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ABSTRACT

Generating quantum data by learning the underlying quantum distribution poses
challenges in both theoretical and practical scenarios, yet it is a critical task for
understanding quantum systems. A fundamental question in quantum machine
learning (QML) is the universality of approximation: whether a parameterized
QML model can approximate any quantum distribution. We address this question
by proving a universality theorem for the Many-body Projected Ensemble (MPE)
framework, a method for quantum state design that uses a single many-body wave
function to prepare random states. This demonstrates that MPE can approximate
any distribution of pure states within a 1-Wasserstein distance error. This theorem
provides a rigorous guarantee of universal expressivity, addressing key theoreti-
cal gaps in QML. For practicality, we propose an Incremental MPE variant with
layer-wise training to improve the trainability. Numerical experiments on clus-
tered quantum states and quantum chemistry datasets validate MPE’s efficacy in
learning complex quantum data distributions.

1 INTRODUCTION

Recent advancements highlight the pivotal role of quantum machine learning (QML) (Dunjko et al.,
2016; Biamonte et al., 2017) in processing quantum data derived from quantum systems (Editorial,
2023). A fundamental task in QML is generating quantum data by learning the underlying dis-
tribution, essential for understanding quantum systems, synthesizing new samples, and advancing
applications in quantum chemistry and materials science. However, extending classical generative
approaches to quantum data presents significant challenges, as quantum distributions exhibit super-
position, entanglement, and non-locality that classical models struggle to replicate efficiently.

Quantum generative models such as quantum generative adversarial networks (Lloyd & Weedbrook,
2018; Zoufal et al., 2019) and quantum variational autoencoders (Khoshaman et al., 2018; Wu et al.,
2024) can be used to prepare a fixed single quantum state (Niu et al., 2022; Kim et al., 2024; Tran
et al., 2024), but are inefficient for generating ensembles of quantum states (Beer & Müller, 2021)
due to the need for training deep parameterized quantum circuits (PQCs). The quantum denoising
diffusion probabilistic model (Zhang et al., 2024) offers a promising approach that employs inter-
mediate training steps to smoothly interpolate between the target distribution and noise, thereby
enabling efficient training. However, the diffusion process requires high-fidelity scrambling random
unitary circuits, demanding implementation challenges of precise spatio-temporal control.

Learning quantum data distributions faces significant hurdles in the noisy intermediate-scale quan-
tum (NISQ) era, including noise-induced errors, limited qubit connectivity, and optimization diffi-
culties such as barren plateaus (McClean et al., 2018), where gradients vanish exponentially with
system size. Moreover, achieving universality, which entails the model’s ability to approximate any
quantum distribution with arbitrary precision, remains a significant theoretical and practical chal-
lenge. These limitations underscore the need for innovative frameworks that combine theoretical
guarantees of universality with scalable, noise-resilient training strategies.

In this study, we prove a universality theorem for learning quantum data distributions. Our proof
relies on the Many-body Projected Ensemble (MPE) framework, a recent approach in quantum state
design that uses a single many-body wave function to prepare random states (Choi et al., 2023; Cotler
et al., 2023). We demonstrate that MPE can approximate any n-qubit pure state distribution within a
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Figure 1: A scheme to construct a parameterized quantum distribution Qθ approximating a target Qt

within error ε. (a) Form an ε/2-net ensemble to approximate Qt within ε/2, with probabilities from
(b) Voronoi partitioning. (c) Perform partial measurements of a single many-body wave function
|Φ⟩ on ancilla system A, yielding a projected ensemble in main system M . (d) Implement the
approximation using an IQP circuit and controlled unitary circuits for the projected ensembles.

specified 1-Wasserstein distance error bound, leveraging covering discretization for the target quan-
tum distribution and ancilla-assisted measurements to represent the discrete ensembles. This result
is a cornerstone for the QML community, providing a rigorous theoretical guarantee of universal
expressivity, enabling the modeling of complex quantum distributions in applications like quantum
chemistry. While practical QML methods face issues such as classical simulability, barren plateaus,
and high resource requirements in training (Appendix A.3), we view the universality theorem as
complementary, ensuring that models can, in principle, capture any distribution before optimizing
for hardware. To facilitate practical implementation, we introduce an Incremental MPE variant that
employs layer-wise training to improve trainability and reduce resource demands, thereby enhanc-
ing compatibility with NISQ devices. Our numerical experiments on clustered quantum states and
computational chemistry datasets validate the efficacy of the framework.

2 LEARNING QUANTUM DATA DISTRIBUTION

Generative models are powerful tools for generating samples from a target distribution and estimat-
ing the likelihood of given data points. We address the problem of learning an unknown quantum
data distribution Qt over n-qubit pure states, given a training dataset S = {|ψ0⟩, . . . , |ψN−1⟩} of N
independent states sampled from Qt. The generative model is defined by a parameterized probabil-
ity distribution Qθ implemented via PQCs, where θ represents the trainable parameters (e.g., gate
angles). The training objective is to optimize θ such that Qθ closely approximates Qt, as measured
by a distance metric D(Qθ,Qt). Since directly computing D(Qθ,Qt) is often infeasible, we sam-
ple a dataset S̃ = {|ψ̃j⟩}j from Qθ and minimize the empirical distance D(S, S̃). In the inference
phase, the optimized parameters θopt are fixed, and new quantum states |ψ⟩ ∼ Qθopt are generated
for use in quantum simulation and data analysis.

3 PRELIMINARIES AND PROBLEM FORMULATION

3.1 DISTANCE BETWEEN DISTRIBUTIONS

For a density operator ρ acting on a Hilbert space (see Appendix A.1), we define the trace norm as
∥ρ∥1 = Tr

√
ρ†ρ, where Tr denotes the trace operation and ρ† is the Hermitian conjugate of ρ. The

trace distance between two density operators ρ and σ is d(ρ, σ) = 1
2∥ρ− σ∥1. This distance metric

2
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captures the distinguishability of two quantum states and serves as a fundamental measure in quan-
tum information theory. To compare ensembles of quantum states, we employ the 1-Wasserstein
distance, which extends the trace distance to probability distributions over density operators.
Definition 3.1 (1-Wasserstein Distance). Let P and Q be two probability measures (or ensembles)
over the space of density operators. The 1-Wasserstein distance between P and Q is defined as the
minimal expected trace distance between pairs of states sampled from a coupling of P and Q:

W1(P,Q) = inf
π∈Π(P,Q)

E(ρ,σ)∼π

[
1

2
∥ρ− σ∥1

]
, (1)

where Π(P,Q) denotes the set of couplings (joint probability measures) with marginals P and Q.

3.2 MANY-BODY PROJECTED ENSEMBLE (MPE)

An ensemble of states can be generated from a single wave function by performing local mea-
surements over a part of the total system. We consider many-body system partitioned into a sub-
system M (with nm qubits) and its complement A (with na qubits). For the unification in this
manuscript, we consider A as the ancillary system [Fig. 1(c)]. Given a generator state |Φ⟩, which is
a pure many-body wave function on the total system A+M , we perform local measurements on A,
typically in the computational basis. This yields different pure states |ϕ(zA)⟩M on M , each corre-
sponding to a distinct measurement outcome zA onA, which are bitstrings of the form, for example,
zA = 001 . . . 010. The collection of these states, together with probabilities p(zA), forms the many-
body projected ensemble (MPE) on M : {(p(zA), |ϕ(zA)⟩M )}zA

. The projected ensemble provides
a full description of the total system state as |Φ⟩A+M =

∑
zA∈{0,1}na

√
p(zA)|zA⟩ ⊗ |ϕ(zA)⟩M .

MPE is used to approximate a Haar-random state ensemble (Choi et al., 2023; Cotler et al., 2023),
providing insights into the study of complexity growth in quantum systems (Appendix A.2). In our
study, MPE is used to prove the universality with the potential to yield an advantage in generative
models, as classical methods struggle to prepare the many-body state.

3.3 PROBLEM FORMULATION

Given a target distribution Qt over pure n-qubit states, our objective is to propose a class of pa-
rameterized probability distribution Qθ, where θ denotes the parameters of the model, such that for
any error ε > 0, there exists θ satisfying W1(Qt,Qθ) ≤ ε. We assume Qt is unknown but sam-
ples from Qt are available for training. This problem is central to generative QML as it addresses
the challenge of accurately approximating complex quantum data distributions with applications in
quantum simulation, quantum chemistry, and quantum information processing.

4 MAIN RESULT: UNIVERSALITY APPROXIMATION THEOREM

In approximating arbitrary n-qubit quantum data distributions, we propose a systematic method that
combines discretization techniques with MPE. The procedure consists of the following steps.

Discretizing the target distribution with an ε/2-covering technique [Fig. 1(a)(b)]: This involves
constructing a finite set of quantum states (an ε/2-net) such that every state in Qt is within a trace
distance of at most ε/2 from at least one state in the ε/2-net. This step yields a discrete distribution
that approximates Qt within an error bound of ε/2.

