minima and thereby dramatically reduce memorization of noisy data,
leading to improved generalization in noisy-label settings [5]. These observations suggest that a
model’s ability to distinguish true signal from noise may be key to effective unlearning. An optimizer
that naturally suppresses memorization of noise might also be better suited for forgetting specific
examples when required. To investigate this hypothesis, we quantify each sample’s memorization
level using established metrics [10, 11], allowing us to rank the “forget set” by difficulty. This enables
a controlled study of how different optimization algorithms perform when asked to forget data that
the model has learned to varying extents.

We present a comprehensive theoretical and empirical study of machine unlearning through the
combined lens of signal-noise decomposition and sharpness-aware optimization. We focus on the
challenging scenario where both retain and forget samples are present in each training batch (i.e.
the model is updated on mixed objectives), and we compare standard Stochastic Gradient Descent
(SGD) to SAM in this context. Building on recent theoretical frameworks for ReLU networks [22],
we derive rigorous results for a two-layer CNN that characterize the unlearning process under each
optimizer. Our analysis yields several striking findings. (1) SAM’s noise suppression can break down
under unlearning: we prove that when tasked with intentionally forgetting a set of samples (treated as
“noise”), SAM unexpectedly abandons its usual denoising behavior – effectively overfitting to the
forget set nearly as much as SGD does. This result challenges the expectation that flatter-minima
methods would inherently excel at unlearning. (2) We establish formal guidelines for balancing retain
vs. forget objectives: in particular, we derive the minimum retain-weighting factor α needed to prevent
catastrophic forgetting of the kept data. Our theory shows that SAM can accomplish successful
unlearning with a significantly smaller retain weight α than SGD, meaning SAM tolerates a stronger
forgetting signal without sacrificing retained accuracy. In the regime of benign overfitting (where
the model fits even noisy data without large generalization error), we quantify the gap in required α

between SAM and SGD and prove it scales on the order of O(
√

d/n) (with d the model dimension
and n the training set size). (3) Perhaps most surprisingly, our findings call for a re-examination of
overfitting in unlearning. Contrary to conventional wisdom, we show that deliberate overfitting – in
a controlled way that limits its impact on the rest of the data – can enhance the complete removal
of those samples. This insight is especially relevant in stringent privacy or copyright scenarios,
suggesting that the strict avoidance of overfitting may not always be optimal.

Our contributions can be summarized as follows:

Theoretical Framework: We introduce a rigorous analytical framework for machine unlearning
based on signal-noise decomposition. This framework explicitly models the interplay between retain
and forget signals. Using this lens, we analyze the behaviors of SGD versus SAM and prove that
SAM’s denoising advantage “shuts off” on forget data: when SAM is asked to unlearn labeled noise,
it ends up overfitting to the forget set almost as much as SGD.

Balancing Retain vs. Forget Objectives: We derive provable guidelines for balancing the re-
tain/forget trade-off. In particular, we identify the minimal value of the weighting ratio parameter α
that guarantees sufficient retention of knowledge. We show that SAM requires a strictly smaller α
than SGD to achieve effective unlearning. In the regime of benign overfitting for both the optimizers,
we analytically bound the difference in required α on the order of O(

√
d/n).

Empirical Validation: Through extensive experiments on CIFAR-100 and ImageNet datasets,
we validate our theoretical insights. We demonstrate that incorporating SAM into state-of-the-art
unlearning methods consistently boosts forgetting efficacy while better preserving accuracy on the
remaining data. Models optimized with SAM yield flatter loss landscapes and reduced entanglement
between retained and forgotten samples, corroborating our theory that SAM distinguishes signal from
noise better. We also observe that SAM-trained models are less vulnerable to membership inference
attacks to forget set, indicating improved unlearning.

Novel Unlearning Algorithm: Finally, inspired by our analysis, we propose Sharp MinMax, a
new unlearning approach that decouples the retain and forget objectives. Sharp MinMax splits the
model into two cooperative parts: one is trained with sharpness minimization on the retained data,
while the other performs sharpness maximization on the forget data to intentionally overfit those
samples to ensure forgottenness. This design mitigates interference between retain and forget signals.
Sharp MinMax achieves state-of-the-art unlearning performance in our experiments, especially on
challenging high-memorization forget sets, where it significantly outperforms existing techniques in
completely erasing the target data’s influence.
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2 Preliminaries
2.1 Data and Model Construction
We construct a practical learning scenario which distinguishes between useful and unrelated signals
from inputs. Similar constructions have been adopted in previous work [5, 22]. Consider learning
binary classification with label y ∈ {±1} using a two-layer CNN on image training data set S =
{(xi, yi)}i∈[n] ∼ D. Each image consists of P patches and assign randomly one of them as the signal
yiφ for label yi and the universal signal vector φ ∈ Rd, and represent other patches by the noise vector
ξi ∈ Rd ∼ N (0, σ2

pI). Thus, each input image is vectorized as xi = [ξi, ..., yiφ, ..., ξi] ∈ RP×d,
where yiφ can appear at any position.

The second layer of CNN is fixed as ±1/m respectively for m convolutional filters. The two-classes
network can be expressed as f(W,x) = f+1(W+1,x)− f−1(W−1,x), where

fj(Wj ,x) =
1

m

m∑
r=1

P∑
p=1

σ(⟨wj,r,x⟩) =
1

m

m∑
r=1

σ(⟨wj,r, yφ⟩) + (P − 1)σ(⟨wj,r, ξ⟩). (1)

Here σ denotes ReLU activation, wj,r ∈ Rd denotes the weight for the r-th filter, and Wj is the
collection of model weights for j = ±1. We train this CNN with cross-entropy loss L(W,S).
Denote w(t,b)

j,r for j ∈ {±1}, r ∈ [m] the convolutional filter at the b-batch of t-th epoch of SGD. We

decompose the weight update into signal learning and noise learning by coefficients κ(t,b)
j,r , ζ

(t,b)
j,r,i for

learning the signal and the noise respectively, such that

w
(t,b)
j,r = w

(0,0)
j,r + j · κ(t,b)

j,r ·φ∥φ∥−22 + (P − 1)−1
n∑

i=1

ζ
(t,b)
j,r,i · ξi∥ξi∥

−2
2 , (2)

where the learning goal is to increase κ
(t,b)
j,r and decrease ζ

(t,b)
j,r,i . This construction also extends to

multiclass classification considering one vs. all setting with K binary classification problems.

2.2 Signal-to-Noise Unlearning

Given a pretrained model fT1

A by algorithm A for T1 epochs on S, machine unlearning aims to
eliminate the influence of forget set F ⊆ S to the model training, while maintain generalizability
to unseen data without compromising performance on the remaining retain set R = S \ F . Denote
the unlearned model as fT2

U by unlearning algorithm U , which is initialized as fT1

A and unlearned for
T2 epochs. We consider unlearning a small portion of S with much less expense than retraining the
model from scratch on R, so |F| < |R| and T2 < T1.

Random Label. The Random Label (RL) method [15] aims to unlearn by finetuning for on S but
with F’s labels randomly flipped in each epoch. In our setup, we model the flips in the forget set as
noise, which allows us to investigate unlearning algorithms under the same theoretical framework.
The batch update of κ(t,b)

j,r and ζ
(t,b)
j,r,i can be expressed as

κ
(t,b+1)
j,r − κ

(t,b)
j,r = −η∥φ∥22

Bm

 ∑
i∈IRt,b

ℓ
′(t,b)
i σ′(⟨w(t,b)

j,r , ŷiφ⟩)−
∑

i∈IFt,b

ℓ
′(t,b)
i σ′(⟨w(t,b)

j,r , ŷiφ⟩)

 ,

ζ
(t,b+1)
j,r,i − ζ

(t,b)
j,r,i = −η(P − 1)2∥ξi∥22

Bm
· ℓ′(t,b)i σ′(⟨w(t,b)

j,r , ξi⟩) · sgn(yi = j),

(3)

where B, η denote the batch size and learning rate, sgn(·) denotes ±1 sign function, IRt,b and IFt,b
denote batch samples from R and F , respectively. ℓ′(t,b)i = −1/(1 + exp(z)) and σ′ denotes the
gradient of loss and ReLU. In each iteration, IFt,b aims to erase its signal in κ

(t,b)
j,r , while ξi reinforces

or decreases ζ(t,b)j,r,i update depending on label agreement.

Negative Gradient. The Negative Gradient (NegGrad) method [24] actively unlearns from F to
forget using gradient ascent. The weight update is transitioned to a bi-task objective, where it
gradient-descends on R and gradient-ascends on F . The combined loss objective is defined as

LNegGrad(W,R,F) =
1

|R|
∑
i∈R

αℓ (yif (W,xi))−
1

|F|
∑
i∈F

(1− α)ℓ (yif (W,xi)) . (4)
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Minimizing LNegGrad induces competing gradients, canceling each other during κ, ζ update. α serves
as a weighting coefficient that accounts for the size imbalance between R and F . To synchronously
optimize the model with retain and forget samples, we draw B samples from both subsets each batch
and train for |R|/B batches. Thus, forget samples’ signals are relatively enlarged by a fraction of
|R|/|F|. α is typically heuristically set α ∝ |R|/(|F|+ |R|).

2.3 Denoising Property of SAM
Sharpness-Aware Minimization (SAM) [12] aims to minimize a perturbed empirical loss at the worst
point in the neighborhood of W, solving the following optimization problem:

min
W

L(W,S) +
[
max

ϵ̂
L(W + ϵ̂,S)− L(W,S)

]
, (5)

for a controlled perturbation ϵ̂. It ensures a uniformly low training loss and avoids sharp landscape.
While both SGD and SAM learn a sufficient signal with κT

j,r = Ω(1) after T epochs, Chen et al.
[5] prove that SAM outperforms SGD by noise suppression and SAM upper bounds ζTj,r,i by O(1)
while SGD is dimension dependent O(log d). The key difference stems from the noise memorization
prevention of SAM. This is achieved because of the additional perturbation term ϵ̂(t,b) in SAM:

ϵ̂
(t,b)
j,r =

τ

m

∑
i∈It,b

∑
p∈[P ]

ℓ
′(t,b)
i j · yiσ′(⟨w(t,b)

j,r ,xi,p⟩)xi,p ·
∥∥∥∇WL(W(t,b), It,b)

∥∥∥−1
F

, (6)

To see how SAM allows benign overfitting, consider ReLU activation at any fixed iterate w
(t,b)
j,r , for

SGD: ⟨w(t,b)
j,r , ξk⟩ ≥ 0 vs. SAM:⟨w(t,b)

j,r + ϵ̂
(t,b)
j,r , ξk⟩ for k ∈ It,b, j = yk. SAM’s ⟨w(t,b)

j,r + ϵ̂
(t,b)
j,r , ξk⟩

expands to ⟨w(t,b)
j,r , ξk⟩+ ⟨ϵ̂(t,b)j,r , ξk⟩, where ⟨ϵ̂(t,b)j,r , ξk⟩ is proven to be sufficiently negative to cancel

⟨w(t,b)
j,r , ξk⟩ by selecting a proper τ , thus deactivating the noise [5]. This effectively prevents SAM

from learning from the noise which would lead to harmful overfitting for SGD.

3 Sharpness-Aware Unlearning
We begin by showing that the SAM’s noise memorization prevention discussed in Sec. 2.3 no longer
holds when SAM is used with NegGrad for gradient ascent on F . Specifically, SAM overfits to forget
signals as much as SGD, while maintaining its denoising property on R. Based on this result, we
are able to derive test error bounds for SGD and SAM under NegGrad, and further characterize the
difference between the α threshold for SGD and SAM.

3.1 NegGrad Revisited
Unlike RL, the mutual interference between F and R under NegGrad also applies to ζj,r update in
addition to κj,r. The update rules for κj,r and ζj,r for NegGrad are defined as:

κ
(t,b+1)
j,r − κ

(t,b)
j,r = −η∥φ∥22

Bm

α ∑
i∈IRt,b

∇φi
− (1− α)

∑
i∈IFt,b

∇φi

 ,

ζ
(t,b+1)
j,r − ζ

(t,b)
j,r = −η(P − 1)2

Bm

α ∑
i∈IRt,b

∇ξi − (1− α)
∑

i∈IFt,b

∇ξi

 ,

(7)

where ∇φi = ℓ
′(t,b)
i σ′(⟨w(t,b)

j,r + δ, yiφ⟩),∇ξi = sgn(yi = j)∥ξi∥22ℓ
′(t,b)
i σ′(⟨w(t,b)

j,r + δ, ξi⟩). We

have δ = ϵ̂
(t,b)
j,r for SAM and 0 for SGD. In plain words, a sample i ∈ R of class j causes a decrease

in ζj,r,i, discouraging memorizing noise for the correct class, while another sample i′ ∈ R of class −j
causes an increase in ζj,r,i, encouraging wj,r to use ξi to distinguish class j from −j. Conversely, a
sample i ∈ F of class j, which we want to predict −j in unlearning, will increase ζj,r,i, encouraging
wj,r to use noise ξi in a way that harms class j, and vice versa. Similar intuition also applies to κj,r.
Given a pretrained model fA with κT1

j,r > 0 to start unlearning, as long as retain signals weighted
by α dominate, the signal strength will remain sufficient and continue to grow. We can thus choose
α threshold based on this principle. However, the interference in ζj,r update will affect SAM’s
behaviors towards forget signals as summarized in Lemma 3.1.
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Lemma 3.1 (Noise memorization of Forget Set by SAM under NegGrad). Under the NegGrad scheme
and the Assumptions B.1 holds, we have that if for SGD: ⟨w(t,b)

j,r , ξk⟩ ≥ 0, k ∈ IRt,b and j = yk, then

for SAM: ⟨w(t,b)
j,r + ϵ̂

(t,b)
j,r , ξk⟩ < 0. However, if for SGD: ⟨w(t,b)

j,r , ξk⟩ ≥ 0, k ∈ IFt,b and j = yk, then

for SAM: ⟨w(t,b)
j,r + ϵ̂

(t,b)
j,r , ξk⟩ > 0.

See proof in App. B.2. Because the activation patterns on IRt,b and IFt,b diverge, SAM continues to
suppress noise memorization and leverage its sharpness-aware updates when fitting R, but “falls
back” to SGD-like behavior on F . This split yields two distinct sets of bounds on κj,r and ζj,r for R
and F , which lead to separate test errors. Finally, combining these two test errors in proportion to α,
we obtain the overall test error guarantee.

Theorem 3.2 (SGD test error under NegGrad). For any ϵ > 0, under Assumptions B.1,
if α ≥ |R|/(|F| + |R|) := β, then with probability at least 1 − δ, if SGD is run for
Õ(η−1ϵ−1mnd−1P−2σ−2p ) epochs, the training loss converges: L(WT ,D) ≤ ϵ. Moreover:

• if ∥φ∥2 ≥ C1d
1/4n−1/4Pσp, we have the test error L0−1(WT ,D) ≤ ϵ;

• if ∥φ∥2 ≤ C3d
1/4n−1/4Pσp, we have L0−1(WT ,D) ≥ 0.1.

