

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 UNIVERSALITY OF MANY-BODY PROJECTED ENSEMBLE FOR LEARNING QUANTUM DATA DISTRIBUTION

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

012 Generating quantum data by learning the underlying quantum distribution poses
013 challenges in both theoretical and practical scenarios, yet it is a critical task for
014 understanding quantum systems. A fundamental question in quantum machine
015 learning (QML) is the universality of approximation: whether a parameterized
016 QML model can approximate any quantum distribution. We address this question
017 by proving a universality theorem for the Many-body Projected Ensemble (MPE)
018 framework, a method for quantum state design that uses a single many-body wave
019 function to prepare random states. This demonstrates that MPE can approximate
020 any distribution of pure states within a 1-Wasserstein distance error. This theorem
021 provides a rigorous guarantee of universal expressivity, addressing key theoretical
022 gaps in QML. For practicality, we propose an Incremental MPE variant with
023 layer-wise training to improve the trainability. Numerical experiments on clus-
024 tered quantum states and quantum chemistry datasets validate MPE’s efficacy in
025 learning complex quantum data distributions.

1 INTRODUCTION

029 Recent advancements highlight the pivotal role of quantum machine learning (QML) (Dunjko et al.,
030 2016; Biamonte et al., 2017) in processing quantum data derived from quantum systems (Editorial,
031 2023). A fundamental task in QML is generating quantum data by learning the underlying dis-
032 tribution, essential for understanding quantum systems, synthesizing new samples, and advancing
033 applications in quantum chemistry and materials science. However, extending classical generative
034 approaches to quantum data presents significant challenges, as quantum distributions exhibit super-
035 position, entanglement, and non-locality that classical models struggle to replicate efficiently.

036 Quantum generative models such as quantum generative adversarial networks (Lloyd & Weedbrook,
037 2018; Zoufal et al., 2019) and quantum variational autoencoders (Khoshman et al., 2018; Wu et al.,
038 2024) can be used to prepare a fixed single quantum state (Niu et al., 2022; Kim et al., 2024; Tran
039 et al., 2024), but are inefficient for generating ensembles of quantum states (Beer & Müller, 2021)
040 due to the need for training deep parameterized quantum circuits (PQCs). The quantum denoising
041 diffusion probabilistic model (Zhang et al., 2024) offers a promising approach that employs inter-
042 mediate training steps to smoothly interpolate between the target distribution and noise, thereby
043 enabling efficient training. However, the diffusion process requires high-fidelity scrambling random
044 unitary circuits, demanding implementation challenges of precise spatio-temporal control.

045 Learning quantum data distributions faces significant hurdles in the noisy intermediate-scale quan-
046 tum (NISQ) era, including noise-induced errors, limited qubit connectivity, and optimization diffi-
047 culties such as barren plateaus (McClean et al., 2018), where gradients vanish exponentially with
048 system size. Moreover, achieving universality, which entails the model’s ability to approximate any
049 quantum distribution with arbitrary precision, remains a significant theoretical and practical chal-
050 lenge. These limitations underscore the need for innovative frameworks that combine theoretical
051 guarantees of universality with scalable, noise-resilient training strategies.

052 In this study, we prove a universality theorem for learning quantum data distributions. Our proof
053 relies on the Many-body Projected Ensemble (MPE) framework, a recent approach in quantum state
054 design that uses a single many-body wave function to prepare random states (Choi et al., 2023; Cotler
055 et al., 2023). We demonstrate that MPE can approximate any n -qubit pure state distribution within a