Applying the MPE [Fig. 1(c)(d)]: This constructs Qθ by leveraging partial measurements to ap-
proximate the discrete ε/2-net within an error bound of ε/2.

The use of ε-covering ensures computational feasibility for continuous space, while the MPE frame-
work leverages the structure of many-body quantum systems to achieve high-fidelity approxima-
tions. Here, we state the following universality theorem for the MPE framework:
Theorem 4.1 (Universality Approximation of the Many-body Projected Ensemble). For any target
quantum data distribution Qt over pure n-qubit states, there exists a parameterized quantum dis-
tribution Qθ, formulated through the Many-body Projected Ensemble (MPE) framework utilizing a
covering technique and ancilla-assisted measurements, such that for any error bound ε > 0, there
exists a parameter θ∗ for which the 1-Wasserstein distance satisfies W1(Qt,Qθ∗) ≤ ε.
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Proof. The proof constructs Qθ using the two steps above, supported by Lemmas 4.2, 4.3, and
4.5. Lemma 4.2 establishes a discrete ensemble Q = {(qj , |ψj⟩)}N−1

j=0 such that W1(Qt,Q) ≤ ε/2.
Next, the MPE framework (Lemma 4.3 or Lemma 4.4) constructs a class of projected ensemble P =
{(pj , |ψj⟩)}N−1

j=0 identified as Qθ such that there exist a parameter θ∗ for whichW1(Qθ∗ ,Q) ≤ ε/2.
By the triangle inequality, we have W1(Qt,Qθ∗) ≤W1(Qt,Q) +W1(Q,Qθ∗) ≤ ε

2 + ε
2 = ε. The

scaling of N and the number of ancilla qubits are detailed in the lemmas below.

4.1 ε/2-COVERING FOR QUANTUM STATE DISTRIBUTION DISCRETIZATION

To enable the approximation of a quantum data distribution ensuring the usage of the MPE frame-
work, we first introduce a key lemma that establishes the existence of a finite ensemble of pure
quantum states approximating a target distribution within a 1-Wasserstein distance of ε/2.
Lemma 4.2 (Finite Ensemble Approximation). For any target quantum data distribution Qt over
pure n-qubit states and any ε > 0, there exists a finite ensemble Q = {(qj , |ψj⟩)}N−1

j=0 such that the
1-Wasserstein distance satisfies W1(Qt,Q) ≤ ε

2 .

Proof. Let δ = ε/2. The trace distance between two pure quantum states |ψ⟩ and |ϕ⟩ is defined as
d(|ψ⟩, |ϕ⟩) = 1

2∥|ψ⟩⟨ψ| − |ϕ⟩⟨ϕ|∥1.
Existence of a finite δ-net [Fig. 1(a)]: By compactness, there exists a finite set of pure states
{|ψj⟩}N−1

j=0 (a δ-net) such that for every |ψ⟩ ∼ Qt there is some |ψj⟩ satisfying d(|ψ⟩, |ψj⟩) ≤ δ.
This δ-net forms the basis for discretizing the state space. Here, N is the δ-covering number of
(Qt, d), which is the cardinality N (Qt, d, δ) of the smallest δ-net of Qt. If we consider Qt is theD-
dimensional subspace of the full Hilbert space C2n (D ≥ 2), standard results from high-dimensional
geometry and geometry of quantum states provide an upper bound for N (Qt, d, δ) as follows (see
Appendix A.4 for the construction of δ-net and the formal proof for the bound of covering number):

N = N (Qt, d, δ) ≤ 5 ·D ln(D) · (1/δ)2(D−1). (2)

Voronoi partition [Fig. 1(b)]: We define measurable cells {Cj}N−1
j=0 that partition the space of pure

states as Cj = {|ψ⟩ : d(|ψ⟩, |ψj⟩) ≤ d(|ψ⟩, |ψi⟩) for all i} , where |ψj⟩ is the center of Cj . By the
property of the δ-net, for every |ψ⟩ ∈ Cj we have d(|ψ⟩, |ψj⟩) ≤ δ. These cells form a Voronoi
partition assigning each state to the nearest center in the δ-net. We define qj = Qt(Cj), which
is the probability that Qt assigns to all pure states in cell Cj . The finite ensemble is defined as
Q = {(qj , |ψi⟩)}N−1

j=0 , representing a discrete approximation of Qt with each |ψj⟩ weighted by the
probability mass of its corresponding cell.

Bounding the 1-Wasserstein Distance: We construct an explicit coupling π ∈ Π(Qt,Q). For each
state |ψ⟩ ∼ Qt, identify the unique index j such that |ψ⟩ ∈ Cj and pair the density operator |ψ⟩⟨ψ|
with |ψj⟩⟨ψj |. The 1-Wasserstein distance is then bounded as

W1(Qt,Q) ≤ E|ψ⟩∼Qt
[d(|ψ⟩, |ψj⟩)] ≤ δ =

ε

2
. (3)

Equation 3 completes the proof, where the second inequality holds because for each |ψ⟩ ∈ Cj the
trace distance to the center |ψj⟩ is less than δ by the property of the δ-net and Voronoi partition.

4.2 APPLYING THE MANY-BODY PROJECTED ENSEMBLE (MPE)

In our setting, the target distribution Qt is unknown, but samples from Qt are available for training.
The ε/2-covering technique provides the explicit construction of a δ-net {|ψj⟩}N−1

j=0 (Appendix A.4),
though the probabilities {qj}N−1

j=0 remain unknown. The next step constructs a class of PQCs to
produce a projected ensemble P = {(pj , |ψj⟩)}N−1

j=0 such that the probability distribution p = {pj}j
approximating the target distribution q = {qj}j . This step leverages a composite quantum system
comprising an ancilla system A with na = ⌈log2N⌉ qubits (ensuring N ≤ 2na ), and a hidden
system M with nm qubits. The following lemmas establish the existence and construction of V
acting on A ⊗M that generates {pj}j ≈ {qj}j . We use j ∈ {0, 1}na to denote the measurement
outcome (binary string), and j ∈ {0, . . . , 2na − 1} is the decimal equivalent of binary string j.

4
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Lemma 4.3 (Approximate Probability Distribution). Given a target probability distribution q =
{qj}j=0,1,...,2na−1 and an error bound ε > 0, there exists a parameterized unitary V acting on
the ancilla system A (with na = ⌈log2N⌉ qubits) and a hidden system M (with nm = na +
⌈log2(1/ε)⌉ qubits) such that after applying V and measuring A in the computational basis, the
resulting probability distribution p = {pj}j=0,1,...,2na−1 satisfies δ(p, q) ≤ ε

2 , where the total
variation distance is defined as δ(p, q) = 1

2

∑
j |pj − qj |. Here, pj = p(j) is the probability to

obtain the measure outcome j ∈ {0, 1}na in A. Furthermore, an explicit construction of V is
provided, extending the result of Lemma 1 in Kurkin et al. (2025).

Proof Sketch. The proof extends Lemma 1 in Kurkin et al. (2025), which establishes the existence
of an Instantaneous Quantum Polynomial (IQP) (Shepherd & Bremner, 2009; Bremner et al., 2010)
circuit V satisfying δ(p, q) ≤ ε/2 with nm = na + ⌈log2(1/ε)⌉. We propose a specific implemen-
tation of V detailed in Appendix 4.3.

As detailed in Appendix 4.3, Lemma 4.3 constructs an approximate p ≈ q using the IQP circuits
with total 2na+nm parameters, but restricted to only two real values 0 and π. The following lemma
( Lemma 5 in Kurkin et al. (2025)) achieves exact p = q with the same total parameters, but the pa-
rameters are full complex values. The idea is to decompose q into mixtures of 2-sparse distributions
with nm = na + 1 hidden qubits and complex phases. The construction is independent of error, as
it is exact, but complex phases increase parameter expressivity and training costs.

Lemma 4.4 (Exact Probability Distribution). There exists a parameterized unitary V acting on
the ancilla system A (with na = ⌈log2N⌉ qubits) and a hidden system M (with sufficiently many
qubits nm) such that after applying V and measuring A in the computational basis, the resulting
probability distribution p = {pj}j=0,1,...,2na−1 exactly matches the target distribution, i.e., p = q.

After applying V on the composite system A ⊗M initialized in the state |0⟩A|0⟩M , we obtain a
projected ensemble {(p(j), |ϕ(j)⟩M )}j∈{0,1}na , where |ϕ(j)⟩M is the state in the hidden system
M corresponding with the measurement outcome j. This process is summarized as follows:

|0⟩A|0⟩M
V−→

∑
j∈{0,1}na

√
p(j)|j⟩A ⊗ |ϕ(j)⟩M . (4)

We select M such that the number nm of qubits in M is larger than the number nd of data qubits.
Then M can be divided into the data system D and the complementary system M\D.