Theorem 3.3 (SAM test error under NegGrad). For any ϵ > 0, under Assumptions B.1, if α ≥
|R|/(|F| + |R|) := β and choose τ = Θ( m

√
B

Pσp

√
d
), then with probability at least 1 − δ, if the

neural networks first train with SAM for O(η−1ϵ−1n−1mB∥φ∥−22 ) epochs, then with SGD for
Õ(η−1ϵ−1mnd−1P−2σ−2p ) epochs, the training loss converges: L(WT ,D) ≤ ϵ. Moreover:

• if ∥φ∥2 ≥ C1d
1/4n−1/4Pσp, we have L0−1(WT ,D) ≤ ϵ;

• if Ω(1) ≤ ∥φ∥2 ≤ C3d
1/4n−1/4Pσp, we have L0−1(WT ,D) ≤ ϵ.

See proofs in App. B.1 and B.2. Together, these theorems describe how SGD and SAM behave when
retained signals dominate. For SAM, if ∥φ∥2 ≤ C3d

1/4n−1/4Pσp, it will suffer harmful overfitting
to F . However, as long as α ≥ |R|/(|F|+ |R|) and ∥φ∥2 ≥ Ω(1), learning on R guarantees overall
benign training and yields a bounded test error. Corollary 3.3.1 concludes how the update dynamics
of κj,r and ζj,r are preserved with α satisfying a minimal requirement. See proof in App. B.3.

Corollary 3.3.1 (κ, ζ update under NegGrad). Under the NegGrad, if α ≥ |R|/(|F|+ |R|), since
κT1
j,r = Ω(1), both SGD and SAM continue to grow. Given the learned ζT1

j,r, SGD continues to overfit
the noise with O(log d), while SAM overfit the noise from F with O(log d) and from R with O(1).

Finally, we characterize the choice of α for SGD and SAM, and quantify their value difference. α
depends not only on relative sizes of R and F as previously conjectured, but also on the signal
strength, and thus the dimensionality of the problem.

Lemma 3.4 (Signal-surplus of SAM under NegGrad). Under the NegGrad, for any φ where ∥φ∥2 ≥
Ω(1), SAM exhibits faster signal learning on R: ∆SAM

epochκj,r/∆
SGD
epochκj,r = Θ(∥φ∥22).

See proof in App. B.4. As a result, SAM relies on a more relaxed α threshold than SGD due to
faster signal learning. For SGD to achieve the same signal learning performance as SAM, we need to
scale up αSGD to satisfy αSGD/αSAM = Θ(∥φ∥22). If ∥φ∥2 ≥ C1d

1/4n−1/4Pσp and both SGD and
SAM achieve benign overfitting, then given the extra signal learning from R, SAM results in faster κ
update and a surplus signal of Θ(d1/2|R|−1/2P 2σ2

p) in each unlearning epoch.

3.2 Sharp MinMax
In Sec. 3.1, we showed that SAM is provably better on out of sample test errors under NegGrad,
and we empirically verify this in Sec. 4. However, our experiments also show that SAM+NegGrad
attains higher forget accuracy than SGD+NegGrad, forgetting less effectively. This finding forces us
to reconsider the conventional view that overfitting is always detrimental: while overfitting indeed
harms generalization, it may be beneficial when the goal is to remove specific samples from a model.
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Consequently, for abstract concept forgetting we continue to demand strong generalization; but
for stringent scenarios—where exact sample removal is mandated by privacy, copyright, or legal
constraints—a model’s tendency to overfit can actually enhance its unlearning of those exact points.

Motivated by how sharper minima tends to forget better, we propose using another SGD variant,
Sharp MinMax to intentionally optimize for sharper-than-SGD minima with the purpose of overfitting
to forget signals for unlearning. Inspired by [20], we leverage sharpness maximization, which finds
the worst perturbation the same way as SAM but encourages sharpness:

min
W

L(W,S)−
[
max

ϵ̂
L(W + ϵ̂,S)− L(W,S)

]
, (8)

resulting in a sharper landscape that harms the generalization by overfitting to noise. Since learning
R and unlearning F to update the same model raises cancellation effects, to better enjoy benign
overfitting on R and exploit harmful overfitting on F , we apply weight masking based on gradient
magnitudes to divide our model into two, applying SAM on retain model and sharpness maximization
on forget model. The retain model immediately follows the characterized SAM properties, while the
forget model requires higher signal strength than SGD to avoid harmful overfitting.

3.3 Quantifying Unlearning Difficulty via Memorization
We examine the effectiveness of unlearning U based on data memorization, which sufficiently
characterizes the difficulty of unlearning [42]. Feldman and Zhang [11] define the degree to which a
sample is memorized by a pretraining A on example (xi, yi) from S as the memorization score:

mem(A,S, i) := Pr
f←A(S)

[f (W,xi) = yi]− Pr
f←A(S\i)

[f (W,xi) = yi] , (9)

where S \ i denotes S with the sample (xi, yi) removed. Samples of high-memorization scores can
be atypical samples which model usually learns later in the training process after more updates to the
model than typical ones. Thus unlearning them would be harder and may require more iterations of
unlearning steps which may impact the model performance on the retain distribution. The converse is
true for samples of low-memorization scores.

4 Empirical Study
We conduct major experiments on CIFAR-100 [23] and ImageNet-1K [32] using ResNet-50 [16],
and adopt pre-computed memorization scores for from [11] to generate F of different difficulties
with |F| ≈ 5%|S|, denoted as [Fhigh,Fmid,Flow]. For both pretraining and unlearning, we adopt
SAM [12] with ρ = 0.1 and Adaptive SAM (ASAM) [25] with ρ = [0.1, 1.0]. We ensure same
optimal hyper-paprameters for each comparable [SGD,SAM] pair. See App. C for detailed settings.

Evaluation. We follow previous work [35, 42] to measure the tug-of-war tradeoff between forgetting
and retaining of fU based on accuracy Acc(θ,D), with the retrained model fA(R) as reference:

ToW(fU ) =(1− (Acc(fA(R),R)−Acc(fU ,R))) · (1− (Acc(fU ,F)−Acc(fA(R),F)))

·(1− (Acc(fA(R),Dtest)−Acc(fU ,Dtest))), with test transforms on R,F .
(10)

Thus, we encourage high retain/test accuracies and low forget accuracy. Note that our ToW differs
from that in previous work as we measure the raw accuracy difference instead of the absolute
difference, because new unlearning methods that continue to fine-tune on R can outperform fA(R)

within a conventional unlearning time T2. If using the absolute ToW, a higher test accuracy than
fA(R) will be penalized and the model performance cannot be properly measured.

4.1 SAM Outperforms with Better Tradeoff
We conduct unlearning with various unlearning algorithms U given different pretrained fA. Tab. 1
reports ToW scores of U on CIFAR-100 and ImageNet. We observe that SAM consistently im-
proves all unlearning methods under different initializations fT1

A . While different U exhibit varied
effectiveness to [Fhigh,Fmid,Flow], we observe that NegGrad achieves a better balance between three
forget sets than other methods. We include detailed analysis and [retain, forget, test] accuracies of
all models on different F in App. E. Upon close examination on those accuraices, we observe that
despite SAM outperforms SGD by better retain and test accuracies and thus better ToW, SGD can
oftentimes achieve lower forget accuracies. This aligns with our theoretical analysis, where SGD
overfits more to F . This finding also drives us to propose Sharp MinMax and investigate empirically.
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Table 1: ToW(%) ↑ of unlearning on ImageNet-1K and CIFAR-100. For each (U ,A) pair, we report
ToW of each F and compute averages. SAM consistently improves current unlearning methods. We
include experiments on more datasets in App. F.

ImageNet A =SGD A =ASAM 0.1 A =ASAM 1.0 A =SAM 0.1
NegGrad High Mid Low AVG High Mid Low AVG High Mid Low AVG High Mid Low AVG
+SGD 78.764 84.199 88.515 83.826 78.426 83.93 86.651 83.002 78.522 83.929 89.947 84.133 78.03 84.176 88.839 83.682
+ASAM 0.1 78.52 84.113 89.188 83.94 78.366 84.07 89.098 83.845 78.762 84.267 90.579 84.536 78.083 84.062 89.973 84.039
+ASAM 1.0 78.966 83.389 92.174 84.843 78.975 83.358 91.843 84.725 78.027 83.326 92.772 84.708 77.762 83.284 92.617 84.554
+SAM 0.1 77.898 82.985 92.841 84.575 78.301 83.04 91.722 84.354 77.388 82.473 93.429 84.43 76.807 82.587 92.829 84.074

Unlearn U High Mid Low AVG High Mid Low AVG High Mid Low AVG High Mid Low AVG
RL 74.598 86.617 86.714 82.643 74.857 86.462 86.192 82.504 74.317 86.813 87.630 82.92 74.055 86.715 88.594 83.121
+ASAM 1.0 74.951 85.581 91.069 83.867 75.221 85.473 90.425 83.707 73.950 85.393 91.516 83.62 73.579 85.494 91.74 83.604
SalUn 44.981 71.839 95.008 70.609 46.104 71.735 94.652 70.83 45.814 72.308 95.116 71.079 46.006 72.419 95.218 71.214
+ASAM 1.0 45.998 71.554 95.628 71.06 46.938 71.268 95.224 71.143 45.856 71.695 95.924 71.158 46.358 72.034 95.791 71.394

CIFAR100 A =SGD A =ASAM 0.1 A =ASAM 1.0 A =SAM 0.1
NegGrad High Mid Low AVG High Mid Low AVG High Mid Low AVG High Mid Low AVG
SGD 78.334 83.335 83.718 81.796 79.277 86.454 88.637 84.789 77.274 78.59 85.443 80.436 67.826 74.145 76.374 72.78
+ASAM 0.1 78.131 82.846 86.78 82.586 80.336 87.539 87.671 85.182 77.331 79.074 88.039 81.482 70.054 74.158 78.087 74.1
+ASAM 1.0 80.806 81.465 87.052 83.108 82.196 84.391 90.502 85.696 78.731 79.264 93.249 83.748 72.518 75.653 86.759 78.31
+SAM 0.1 81.331 75.059 94.151 83.514 82.86 77.94 94.179 84.993 74.704 70.898 95.898 80.5 65.080 66.089 95.078 75.416

Unlearn U High Mid Low AVG High Mid Low AVG High Mid Low AVG High Mid Low AVG
L1-Sparse 63.448 68.686 53.991 62.042 63.699 72.775 60.34 65.605 61.252 68.197 61.47 63.64 65.258 71.941 59.014 65.404
+ASAM 1.0 66.903 75.554 58.967 67.141 66.213 77.119 66.697 70.01 65.117 73.754 62.517 67.129 63.051 74.556 65.117 67.575
SCRUB 58.418 76.125 12.708 49.084 67.163 79.09 10.823 52.359 57.816 73.176 58.483 63.158 43.246 68.433 17.368 43.016
+ASAM 1.0 50.313 73.353 97.631 73.766 60.515 80.204 97.508 79.409 48.569 73.09 97.776 73.145 18.137 61.618 97.933 59.229
RL 68.464 84.395 72.4 75.086 64.518 80.215 69.711 71.481 66.689 86.411 69.677 74.259 64.391 85.481 70.55 73.474
+ASAM 1.0 69.952 86.779 74.409 77.047 66.909 86.557 69.375 74.280 69.73 91.124 80.321 80.392 72.884 88.633 78.066 79.861
SalUn 69.926 83.056 71.73 74.904 66.541 83.377 71.95 73.956 67.355 89.768 79.095 78.739 69.671 90.495 75.281 78.482
+ASAM 1.0 73.268 92.225 88.175 84.556 71.426 89.182 86.13 82.246 67.715 93.401 89.289 83.468 70.933 92.914 86.477 83.441

Table 2: MIA (%) ↓ correctness to F on CIFAR-100. We enhance each U with ASAM 1.0 and
observe consistent improvement.

A =SGD A =ASAM 0.1 A =ASAM 1.0 A =SAM 0.1
Unlearn U High Mid Low AVG High Mid Low AVG High Mid Low AVG High Mid Low AVG
L1-Sparse 94.733 63.233 8.6 55.522 94.933 61.367 4.0 53.433 93.833 62.067 5.8 53.9 92.867 60.033 5.033 52.644
+ASAM 1.0 94.267 58.5 5.5 52.756 94.3 57.3 3.6 51.733 93.633 56.033 3.9 51.189 93.8 59.333 3.8 52.311
SCRUB 55.433 18.6 32.6 35.544 64.733 23.1 71.633 53.155 54.767 16.133 9.833 26.911 39.3 9.833 56.3 35.144
+ASAM 1.0 46.467 14.867 0.1 20.478 57.367 22.633 0.167 26.722 44.7 14.567 0.2 19.822 14.433 2.333 0.2 5.655
RL 90.767 62.933 10.767 54.822 91.633 68.267 13.5 57.8 89.067 63.567 15.8 56.145 89.167 61.967 8.267 53.134
+ASAM 1.0 90.3 61.3 9.467 53.689 91.6 62.667 12.7 55.656 88.0 61.3 10.667 53.322 86.3 59.833 5.833 50.655
SalUn 83.433 59.233 7.333 50.0 84.533 59.1 11.167 51.6 79.3 54.667 8.8 47.589 81.467 53.133 6.867 47.156
+ASAM 1.0 79.1 51.833 4.5 45.144 81.7 54.167 6.633 47.50 74.967 49.5 4.2 42.889 75.633 47.667 4.067 42.456
NegGrad 86.933 37.233 2.167 42.111 88.867 40.2 1.733 43.60 82.167 32.1 1.8 38.689 74.667 36.967 3.433 38.356
+ASAM 1.0 84.5 30.1 0.733 38.444 85.6 30.1 0.7 38.8 81.233 24.533 0.533 35.433 73.967 20.733 0.366 31.689

MIA correctness. We also report correctness rates of membership inference attack (MIA) to F on
CIFAR-100 in Tab. 2. Lower correctness means better unlearning, meaning that forget samples behave
more like samples that were never in S . Note that NegGrad achieves better MIA correctness than RL;
this is because gradient ascent actively erases gradient signatures of F in the model. SCRUB [24],
which builds upon NegGrad, further improves MIA performance.

4.2 Overfitting Benefits Unlearning

Table 3: ToW(%) ↑ of Sharp MinMax on ImageNet-1K and CIFAR-100. Comparing with Tab. 1,
Sharp MinMax achieves new best ToW performance.