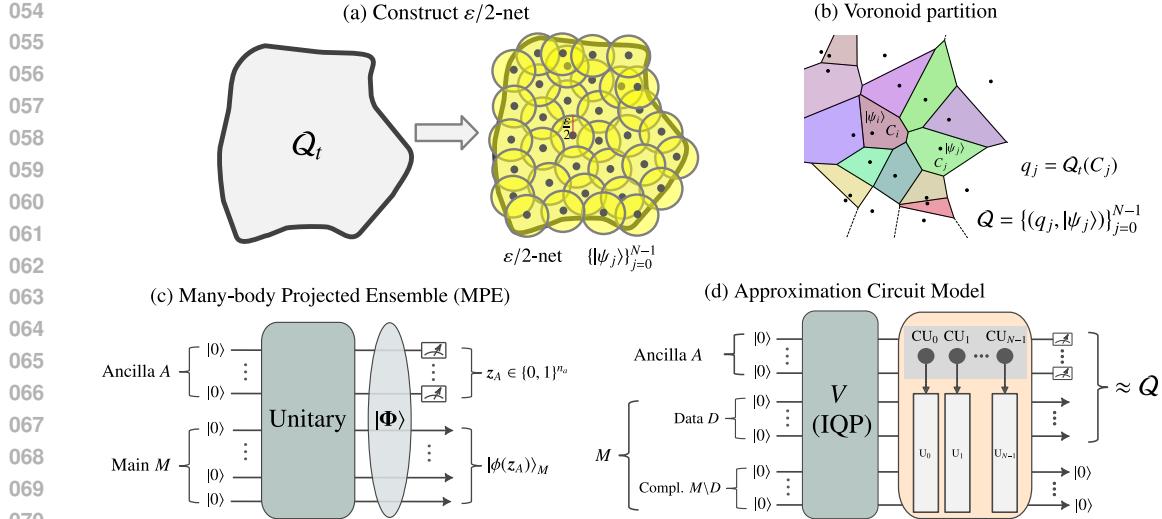


Figure 1: A scheme to construct a parameterized quantum distribution \mathcal{Q}_θ approximating a target \mathcal{Q}_t within error ϵ . (a) Form an $\epsilon/2$ -net ensemble to approximate \mathcal{Q}_t within $\epsilon/2$, with probabilities from (b) Voronoi partitioning. (c) Perform partial measurements of a single many-body wave function $|\Phi\rangle$ on ancilla system A , yielding a projected ensemble in main system M . (d) Implement the approximation using an IQP circuit and controlled unitary circuits for the projected ensembles.

specified 1-Wasserstein distance error bound, leveraging covering discretization for the target quantum distribution and ancilla-assisted measurements to represent the discrete ensembles. This result is a cornerstone for the QML community, providing a rigorous theoretical guarantee of universal expressivity, enabling the modeling of complex quantum distributions in applications like quantum chemistry. **While practical QML methods face issues such as classical simulability, barren plateaus, and high resource requirements in training (Appendix A.3), we view the universality theorem as complementary, ensuring that models can, in principle, capture any distribution before optimizing for hardware.** To facilitate practical implementation, we introduce an Incremental MPE variant that employs layer-wise training to improve trainability and reduce resource demands, thereby enhancing compatibility with NISQ devices. Our numerical experiments on clustered quantum states and computational chemistry datasets validate the efficacy of the framework.

2 LEARNING QUANTUM DATA DISTRIBUTION

Generative models are powerful tools for generating samples from a target distribution and estimating the likelihood of given data points. We address the problem of learning an unknown quantum data distribution \mathcal{Q}_t over n -qubit pure states, given a training dataset $\mathcal{S} = \{|\psi_0\rangle, \dots, |\psi_{N-1}\rangle\}$ of N independent states sampled from \mathcal{Q}_t . The generative model is defined by a parameterized probability distribution \mathcal{Q}_θ implemented via PQCs, where θ represents the trainable parameters (e.g., gate angles). The training objective is to optimize θ such that \mathcal{Q}_θ closely approximates \mathcal{Q}_t , as measured by a distance metric $\mathcal{D}(\mathcal{Q}_\theta, \mathcal{Q}_t)$. Since directly computing $\mathcal{D}(\mathcal{Q}_\theta, \mathcal{Q}_t)$ is often infeasible, we sample a dataset $\tilde{\mathcal{S}} = \{|\tilde{\psi}_j\rangle\}_j$ from \mathcal{Q}_θ and minimize the empirical distance $\mathcal{D}(\mathcal{S}, \tilde{\mathcal{S}})$. In the inference phase, the optimized parameters θ_{opt} are fixed, and new quantum states $|\psi\rangle \sim \mathcal{Q}_{\theta_{\text{opt}}}$ are generated for use in quantum simulation and data analysis.