Next, we apply a series of multi-qubits controlled unitaries CU0,CU1, . . . , such that if the mea-
surement outcome in A is j, the unitary Uj will transform the state |ϕ(j)⟩M to |ψj⟩D ⊗ |0⟩M\D
[Fig. 1(d)]. This operation is described as:

∑
j∈{0,1}na

√
p(j)|j⟩A ⊗ |ϕ(j)⟩M

∏2na−1
j=0 CUj

−−−−−−−−→
2na−1∑
j=0

√
pj |j⟩A ⊗ |ψj⟩D ⊗ |0⟩M\D, (5)

where pj = p(j). The resulting ensemble obtained from the data systemD is P = {(pj , |ψj⟩)}N−1
j=0 ,

designed to approximate Q = {(qj , |ψj⟩)}N−1
j=0 via the following lemma.

Lemma 4.5 (Wasserstein Distance Bound for Projected Ensemble). The projected ensemble P =
{(pj , |ψj⟩)}N−1

j=0 constructed via the MPE framework (using Lemma 4.3 or Lemma 4.4, and Equa-
tion 5) and the discrete ensemble Q = {(qj , |ψj⟩)}N−1

j=0 from Lemma 4.2 satisfy W1(P,Q) ≤ ε
2 .

Proof. By Lemma 4.3, the projected ensemble P = {(pj , |ψj⟩)}N−1
j=0 satisfies the total variation

distance bound δ(p, q) = 1
2

∑N−1
j=0 |pj − qj | ≤ ε

2 , where p = {pj}N−1
j=0 and q = {qj}N−1

j=0 are the
probability distributions of P and Q, respectively. The 1-Wasserstein distance is defined as

W1(P,Q) = inf
π∈Π(P,Q)

N−1∑
j=0

N−1∑
k=0

πjkd(|ψj⟩, |ψk⟩), (6)

5
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where Π(P,Q) is the set of couplings π. Here, π = (πjk)
N−1
j,k=0 is a non-negative matrix satisfying∑N−1

j=0 πjk = qk,
∑N−1
k=0 πjk = pj , πjk ≥ 0, and d(|ψj⟩, |ψk⟩) = 1

2∥|ψj⟩⟨ψj | − |ψk⟩⟨ψk|∥1 =√
1− |⟨ψj |ψk⟩|2 ≤ 1, with d(|ψj⟩, |ψj⟩) = 0.

To bound W1(P,Q), we construct an explicit coupling π∗ ∈ Π(P,Q) with diagonal terms
π∗
jj = min(pj , qj) and off-diagonal terms π∗

jk (for j ̸= k) distributing the remaining proba-
bility mass to satisfy the marginal constraints. The distance is then bounded as W1(P,Q) ≤∑N−1
j=0

∑N−1
k=0 π

∗
jkd(|ψj⟩, |ψk⟩). Since d(|ψj⟩, |ψj⟩) = 0, only the off-diagonal terms contribute:

W1(P,Q) ≤
∑
j ̸=k π

∗
jkd(|ψj⟩, |ψk⟩) ≤

∑
j ̸=k π

∗
jk, because d(|ψj⟩, |ψk⟩) ≤ 1. The sum of the

off-diagonal terms is
∑
j ̸=k π

∗
jk =

∑N−1
j=0

∑N−1
k=0 π

∗
jk −

∑N−1
j=0 π∗

jj = 1 −
∑N−1
j=0 min(pj , qj) =

1
2

∑N−1
j=0 |pj − qj | = δ(p, q), since

∑
j,k π

∗
jk =

∑
j pj =

∑
k qk = 1 and we use∑N−1

j=0 min(pj , qj) =
∑N−1
j=0

(
pj+qj−|pj−qj |

2

)
= 1 − 1

2

∑N−1
j=0 |pj − qj |. Thus, W1(P,Q) ≤

δ(p, q) ≤ ε
2 , where the final inequality follows from Lemma 4.3.

For Lemma 4.4, where p = q, we have W1(P,Q) = 0. This completes the proof.

Combining Lemmas 4.2 and 4.5, we bound the 1-Wasserstein distance between Qt and the projected
ensemble P as W1(Qt,P) ≤W1(Qt,Q) +W1(Q,P) ≤ ε

2 + ε
2 = ε. Using Lemma 4.4, the bound

improves to: W1(Qt,P) ≤ ε
2 + 0 = ε

2 . These results confirm that the MPE framework, supported
by the construction of the unitary V in Lemma 4.3, enables the parameterized distribution P = Qθ

to approximate Qt, as required for the universality approximation theorem (Theorem 4.1).

5 LEARNING QUANTUM DISTRIBUTIONS WITH INCREMENTAL MPE

Theorem 4.1 guarantees that the MPE can approximate any target distribution Qt over n-qubit pure
states within a 1-Wasserstein distance of ε > 0. However, in this general case, constructing an effi-
cient parameterized quantum distribution and collecting all states in the projected ensemble can re-
quire intensive resources. Equation 2 implies na = ⌈logN⌉ = O(D log(2/ε)) ancilla qubits, which
becomes inefficient when D scales exponentially or polynomially (with high degree) with n. In
practical scenarios with a structured Qt, we present an Incremental MPE framework that iteratively
approximates Qt through a layer-wise training scheme, reducing computational complexity and em-
pirically improving the trainability and convergence for the optimization. We employ the fidelity-
based 1-Wasserstein distance metric for training. The fidelity-based distance provides the upper-
bound for the trace distance via the Fuchs-van de Graaf inequality: d(|µ⟩, |ϕ⟩) ≤

√
1− κ(|µ⟩, |ϕ⟩),

ensuring that low 1-Wasserstein distance implies low W1 (Equation 3.1).

5.1 INCREMENTAL MPE FRAMEWORK

Given a target distribution Qt, the learning process aims to construct a parameterized Qθ that ap-
proximates Qt through K iterative cycles of unitary transformations and measurements.

First, we sample a training dataset S = {|ψ0⟩, . . . , |ψN−1⟩} consisting of N pure n-qubit states
drawn from Qt. The process continues with an initial ensemble S̃0 = {|ψ̃(0)

j ⟩}j , where the states are
sampled from a random distribution, such as Haar product states. At each cycle k = 0, . . . ,K − 1,
we apply a parameterized unitary Vk = V (θk) to the composite system of the data system D (with
nd = n qubits) and an auxilary system F (with nf qubits), initialized in the state |ψ̃(k)

j ⟩D ⊗ |0⟩F .
We can think F represents the composite system of A and M\D. This is followed by a projective
measurement on the ancilla system in the computational basis, yielding an outcome z(k)

j ∈ {0, 1}nf

and a corresponding state |ψ̃(k+1)
j ⟩D in the data system. The operation at cycle k is formalized as:

Φ
(k)
j (|ψ̃(k)

j ⟩) =
(ID ⊗ΠF )Vk|Ψ̃(k)

j ⟩√
⟨Ψ̃(k)

j |V †
k (ID ⊗ΠF )Vk|Ψ̃(k)

j ⟩
= |ψ̃(k+1)

j ⟩D ⊗ |z(k)
j ⟩F , (7)

6
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where ΠF = |z(k)
j ⟩⟨z(k)

j |F is the projector onto the ancilla measurement outcome, and |Ψ̃(k)
j ⟩ =

|ψ̃(k)
j ⟩D ⊗ |0⟩F . The resulting ensemble S̃k+1 = {|ψ̃(k+1)

j ⟩}j mirrors the structure of the MPE
framework but is generated iteratively to reduce resource demands.

This process is repeated for K cycles, with the sequence of parameterized unitaries V0, . . . , VK−1

defining Qθ. The parameters θk of Vk are optimized to minimize a loss function D(S, S̃k+1), which
measures the dissimilarity between the training dataset S and the ensemble S̃k+1. After optimiza-
tion at the cycle k, θk is fixed and the process optimizes θk+1 in the next cycle. This layer-wise
training approach (Skolik et al., 2021; Zhang et al., 2024) decomposes the learning problem into K
manageable sub-tasks, each with a small number of trainable parameters, facilitating convergence.

In our numerical experiments, each Vk is constructed using a Hardware Efficient Ansatz on
nq = nd + nf qubits with L layers as Vk(θk) =

∏L
l=1 Ω̃kW̃k(θk), where W̃k(θk) =∏nq

j=1 e
−iθk,2j−1

Xj
2 e−iθk,2j−2

Yj
2 and Ω̃k =

∏nq−1
j=1 CZj,j+1. Here,Xj and Yj are Pauli-X and Pauli-

Y operators acting on the j-th qubit, implementing single-qubit rotations about the y- and z-axes,
parameterized by θk,2j−1 and θk,2j−2, respectively. The CZa,b gate is a two-qubit controlled-Z gate
that applies a Z operation to the target qubit (index b) when the control qubit (index a) is in the state
|1⟩, generating entanglement between qubit pairs in Ω̃k.