ImageNet A =SGD A =ASAM 0.1 A =ASAM 1.0 A =SAM 0.1
Unlearn U High Mid Low AVG High Mid Low AVG High Mid Low AVG High Mid Low AVG
SGD 73.357 80.881 86.334 80.191 73.418 80.784 84.378 79.527 73.103 81.105 86.402 80.204 73.052 80.913 85.517 79.827
ASAM 0.1 78.066 87.914 87.338 84.44 79.077 87.4 86.953 84.476 70.148 88.039 87.554 81.914 78.529 87.642 86.668 84.28
ASAM 1.0 86.658 87.345 89.694 87.899 86.166 87.192 89.138 87.498 86.915 87.27 90.142 88.109 86.272 87.076 90.064 87.804
SAM 0.1 86.463 86.755 90.005 87.741 85.511 86.635 89.852 87.333 86.849 86.722 91.111 88.227 85.712 86.486 90.207 87.468

CIFAR100 A =SGD A =ASAM 0.1 A =ASAM 1.0 A =SAM 0.1
Unlearn U High Mid Low AVG High Mid Low AVG High Mid Low AVG High Mid Low AVG
SGD 70.7668 76.692 82.853 76.771 72.137 77.864 81.847 77.282 65.925 74.526 80.127 73.526 60.478 71.931 73.843 68.751
ASAM 0.1 78.895 96.027 83.473 86.132 84.968 96.451 82.883 88.101 81.825 93.786 87.151 87.587 72.897 80.104 86.659 79.887
ASAM 1.0 82.27 94.913 86.504 87.896 77.576 99.422 85.894 87.631 84.521 87.761 84.381 85.554 76.037 83.633 77.461 79.044
SAM 0.1 90.578 90.960 92.494 91.344 91.695 95.543 91.508 92.915 88.664 88.646 93.163 90.158 85.195 78.286 90.963 84.814

We present ToW of Sharp MinMax and compare to Tab. 1. Compared with NegGrad and other meth-
ods, Sharp MinMax further improves the unlearning capabilities across all settings by a noticeable
margin, especially on Fhigh, and SAM 0.1 achieves ToW > 0.9 for most settings on CIFAR-100.
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Figure 1: UMAP [29] feature visualization of Fhigh on CIFAR-100. We visualize inter-classes and
intra-class movements, and class 11 is the largest class in Fhigh. For all classes, F are assigned to
wrong class clusters after NegGrad unlearning. For class-wsie, forget samples gather more tightly.

The effectiveness of Sharp MinMax assures our assumptions about overfitting for sample-specific
unlearning, providing new insights for designing future unlearning algorithms.

4.3 Quantitative Analysis and Visualizations

Table 4: Entanglement ↓ between F and R of different memorization levels given models based on
SGD and ASAM 1.0. While EVar is hard to conclude a comparison between SGD and SAM across
different U , SAM shows less entanglement both before and after unlearning than SGD by EWp .

SGD Variance EVar Wasserstein EWp SAM Variance EVar Wasserstein EWp

Model High Mid Low AVG High Mid Low AVG Model High Mid Low AVG High Mid Low AVG
Pretrained 30.5 95.28 32.39 52.72 59.58 66.3 63.13 63.0 Pretrained 29.56 88.43 28.91 48.97 55.86 61.74 59.84 59.15
-per class 2.5 6.71 2.51 3.91 51.21 57.11 59.64 55.99 -per class 2.88 6.66 2.71 4.08 45.45 49.88 52.46 49.26
NegGrad 18.87 37.16 22.12 26.05 51.24 52.99 56.12 53.45 NegGrad 17.78 37.49 24.47 26.58 49.87 52.36 54.93 52.39
-per class 0.56 1.8 2.69 1.68 35.22 46.91 55.93 46.02 -per class 0.66 2.03 2.88 1.86 36.42 44.71 50.83 43.99
MinMax 17.7 38.03 21.51 25.75 51.12 53.7 56.77 53.86 MinMax 16.35 32.07 20.75 23.06 51.26 51.8 55.08 52.71
-per class 0.69 2.41 2.27 1.79 38.41 49.57 57.15 48.38 -per class 0.49 1.52 2.97 1.66 33.65 44.56 52.55 43.59

Measuring entanglement. We measure the entanglement between R and F before and after
unlearning. At a coarse level, we implement variance-based entanglement from [14, 42]:

EAll
Var(R,F , f) =

1
|R|
∑

i∈R(ϕi − µR)
2 + 1

|F|
∑

j∈F (ϕj − µF )
2

1
2 ((µR − µ)2 + (µF − µ)2)

=
intra-variance
inter-variance

, (11)

where ϕi,ϕj denote sample embedding, µR,µF denote mean embedding of R,F , and µ denotes
mean embedding over R∪ F . We also compute the class-wise entanglement and report weighted
averaged ECls

Var. However, EVar assumes good/convex shapes of clusters and relies heavily on cluster
means. If two compared clusters have irregular shapes, then EVar cannot accurately capture all the
structural differences and interactions. Inspired by optimal transport theory, we propose a refined
entanglement based on Wasserstein distance, to measure the separation of retain and forget features by
Wasserstein entanglement EAll

Wp
,ECls

Wp
, which computes the cost of transferring one shaped distribution

to another in a point-wise, accurate manner. From Tab. 4, we observe that both SGD and SAM
have decreased entanglement after unlearning, with ECls < EAll especially for EVar. While EVar
cannot further differentiate, we observe that SAM achieves better EWp than SGD at all levels. Fig. 1
visualizes the feature space of A,U = ASAM 1.0 and A,U = SGD on Fhigh. For all classes, we
observe forget samples are assigned to wrong class clusters after NegGrad. For class-wise, we
visualize the largest class in Fhigh and observe forget samples to gather more tightly.
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Figure 2: As α decreases, NegGrad puts less weight on retain signals and learns more from F , leading
to harmful overfitting. SAM exhibits more tolerance to insufficient retain signals, while A,U = SGD
collapses the fastest. Note that ToW starts failing before α = |R|/(|F| + |R|), implying more
factors affecting α threshold as we point out.

Reducing retain signal strength. We verify Lemma 3.4 by reducing α in NegGrad. Fig. 2 shows
ToW changes as α decreases for various A,U pairs at different memorization levels on CIFAR-100.
We observe that A,U = SGD fails the fastest and hardest, while A,U = ASAM 1.0 exhibits the best
resilience. Also note that for CIFAR-100, |R|/(|F|+ |R|) ≈ 0.93, but unlearning starts to fail at a
higher α. This verifies our claim that α depends more than retain-forget ratio.

Basin: 50.24

Dtest,A = SAM

Basin: 40.00

Dtest, NG

Basin: 46.72

Dtest, MinMax

Basin: 44.32

F ,A = SAM

Basin: 21.28

Fhigh, NG

Basin: 28.80

Fhigh, MinMax
Basin: 40.32

Dtest,A = SGD

Basin: 41.44

Dtest, NG

Basin: 41.76

Dtest, MinMax

Basin: 37.92

F ,A = SGD

Basin: 46.88

Fhigh, NG

Basin: 22.08

Fhigh, MinMax

Figure 3: Loss landscapes of SAM and SGD for Dtest and Fhigh. While unlearning with SAM
reduces flatness as expected, we observe that gradient ascent slightly improves SGD’s flatness. We
hypothesize that unlearning implicitly regularizes SGD.

Loss landscape. We visualize loss landscapes of SGD and ASAM 1.0 by perturbing original model
along two directions with filter normalization [26]. Inspired by [39], we quantify the flatness by basin
ratio, which is the percentage of perturbed losses whose deviation from original loss ≤ 0.5 · stddev.
Fig. 3 shows loss landscapes of SAM and SGD before and after unlearning on Dtest and Fhigh. We
observe SAM has higher basin ratios (flatter landscape) than SGD for pretrained model and MinMax
unlearned model as expected. Surprisingly, SGD can become flatter after unlearning. We conjecture
that the gradient ascent might be implicitly regularizing SGD which had more overfitting than SAM
during pretraining. We leave the further characterization of loss landscapes to future work.

5 Conclusions and Limitations
In this paper, we provide an accurate characterization of sharpness-aware minimization under negative
gradient unlearning, and theoretical insights on bounding and choosing the weight factor to balance
retain and forget signals. Extensive studies verify our analysis and reveals more underlying properties
of SAM that are desired for unlearning. Based on our rethinking of overfitting, we also propose a
new algorithm which further pushes the boundary of sample-specific unlearning. Our theoretical
and empirical findings shed light on future design of unlearning algorithms. Limitations include
uncharacterized behaviors when retain signal is small (O(1)), and the analysis of the interactions
between α and model splitting ratio for Sharp MinMax. See full review in App. D.
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A Related Works

A.1 Machine Unlearning

A wide variety of unlearning algorithms have been proposed to erase the influence of specific data in
the pre-trained model. Basic approaches involve finetuning on retain set to unlearn the forget samples
with catastrophic forgetting, randomly labeling forget set to force the model to ignore the noisy forget
samples, and explicitly “learning to unlearn” from the forget set via gradient ascent [13, 15, 38].
Recent work pushes the boundaries of each genre with more advanced tools. L1-Sparse [18] finetunes
on retain set with L1 penalty to improve unlearning with sparsification, NegGrad and SCRUB [24]
combines gradient descent on retain set and gradient ascent on forget set to jointly update the
model, Influence Unlearning and Saliency Unlearning [8, 17] aim to find model parameters which
are important to the forget set for more effective unlearning while preserving model performance.
Theoretical work in unlearning draws insights from differential privacy and characterizes distributional
closeness in (ϵ, δ)-language. Sekhari et al. [34] studies unlearning with second-order update which
computes Hessian inverse. Langevin Unlearning [6] studies approximate unlearning with privacy
and efficiency guarantees based on projected noisy gradient descent. Unlearning also extends to
generative vision and language tasks, addressing privacy and safety concerns, erasing concepts, and
aligning with human preference [21, 33, 37, 40].

A.2 Sharpness Aware Minimization

Sharpness-aware minimization (SAM) perturbs the model within a ball neighborhood to maximize
the loss. Since perturbations in sharp regions result in higher penalties, SAM learns to avoid sharp
landscapes and improve generalization with flatness. Recent work improves SAM’s flexibility and
efficiency. Adaptive SAM [25] introduces scale-invariant adaptive sharpness to address parameter
re-scaling sensitivity. GA-SAM [41] adapts the perturbation based on gradient strength to improve
generalization performance. Sparse SAM [30] shows that adding sparsity in perturbations can
preserve or even improve performance while accelerating training. LookSAM [28] efficiently scales
up SAM by only periodically computing the inner gradient ascent. Theoretical studies of SAM focus
both on the convergence analysis [19] and its dynamics [2]. Chen et al. [5] reveal the fundamental
mechanism of SAM that prevents memorizing noisy signals by deactivating neurons based on a
practical signal-to-noise analytical framework. This inspires us to investigate the intriguing properties
of SAM in machine unlearning, where signals from the forget set can be naturally modeled as the
noise from the perspective of maintaining model performance with remaining samples.

A.3 Data Memorization

Recent work aims to identify key factors that affect the difficulty of an unlearning task. Fan et al. [9]
define and seek the “worst-case” forget set using a gradient-based adversarial approach. Carlini et al.
[4] investigates and quantifies the atypical-ness of data samples under a differential privacy setting.
Zhao et al. [42] discovers that the more memorized the forget examples are, the harder unlearning
becomes. We agree with the empirical studies in [42] and study the unlearning effectiveness under
different levels of data memorization. Memorization literature provides fundamental understanding
and interpretation of learning dynamics and model behaviors, characterizing generalization bounds
and the interplay with data [1, 11]. Recent studies also investigate the effects of memorization
in large-scale scenarios such as language models [3, 27, 31]. Specifically, the memorization and
influence scores in [10, 11] provide insights into evaluating unlearning algorithms and designing
new approaches. In our study, we have observed varied effectiveness of each unlearning method
with respect to forget sets of different memorization levels, and aim at designing unlearning methods
which perform well on forgets sets of all difficulties.

B Detailed Formulations and Proofs

We prove our theorems and lemmas based on previous theoretical results in [5, 22]. Specifically, we
prove that with additional yet necessary conditions for effective unlearning, the final test errors can be
preserved, while we identify and characterize the changed internal dynamics. We begin by expanding
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and restating κ, ζ update rule for NegGrad in Eq. 7:

κ
(t,b+1)
j,r − κ

(t,b)
j,r = −η∥φ∥22

Bm

α ∑
i∈IRt,b

ℓ
′(t,b)
i σ′(⟨w(t,b)

j,r +∆, yiφ⟩)

−(1− α)
∑

i∈IFt,b

ℓ
′(t,b)
i σ′(⟨w(t,b)

j,r +∆, yiφ⟩)

 ,

ζ
(t,b+1)

j,r − ζ
(t,b)

j,r = −η(P − 1)2

Bm

α ∑
i∈IRt,b

∥ξi∥22ℓ
′(t,b)
i σ′(⟨w(t,b)

j,r +∆, ξi⟩) · 1(yi = j)

−(1− α)
∑

i∈IFt,b

∥ξi∥22ℓ
′(t,b)
i σ′(⟨w(t,b)

j,r +∆, ξi⟩) · 1(yi = j)

 ,

ζ(t,b+1)

j,r
− ζ(t,b)

j,r
= +

η(P − 1)2

Bm

α ∑
i∈IRt,b

∥ξi∥22ℓ
′(t,b)
i σ′(⟨w(t,b)

j,r +∆, ξi⟩) · 1(yi ̸= j)

−(1− α)
∑

i∈IFt,b

∥ξi∥22ℓ
′(t,b)
i σ′(⟨w(t,b)

j,r +∆, ξi⟩) · 1(yi ̸= j)

 ,

(12)
where ∆ = ϵ̂

(t,b)
j,r for SAM and 0 for SGD, ζ(t,b)j,r is split into ζ

(t,b)

j,r := ζ
(t,b)
j,r 1(ζ

(t,b)
j,r ≥ 0) and

ζ(t,b)
j,r

:= ζ
(t,b)
j,r 1(ζ

(t,b)
j,r ≤ 0) based on label agreement. We summarize several reasonable assumptions

from previous work in addition to our conditions which ensure unlearning to progress:

Assumption B.1 Suppose there exists a sufficiently large constant C, such that the following hold:

1. Sufficiently large dimension d: d ≥Cmax{nσ−2p ∥φ∥22 log(T ∗), n2 log(nm/δ)(log(T ∗))2}.

2. The size of S and the CNN width satisfy n ≥ C log(m/δ),m ≥ C log(n/δ).

3. The signal strength satisfies ∥φ∥22 ≥ Cσ2
p log(n/δ).

4. For the Gaussian noise initialization, σ0 ≤ (Cmax{σpd/
√
n,
√

log(m/δ) · ∥φ∥2})−1.

5. The learning rate η satisfies η ≤ (Cmax{σ2
pd

3/2/(n2m
√
log(n/δ)), σ2

pd/n})−1.

6. Assume cross-entropy loss: ℓ(z) = log(1 + exp(−z)) =⇒ ℓ′ = −1/(1 + exp(z)).

7. Assume ReLU activation.

8. Assume all clean labels and F signals do not dominate: α ≥ |R|/(|F|+ |R|) := β > 0.5.

We then obtain several proven quantities from previous work, which are achieved during pretraining
and can be leveraged since the start of unlearning:

•
∑n

i=1 ζ
(t)

j,r,i/κ
(t)
j′,r′ = Θ(SNR−2), for the signal-to-noise ratio SNR = ∥φ∥2

(P−1)σp

√
d

.

•
∑n

i=1 ζ
(t)

j,r,i = Ω(n) = O(n log(T ∗)) = Θ̃(n), for some T ∗ = Ω(η−1Bmd−1P−2σ−2p ).

• maxj,r,i |ζ(t)j,r,i
| = max{O(

√
log(mn/δ) · σ0σp

√
d), O(

√
log(n/δ) log(T ∗) · n/

√
d)}.

• κ
(T∗)
j,r = Θ(κ̂), where κ̂ = n · SNR2.
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B.1 Proof to Theorem 3.2
Under NegGrad, we want to predict retain samples in R correctly while we count correct predictions in
F as errors, yielding same bounds for P(x,y)∼R(yf(W

(t),x) ≤ 0) and P(x,y)∼F (yf(W
(t),x) > 0)

based on inverse objectives. However, when considering the test error on the model that is jointly
updated by gradient descent on R and gradient ascent on F , we still measure the error rate by wrong
predictions. In other words, fitting forget samples will reduce the generalization performance. We
can decompose the test error as follows:

P(x,y)∼D

(
y ̸= sign

(
f
(
W(t),x

)))
= P(x,y)∼D

(
yf
(
W(t),x

)
≤ 0
)

=P(x,y)∼D

(
yf
(
W(t),x

)
≤ 0, (x, y) ∈ R

)
+ P(x,y)∼D

(
yf
(
W(t),x

)
≤ 0, (x, y) ∈ F

)
=β · P(x,y)∼R

(
yf
(
W(t),x

)
≤ 0
)
+ (1− β) · P(x,y)∼F

(
yf
(
W(t),x

)
≤ 0
)

=β · P(x,y)∼R

(
yf
(
W(t),x

)
≤ 0
)
+ (1− β) ·

(
1− P(x,y)∼F

(
yf
(
W(t),x

)
> 0
))

.

(13)

Note that in practice, R and F come from training set S . During inference and evaluation, we convert
the data augmentations of R,F to test transforms, thus measuring proxy-test errors on R-like and
F -like samples. To bound the test error, first decompose yf(W(t),x) into signal and noise learning
of both positive and negative classes, considering ∆ = 0 for SGD:

yf
(
W(t),x

)
=

1

m

∑
j,r

yj
[
σ
(〈

w
(t)
j,r, yφ

〉)
+ σ

(〈
w

(t)
j,r, ξ

〉)]
=

1

m

∑
r

[
σ
(〈

w(t)
y,r, yφ

〉)
+ (P − 1)σ

(〈
w(t)

y,r, ξ
〉)]

− 1

m

∑
r

[
σ
(〈

w
(t)
−y,r, yφ

〉)
+ (P − 1)σ

(〈
w

(t)
−y,r, ξ

〉)]
.

(14)

The following proof process for bounding P(x,y)∼R(yf(W
(t),x) comes from [22]. We include it

here for readability, since we will leverage the results when combining R and F , as well as make
adaptations for proving Theorem 3.3. We begin by two lemmas that bound the signal, noise norm,
and the related inner products:

Lemma B.2 (Lemma B.4 in [22]). Suppose that δ > 0 and d = Ω(log(6n/δ)). Then with probability
at least 1− δ,

σ2
pd/2 ≤ ∥ξi∥22 ≤ 3σ2

pd/2,

|⟨ξi, ξi′⟩| ≤ 2σ2
p ·
√

d log (6n2/δ),

|⟨ξi,φ⟩| ≤ ∥φ∥2σp ·
√
2 log(6n/δ),

for all i, i′ ∈ [n].

Lemma B.3 (Lemma B.5 in [22]). Suppose that d = Ω(log(mn/δ)),m = Ω(log(1/δ)). Then with
probability at least 1− δ,

σ2
0d/2 ≤

∥∥∥w(0,0)
j,r

∥∥∥2
2
≤ 3σ2

0d/2,∣∣∣〈w(0,0)
j,r ,φ

〉∣∣∣ ≤√2 log(12m/δ) · σ0∥φ∥2,∣∣∣〈w(0,0)
j,r , ξi

〉∣∣∣ ≤ 2
√
log(12mn/δ) · σ0σp

√
d,

for all r ∈ [m], j ∈ {±1} and i ∈ [n]. Moreover,

σ0∥φ∥2/2 ≤ max
r∈[m]

j ·
〈
w

(0,0)
j,r ,φ

〉
≤
√
2 log(12m/δ) · σ0∥φ∥2,

σ0σp

√
d/4 ≤ max

r∈[m]
j ·
〈
w

(0,0)
j,r , ξi

〉
≤ 2
√

log(12mn/δ) · σ0σp

√
d,

for all j ∈ {±1} and i ∈ [n].
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Plug in the weight update decomposition in Eq. 2, we can first bound the inner product for j = y:

〈
w(t)

y,r, yφ
〉
=
〈
w(0)

y,r, yφ
〉
+ κ(t)

y,r

+
1

P − 1

n∑
i=1

ζ
(t)

y,r,i ∥ξi∥
−2
2 ⟨ξi, yφ⟩+

1

P − 1

n∑
i=1

ζ(t)
y,r,i

∥ξi∥−22 ⟨ξi, yφ⟩

≥ −
√

2 log(12m/δ) · σ0∥φ∥2 + κ(t)
y,r

−
√
2 log(6n/δ)

P − 1
· σp∥φ∥2 ·

(
σ2
pd/2

)−1 [ n∑
i=1

ζ
(t)

y,r,i +

n∑
i=1

| ζ(t)
y,r,i

|

]
=−Θ

(√
log(m/δ)σ0∥φ∥2

)
+ κ(t)

y,r −Θ
(√

log(n/δ) (Pσpd)
−1 ∥φ∥2

)
·Θ
(
SNR−2

)
· κ(t)

y,r

=−Θ
(√

log(m/δ) (σpd)
−1 √

n∥φ∥2
)
+
[
1−Θ

(√
log(n/δ) · Pσp/∥φ∥2

)]
κ(t)
y,r

=Θ
(
κ(t)
y,r

)
,

(15)
where the inequality is by Lemma B.2 and Lemma B.3; the second equality is obtained by plug-
ging in the coefficient orders we summarized at the beginning of the section; the third equal-
ity is by σ0 ≤ C−1(σpd)

−1√n in Assumption B.1 and SNR = ∥φ∥2/((P − 1)σp

√
d). The

fourth equality is by κ
(t)
j,r = Θ(κ̂), where κ̂ = n · SNR2. Also

√
log(n/δ) · σp/∥φ∥2 ≤

1/
√
C and

√
log(m/δ)(σpd)

−1√n∥φ∥2/κ̂ =
√

log(m/δ)σp/(
√
n∥φ∥2) ≤

√
log(m/δ)/n ·

1/(
√
C log(n/δ)) ≤ 1/(C

√
log(n/δ)) holds by ∥φ∥22 ≥ C · σ2

p log(n/δ) and n ≥ C log(m/δ)
in Assumption B.1, so for sufficiently large constant C the equality holds. Similarly, we can show
that ⟨w(t)

−y,r, yφ⟩ = −Θ(κ
(t)
y,r) < 0 for j ̸= y.

Next denote g(ξ) as
∑

r σ(⟨w
(t)
−y,r, ξ⟩). Since ξ ∼ N (0, σ2

pI), we can leverage the Gaussian
concentration bound for x ≥ 0:

P(g(ξ)− Eg(ξ) ≥ x) ≤ exp

(
− cx2

σ2
p∥g∥2Lip

)
, (16)

where c is a constant. To calculate the Lipschitz norm, we have

|g(ξ)− g (ξ′)| =

∣∣∣∣∣
m∑
r=1

σ
(〈

w
(t)
−y,r, ξ

〉)
−

m∑
r=1

σ
(〈

w
(t)
−y,r, ξ

′
〉)∣∣∣∣∣

≤
m∑
r=1

∣∣∣σ (〈w(t)
−y,r, ξ

〉)
− σ

(〈
w

(t)
−y,r, ξ

′
〉)∣∣∣

≤
m∑
r=1

∣∣∣〈w(t)
−y,r, ξ − ξ′

〉∣∣∣ ≤ m∑
r=1

∥∥∥w(t)
−y,r

∥∥∥
2
· ∥ξ − ξ′∥2 .

(17)

The first inequality is by triangle inequality; the second inequality is by the property of ReLU; the
last inequality is by Cauchy-Schwartz inequality. Therefore, we have ∥g∥Lip ≤

∑m
r=1 ∥w

(t)
−y,r∥2,

and since ⟨w(t)
−y,r, ξ⟩ ∼ N (0, ∥w(t)

−y,r∥22σ2
p), we can get

Eg(ξ) =
m∑
r=1

Eσ
(〈

w
(t)
−y,r, ξ

〉)
=

m∑
r=1

∥∥∥w(t)
−y,r

∥∥∥
2
σp

√
2π

=
σp√
2π

m∑
r=1

∥∥∥w(t)
−y,r

∥∥∥
2
. (18)
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Then, we seek to upper bound the 2-norm of w(t)
j,r. First we have

∥∥∥∥∥
n∑

i=1

ζ
(t)
j,r,i · ∥ξi∥

−2
2 · ξi

∥∥∥∥∥
2

2

=

n∑
i=1

ζ
(t)
j,r,i

2
· ∥ξi∥−22︸ ︷︷ ︸

diagonal

+2
∑

1≤i1<i2≤n

ζ
(t)
j,r,i1

ζ
(t)
j,r,i2

· ∥ξi1∥
−2
2 ∥ξi2∥

−2
2 · ⟨ξi1 , ξi2⟩︸ ︷︷ ︸

off-diagonal

≤4σ−2p d−1
n∑

i=1

ζ
(t)
j,r,i

2 + 2
∑

1≤i1<i2≤n

∣∣∣ζ(t)j,r,i1
ζ
(t)
j,r,i2

∣∣∣ · (16σ−4p d−2
)
·
(
2σ2

p

√
d log (6n2/δ)

)

=4σ−2p d−1
n∑

i=1

ζ
(t)
j,r,i

2 + 32σ−2p d−3/2
√
log (6n2/δ)

( n∑
i=1

∣∣∣ζ(t)j,r,i

∣∣∣)2

−
n∑

i=1

ζ
(t)
j,r,i

2


=Θ

(
σ−2p d−1

) n∑
i=1

ζ
(t)
j,r,i

2 + Θ̃
(
σ−2p d−3/2

)( n∑
i=1

∣∣∣ζ(t)j,r,i

∣∣∣)2

≤
[
Θ
(
σ−2p d−1n−1

)
+ Θ̃

(
σ−2p d−3/2

)]( n∑
i=1

∣∣∣ζ(t)j,r,i

∣∣∣+ n∑
i=1

∣∣∣ζ(t)
j,r,i

∣∣∣)2

≤Θ
(
σ−2p d−1n−1

)( n∑
i=1

ζ
(t)

j,r,i

)2

.

(19)

The first inequality is by Lemma B.2; for the second inequality we used the definition of ζ, ζ; for the
second to last equation we plugged in coefficient orders. We can thus upper bound the 2-norm of
w

(t)
j,r as:

∥∥∥w(t)
j,r

∥∥∥
2
≤
∥∥∥w(0)

j,r

∥∥∥
2
+ κ

(t)
j,r · ∥φ∥

−1
2 +

1

P − 1

∥∥∥∥∥
n∑

i=1

ζ
(t)
j,r,i · ∥ξi∥

−2
2 · ξi

∥∥∥∥∥
2

≤
∥∥∥w(0)

j,r

∥∥∥
2
+ κ

(t)
j,r · ∥φ∥

−1
2 +Θ

(
P−1σ−1p d−1/2n−1/2

)
·

n∑
i=1

ζ
(t)

j,r,i

= Θ
(
P−1σ−1p d−1/2n−1/2

)
·

n∑
i=1

ζ
(t)

j,r,i,

(20)

where the first inequality is due to the triangle inequality, and the equality is due to the following:

κ
(t)
j,r · ∥φ∥

−1
2

Θ
(
P−1σ−1p d−1/2n−1/2

)
·
∑n

i=1 ζ
(t)

j,r,i

= Θ
(
P−1σpd

1/2n1/2∥φ∥−12 SNR2
)

=Θ
(
P−1σ−1p d−1/2n1/2∥φ∥2

)
= O(1),

(21)

based on the coefficient order
∑n

i=1 ζ
(t)

j,r,i/κ
(t)
j,r = Θ(SNR−2), the definition of SNR, and the

condition for d in Assumption B.1. Similarly,∥∥∥w(0)
j,r

∥∥∥
2

Θ
(
P−1σ−1p d−1/2n−1/2

)
·
∑n

i=1 ζ
(t)

j,r,i

=
Θ
(
σ0

√
d
)

Θ
(
P−1σ−1p d−1/2n−1/2

)
·
∑n

i=1 ζ
(t)

j,r,i

=O
(
Pσ0σpdn

−1/2
)
= O(1),

(22)
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based on Lemma B.3, the coefficient order
∑n

i=1 ζ
(t)

j,r,i = Ω(n), and the condition for σ0 in Assump-
tion B.1. Then we can give an analysis of the following key component:∑

r σ
(〈

w
(t)
y,r, yφ

〉)
(P − 1)σp

∑m
r=1

∥∥∥w(t)
−y,r

∥∥∥
2

≥
Θ
(∑

r κ
(t)
y,r

)
Θ
(
d−1/2n−1/2

)
·
∑

r,i ζ
(t)

−y,r,i

=Θ
(
d1/2n1/2SNR2

)
= Θ

(
n1/2∥φ∥22/(P 2σ2

pd
1/2)

)
.