5.2 METRICS TO COMPARE ENSEMBLES

To quantify the similarity between ensembles, we employ a symmetric, positive definite quadratic
kernel κ(|µ⟩, |ϕ⟩) to define loss functions. This kernel can be computed efficiently using techniques
such as the SWAP test (for state fidelity) or classical shadows (for classical-based computation)
Huang et al. (2020). Our study employs three key metrics:

1. Maximum Mean Discrepancy (MMD): The MMD distance between two ensembles X =
{|µi⟩}i and Y = {|ψj⟩}j is defined as:

DMMD(X ,Y) = κ̄(X ,X ) + κ̄(Y,Y)− 2κ̄(X ,Y), (8)
where κ̄(X ,Y) = E|µ⟩∈X ,|ϕ⟩∈Y [κ(|µ⟩, |ϕ⟩)].

2. 1-Wasserstein Distance: Given a normalized kernel (κ(|ϕ⟩, |ϕ⟩) = 1 for all |ϕ⟩), we
define a pairwise cost matrix C = (Ci,j) ∈ R|X |×|Y| with Ci,j = 1 − κ(|µi⟩, |ψj⟩). The
1-Wasserstein distance is computed as the solution to the optimal transport problem:

DWass(X ,Y) = min
P

∑
i,j

Pi,jCi,j , s.t. P1|Y| = a, P⊤1|X | = b, P ≥ 0, (9)

where 1|X | and 1|Y| are all-ones vectors of sizes |X | and |Y|, respectively, and a ∈ R|X |,
b ∈ R|Y| are probability vectors (typically set to uniform, a = 1

|X |1|X |, b = 1
|Y|1|Y|).

3. Vendi Score (VS): The Vendi Score (VS) (Friedman & Dieng, 2023) is a metric designed
to evaluate the diversity of a set of samples. Given an ensemble X = {|µi⟩}i, and the
normalized kernel matrix K = κ(|µi⟩, |µj⟩) defined in X , the VS is computed as the
exponential of the negative sum of the eigenvalues λi (normalized by the sample size N )
multiplied by their logarithms, or equivalently, the exponential of the negative trace of the
normalized similarity matrix K/N times its logarithm. Mathematically, it is expressed
as: V S(X ) = exp

(
−
∑N
i=1 λi log λi

)
= exp

(
−tr

(K
N log K

N

))
. The VS measures the

spread or redundancy of samples: a high score indicates broad coverage with diverse and
non-repetitive samples, while a low score suggests collapsed distributions.

6 DEMONSTRATION

To assess the efficacy of the Incremental MPE framework, we performed numerical experiments on
two representative datasets: a synthetic clustered quantum state distribution and a quantum distri-
bution derived from a chemistry dataset. Quantum circuits were simulated using the TensorCircuit
library (Zhang et al., 2023), while JAX (Bradbury et al., 2018) facilitated automatic differentia-
tion for gradient-based optimization. Circuit parameters were initialized uniformly in the interval
[−π, π], and optimization was conducted via the Adam algorithm with a learning rate of 0.001.
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6.1 MULTI-CLUSTER QUANTUM DISTRIBUTION

We consider a mixture of n-qubit pure states centered around distinct clusters, modeling multimodal
quantum data relevant to applications such as quantum chemistry and error correction. The ex-
periments demonstrate the framework’s ability to approximate the target distribution Qt with high
fidelity, its scalability across varying qubit numbers, and its robustness to noise.

We construct a target distribution Qt as a mixture of three clusters (40% with cluster 1, 40% with
cluster 2, and 20% with cluster 3) of n-qubit (n = 6) pure states. Cluster 1 is centered on |0⟩⊗n,
cluster 2 on |1⟩⊗n, and cluster 3 on the GHZ state 1√

2
(|0⟩⊗n + |1⟩⊗n). For each cluster, noise is in-

troduced by applying random single-qubit rotations with angles drawn from a Gaussian distribution
(N (0, σ2), σ = 0.05) to simulate quantum device imperfections.

Figure 2: Variation of the evaluation metric with changing circuit ansatz layers using the Incre-
mental MPE framework to learn quantum distributions for (a) multi-cluster states and (b) molecular
quantum states from a QM9 subset. Circle markers indicate individual trials, dotted lines show the
mean over 20 trials, and shaded areas represent one standard deviation.

In our numerical experiments, we set nf = n/2 and vary the number of incremental steps
K = 1, 2, 5, 10, 20, 50, 100, with each unitary Vk comprising L = 100/K layers to maintain a
constant total number of layers. Training to optimize each Vk employs 1000 samples over 100× L
epochs, with the number of epochs scaling with the number of layers, as more parameters necessi-
tate additional epochs for effective optimization. We adopt mini-batch training, where each epoch
consists of 10 iterations, processing 10 mini-batches of size B = 100. At each iteration, the loss
function is the 1-Wasserstein distance DWass(Strain, Sout), where Strain is a set of B quantum states
sampled from the target distribution, and Sout is a set of B quantum states generated by the model.

Figure 2(a) depicts the variation of the evaluation metric with the number of layers, utilizing the
1-Wasserstein distance, MMD distance, and VS difference between 3000 generated and target sam-
ples. The experiments are conducted with 20 trials. All metrics indicate optimal performance around
a specific number of layers L, where distances and differences are minimized, suggesting enhanced
alignment between generated and target samples, though variability increases beyond this point.
For a small L, even with a large number of steps K = 100/L, the expressivity of Vk remains in-
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sufficient, leading to local minima in each incremental step. Conversely, an excessively large L
introduces excessive expressivity in each Vk, leading to overparameterization or barren plateaus,
resulting in optimization being challenging. The optimal L achieves an average 1-Wasserstein dis-
tance of less than 0.1, an average MMD distance of less than 0.05, and an average VS difference of
less than 1.0, facilitating the effective learning of the multi-cluster quantum distribution.

6.2 QM9 QUANTUM DISTRIBUTION

We demonstrate our framework to learn the QM9 dataset (Ramakrishnan et al., 2014), a widely
recognized benchmark in computational chemistry. This dataset comprises approximately 134,000
small organic molecules, each with up to 9 heavy atoms (C, N, O, F) and additional hydrogens,
totaling up to 29 atoms per molecule, along with their molecular properties and 3-D coordinates.
Derived from the GDB-17 database (Ruddigkeit et al., 2012), QM9 is curated for quantum chemistry
tasks, including molecular property prediction and 3-D structure generation. Given the current scale
of our quantum simulation, evaluating the whole dataset is impractical. Therefore, we filter QM9 to
include only molecules with exactly 7 heavy atoms and 2 distinct ring systems, yielding a specific
subset of 488 molecules with uniform structural properties. Each 3-D molecule within this subset is
encoded into a 7-qubit quantum state (see Appendix A.6 for details), enabling the task of learning
the quantum data distribution corresponding to this QM9 subset.

In our numerical experiments, we set nd = 7, nf = 3, and vary the number of incremental steps
K = 1, 2, 5, 10, 20, 50, 100, 200, with each unitary Vk comprising L = 200/K layers. We employ
mini-batch training with a batch size B = 100 for each Vk, utilizing 200 training samples over
100 × L epochs. The experiments are conducted over twenty trials. The loss function, measuring
the divergence between two ensembles Strain and Sout, is defined as a linear combination of the 1-
Wasserstein distance and the Vendi Score (VS) square difference: DWass(Strain, Sout)+λ[V S(Strain)−
V S(Sout)]

2, where λ = 0.0001 balances the contributions. Figure 2(b) illustrates the variation of the
metrics with the number of layers, based on comparisons between 488 generated and target samples.
The model exhibits optimal performance around L = 20 layers; however, the high distances indicate
incomplete convergence. To potentially reduce the Wasserstein distance below 0.1, increasing the
number of training epochs, nf , and refining the ansatz circuit design could prove beneficial.

7 CONCLUSION

In this study, we have developed a universality approximation theorem for the MPE framework,
demonstrating its ability to approximate any n-qubit pure state distribution within a specified 1-
Wasserstein distance error. This theoretical result highlights the MPE framework’s potential as a
versatile tool for quantum data generation in QML. While the primary contribution lies in this univer-
sality theorem, the proposed Incremental MPE variant enhances practical applicability by mitigating
optimization issues through layer-wise training, rendering it well-suited for NISQ devices. Numer-
ical validations conducted on clustered quantum states and QM9 molecular datasets substantiate
the framework’s effectiveness in learning complex quantum distributions. These findings provide
a robust foundation for advancing quantum generative modeling, with significant implications for
quantum chemistry, materials science, and related fields.