(23)

Then for ∥φ∥2 ≥ C
1/4
1 n−1/4Pσpd

1/4 for some large constant C1, we have∑
r

σ
(〈

w(t)
y,r, yφ

〉)
− (P − 1)σp√

2π

m∑
r=1

∥∥∥w(t)
−y,r

∥∥∥
2
> 0. (24)

Upper bound. Now plug in previous results to obtain

P(x,y)∼R

(
yf
(
W(t),x

)
≤ 0
)
≤ P(x,y)∼R

(
(P − 1)

∑
r

σ
(〈

w
(t)
−y,r, ξ

〉)
≥
∑
r

σ
(〈

w(t)
y,r, yφ

〉))

=P(x,y)∼R

(
g(ξ)− Eg(ξ) ≥ 1/(P − 1)

∑
r

σ
(〈

w(t)
y,r, yφ

〉)
− σp√

2π

m∑
r=1

∥∥∥w(t)
−y,r

∥∥∥
2

)

≤ exp

−c
(
1/(P − 1)

∑
r σ
(〈

w
(t)
y,r, yφ

〉)
−
(
σp/

√
2π
)∑m

r=1

∥∥∥w(t)
−y,r

∥∥∥
2

)2
σ2
p

(∑m
r=1

∥∥∥w(t)
−y,r

∥∥∥
2

)2


=exp

−c

 ∑
r σ
(〈

w
(t)
y,r, yφ

〉)
(P − 1)σp

∑m
r=1

∥∥∥w(t)
−y,r

∥∥∥
2

− 1/
√
2π

2


≤ exp(c/2π) exp

−0.5c

 ∑
r σ
(〈

w
(t)
y,r, yφ

〉)
(P − 1)σp

∑m
r=1

∥∥∥w(t)
−y,r

∥∥∥
2

2
 .

(25)
The second inequality is by Eq. 24 and plugging ∥g∥Lip ≤

∑m
r=1 ∥w

(t)
−y,r∥2 into Eq. 16; the third

inequality is due to (s− t)2 ≥ s2/2− t2,∀s, t ≥ 0. And from Eq. 23 and Eq. 25 we have

P(x,y)∼R

(
yf
(
W(t),x

)
≤ 0
)
≤ exp(c/2π) exp

−0.5c

 ∑
r σ
(〈

w
(t)
y,r, yφ

〉)
(P − 1)σp

∑m
r=1

∥∥∥w(t)
−y,r

∥∥∥
2

2


= exp

(
c

2π
− n∥φ∥42

C(P − 1)4σ4
pd

)
≤ exp

(
− n∥φ∥42
2C1(P − 1)4σ4

pd

)
= exp

(
− n∥φ∥42
C2(P − 1)4σ4

pd

)
= ϵ,

(26)
where C = O(1); the last inequality holds if we choose C1 ≥ cC/π; the last equality holds if we
choose C2 as 2C.

For the forget set F , we thus have

P(x,y)∼F

(
yf
(
W(t),x

)
> 0
)
≤ ϵ. (27)

Lower bound. Without loss of generality, let
∑

r κ
(t)
1,r = max

{∑
r κ

(t)
1,r,
∑

r κ
(t)
−1,r

}
. Denote

v = λ ·
∑

i 1 (yi = 1) ξi, where λ = C7SNR2 = C7∥φ∥22/
(
(P − 1)2σ2

pd
)

and C7 is a sufficiently
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large constant. Since ReLU is convex, we have

σ
(〈

w
(t)
1,r, ξ + v

〉)
− σ

(〈
w

(t)
1,r, ξ

〉)
≥ σ′

(〈
w

(t)
1,r, ξ

〉)〈
w

(t)
1,r,v

〉
,

σ
(〈

w
(t)
1,r,−ξ + v

〉)
− σ

(〈
w

(t)
1,r,−ξ

〉)
≥ σ′

(〈
w

(t)
1,r,−ξ

〉)〈
w

(t)
1,r,v

〉
.

(28)

Summing the above two, we have that almost surely for all ξ

σ
(〈

w
(t)
1,r, ξ + v

〉)
− σ

(〈
w

(t)
1,r, ξ

〉)
+ σ

(〈
w

(t)
1,r,−ξ + v

〉)
− σ

(〈
w

(t)
1,r,−ξ

〉)
≥
〈
w

(t)
1,r,v

〉
≥ λ

[∑
yi=1

ζ
(t)

1,r,i − 2n
√

log(12mn/δ) · σ0σp

√
d− 5n2α

√
log (6n2/δ) /d

]
,

(29)

where the last inequality is by Lemma C.3 in [22] and Lemma B.3. Additionally, since ReLU is a
Liptchitz, we also have that

σ
(〈

w
(t)
−1,r, ξ + v

〉)
− σ

(〈
w

(t)
−1,r, ξ

〉)
+ σ

(〈
w

(t)
−1,r,−ξ + v

〉)
− σ

(〈
w

(t)
−1,r,−ξ

〉)
≤ 2

∣∣∣〈w(t)
−1,r,v

〉∣∣∣
≤ 2λ

[∑
yi=1

ζ(t)−1,r,i + 2n
√

log(12mn/δ) · σ0σp

√
d+ 5n2α

√
log (6n2/δ) /d

]
.

(30)

Therefore, by plugging Eq. 29 and Eq. 30, we have that
g(ξ + v)− g(ξ) + g(−ξ + v)− g(−ξ)

≥ λ

[∑
r

∑
yi=1

ζ
(t)

1,r,i − 6nm
√
log(12mn/δ) · σ0σp

√
d− 15mn2α

√
log (6n2/δ) /d

]

≥ (λ/2) ·
∑
r

∑
yi=1

ζ
(t)

1,r,i

≥ λ/2 ·Θ
(
SNR−2

)∑
r

κ
(t)
1,r

≥ 4C6

∑
r

κ
(t)
1,r,

(31)

where the second inequality is by Lemma D.1 in [22] and Assumption B.1; the third inequality is by∑n
i=1 ζ

(t)

j,r,i/κ
(t)
j′,r′ = Θ(SNR−2). Finally, it is worth noting that the norm

∥v∥2 =

∥∥∥∥∥λ ·
∑
i

1 (yi = 1) ξi

∥∥∥∥∥
2

= Θ

(√
n∥φ∥42
P 4σ4

pd

)
≤ 0.06σp. (32)

where the last inequality is by condition ∥φ∥2 ≤ C3d
1/4n−1/4Pσp with sufficiently large C3. Then

we present a Lemma which bounds the Total Variation (TV) distance between two Gaussian with the
same covariance matrix.

Lemma B.4 (Proposition 2.1 by Devroye et al. [7]). The TV distance between N
(
0, σ2

pId
)

and
N
(
v, σ2

pId
)

is smaller than ∥v∥2/2σp.

Finally, we can prove the lower bound for R:

P(x,y)∼R

(
yf
(
W(t),x

)
≤ 0
)

=P(x,y)∼R

(∑
r

σ
(〈

w
(t)
−y,r, ξ

〉)
−
∑
r

σ
(〈

w(t)
y,r, ξ

〉)
≥
∑
r

σ
(〈

w(t)
y,r, yφ

〉)
−
∑
r

σ
(〈

w
(t)
−y,r, yφ

〉))

≥0.5P(x,y)∼R

(∣∣∣∣∣∑
r

σ
(〈

w
(t)
−y,r, ξ

〉)
−
∑
r

σ
(〈

w(t)
y,r, ξ

〉)∣∣∣∣∣ ≥ C6 max

{∑
r

κ
(t)
1,r,
∑
r

κ
(t)
−1,r

})
,

(33)
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where C6 is a constant, the inequality holds since if |
∑

r σ(⟨w
(t)
1,r, ξ⟩)−

∑
r σ(⟨w

(t)
−1,r, ξ⟩)| is too

large, we can always pick a corresponding y given ξ to make a wrong prediction.

Let g(ξ) =
∑

r σ(⟨w
(t)
1,r, ξ⟩) −

∑
r σ(⟨w

(t)
−1,r, ξ⟩), and denote the set Ω := {ξ | |g(ξ)| ≥

C6 max{
∑

r κ
(t)
1,r,
∑

r κ
(t)
−1,r}}. Thus we have

P(x,y)∼R

(
yf
(
W (t),x

)
≤ 0
)
≥ 0.5P(Ω). (34)

By Lemma 5.8 of [22], we have that
∑

j [g(jξ + v)− g(jξ)] ≥ 4C6 maxj

{∑
r κ

(t)
j,r

}
. Therefore,

by pigeonhole principle, one of [ξ,−ξ, ξ+ v,−ξ+ v] must belong to Ω, thus Ω∪−Ω∪Ω− {v} ∪
−Ω − {v} = Rd. Therefore, at least one of P(Ω),P(−Ω),P(Ω − {v}),P(−Ω − {v}) is greater
than 1

4 . Note that P(−Ω) = P(Ω) and

|P(Ω)− P(Ω− v)| =
∣∣∣Pξ∼N(0,σ2

pId)
(ξ ∈ Ω)− Pξ∼N(v,σ2

pId)
(ξ ∈ Ω)

∣∣∣
≤ TV

(
N
(
0, σ2

pId
)
,N
(
v, σ2

pId
))

≤ ∥v∥2
2σp

≤ 0.03,

(35)

where the first inequality is by the definition of TV distance, the second inequality is by Lemma B.4.
Hence, we have that P(Ω) ≥ 1

4 − 0.03 = 0.22, and plugging this into Eq. 34, we get

P(x,y)∼R

(
yf
(
W(t),x

)
≤ 0
)
≥ 0.5P(Ω) = 0.11 ≥ 0.1. (36)

Like the upper bound, the derived lower bounds also applies to P(x,y)∼F (yf(W
(t),x) > 0). Hence,

if ∥φ∥2 ≥ C1d
1/4n−1/4Pσp,

L0−1
D (WT2) = P(x,y)∼D

(
y ̸= sign

(
f
(
WT2 ,x

)))
=β · P(x,y)∼R

(
yf
(
WT2 ,x

)
≤ 0
)︸ ︷︷ ︸

≤ϵR

+(1− β) ·

1− P(x,y)∼F
(
yf
(
WT2 ,x

)
> 0
)︸ ︷︷ ︸

≤ϵF


=⇒ lim

β→1
L0−1
D (WT2) ≤ ϵR = ϵ.

(37)

On the other hand, when β → 0.5, we have limβ→0.5 L0−1
D (WT2) ≤ 0.5 + 0.5ϵR − 0.5ϵF = ϵ.

Depending on the size ratio of R and F , ϵ ranges from a very small constant to a minimally
PAC-learnable threshold.

For harmful overfitting where ∥φ∥2 ≤ C3d
1/4n−1/4Pσp,

L0−1
D (WT2) = P(x,y)∼D

(
y ̸= sign

(
f
(
WT2 ,x

)))
=β · P(x,y)∼R

(
yf
(
WT2 ,x

)
≤ 0
)︸ ︷︷ ︸

≥0.1

+(1− β) ·

1− P(x,y)∼F
(
yf
(
WT2 ,x

)
> 0
)︸ ︷︷ ︸

≥0.1


=⇒ lim

β→1
L0−1
D (WT2) ≥ 0.1.

(38)

On the other hand, when β → 0.5, we have limβ→0.5 L0−1
D (WT2) ≥ 0.05.
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B.2 Proof to Theorem 3.3
First we have the same decomposition for NegGrad:

L0−1
D (WT2) =P(x,y)∼D

(
y ̸= sign

(
f
(
W(t),x

)))
=β · P(x,y)∼R

(
yf
(
W(t),x

)
≤ 0
)
+ (1− β) ·

(
1− P(x,y)∼F

(
yf
(
W(t),x

)
> 0
))

;

yf
(
W(t),x

)
=

1

m

∑
j,r

yj
[
σ
(〈

w
(t)
j,r, yφ

〉)
+ σ

(〈
w

(t)
j,r, ξ

〉)]
=

1

m

∑
r

[
σ
(〈

w(t)
y,r, yφ

〉)
+ (P − 1)σ

(〈
w(t)

y,r, ξ
〉)]

− 1

m

∑
r

[
σ
(〈

w
(t)
−y,r, yφ

〉)
+ (P − 1)σ

(〈
w

(t)
−y,r, ξ

〉)]
.

(39)
However, note that for (x, y) ∼ F , SAM gives up its denoising property. We first show this by
proving Lemma 3.1.

B.2.1 Proof to Lemma 3.1
Proof. Consider extending Lemma D.5 in [5] to the NegGrad setting by rewriting

〈
ϵ̂
(t,b)
j,r , ξk

〉
. First

we have the Frobenius norm upper bounded by the same quantity:

∥∇WLIt,b(W(t,b))∥F = ∥α∇WLIRt,b(W
(t,b))− (1− α)∇WLIFt,b(W

(t,b))∥F

≤ α∥∇WLIRt,b(W
(t,b))∥F + (1− α)∥∇WLIFt,b(W

(t,b))∥F

= ∥∇WLIt,b(W(t,b))∥F ≤ 2
√
2Pσp

√
d/Bm,

(40)

where the first inequality comes from triangle inequality; the second equality holds because R,F are
split from S and come from the same D, thus having the same gradient norm; the second inequality
comes from the original bounds in [5]. Next we expand

〈
ϵ̂
(t,b)
j,r , ξk

〉
under NegGrad:〈

ϵ̂
(t,b)
j,r , ξk

〉
=

τ

mB

∥∥∥∇WLIt,b(W(t,b))
∥∥∥−1
F

∑
i∈It,b

∑
p∈[P ]

ℓ
′(t)
i j · yiσ′(⟨w(t)

j,r,xi,p⟩)⟨xi,p, ξk⟩

=
τ

mB

∥∥∥∇WLIt,b(W(t,b))
∥∥∥−1
F

α ∑
i∈IRt,b

∑
p∈[P ]

ℓ
′(t)
i j · yiσ′(⟨w(t)

j,r,xi,p⟩)⟨xi,p, ξk⟩

−(1− α)
∑

i∈IFt,b

∑
p∈[P ]

ℓ
′(t)
i j · yiσ′(⟨w(t)

j,r,xi,p⟩)⟨xi,p, ξk⟩

 .