Limitations and Future Work. While the universality approximation theorem presents the for-
mal theoretical findings to approximate any distribution of quantum data with arbitrary error, the
sample complexity often exhibits exponential scaling with the intrinsic dimension of the data man-
ifold (Narayanan & Mitter, 2010). Future work may reduce this scale due to a specific shape of
the target distribution, where smoother assumptions or symmetries can yield polynomial rates. The
MPE framework relies on precise ancilla-assisted measurements, which may introduce errors in
NISQ hardware due to imperfect gate operations. Additionally, while layer-wise training of Incre-
mental MPE improves trainability, the computational cost of optimizing large-scale quantum circuits
remains significant. Future work could focus on optimizing resource requirements for approxima-
tion protocols to enhance efficiency. Extending the MPE framework to mixed state distributions
would broaden its applicability to open quantum systems. A potential direction is to incorporate the
concept of the mixed projected ensemble (Yu et al., 2025), which is built from a local region of a
quantum many-body system with a partial loss of measurement outcomes.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This research does not involve human subjects, sensitive datasets, or applications with direct societal
harm. We have ensured compliance with the ICLR Code of Ethics, particularly regarding research
integrity and transparency. All experiments were conducted using publicly available datasets, and
no conflicts of interest or external sponsorship influenced the research outcomes.
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A APPENDIX

A.1 BACKGROUND ON QUANTUM COMPUTING

We provide the essential concepts in quantum computing necessary for understanding our study. For
a comprehensive treatment, we refer the reader to Nielsen & Chuang (2010).

Quantum bit and quantum states. A fundamental unit in quantum computing is the quantum bit,
or qubit, which represents the state of a quantum system. Before measurement, a qubit can exist in
a superposition of basis states, but upon measurement, it collapses into one of the basis states with
probabilities determined by the quantum state.

The pure state of a quantum system consisting of n qubits is described by a vector in a Hilbert space
H = (C2)⊗n. The mathematical representation of a quantum state depends on the choice of basis.

For instance, using the orthogonal computational basis states |0⟩ =
(
1
0

)
and |1⟩ =

(
0
1

)
, a single-

qubit state can be expressed as a linear combination |ψ⟩ = α|0⟩+β|1⟩, where α, β ∈ C are complex
amplitudes satisfying the normalization condition |α|2 + |β|2 = 1. Computational basis states for

multi-qubit systems are tensor products, such as |01⟩ = |0⟩ ⊗ |1⟩ =

0
1
0
0

. Any pure quantum state

|ψ⟩ ∈ H satisfies ⟨ψ|ψ⟩ = 1, where ⟨ψ| denotes the conjugate transpose of |ψ⟩.
Pure states represent systems in definite quantum states, while mixed states describe statistical en-
sembles of pure states. A mixed state is represented by a density operator ρ, which is a positive
semidefinite Hermitian operator with trace one (Tr(ρ) = 1). For a pure state |ψ⟩, the density
operator is ρ = |ψ⟩⟨ψ|. For a mixed state as a probabilistic mixture of pure states {|ψi⟩} with prob-
abilities {pi}, the density operator is ρ =

∑
i pi|ψi⟩⟨ψi|. For example, the density matrix for |0⟩ is

ρ0 = |0⟩⟨0| =
(
1 0
0 0

)
.

Quantum gates and circuits. A quantum computer operates via quantum circuits, consisting of
wires (for qubits) and unitary gates that evolve quantum states. Each gate U is a unitary operator
on H, and the circuit’s overall action is the matrix product of these unitaries, computable via tensor
products.

A fundamental single-qubit gate is the Hadamard gate H , which creates superposition from com-

putational basis states: H = 1√
2

(
1 1
1 −1

)
. Applying H to |0⟩ yields the equal superposition

1√
2
(|0⟩+ |1⟩), and to |1⟩ yields 1√

2
(|0⟩ − |1⟩).

Examples of parameterized single-qubit gates include the rotation gates:

Ry(θ) =

(
cos

(
θ
2

)
− sin

(
θ
2

)
sin

(
θ
2

)
cos

(
θ
2

) )
, Rz(θ) =

(
e−iθ/2 0

0 eiθ/2

)
. (10)

Common two-qubit gates include the controlled-Z (CZ) gate:

CZ =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 , (11)

which applies a phase flip to the target qubit if the control qubit is |1⟩.
An example of a parameterized two-qubit gate is the controlled rotation:

CRx(θ) =


1 0 0 0
0 1 0 0
0 0 cos

(
θ
2

)
−i sin

(
θ
2

)
0 0 −i sin

(
θ
2

)
cos

(
θ
2

)
 . (12)

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Another important parameterized two-qubit gate is the rotation around the ZZ axis:

RZZ(θ) = exp

(
−iθ

2
Z ⊗ Z

)
=


e−iθ/2 0 0 0

0 eiθ/2 0 0
0 0 eiθ/2 0
0 0 0 e−iθ/2

 , (13)

which generates entangling interactions between two qubits and is diagonal in the computational
basis.

Quantum measurement. Quantum measurements extract classical information from a quantum
state, fundamentally altering it via collapse. For a projective measurement defined by a Hermitian
observable M on H, we decompose M =

∑
mmPm, where m are the distinct eigenvalues and Pm

are the corresponding orthogonal projectors satisfying
∑
m Pm = I and PmPm′ = δmm′Pm. Given

a pure state |ψ⟩, the probability of outcome m is p(m) = ⟨ψ|Pm|ψ⟩ = ⟨ψ|Pm|ψ⟩. Upon observing
m, the state collapses to the normalized post-measurement state Pm|ψ⟩√

p(m)
.

For mixed states described by ρ, the outcome probability generalizes to p(m) = Tr(Pmρ), and the
updated density operator is ρ′ = PmρPm

p(m) . In the common case of measuring individual qubits in
the computational basis, the projectors are P0 = |0⟩⟨0| and P1 = |1⟩⟨1| per qubit, yielding binary
outcomes with probabilities given by the diagonal elements of the reduced density matrix. This col-
lapse from superposition to a definite basis state underscores the irreversible nature of measurement
in quantum mechanics.

A.2 LEARNING AN ENSEMBLE OF QUANTUM STATES

In quantum information science, ensembles of quantum states play a pivotal role in characterizing
randomness and universality in quantum systems. An ensemble of quantum states E = {(pj , |ψj⟩)}
consists of a set of pure quantum states |ψi⟩ in a Hilbert space H, each weighted by a probability
pj such that

∑
j pj = 1. This ensemble represents a probabilistic mixture, capturing stochastic

processes that generate quantum states. Unlike an individual wave function or density matrix, ran-
domness is an emergent property of the ensemble.

We want to clarify that learning an ensemble of quantum states is a different problem from preparing
the density matrix ρ =

∑
j pj |ψj⟩⟨ψj | of the ensemble. Here, ρ alone does not uniquely determine

the ensemble, as multiple distinct ensembles can yield the same density matrix. The goal of learning
an ensemble of quantum states is to learn how to sample quantum states from an unknown distribu-
tion. The density matrix encodes the average expectation values of an observable O:∑

j

pj⟨ψj |O|ψj⟩ = Tr(Oρ). (14)

The density matrix is insufficient to distinguish ensembles, which require higher-order moments.
For example, the k-th moment operator is ρ(k)E =

∑
j pj (|ψj⟩⟨ψj |)

⊗k. This acts on k copies of the
Hilbert space and describes an incoherent sum of k identical states. From the k-th moment operator,
we can calculate the k-the moment of the observable O as:∑

j

pj (⟨ψj |O|ψj⟩)k = Tr(O⊗kρ
(k)
E ). (15)

In general, learning an ensemble involves estimating its density matrix, moments, or nonlinear prop-
erties from samples. While the first moment (density matrix) is accessible via standard quantum
state tomography, higher moments require statistical estimation from labeled samples drawn from
E . One of the most interesting problems is to construct an ensemble that mimics (or approximates)
the Haar ensemble up to the k-th moment. An ε-approximate k-designs satisfies ∥ρ(k)E −ρ(k)Haar∥ ≤ ε.
Approximate designs emerge in physical systems, such as random unitary circuits or Hamiltonian
evolutions.
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Many projected ensembles (MPEs) offer a natural realization of ε-approximate k-designs (Choi
et al., 2023; Cotler et al., 2023). Given a many-body state |Ψ⟩ on subsystems A (na qubits) and M
(nm qubits), projective measurements on A in a local basis {|zA⟩} yield the ensemble on M as

EΨ,M = {(p(zA), |ψ(zA)⟩M )}zA
, (16)

with p(zA) = ⟨Ψ| (|zA⟩⟨zA| ⊗ 1M ) |Ψ⟩ and |ψ(zA)⟩M = (⟨zA| ⊗ 1M ) |Ψ⟩/
√
p(zA). The MPE

generates a classical probability distribution p(zA) over measurement outcomes, but the projected
states |ψ(zA)⟩M are genuinely quantum. Such ensembles approximate k-designs for generic gener-
ator states |Ψ⟩, particularly in chaotic systems when na is sufficiently large.