(41)
Note that ⟨xi,p, ξk⟩ can be divided into three different terms:

|⟨xi,p, ξk⟩| =


∥ξk∥22 ≤ 3σ2

pd/2, if i = k, xk,p = ξk
|⟨ξi, ξk⟩| ≤ 2σ2

p

√
d log(6n2/δ), if i ̸= k, xi,p = ξi

|⟨yiφ, ξk⟩| ≤ ∥φ∥2 σp

√
2 log(6n2/δ), if xi,p = yiφ

(42)

The upper bounds come from Lemma B.2. Based on Assumption B.1 and Lemma D.4 of [5], the
i = k term will dominate the upper bound and we can write〈

ϵ̂
(t,b)
j,r , ξk

〉
≤ τ

mB · 2
√
2Pσp

√
d/Bm

[
−0.15α(P − 1)C1σ

2
pd1[k ∈ IRt,b]

+0.15(1− α)(P − 1)C1σ
2
pd1[k ∈ IFt,b]

] (43)

Thus, when k ∈ IRt,b, we can preserve the original bound with additional α:〈
ϵ̂
(t,b)
j,r , ξk

〉
< −C

ατσp

√
d

m
√
B

. (44)
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Choosing τ = m
√
B

C3αPσp

√
d

will cancel with
〈
w

(t)
j,r, ξk

〉
to deactivate the neuron. When k ∈ IFt,b, the

entire ⟨w(t,b)
j,r + ϵ̂

(t,b)
j,r , ξk⟩ will remain activated:

0 ≤
〈
ϵ̂
(t,b)
j,r , ξk

〉
< C

(1− α)τσp

√
d

m
√
B

=⇒
〈
w

(t,b)
j,r + ϵ̂

(t,b)
j,r , ξk

〉
≥
〈
w

(t,b)
j,r , ξk

〉
≥ 0. (45)

This fundamentally differs SAM’s behaviors towards unlearning F from behaviors towards learning
R as how SGD differs from SAM. For gradient ascent on F under NegGrad, we now know SAM
learns from activated noise products as much as SGD. The activation patterns are further utilized to
bound products and norms of the weight, signal and noise, which characterize the final test errors.

Our task is reduced to bounding P(x,y)∼R(yf
(
W(t),x

)
≤ 0), then use previous error bounds for

SGD in App. B.1 for P(x,y)∼F (yf(W
(t),x) > 0). The inner product with j = y can be bounded as〈

w(t)
y,r, yφ

〉
=
〈
w(0)

y,r, yφ
〉
+ κ(t)

y,r +
1

(P − 1)

n∑
i=1

ζ
(t)

y,r,i · ∥ξi∥
−2
2 · ⟨ξi, yφ⟩

+
1

(P − 1)

n∑
i=1

ζ(t)
y,r,i

· ∥ξi∥−22 · ⟨ξi, yφ⟩

≥
〈
w(0)

y,r, yφ
〉
+ κ(t)

y,r

−
√
2 log(6n/δ)

P − 1
· σp∥φ∥2 ·

(
σ2
pd/2

)−1 [ n∑
i=1

ζ
(t)

y,r,i +

n∑
i=1

∣∣∣ζ(t)
y,r,i

∣∣∣]
=
〈
w(0)

y,r, yφ
〉
+ κ(t)

y,r −Θ
(√

log(n/δ) · (Pσpd)
−1 ∥φ∥2

)
·Θ
(
SNR−2

)
· κ(t)

y,r

=
〈
w(0)

y,r, yφ
〉
+
[
1−Θ

(√
log(n/δ) · Pσp/∥φ∥2

)]
κ(t)
y,r

=
〈
w(0)

y,r, yφ
〉
+Θ

(
κ(t)
y,r

)
= Θ(1),

(46)
where the inequality is by Lemma B.2; the second equality is obtained by plugging in the coefficient
orders we summarized; the third equality is by SNR = ∥φ∥2/(Pσp

√
d); the fourth equality is by

∥φ∥22 ≥ C · P 2σ2
p log(n/δ) in Assumption B.1 for sufficiently large constant C; the last equality is

by Lemma D.7 of [5].We similarly have ⟨w(t)
y,r, yφ⟩ = −Θ(1) < 0.

Denote g(ξ) as
∑

r σ(⟨w
(t)
−y,r, ξ⟩). The results for noise learning from SGD in App. B.1 still apply:

|g(ξ)− g (ξ′)| ≤
m∑
r=1

∥∥∥w(t)
−y,r

∥∥∥
2
· ∥ξ − ξ′∥2 ;

Eg(ξ) =
σp√
2π

m∑
r=1

∥∥∥w(t)
−y,r

∥∥∥
2
;

∥∥∥∥∥
n∑

i=1

ζ
(t)
j,r,i · ∥ξi∥

−2
2 · ξi

∥∥∥∥∥
2

2

≤ Θ
(
σ−2p d−1n−1

)( n∑
i=1

ζ
(t)

j,r,i

)2

.

(47)

We can thus upper bound the 2-norm of w(t)
j,r as:∥∥∥w(t)

j,r

∥∥∥
2
≤
∥∥∥w(0)

j,r

∥∥∥
2
+ κ

(t)
j,r · ∥φ∥

−1
2 +

1

P − 1

∥∥∥∥∥
n∑

i=1

ζ
(t)
j,r,i · ∥ξi∥

−2
2 · ξi

∥∥∥∥∥
2

≤
∥∥∥w(0)

j,r

∥∥∥
2
+ κ

(t)
j,r · ∥φ∥

−1
2 +Θ

(
P−1σ−1p d−1/2n−1/2

)
·

n∑
i=1

ζ
(t)

j,r,i

= Θ(σ0

√
d) + Θ

(
P−1σ−1p d−1/2n−1/2

)
·

n∑
i=1

ζ
(t)

j,r,i,

(48)
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based on SNR = ∥φ∥2/(Pσp

√
d) and

∑n
i=1 ζ

(t)

j,r,i/κ
(t)
j,r = Θ

(
SNR−2

)
, and the condition for d in

Assumption B.1, and also
∥∥∥w(0)

j,r

∥∥∥
2
= Θ

(
σ0

√
d
)

based on Lemma D.7 of [5]. Then we have

∑
r σ
(〈

w
(t)
y,r, yφ

〉)
(P − 1)σp

∑m
r=1

∥∥∥w(t)
−y,r

∥∥∥
2

≥ Θ(1)

Θ
(
σ0

√
d
)
+Θ

(
P−1σ−1p d−1/2n−1/2

)
·
∑n

i=1 ζ
(t)

j,r,i

≥ Θ(1)

Θ
(
σ0

√
d
)
+O

(
P−1σ−1p d−1/2n1/2α

)
≥ min

{
Ω
(
σ−10 d−1/2

)
,Ω
(
Pσpd

1/2n−1/2α−1
)}

≥ 1

=⇒
∑
r

σ
(〈

w(t)
y,r, yφ

〉)
− (P − 1)σp√

2π

m∑
r=1

∥∥∥w(t)
−y,r

∥∥∥
2
> 0.

(49)

Upper bound. Now plug in previous results to obtain

P(x,y)∼R
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The second inequality is by Eq. 49 and plugging ∥g∥Lip ≤

∑m
r=1 ∥w

(t)
−y,r∥2 into Eq. 16, the third

inequality is because (s− t)2 ≥ s2/2− t2,∀s, t ≥ 0. And we can obtain
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(51)
where C = O(1), the last inequality holds since σ2

0 ≤ 0.5Cd−1 log(1/ϵ) and d ≥
2C−1P−1σ−2p nα2 log(1/ϵ). Now we upper bound the test error L0−1

D (WT2). Depending on the
strength of the unified signal vector φ, the unlearning of F can exhibit either benign or harmful
overfitting following SGD’s characterization, dividing error bounds into two cases:

24



1. If ∥φ∥2 ≥ C1d
1/4n−1/4Pσp, we have benign overfitting on both R and F . Thus,
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(52)
As β → 1, |F|/n decreases so the model can better maintain its performance; as
β → 0.5, |F|/n increases and more samples are to be unlearned, making the model
performance reduce to a minimally PAC-learnable guarantee. Hence, when β → 0.5, we
have limβ→0.5 L0−1

D (WT2) ≤ 0.5 + 0.5ϵR − 0.5ϵF = ϵ.

2. If Ω(1) ≤ ∥φ∥2 ≤ C1d
1/4n−1/4Pσp, we have benign overfitting on R and harmful

overfitting on F . Thus,

L0−1
D (WT2) = P(x,y)∼D

(
y ̸= sign

(
f
(
W(t),x

)))

=β · P(x,y)∼R

(
yf
(
W(t),x

)
≤ 0
)

︸ ︷︷ ︸
≤ϵR

+(1− β) ·

1− P(x,y)∼F

(
yf
(
W(t),x

)
> 0
)

︸ ︷︷ ︸
≥0.1


=⇒ lim

β→1
L0−1
D (WT2) ≤ ϵR = ϵ.

(53)
Similarly, we have limβ→0.5 L0−1

D (WT2) ≤ 0.5ϵR + 0.45 = ϵ.

Remark B.5 (β-dependence of the ϵ-bound). The overall test error

L0−1
D (WT2) = β ·P(x,y)∼R

(
yf
(
W(t),x

)
≤ 0
)
+(1−β)·

(
1− P(x,y)∼F

(
yf
(
W(t),x

)
> 0
))

can be considered as an affine function of the mixing factor β, and so its achievable range runs
from the best-case retain error ϵR (as β → 1) up to asymptotically 0.5 (as β → 0.5)—the trivial
PAC-learnability threshold. Concretely, by choosing β sufficiently close to 1, one drives L0−1

D (WT2)

arbitrarily close to the small “benign” error level ϵ, whereas if β remains near 0.5 then L0−1
D (WT2)

can approach 0.5, the worst-case “minimally learnable” error. Thus, all our bounds interpolate
smoothly between these two extremes via the single parameter β, and we report the most informative
bounds in Theorem 3.2 and Theorem 3.3.

B.3 Proof to Corollary 3.3.1

Recall the update rule for κj,r. For each epoch, the interference between retain and forget signals can
be measured as
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j,r , yiφ⟩). (54)

Similar to Lemma 3.1, the expected gradient values between retain and forget samples should not
differ. Since we cycle the forget set to synchronously train with the retain set, updates from F has
been scaled up by |R||F| . Hence,

E
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Combining together, to expect κj,r to increase monotonically every epoch, we want
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(56)

B.4 Proof to Lemma 3.4
By Theorem 3.3, SAM turns off noise memorization prevention mechanism when fitting F , which
leads to the same requirement on signal strength as SGD. The only difference between SAM and
SGD under NegGrad is the more effective learning on R. From Eq. 7 we have the per-batch update
of κj,r on R as

∆κj,r =
η∥φ∥22
Bm

α
∑

i∈IRt,b

ℓ
′(t,b)
i σ′(⟨w(t,b)

j,r , yiφ⟩). (57)

Let g denote the batch-average magnitude of ℓ′(t,b)i σ′(⟨w(t,b)
j,r , yiφ⟩) for convenience. We can then

express per-epoch κ update as

∆epochκj,r =
η∥φ∥22
m

α|R|g. (58)

Now, consider achieving benign overfitting on R only, where SGD requires ∥φ∥2 =
Ω(d1/4|R|−1/4Pσp) while SAM only requires ∥φ∥2 = Ω(1). That being said, given a fixed
universal φ for D and a choice of α, we have SAM learning the retain signals faster than SGD:

∆epochκ
SAM
j,r

∆epochκ
SGD
j,r

= Θ(d1/2|R|−1/2P 2σ2
p) = Θ(∥φ∥22). (59)

Hence, in order to achieve the same signal learning performance as SAM on R, SGD needs to scale
up αSGD. Thus,

αSGD

αSAM = Θ(d1/2|R|−1/2P 2σ2
p) = Θ(∥φ∥22), or αSGD − αSAM = Θ(∥φ∥22). (60)

In general, since |R| = Θ(n), we can characterize the gap between αSGD and αSAM by O(
√

d/n).

C Implementation Details
C.1 Experiment Setup
We conduct major experiments on CIFAR-100 [23] and ImageNet-1K [32] using ResNet-50 [16]. We
adopt pre-computed memorization scores for these two datasets from [11] to generate F of different
memorization levels with |F| ≈ 5%|S|. We have |F| = 3000 for CIFAR-100 and |F| = 60000
for ImageNet. We sample high-memorization forget set Fhigh by choosing |F| samples of highest
memorization scores from S , Flow by choosing |F| samples of lowest memorization scores, and Fmid
by choosing |F| samples whose memorization scores are closest to 0.5. We also run experiments with
randomly sampled Frand on Tiny-ImageNet and CIFAR-10 in App. F. We use RandomResizedCrop
and RandomHorizontalFlip as train transforms.

Pretraining and retraining. We pretrain on S and retrain on R with the same settings. For CIFAR-
100, we train for T1 = 200 epochs, use batch size 256, learning rate η0 = 0.1 with cosine annealing,
SGD with momentum 0.9 and weight decay 5× 10−4. For ImageNet, we train for T1 = 150 epochs,
use batch size 512, learning rate η0 = 0.25 with cosine annealing and 5 warm-up epochs, SGD with
momentum 0.9 and weight decay 2× 10−5. For CIFAR-10, we train ResNet-18 for T1 = 50 epochs,
use batch size 256, learning rate η0 = 0.1 with cosine annealing, SGD with momentum 0.9 and
weight decay 5× 10−4. We summarize the settings, test performance of different pretrained models,
as well as accuracies of retrain models in Tab. 5.

26



Table 5: Differed settings of pretrained models and their test accuracies using different A (top), as
well as performance of retrained models w.r.t different F (bottom) for CIFAR-100 and ImageNet-1K.

Dataset, Model lr+warmup Batch B Epoch T W. Decay SGD ASAM 0.1 ASAM 1.0 SAM 0.1
CIFAR100, Res50 0.1+0 256 200 5e-4 77.23 76.0 78.05 77.85
ImageNet, Res50 0.25+5 512 150 2e-5 75.04 74.94 76.53 76.18

Retrain High Mem Mid Mem Low Mem
Dataset, Model Retain Forget Test Retain Forget Test Retain Forget Test
CIFAR100, Res50 99.964 3.3 74.96 99.981 57.5 74.14 99.956 100.0 75.81
ImageNet, Res50 97.134 13.828 74.826 97.388 52.27 74.832 96.671 99.858 75.018

Unlearning. We conduct all unlearning methods for T2 = 10 epochs with the same batch size and
optimizer settings. For NegGrad and Sharp MinMax, we unlearn with constant learning rate 0.02.
We use α = 0.99 for CIFAR-100 and α = 0.989 for ImageNet accounting for its slightly smaller
|F|/|S| ratio. For model splitting, we empirically find that a small ratio for forget model benefits
ImageNet such as 5%, while CIFAR-100 suits a larger ratio such as 30%. For both pretraining and
unlearning, we wrap SGD with vanilla SAM [12] with ρ = 0.1, and Adaptive SAM (ASAM) [25]
with ρ = [0.1, 1.0], while keep other hyper-parameters the same for fair comparison.

Sharp MinMax model splitting. Inspired by SalUn [8], we split the model into two and update
using two separate optimizer, SAM and shaprness maximization. We split the model by ranking
the parameters that are important to the forget set F based on the magnitude of the gradient of the
parameters after one pass on F , and choose the highest percentage where we have 5% for ImageNet
and 30% for CIFAR-100. Unlike SalUn, which essentially performs RL unlearning on the selected
parameters, we update both models using opposite optimization. SalUn also requires a larger part of
the model to fine-tune with noisy, label flipped F . When running Sharp MinMax and SalUn, we load
the weight mask corresponding to the loaded pretrained model for model splitting.