MPEs were originally developed to approximate k-designs from Haar-random ensembles. However,
in our study, they are used innovatively to prove the universality of learning distributions from quan-
tum states. While low-entanglement MPEs may be classically simulable, the framework’s advantage
lies in quantum hardware efficiently preparing the many-body state |Ψ⟩ for sampling complex, non-
local distributions (e.g., in quantum chemistry, where classical methods struggle with superposition
and entanglement). This offers the potential for quantum speedups over classical generative models
for tasks such as simulating molecular ensembles, as classical sampling from such distributions can
require exponential resources.

A.3 CHALLENGES IN QUANTUM MACHINE LEARNING (QML)

QML has garnered significant interest for its potential to leverage quantum systems for enhanced
data processing and generative tasks. However, recent advancements have highlighted several chal-
lenges and negative results that temper claims of quantum advantage. This appendix provides an
overview of these issues, drawing from key literature, and positions our MPE framework in this
context. We focus on dequantization results, trainability bottlenecks such as barren plateaus, and
classical simulability, while noting promising mitigation strategies.

Dequantization and Classical Equivalents. A growing body of work demonstrates that many
QML algorithms, initially thought to offer exponential speedups, can be “dequantized”—simulated
classically with comparable efficiency under realistic assumptions, such as access to classical data
models (e.g., length-squared sampling). For instance, Tang (2019) provides dequantization for quan-
tum recommendation systems, showing that classical algorithms can achieve similar performance
with polynomial resources. Tang (2021) extends this to quantum principal component analysis, pro-
viding a classical counterpart that matches quantum outputs under standard data access. Chia et al.
(2020) and Gharibian & Le Gall (2022) dequantize aspects of quantum singular value transforma-
tions (Gilyén et al., 2019), revealing classical simulations for tasks like quantum linear algebra.

More recent studies, such as Cerezo et al. (2025) and Gil-Fuster et al. (2025), apply dequantiza-
tion to variational QML models, underscoring that claimed advantages often vanish when consid-
ering trivial datasets or sampling models of trivial distributions. These results suggest that QML’s
edge may be limited to regimes with inherent quantum structure, such as high-entanglement quan-
tum many-body systems, where classical simulation becomes inefficient. In our MPE framework,
we position it as potentially resistant to such dequantization in these high-entanglement scenarios.
MPE leverages measurement-induced ensembles from many-body wave functions, which can cap-
ture non-local quantum correlations that classical methods struggle to replicate efficiently. While we
do not claim a guaranteed quantum advantage, this motivates further exploration of MPE for tasks
like quantum chemistry simulations, where entanglement plays a central role.

Barren Plateaus. A major bottleneck in QML using PQCs is the barren plateau phenomenon,
where gradients vanish exponentially with system size or circuit depth, rendering optimization in-
tractable (McClean et al., 2018). This arises from random initialization in high-dimensional param-
eter spaces, global measurements, excessive entanglement in the initial state, the circuit ansatz, and
the existence of hardware noise, leading to flat loss landscapes (Larocca et al., 2025). Our Incre-
mental MPE variant aims to address this by leveraging layer-wise training (Skolik et al., 2021), but
full theoretical guarantees for this heuristic are lacking.

Backpropagation Scaling. The backpropagation scaling problem in PQCs refers to the inefficiency
of gradient computation during the training of variational quantum algorithms. Unlike classical
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neural networks, where gradients scale with constant or logarithmic overhead via backpropagation,
PQCs rely on stochastic measurements and methods like the parameter-shift rule, leading to costs
that grow linearly with the number of parameters. This arises from requiring separate circuit eval-
uations per parameter, amplified by shot noise, making large-scale optimization impractical. There
are promising directions to mitigate this issue, such as constructing structured PQCs with commut-
ing generators to enable parallel gradient estimation (Bowles et al., 2025), balancing expressivity
and trainability (Chinzei et al., 2025), and classical surrogates for loss functions where classical
approximations guide quantum optimization (Recio-Armengol et al., 2025).

These challenges could limit the practicality and trainability of MPE in real quantum hardware.
However, the argument for classical simulability in training is particularly relevant for generative
models: one can classically train a variational state by minimizing expectation values, but sampling
from such states classically is often prohibitively expensive. This highlights a key distinction: while
training may be dequantized, quantum hardware offers advantages for sampling entangled ensem-
bles. From this perspective, our universality theorem is complementary. It ensures MPE can, in
principle, capture any pure-state distribution before optimizing for hardware, focusing on expressiv-
ity rather than guaranteed speedup.

A.4 PROOF FOR THE BOUND OF δ-COVERING NUMBER

We present an intuition for an iterative algorithm to construct a δ-net of a given quantum distribution
Qt. Pick a point |ψ1⟩ ∼ Qt arbitrarily sampled from Qt, then pick |ψ2⟩ ∼ Qt that is farther than
δ from |ψ1⟩, then pick |ψ3⟩ ∼ Qt that is farther than from both |ψ1⟩ and |ψ2⟩, and so on. If Qt is
compact, this process stops in finite time and gives an δ-net of Qt.

In quantum mechanics, the Hilbert space CD (a D-dimensional complex vector space) describes a
quantum system with D possible basis states. A pure state of this system is represented by a unit
vector |ψ⟩ ∈ CD satisfying ⟨ψ|ψ⟩ = 1, but physically equivalent states differ by a global phase:
|ψ⟩ ∼ eiθ|ψ⟩ for any real θ, as this phase does not affect observable quantities like probabilities
or expectation values. Thus, the set of distinct pure states is not the full unit sphere S2D−1 ⊂
R2D (real/imaginary parts of CD), but rather the quotient space obtained by identifying vectors
that differ by a phase factor from the group U(1) (unit complex numbers). This quotient is the
complex projective space CPD−1, defined as CPD−1 = S2D−1/U(1), where each point in CPD−1

corresponds to a 1-dimensional complex subspace (a “ray”) in CD. Then if we define the manifold
M = {|ψ⟩⟨ψ| : |ψ⟩ ∈ CD} of pure states in CD, we have the relation M ∼= CPD−1.

Let S ⊂ C2n be a fixed D-dimensional complex subspace (i.e., S has an orthonormal basis with
D elements |e1⟩, . . . , |eD⟩), and define K = {|ψ⟩⟨ψ| : |ψ⟩ ∈ S, ⟨ψ|ψ⟩ = 1} as the submanifold
of pure states supported entirely within S. Equipped with the trace distance d(ρ, σ) = 1

2∥ρ − σ∥1,
the metric space (K, d) is isometric to the manifold of pure states on CD under the induced Fubini-
Study metric (rescaled to match trace distance). This ensures that covering numbers, volumes, and
discretization strategies for K inherit directly from CPD−1, without dilution from the larger space.

We consider the δ-net discretizing the manifold M of pure states in CD under the trace distance
metric d. Based on Lemma 1 in Akibue et al. (2022), we estimate N (M, d, δ)—the cardinality of
the smallest δ-net of M and derive formal lower and upper bounds in terms of D and δ.

Lemma A.1 (Bound for covering number). Let M = {|ψ⟩⟨ψ| : |ψ⟩ ∈ CD} be the manifold of pure
states in CD, equipped with the trace distance d. For δ ∈ (0, 1] and D ≥ 2:

(1/δ)2(D−1) ≤ N (M, d, δ) ≤ 5 ·D ln(D) · (1/δ)2(D−1) (17)

Proof. The proof relies on volumetric arguments using the unitarily invariant probability measure µ
on P(CD), which normalizes the total volume to µ(P(CD)) = 1. The measure µ is a probability
measure on CPD−1, meaning it assigns sizes to subsets such that the entire space has measure 1. It is
derived from the Haar measure on the unitary group U(D), inducing a uniform distribution: picking
a random unitary and applying it to a fixed state (e.g., |0⟩) samples uniformly from µ. Without
normalization, the raw volume of CPd−1 under Fubini-Study is πD−1/(D− 1)! but we scale it to 1
for convenience to convert absolute volumes into probabilities.
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Proof for the lower bound. First, we use the result presented in Appendix A in Akibue et al. (2022)
to derive the volume of δ-ball Bδ(ϕ) := {ψ ∈ P(CD) : d(ϕ, ψ) < δ} as follows:

∀D ∈ N, ∀δ ∈ (0, 1], ∀ϕ ∈ P(CD), µ(Bδ(ϕ)) = δ2(D−1). (18)

Here, for the convenient with |ψ⟩, |ϕ⟩ ∈ CD, we write ψ = |ψ⟩⟨ψ| ∈ P(CD) and ϕ = |ϕ⟩⟨ϕ| ∈
P(CD), and the trace distance d(ϕ, ψ) = 1

2∥ϕ− ψ∥1.

Since the total measure is 1 (as normalized) and each ball Bδ(ϕ) has measure δ2(D−1), to cover the
space at least 1/δ2(d−1) balls are needed. Formally,

N (M, d, δ) ≥ µ(P(CD))
maxϕ µ(Bδ(ϕ))

=
1

δ2(D−1)
. (19)

Proof for the upper bound. For the upper bound, based on Appendix B in Akibue et al. (2022), we
construct an explicit δ-net using a greedy probabilistic method. The idea is to sample random pure
states to cover most of the space, then greedily add points to cover the remainder. Let Deff = 2(D−
1) ≥ 2 (effective real dimension of the projective space). Sample JR random pure states {ϕj}JR−1

j=0

from µJR . The expected uncovered measure in the region (Ac) not covered byA := ∪JR−1
j=0 BδR(ϕj)

is calculated as follows:∫
dµJRµ(AC) =

∫
dµJR

∫
dµ(ψ)

JR∏
j=1

I[d(ψ, ϕj) ≥ δR] (20)

=

∫
dµ(ψ)

JR∏
j=1

∫
dµ(ϕj)I[d(ψ, ϕj) ≥ δR] (21)

≤
(
1− δDeff

R

)JR
≤ exp(−JRδDeff

R ), (22)

where we use Fubini’s theorem and µ(Bδ(ϕ)) = δDeff . Here, I[X] ∈ {0, 1} is the indicator function,
i.e., I[X] = 1 iff X is true. Thus, there exists a set {ϕj}JR−1

j=0 with µ(Ac) ≤ exp(−JRδDeff). Now,
pack disjoint δP -balls (δP ≤ δR ≤ 1) into Ac with centers {ψj}JPj=1 as much as possible (greedy
packing). The packing gives the following estimation:

JP ≤ µ(Ac)

δDeff
P

≤
exp(−JRδDeff

R )

δDeff
P

. (23)

The combined set {ϕj}JR−1
j=0 ∪ {ψj}JP−1

j=0 covers with radius δR + δP = δ and size J = JR + JP .
Set JR = ⌈Deffδ

−Deff
R ln(δR/δP )⌉, δP = δR/x, δR = xδ/(1 + x) with x ≥ 1. This yields:

J = JR + JP ≤
⌈Deff lnx

δDeff
R

⌉
+

1

δDeff
R

≤ 1

δDeff

{(
1 +

1

x

)Deff

(Deff lnx+ 1) + 1

}
=
α(Deff, x)

δDeff
,

(24)

where α(Deff, x) = (1 + 1/x)Deff(Deff lnx+ 1) + 1.

Now, we select x = Deff lnDeff > 1 and consider the function

f(D) =
α(Deff, Deff lnDeff)

D lnD
. (25)

Numerically, we can check that ∂f
∂D (D = 2) > 0, ∂f

∂D (D = 3) > 0, and ∂f
∂D (D0) < 0 for D0 ≥ 4.

If we think D is a continuous real variable, then the derivative ∂f
∂D has a critical point D∗ ∈ (3, 4).

Numerical calculation provides that D∗ ≈ 3.032879 and f(D∗) ≈ 4.927605 < 5. Therefore, we
have the following upper bound for N (M, d, δ):

N (M, d, δ) ≤ J ≤ D lnD

δDeff
f(D) ≤ D lnD

δDeff
f(D∗) <

5D lnD

δDeff
= 5 ·D ln(D) · (1/δ)2(D−1).

(26)

Since Qt ⊆ K, then we obtain N (Qt, d, δ) ≤ N (K, d, δ) = N (M, d, δ), which is the upper bound
in Equation 2.
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A.5 PROOF OF LEMMA 4.3

The proof constructs a unitary V acting on the ancilla system A (with na qubits) and the hidden
systemM (with nm = na+⌈log2(1/ε)⌉ qubits) to generate a probability distribution p that approx-
imates the target distribution q. Following Kurkin et al. (2025), we provide a concrete construction
using an Instantaneous Quantum Polynomial (IQP) (Shepherd & Bremner, 2009; Bremner et al.,
2010) circuit architecture. The proof proceeds in three steps: defining the IQP circuit, generating a
logical model state, and approximating the target probability distribution.

A.5.1 STEP 1: IQP CIRCUIT ARCHITECTURE

IQP circuits form a class of quantum circuits consisting of commuting gates that are diagonal in the
Z basis. A parameterized IQP circuit on n qubits consists of three components: (1) Hadamard gates
H⊗n on all qubits (initialized at |0⟩⊗n) to create a uniform superposition, (2) a layer of parameter-
ized gates of the form exp(iθjZgj ), where Zgj is a tensor product of Pauli Z operators acting on a
subset of qubits specified by the nonzero entries of gj ∈ {0, 1}n, and (3) another layer of Hadamard

gates H⊗n. Formally, an IQP circuit is U = H⊗nDH⊗n, where D = exp
(
i
∑
j θjZgj

)
. A pa-

rameterized IQP circuit with hidden units is a parameterized IQP circuit in which a chosen subset of
qubits is traced out.

IQP circuits are particularly useful for sampling problems and exhibit properties that make them hard
to simulate classically under certain complexity assumptions. In our framework, parameterized IQP
circuits with hidden units provide an efficient parameterization for generating complex probability
distributions over measurement outcomes.

To describe the parameterized IQP circuits with hidden units, we initialize the system in the state
|0⟩⊗(na+nm) and apply the unitary V as:

1. First Layer: Apply Hadamard gates to all qubits, H⊗(na+nm), creating a uniform super-
position:

|0⟩⊗(na+nm) → 1√
2na+nm

∑
j∈{0,1}na

∑
k∈{0,1}nm

|j⟩A|k⟩M . (27)

2. Middle Layer: Apply a parameterized diagonal gate D(θ) =∏
j∈{0,1}na ,k∈{0,1}nm eiθj,kZj,k , where Zj,k is a tensor product of Pauli-Z opera-

tors acting on subsets of qubits in A⊗M , and θj,k ∈ R are trainable phases encoding the
target distribution. The resulting state is:

|ψ⟩ = 1√
2na+nm

∑
j∈{0,1}na

∑
k∈{0,1}nm

eiθj,k |j⟩A|k⟩M . (28)

This is referred to as the Uniform Mixture Approximation (UMA) state.
3. Final Layer: Apply Hadamard gates (H⊗na ⊗ I⊗nm ) to the ancilla system to prepare the

state for measurement in the computational basis of A.

A.5.2 STEP 2: GENERATING THE LOGICAL MODEL STATE

To approximate the target distribution q = {qb}b=0,1,...,2na−1, we consider a logical model state
defined by a mapping v : {0, 1, . . . , 2nm − 1} → {0, 1, . . . , 2na − 1}, where nm > na. Here,
we use bold letters for binary index, such as b ∈ {0, 1}na and normal letters for their decimal
equivalent, such as b ∈ {0, 1, . . . , 2na − 1}. Therefore, v(b) has the same meaning with v(b). We
define the state:

|ψ′⟩ = 1√
2nm

2nm−1∑
k=0

|v(k)⟩A|k⟩M , (29)

where v(k) maps the hidden state index k to an ancilla state index. Measuring the ancilla system A
in the computational basis yields outcome b ∈ {0, 1}na with probability:

p(b) =
|{k ∈ {0, 1}nm : v(k) = b}|

2nm
. (30)
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We show that the UMA state |ψ⟩ can be transformed into |ψ′⟩ via a unitary, and that applying
H⊗na ⊗ I⊗nm to |ψ′⟩ produces:

(H⊗na ⊗ I⊗nm)|ψ′⟩ = 1√
2na+nm

∑
j∈{0,1}na

∑
k∈{0,1}nm

(−1)v(k)·j |j⟩A|k⟩M , (31)

where v(k) · j is the inner product modulo 2. This state is a UMA state with phases θj,k = 0 if
v(k) · j is even, and θj,k = π if v(k) · j is odd. Applying H⊗na ⊗ I⊗nm to this state recovers |ψ′⟩,
and measuring A in the computational basis yields the same probability distribution p(b).

A.5.3 STEP 3: PROBABILITY APPROXIMATION

The probability of outcome b ∈ {0, 1}na is:

p(b) =
cb
2nm

, where cb = |{k ∈ {0, 1}nm : v(k) = b}|, (32)

and cb is the number of hidden states mapped to outcome b. To ensure p(b) ≈ q(b), we choose the
mapping v as follows:

1. For each b ∈ {0, 1}na , set cb = ⌊q(b)2nm⌋. Compute the sum S =
∑

b∈{0,1}na cb ≤ 2nm ,
with 2nm − S ≤ 2na .

2. If S < 2nm , distribute the remaining 2nm − S states by incrementing cb = ⌊q(b)2nm⌋+ 1
for the first 2nm − S outcomes b, ensuring

∑
b∈{0,1}na cb = 2nm .

3. Assign hidden states k = 0, 1, . . . , 2nm − 1:
• Assign the first cb1 states (k = 0, . . . , cb1 − 1) to v(k) = b1 (e.g., b1 = 00 . . . 0).
• Assign the next cb2 states (k = cb1 , . . . , cb1 + cb2 − 1) to v(k) = b2, and continue

until all 2nm states are assigned.