Experiment environment. Our code is built upon several open-source code bases 1 which will be
released. We perform all experiments on single NVIDIA A100/H100. We fix random seed for all
data processing, model splitting, pretraining and retraining for reproducible observations. We also
run with multiple seeds for unlearning experiment to evaluate statistical significance, see App. E.1.

C.2 Unlearning Setup for Previous Work
We compare with state-of-the-art unlearning methods with optimized hyper-parameter settings. To
our best knowledge, several previous methods are evaluated on ImageNet for the first time. We
apply SGD and ASAM 1.0 on each U and compare the performance between SGD and SAM. For
L1-Sparse [18], we use unlearn lr= 0.02 and α = 1 × 10−4. For SCRUB [24], we use unlearn
lr= 0.004, msteps= 8, kd_T= 4, β = 0.01, and γ = 0.99. For RL [15], we use unlearn lr= 0.06
on CIFAR-100 and 0.02 on ImageNet. For SalUn [8], we use the unlearn lr= 0.06, 50% weight to
finetune on CIFAR-100, and unlearn lr= 0.04, 30% weight to finetune on ImageNet.

C.3 Evaluation Details
Membership inference attack. We adopted a MIA based evaluation from [18]. We train a binary
classifier using the retain set R and the test set Dtest to distinguish whether a data sample was involved
in the training stage, based on the softmaxed outputs from the unlearned model. Then, we feed
the forget set F to the classifier to evaluate this unlearned model. We expect forget samples to
be classified as “non-training” data, and we evaluate the unlearning effectiveness based on MIA
correctness. A lower correctness (close to 0.5) indicates difficulty to distinguish and thus better
unlearning. This evaluation examines an unlearned model from a privacy perspective.

Entanglement computation. We compute both entanglement scores based on normalized embed-
dings of retain and forget sets from the penultimate layer of the model. We compute pair-wise
entanglement between each retain and forget embedding, either globally or within a class. For
variance-based entanglement EVar, we directly follow Eq. 11 for implementation, and then rescale the

1https://github.com/kairanzhao/RUM, https://github.com/davda54/sam, https://github.
com/OPTML-Group/Unlearn-Saliency, https://pluskid.github.io/influence-memorization/
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raw scores to [0, 1] based on the value range across global and class-wise scores. For Wasserstein
entanglement EWp , we randomly sample an equal number of embeddings from retain and forget
embeddings and build two uniform proxy-distributions. We then use existing optimal transport library
to compute the transport distance (cost), outputting entanglement scores as 1− distance. No clipping
is needed as we observe all scores lie within [0, 1].

D Limitations and Future Work
There are a few limitations based on the signal-to-noise framework, which on the other hand inspire
us for future studies. First, there are more interference which can be modeled as noise in machine
unlearning, such as the overlap between retain set and forget set. Using hard-cutoff or random
sampling to build F might split two similar samples into two opposite subsets, causing interference
and impacting unlearning effectiveness. We hypothesize that less overlap between R and F results in
more effective unlearning, and vice versa. With more identified and modeled noise sources, another
limitation comes from the uncharacterized behaviors when retain signals are weak (O(1)). Will SAM
fail into harmful overfitting under this circumstance? Theoretical and empirical studies under this
situation might leverage the interplay between all signals, including different noisy signals. From
an empirical perspective, further analysis of the interactions between α and model splitting ratio
for Sharp MinMax can be developed, as both factors control the impact of retain and forget signals.
Last, we observe an intriguing “regularizing” effect of unlearning using SGD via loss landscape
visualization, which demands deeper investigation in future work.

E Detailed Experiment Results
E.1 Statistical Significance
We demonstrate the statistical significance of our major empirical results by running each unlearning
experiment three times with different seeds. We report the 95% confidence intervals (µ± 2σ) of all
unlearning methods on ImageNet and CIFAR-100, which correspond to Tab. 1 and Tab. 3. We report
the error bars and mark the mean ToW scores in the bar plots in Fig. 4 and Fig. 5. We observe that
SAM consistently improves all unlearning methods with more noticeable results on CIFAR-100. On
CIFAR-100, we observe general larger variance of SGD based unlearning, especially for SCRUB.
This additional insight further supports our empirical findings.

E.2 Complete Accuracies
In Tab. 6, Tab. 7, and Tab. 8, we report complete results of retain, forget, and test accuracies for all
unlearning experiments, which are used to compute ToW scores in Tab. 1 and Tab. 3. As we have
mentioned in the main paper, we observe that SGD often achieves lower test accuracies, motivating
us to rethink the overfitting under a sample-specific unlearning scheme.

F Additional Experiments
We provide additional experiments on CIFAR-10 and Tiny-ImageNet using randomly sampled forget
set Frand. To diversify our experiment settings, we use ResNet-34 with ImageNet-pretrained weights
for our learning and unlearning on Tiny-ImageNet. Similar to our main setup, we pretrain and retrain
using the same settings, and we have summarized basic settings and baseline performance in Tab. 9.
Since Tiny-ImageNet has 100K samples, we set |Frand| = 6000 for Tiny-ImageNet. Tab. 10 records
detailed accuracies and ToW scores of various unlearning and pretraining settings.

F.1 CIFAR-10
We summarize detailed unlearning settings on CIFAR-10. For L1-Sparse, we use unlearn lr= 0.02
and α = 1 × 10−4. For SCRUB, we use unlearn lr= 0.004, msteps= 8, kd_T= 3.5, β = 0.01,
and γ = 0.99. For RL and SalUn, we use unlearn lr= 0.08, and use 50% model parameters for
SalUn. For NegGrad and Sharp MinMax, we use unlearn lr= 0.02 and α = 0.99, and use 30% model
parameters for unlearning on F and the rest for learning on R.

From the results in Tab. 9, we observe consistent improvement by using SAM except only two
cases for RL and SalUn with A = SGD. Surprisingly, Sharp MinMax is not the best algorithm on
CIFAR-10. By the nature of its design to overfit to forget signals deliberately, we hypothesize that
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Figure 4: 95% confidence intervals (µ± 2σ) of unlearning methods on CIFAR-100, in accordance to
Tab. 1 and Tab. 3. We run each setting three times with different seeds and compute the statistical
significance. SAM not only improves ToW of the based methods, but also more robust against
variance than SGD.

this approach might be aggressive for small-scale unlearning. We again observe SCRUB to be an
unstable algorithm which collapses when unlearning with SGD given A = SAM0.1, while SAM
helps reduce variance and stabilizes SCRUB unlearning given various pretrained models.

F.2 Tiny-ImageNet

We summarize detailed unlearning settings on Tiny-ImageNet. For L1-Sparse, we use unlearn
lr= 0.002 and α = 1 × 10−4. For SCRUB, we use unlearn lr= 0.002, msteps= 8, kd_T= 3.5,
β = 0.01, and γ = 0.99. For RL and SalUn, we use unlearn lr= 0.015, and use 30% model
parameters for SalUn. For NegGrad and Sharp MinMax, we use unlearn lr= 0.005 and α = 0.99,
and use 10% model parameters for unlearning on F and the rest for learning on R.

From the results in Tab. 9, we observe consistent improvement by using SAM except few cases.
SCRUB performs more steadily than on CIFAR-10. While RL and SalUn perform well on other
datasets, they do not appear to be effective on Tiny-ImageNet.

G Complete Visualizations

In this section, we provide complete visualizations of feature space and loss landscapes of pretrained
models, NegGrad unlearned models, and Sharp MinMax unlearned models, comparing SGD with
SAM across all memorization levels. The observations are generally consistent across memorization
levels, with Fhigh being more noticeable.
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Table 6: Detailed accuracies of NegGrad on ImageNet and CIFAR-100.
ImageNet A =SGD A =ASAM 0.1 A =ASAM 1.0 A =SAM 0.1
High Mem Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW
+SGD 88.766 25.148 71.756 78.764 88.131 24.1 70.878 78.426 89.649 26.28 71.772 78.522 89.158 26.488 71.91 78.03
+ASAM 0.1 89.487 26.407 72.08 78.52 88.640 24.77 70.988 78.366 89.767 26.542 72.236 78.762 89.816 27.422 72.328 78.083
+ASAM 1.0 90.804 28.398 73.506 78.966 90.399 27.522 72.94 78.975 91.232 29.862 73.58 78.027 91.121 30.208 73.77 77.762
+SAM 0.1 91.007 29.88 73.676 77.898 90.498 28.445 73.05 78.301 91.583 30.997 73.746 77.388 91.328 31.578 73.964 76.807

Mid Mem Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW
+SGD 88.771 56.87 71.414 84.199 89.265 57.832 71.562 83.93 89.80 58.622 71.812 83.929 89.312 58.27 72.248 84.176
+ASAM 0.1 89.56 58.502 72.154 84.113 89.276 57.698 71.576 84.07 90.087 59.08 72.378 84.267 89.945 59.263 72.482 84.062
+ASAM 1.0 90.969 61.998 73.544 83.389 91.064 62.023 73.434 83.358 91.427 62.757 73.82 83.326 91.505 63.078 74.046 83.284
+SAM 0.1 91.396 63.015 73.734 82.985 91.015 62.308 73.422 83.04 91.984 64.367 74.014 82.473 91.823 64.258 74.198 82.587

Low Mem Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW
+SGD 87.775 99.617 71.942 88.515 86.592 99.505 71.042 86.651 88.847 99.663 72.41 89.947 87.847 99.625 72.228 88.839
+ASAM 0.1 88.251 99.643 72.198 89.188 88.296 99.635 72.044 89.098 89.293 99.7 72.658 90.579 88.553 99.69 72.776 89.973
+ASAM 1.0 89.903 99.818 73.844 92.174 89.704 99.808 73.69 91.843 90.432 99.79 73.896 92.772 90.042 99.813 74.166 92.617
+SAM 0.1 90.234 99.822 74.21 92.841 89.553 99.817 73.728 91.722 90.815 99.827 74.228 93.429 90.184 99.825 74.254 92.829

CIFAR100 A =SGD A =ASAM 0.1 A =ASAM 1.0 A =SAM 0.1
High Mem Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW
+SGD 92.929 12.9 68.17 78.334 94.05 11.433 66.68 79.277 94.533 15.267 67.78 77.274 91.814 22.4 66.23 67.82
+ASAM 0.1 93.736 13.467 67.71 78.131 94.852 11.633 67.32 80.336 94.633 15.333 67.82 77.331 93.674 22.9 67.94 70.054
+ASAM 1.0 96.748 15.433 69.98 80.806 96.907 13.167 69.03 82.196 96.893 17.7 69.85 78.731 96.376 24.033 69.85 72.518
+SAM 0.1 98.552 19 72.82 81.331 99.193 17.4 72.17 82.86 99.4 26.467 72.74 74.704 99.24 36.767 73.49 65.08

Mid Mem Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW
+SGD 93.162 60.3 66.15 83.335 95.024 58.433 65.96 86.454 95.519 69.2 67.3 78.59 93.714 72.233 66.91 74.145
+ASAM 0.1 94.055 62.633 66.97 82.846 95.005 58.133 66.85 87.539 95.524 68.133 66.75 79.074 93.838 72.367 66.95 74.158
+ASAM 1.0 96.781 69.533 69.81 81.465 97.16 65.4 68.43 84.391 97.919 72.7 69.58 79.264 97.257 76.2 69.8 75.653
+SAM 0.1 98.938 80.133 72.18 75.059 99.007 76.133 70.87 77.94 99.448 85.1 72.59 70.898 99.169 90.033 72.9 66.089

Low Mem Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW
+SGD 91.086 97.767 65.67 83.718 95.312 98.267 67.18 88.637 93.117 98.5 66.17 85.443 85.307 96.933 62.63 76.374
+ASAM 0.1 92.736 97.767 67.3 86.78 94.676 98.5 67 87.671 94.298 97.967 67.27 88.039 86.902 96.9 62.92 78.087
+ASAM 1.0 92.824 97.8 67.53 87.052 96.267 99.1 68.94 90.502 97.883 99.533 70.59 93.249 93.517 98.7 67.35 86.759
+SAM 0.1 97.89 99.333 71.31 94.151 98.712 99.7 70.89 94.179 99.26 99.667 72.06 95.898 98.695 99.633 71.75 95.078

Table 7: Detailed accuracies of Sharp MinMax on ImageNet and CIFAR-100.
ImageNet A =SGD A =ASAM 0.1 A =ASAM 1.0 A =SAM 0.1
High Mem Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW
+SGD 87.513 29.79 71.408 73.357 86.802 28.42 70.692 73.418 88.411 31.423 72.016 73.103 87.879 30.953 71.964 73.052
+ASAM 0.1 79.741 10.555 66.334 78.066 80.84185 11.222 66.894 79.077 73.491 8.203 61.802 70.148 80.16741 11.032 66.828 78.529
+ASAM 1.0 87.993 15.903 72.224 86.658 87.748 15.605 71.638 86.166 88.563 16.453 72.452 86.915 88.435 17.083 72.498 86.272
+SAM 0.1 88.297 16.705 72.48 86.463 87.537 16.098 71.612 85.511 89.056 17.405 72.812 86.849 88.468 17.92 72.674 85.712

Mid Mem Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW
+SGD 87.089 58.915 71.418 80.881 86.757 58.372 71.1 80.784 87.217 59.095 71.734 81.105 87.461 59.677 71.848 80.913
+ASAM 0.1 86.936 50.585 71.38 87.914 86.281 49.833 70.814 87.40 87.561 51.3 71.528 88.039 87.529 52.043 71.84 87.642
+ASAM 1.0 88.679 54.642 72.834 87.345 88.588 54.548 72.666 87.192 89.12 55.377 73.018 87.27 89.092 55.733 73.192 87.076
+SAM 0.1 89.141 56.215 73.268 86.755 88.642 55.303 72.74 86.635 89.492 56.813 73.47 86.722 89.758 57.657 73.792 86.486

Low Mem Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW
+SGD 85.798 99.61 71.644 86.334 84.348 99.482 70.894 84.378 85.863 99.568 71.61 86.402 85.098 99.57 71.45 85.517
+ASAM 0.1 86.399 99.565 72.07 87.338 86.236 99.562 71.814 86.953 86.644 99.627 72.104 87.554 85.894 99.593 71.898 86.668
+ASAM 1.0 87.766 99.768 73.392 89.694 87.366 99.772 73.216 89.138 88.159 99.722 73.412 90.142 87.837 99.765 73.718 90.064
+SAM 0.1 87.836 99.777 73.666 90.005 87.745 99.76 73.58 89.852 88.706 99.783 73.94 91.111 87.974 99.792 73.752 90.207