The error for each outcome is:

|q(b)− p(b)| =
∣∣∣q(b)− cb

2nm

∣∣∣ = |q(b)2nm − cb|
2nm

≤ 1

2nm
. (33)

The total variation distance is:

δ(p, q) =
1

2

∑
b∈{0,1}na

|p(b)− q(b)| ≤ 1

2
· 2na · 1

2nm
=

2na

2nm+1
=

1

2nm−na+1
. (34)

Choosing nm = na+ ⌈log2(1/ε)⌉, we have: 2nm−na ≥ 1

ε
=⇒ 1

2nm−na
≤ ε. Thus: δ(p, q) ≤ 1

2
·

1

2nm−na
≤ ε

2
. This completes the proof, with the unitary V = (H⊗na ⊗I⊗nm) ·D(θ) ·H⊗(na+nm)

explicitly constructed to achieve the desired approximation.

A.6 ENCODING 3-D MOLECULES TO QUANTUM STATES

This process ensures compatibility with quantum amplitude encoding, which requires input vectors
to be normalized to unit norm. The molecules in the QM9 dataset—small organic compounds with
up to 9 heavy atoms (C, N, O, F) plus hydrogens, totaling up to 29 atoms per molecule—are rep-
resented as attributed point clouds. Each molecule (index j = 0, 1, . . . , N − 1 in the dataset) is
denoted as {(vji ,a

j
i )}

mj−1
i=0 , where mj is the number of atoms, vji ∈ R3 are the 3-D coordinates,

and aji ∈ {0, 1}k is the one-hot encoded atom type, corresponding to jth molecule. Here, for sim-
plification, we only consider heavy atoms in our model, leading to the number of atom types k = 4.
The dataset can be represented by [{(vji ,a

j
i )}

mj−1
i=0 ]M−1

j=0 .

The encoding needs to address challenges of arbitrary translations, rotations, atom ordering, and
quantum normalization constraints, where the amplitudes of encoded quantum states are non-
negative real values to simplify the encoding and reconstruction process. We adopt the encoding
method in Rathi et al. (2023); Wu et al. (2024) with details in the following steps.
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1. Structural normalization for unique representation: Atoms are reordered using canon-
ical SMILES strings generated via RDKit toolkit (rdk), ensuring a consistent, graph-based
ordering independent of the original input.

2. Conformation fixing (translation and rotation): The molecule is centered by subtracting
the centroid (center of mass) from all coordinates, aligning it to the origin. It then rotates
the position of the first atom in the SMILES string onto the z-axis.

3. Positive octant adjustment: After centering and rotation, coordinates may include neg-
ative values. The minimum and maximum coordinates across all dimensions, vmin,a

and vmax,a, are determined as vmin,a = minj=0,...,N−1;i=0,...,mj−1 v
i
j,a and vmax,a =

maxj=0,...,N−1;i=0,...,mj−1 v
i
j,a, where vji,a ∈ R is the coordinate of vji along axis

a ∈ {x, y, z}. Consider the side length s = maxa∈x,y,z(vmax,a − vmin,a), the coordi-
nates of each atom can be shifted by (vmin,x, vmin,y, vmin,z) and re-scaled by s, bounding
all xi, yi, zi ∈ [0, 1].

4. Introduction of auxiliary value and per-atom vector construction: For each nor-
malized atom i with position ṽi = (xi, yi, zi), an auxiliary value

√
3− x2i − y2i − z2i

is added, forming a 4D vector (xi, yi, zi,
√
3− x2i − y2i − z2i ) with norm

√
3.

The atom type ai (one-hot vector) has norm 1, yielding a per-atom vector
(xi, yi, zi, ai[1], . . . , ai[k],

√
3− x2i − y2i − z2i ) with total norm

√
4 = 2 and length

4 + k = 9 (for k = 5).
5. Concatenation, global normalization, and amplitude encoding: Per-atom vectors are

concatenated into a per-molecule vector of length mj × (4 + k) with norm 2
√
mj . This

vector is divided by 2
√
mj to achieve unit norm. If mj < mmax = 9 (QM9’s maximum

atoms in our setting), it is zero-padded to mmax × (4 + k) = 72. The unit-norm vector
is encoded via amplitude encoding into |ψ⟩ =

∑2n−1
j=0 αj |j⟩, where {αj} are the vector

elements (padded with zeros if needed) and n = ⌈log2(mmax × (4 + k))⌉ = 7 qubits.

Specifically, for a molecule with m atoms, the initial state is given by: |ψ0⟩ =
1

2
√
m

∑m−1
i=0

(
xi|ri⟩+ yi|ri + 1⟩+ zi|ri + 2⟩+ |ri + 3 + ti⟩+

√
3− x2i − y2i − z2i |ri + k + 3⟩

)
+∑2n−1

j=m(4+k) 0|j⟩, where ri = (k + 4)i defines the base index for the i-th atom’s block in the state
vector, ti is the integer index corresponding to the atom type of the i-th atom (e.g., 0 for C, 1 for
N, 2 for O, 3 for F, reflecting the one-hot encoding with a single 1 at the appropriate position), and
k = 4 is the number of atom types.

A.7 MORE RESULTS IN LEARNING QUANTUM DISTRIBUTION

We present additional results on learning the multi-cluster quantum distribution, as described in the
main text. Figure 3 illustrates the variation of the 1-Wasserstein distance between the generated test
ensemble and the true ensemble with the number of training states N . The number of steps in the
Incremental MPE is set to K = 10, with each unitary Vk containing L = 10 layers (for 4-qubit
states) and L = 20 layers (for 6-qubit states). Here, N is tractable in our tasks.

We present empirical results showing that training a large number of layers simultaneously yields
poor performance, whereas maintaining the same total number of layers but iteratively optimizing
shallow circuits (with a small number of layers) can lead to superior results. Figure 4 illustrates
the variation in the evaluation metric with the number of incremental steps in the Incremental MPE
framework for learning multi-cluster quantum distributions. Here, L = 20 layers are trained for
2000 epochs at each incremental step, resulting in a a total of 2000 × k training epochs up to the
k-the step. We compare the result at k = 5 with standard training of L = 100 layers for 104 epochs
without Incremental MPE. Thus, the total number of training epochs is the same for both methods,
but the Incremental MPE requires only 1/10 of the parameters compared to the standard approach.
The Incremental MPE yields significantly better results, while the standard method becomes stuck
during training, empirically supporting our observation that Incremental MPE provides an effective
strategy for practical training.

We further investigate the behavior of the loss function in the incremental MPE framework compared
to standard training. Figure 5 depicts the loss functions for learning the multi-cluster quantum
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Figure 3: The 1-Wasserstein distance between the generated ensemble and the true ensemble, vary-
ing with the number of training states K in the Incremental MPE framework for learning the multi-
cluster quantum distributions of n-qubit quantum states (n = 4, 6). The solid lines represent the
average accuracy over 10 trials (with error bars).
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Figure 4: Evaluation metric variation with the number of incremental steps K in the Incremental
MPE framework for learning the multi-cluster quantum distributions. The solid lines represent the
average accuracy over 10 trials (with error bars) where L = 20 layers are trained at each step. The
cross markers represent the standard training with L = 100 layers without incremental steps. We
plot the positions of the cross markers at step k = 5 to illustrate that training 20 layers over 5 steps
(a total of 100 layers) is significantly better than training 100 layers at once.

distributions of n = 6 qubits. We compare the incremental MPE framework with L = 10 layers per
incremental step (red curve) and direct training with L = 100 layers (blue curve). A barren plateau-
like phenomenon is evident when training a large number of layers simultaneously (blue curve).
However, even with a large total number of layers, gradually training in incremental steps enables
the loss to converge to a significantly lower value. This empirically confirms the effectiveness of our
incremental MPE framework in mitigating the barren plateau problem.

On learning molecular quantum states using a subset of the QM9 dataset, Fig. 6 illustrates the vari-
ation of evaluation metrics as a function of the number of incremental steps K in the Incremental
MPE framework. A larger K generally results in lower metric values, indicating improved perfor-
mance, though the metrics saturate beyond a sufficiently large K. Increasing the number of qubits
nf in the auxiliary system F can further enhance performance.
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Figure 5: The training loss functions (1-Wasserstein distance) of the Incremental MPE (red) and
standard training (blue) for learning the multi-cluster quantum distributions of n = 6 qubits. Here,
we compare training Incremental MPE with L = 10 layers over 20 incremental steps, and standard
training with L = 100 layers. The solid lines represent the median values at each epoch over 20
trials.

Figure 6: Evaluation metric variation with the number of incremental steps K in the Incremental
MPE framework for learning quantum distributions of molecular data from a QM9 subset. Circle
markers represent individual trials, dotted lines indicate the mean over 10 trials, and shaded regions
denote one standard deviation.
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