CIFAR100 A =SGD A =ASAM 0.1 A =ASAM 1.0 A =SAM 0.1
High Mem Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW
+SGD 92.298 20.8 67.86 70.767 95.098 22.167 68.42 72.137 92.564 25.4 66.35 65.925 87.195 25.233 63.77 60.478
+ASAM 0.1 89.574 6.133 65.57 78.895 93.819 5.333 67.37 84.968 92.095 6.3 66.52 81.825 86.969 9.233 64.03 72.897
+ASAM 1.0 92.121 6.467 67.15 82.27 88.976 5.067 63.68 77.576 93.895 6.567 67.98 84.521 90.448 10.7 65.71 76.037
+SAM 0.1 97.383 7.1 71.61 90.578 98.183 6.133 71.04 91.695 97.619 8.467 70.7 88.664 98.198 14.167 72.26 85.195

Mid Mem Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW
+SGD 91.433 66 65.79 76.692 91.633 63.367 64.39 77.864 92.11 69.4 65.96 74.526 85.714 62.6 62.55 71.931
+ASAM 0.1 91.16 42.7 65.88 96.027 91.4 40.233 64.11 96.451 95.26 51.2 66.74 93.786 88.074 55.867 63.61 80.104
+ASAM 1.0 92.586 46.9 66.81 94.913 94.074 43.133 66.53 99.422 89.36 47.433 63.35 87.761 93.119 60.067 66.3 83.633
+SAM 0.1 97.433 60.867 70.73 90.96 97.874 55.033 69.39 95.543 98.6 64.333 70.62 88.646 98.824 76.433 71.84 78.286

Low Mem Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW
+SGD 89.579 97.6 66.09 82.853 89.781 97.1 64.36 81.847 88.605 97.833 64.28 80.127 81.488 94.467 61.63 73.843
+ASAM 0.1 89.026 95.067 65.12 83.473 89.874 96.033 64.47 82.883 93.748 97.167 66.17 87.151 92.967 97.433 66.65 86.659
+ASAM 1.0 91.931 96.567 66.74 86.504 92.819 97.467 66.02 85.894 91.131 96.2 64.97 84.381 85.014 95.3 62.79 77.461
+SAM 0.1 96.129 98.033 70.13 92.494 96.829 98.7 69.06 91.508 97.624 98.567 69.85 93.163 96.652 99.033 68.98 90.963

G.1 Loss Landscape
G.2 Feature Visualization
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Table 8: Detailed accuracies of previous methods on ImageNet and CIFAR-100.
ImageNet A =SGD A =ASAM 0.1 A =ASAM 1.0 A =SAM 0.1
High Mem Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW
RL 88.536 29.857 72.02 74.598 88.663 29.622 71.95 74.857 88.975 30.59 72.04 74.317 89.429 31.74 72.572 74.055
+ASAM 1.0 90.874 33.395 74.234 74.951 90.615 32.668 73.972 75.221 91.14 34.745 74.298 73.95 91.155 35.332 74.522 73.579

SalUn 93.248 67.118 75.04 44.981 93.016 65.807 74.976 46.104 93.124 66.372 75.418 45.814 92.911 66.333 75.982 46.006
+ASAM 1.0 93.123 66.217 75.496 45.998 92.963 65.058 75.28 46.938 93.134 66.472 75.712 45.856 92.855 66.032 76.172 46.358

Mid Mem Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW
RL 88.785 54.653 71.916 86.617 88.067 53.387 71.258 86.462 89.754 56.17 72.634 86.813 88.609 54.608 72.168 86.715
+ASAM 1.0 90.597 59.53 73.836 85.581 90.457 59.337 73.654 85.473 90.993 60.35 74.078 85.393 90.902 60.402 74.348 85.494

SalUn 93.174 77.258 74.816 71.839 93.072 77.222 74.728 71.735 93.078 77.118 75.382 72.308 92.825 77.167 75.868 72.419
+ASAM 1.0 93.098 77.983 75.47 71.554 92.969 77.947 75.154 71.268 93.143 78.058 75.724 71.695 92.797 77.805 76.222 72.034

Low Mem Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW
RL 85.745 98.603 71.162 86.714 85.451 98.463 70.768 86.192 86.472 98.74 71.522 87.63 86.865 98.95 72.36 88.594
+ASAM 1.0 88.517 99.408 73.728 91.069 88.218 99.377 73.32 90.425 88.985 99.457 73.758 91.516 88.963 99.507 74.072 91.74

SalUn 91.991 99.778 74.612 95.008 91.743 99.77 74.488 94.652 91.696 99.818 75.074 95.116 91.412 99.85 75.514 95.218
+ASAM 1.0 92.095 99.85 75.224 95.628 91.882 99.818 74.992 95.224 91.967 99.857 75.676 95.924 91.579 99.873 75.964 95.791

CIFAR100 A =SGD A =ASAM 0.1 A =ASAM 1.0 A =SAM 0.1
High Mem Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW
L1-Sparse 74.76 5.267 61.49 63.448 75.426 5.067 60.89 63.699 73.969 6.167 60.17 61.252 77.429 7.133 62.56 65.258
+ASAM 1.0 77.86 5.733 62.99 66.903 77.648 5.7 62.29 66.213 77.126 6.367 62.02 65.117 75.583 6.2 60.83 63.051

SCRUB 99.867 44.567 74.52 58.418 99.793 35.267 73.85 67.163 99.902 45.233 74.59 57.816 99.971 60.7 76.47 43.246
+ASAM 1.0 99.962 53.533 76.06 50.313 99.955 42.633 74.72 60.515 99.969 55.3 76.14 48.569 99.971 85.567 77.23 18.137

RL 82.681 9.233 62.95 68.464 79.229 8.367 60.7 64.518 82.99 10.933 61.92 66.689 81.069 10.833 60.82 64.391
+ASAM 1.0 84.012 9.7 63.88 69.952 81.519 8.4 61.41 66.909 86.195 12 63.53 69.73 89.324 13.7 65.99 72.884

SalUn 89.624 16.567 64.88 69.926 86.298 15.467 62.71 66.541 91.207 20.7 64.33 67.355 90.593 18.533 65.65 69.671
+ASAM 1.0 94.557 20.9 68.96 73.268 92.326 18.3 65.94 71.426 94.519 25.033 66.46 67.715 95.636 24.367 68.89 70.933

Mid Mem Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW
L1-Sparse 67.864 36.8 57.97 68.686 71.305 38.633 59.98 72.775 68.264 37.933 57.67 68.197 71.495 39.967 59.73 71.941
+ASAM 1.0 74.148 41.5 61.96 75.554 75.836 42.7 62.7 77.119 74.267 43.967 61.59 73.754 73.857 40.667 60.52 74.556

SCRUB 99.864 81.4 74.29 76.125 99.876 76.9 72.37 79.09 99.91 83.867 73.59 73.176 99.974 90.167 75.78 68.433
+ASAM 1.0 99.974 85.133 75.51 73.353 99.969 77.367 74.24 80.204 99.981 85.433 75.56 73.09 99.974 97.667 77.13 61.618

RL 79.262 37.067 62.53 84.395 75.757 31.733 58.31 80.215 81.955 36.433 61.21 86.411 81.905 38.033 61.48 85.481
+ASAM 1.0 81.688 38.7 63.54 86.779 81.686 37.333 62.3 86.557 85.674 38.7 63.65 91.124 84.914 40.167 63.08 88.633

SalUn 82.383 40.733 60.46 83.056 82.4 40.9 60.9 83.377 89.581 45.333 63.46 89.768 90.205 46.867 64.8 90.495
+ASAM 1.0 91.579 48.167 66.23 92.225 88.71 45.833 64.15 89.182 94.217 50.5 66.77 93.401 94.2 52.333 67.91 92.914

Low Mem Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW
L1-Sparse 62.41 91.367 55.39 53.991 68.667 96 60.25 60.34 68.421 94.2 60.67 61.47 67.229 94.967 59.33 59.014
+ASAM 1.0 66.95 94.5 59.24 58.967 73.457 96.4 63.4 66.697 70.207 96.1 61.46 62.517 72.355 96.2 62.46 65.117

SCRUB 17.81 32.6 18.33 12.708 15.698 28.367 15.87 10.823 66.324 90.167 56.04 58.483 23.038 43.7 23.95 17.368
+ASAM 1.0 99.683 99.9 73.61 97.631 99.869 99.833 73.24 97.508 99.64 99.8 73.7 97.776 99.729 99.8 73.77 97.933

RL 76.376 89.233 61.34 72.4 73.283 86.5 59.57 69.711 73.495 84.2 57.63 69.677 76.79 91.733 60.62 70.55
+ASAM 1.0 78.286 90.533 62.59 74.409 73.881 87.3 59.08 69.375 82.695 89.333 63.53 80.321 83.483 94.167 64.12 78.066

SalUn 78.867 92.667 60.5 71.73 77.748 88.833 59.01 71.95 83.921 91.2 62.39 79.095 82.221 93.133 61.44 75.281
+ASAM 1.0 91.205 95.5 68.28 88.175 90.043 93.367 65.47 86.13 93.812 95.8 67.11 89.289 91.848 95.933 66.24 86.477

Table 9: Differed settings of pretrained models and their test accuracies using different A, as well as
performance of retrained models w.r.t Frand for CIFAR-10 and Tiny-ImageNet.

Dataset, Model lr+warmup Batch B Epoch T W. Decay SGD ASAM 0.1 ASAM 1.0 SAM 0.1 Retain Forget Test
CIFAR10, Res18 0.1+0 256 50 5e-4 93.02 93.26 93.7 93.38 99.943 92.567 92.49
TinyImgNt, Res34 0.003+0 256 200 1e-3 62.1 62.77 62.74 63.87 99.985 59.383 61.69
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Figure 5: 95% confidence intervals (µ± 2σ) of unlearning methods on ImageNet, in accordance to
Tab. 1 and Tab. 3. We run each setting three times with different seeds and compute the statistical
significance.

Table 10: Detailed accuracies of previous methods on Tiny-ImageNet and CIFAR-10.
TinyImageNet A =SGD A =ASAM 0.1 A =ASAM 1.0 A =SAM 0.1
Random Frand Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW
L1-Sparse 79.247 52.233 49.61 74.669 82.722 54.217 50.81 77.545 84.63 59.583 53.01 77.143 76.005 63.017 49.56 64.372
+ASAM 1.0 89.379 59.5 54.37 82.753 90.81 60.933 54.35 82.853 92.005 63.517 53.7 81.168 94.674 74.333 55.25 75.347
SCRUB 92.112 58.117 53.65 85.793 94.315 60.75 54.58 86.425 96.268 66.5 55.01 83.457 99.801 88.233 58.99 69.101
+ASAM 1.0 97.965 57.717 56.94 94.881 98.941 61.833 58.13 93.095 99.521 68.333 57.66 86.975 99.962 97.267 61.05 61.704

RL 64.504 63.233 46.59 52.668 67.506 66.433 47.49 53.849 70.309 69.883 48.16 54.424 75.016 73.5 49.21 56.397
+ASAM 1.0 69.356 68.733 49.22 55.043 73.517 72.033 50.97 57.345 75.88 75.617 50.38 56.384 81.006 79.683 50.94 57.632
SalUn 69.39 68.45 50 55.735 70.087 68.767 49.54 55.806 73.207 71.783 50.12 56.721 82.877 81.467 53.36 59.206
+ASAM 1.0 75.013 74.333 52.65 58.042 77.101 75.917 53.16 58.876 81.039 79.233 52.89 59.248 88.021 87.417 54.81 58.998

NegGrad 84.286 47.867 50.51 83.499 87.031 48.467 51.45 86.662 86.575 52.2 51.28 83.148 99.979 99.167 62.51 60.706
+ASAM 1.0 90.907 50.45 54.47 91.894 93.681 51.35 53.66 93.094 96.343 54.167 54.31 93.902 98.031 62.767 55.21 88.59
MinMax 81.8 52.833 51.14 77.977 82.115 54.017 50.91 77.209 81.418 55.433 50.32 75.025 68.67 54.217 46.99 61.615
+ASAM 1.0 87.654 43.183 53.4 93.426 88.273 43.083 52.86 93.613 91.947 43.6 53.37 97.617 94.517 48.5 53.72 96.466

CIFAR10 A =SGD A =ASAM 0.1 A =ASAM 1.0 A =SAM 0.1
Random Frand Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW
L1-Sparse 86.467 82.967 82.25 85.12 89.06 85.567 84.45 87.688 86.683 83.467 82.11 84.811 89.462 87.133 84.82 87.144
+ASAM 1.0 91.438 88.333 87.23 90.352 91.674 87.767 87.24 91.087 90.938 88.7 86.94 89.268 90.886 88.633 86.43 88.792
SCRUB 90.767 86.033 86.27 90.739 68.205 67.367 66.75 63.466 80.193 78.933 77.97 77.95 15.11 14.2 15 6.089
+ASAM 1.0 99.6 95.167 92.65 97.2 99.621 96.5 93.15 96.39 99.807 98.2 93.38 95.078 99.631 98.467 93.16 94.435
RL 92.774 86.6 87.22 93.186 90.569 84.2 85.17 91.02 91.445 84.133 85.81 92.591 88.736 82.533 84.12 89.524
+ASAM 1.0 93.295 87.733 87.66 93.138 93.262 87.233 88.31 94.187 95.098 89.033 89.44 95.512 92.588 86.567 87.4 93.206
SalUn 96.94 88.8 89.95 98.095 95.726 87.6 89.02 97.052 95.99 88.733 89.35 96.598 96.612 89.867 89.86 96.668
+ASAM 1.0 97.771 91.8 90.55 96.666 98.24 91.867 91.41 97.917 98.029 91.6 91.2 97.757 98.055 92.833 91.37 96.755
NegGrad 97.724 93.933 90.46 94.487 98.35 94.967 91.33 94.931 98.024 94.267 90.92 94.9 96.405 93.4 89.72 93.009
+ASAM 1.0 99.074 95.8 92.39 95.83 99.248 96.133 92.04 95.332 99.219 96.2 92.42 95.602 98.579 94.767 91.97 95.964
MinMax 96.85 94.133 90.29 93.291 97.652 94.933 90.6 93.594 97.881 95.1 90.5 93.558 96.498 93.533 90.22 93.451
+ASAM 1.0 98.781 94.133 91.82 96.638 98.602 94 91.79 96.565 98.755 94.4 91.65 96.186 97.981 93.367 91.17 95.97
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Figure 6: Loss landscapes of SAM and SGD on Dtest and all F in addition to Fig. 3. As memorization
level goes down, F becomes easier to unlearn and SGD shows less to no “regularizing” effect as we
have discussed on Fhigh. The general trend preserves with decreasing memorization levels and SAM
is generally flatter before and after unlearning.
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Figure 7: UMAP [29] feature analysis on High Mem Fhigh.
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Figure 8: UMAP [29] feature analysis on Mid Mem Fmid.
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Figure 9: UMAP [29] feature analysis on Low Mem Fmid.
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