3 PRELIMINARIES AND PROBLEM FORMULATION

3.1 DISTANCE BETWEEN DISTRIBUTIONS

For a density operator ρ acting on a Hilbert space (see Appendix A.1), we define the trace norm as $\|\rho\|_1 = \text{Tr} \sqrt{\rho^\dagger \rho}$, where Tr denotes the trace operation and ρ^\dagger is the Hermitian conjugate of ρ . The trace distance between two density operators ρ and σ is $d(\rho, \sigma) = \frac{1}{2} \|\rho - \sigma\|_1$. This distance metric

captures the distinguishability of two quantum states and serves as a fundamental measure in quantum information theory. To compare ensembles of quantum states, we employ the 1-Wasserstein distance, which extends the trace distance to probability distributions over density operators.

Definition 3.1 (1-Wasserstein Distance). *Let P and Q be two probability measures (or ensembles) over the space of density operators. The 1-Wasserstein distance between P and Q is defined as the minimal expected trace distance between pairs of states sampled from a coupling of P and Q :*

$$W_1(P, Q) = \inf_{\pi \in \Pi(P, Q)} \mathbb{E}_{(\rho, \sigma) \sim \pi} \left[\frac{1}{2} \|\rho - \sigma\|_1 \right], \quad (1)$$

where $\Pi(P, Q)$ denotes the set of couplings (joint probability measures) with marginals P and Q .

3.2 MANY-BODY PROJECTED ENSEMBLE (MPE)

An ensemble of states can be generated from a single wave function by performing local measurements over a part of the total system. We consider many-body system partitioned into a subsystem M (with n_m qubits) and its complement A (with n_a qubits). For the unification in this manuscript, we consider A as the ancillary system [Fig. 1(c)]. Given a generator state $|\Phi\rangle$, which is a pure many-body wave function on the total system $A + M$, we perform local measurements on A , typically in the computational basis. This yields different pure states $|\phi(z_A)\rangle_M$ on M , each corresponding to a distinct measurement outcome z_A on A , which are bitstrings of the form, for example, $z_A = 001 \dots 010$. The collection of these states, together with probabilities $p(z_A)$, forms the many-body projected ensemble (MPE) on M : $\{(p(z_A), |\phi(z_A)\rangle_M)\}_{z_A}$. The projected ensemble provides a full description of the total system state as $|\Phi\rangle_{A+M} = \sum_{z_A \in \{0,1\}^{n_a}} \sqrt{p(z_A)} |z_A\rangle \otimes |\phi(z_A)\rangle_M$. MPE is used to approximate a Haar-random state ensemble (Choi et al., 2023; Cotler et al., 2023), providing insights into the study of complexity growth in quantum systems (Appendix A.2). In our study, MPE is used to prove the universality with the potential to yield an advantage in generative models, as classical methods struggle to prepare the many-body state.

3.3 PROBLEM FORMULATION

Given a target distribution \mathcal{Q}_t over pure n -qubit states, our objective is to propose a class of parameterized probability distribution \mathcal{Q}_θ , where θ denotes the parameters of the model, such that for any error $\varepsilon > 0$, there exists θ satisfying $W_1(\mathcal{Q}_t, \mathcal{Q}_\theta) \leq \varepsilon$. We assume \mathcal{Q}_t is unknown but samples from \mathcal{Q}_t are available for training. This problem is central to generative QML as it addresses the challenge of accurately approximating complex quantum data distributions with applications in quantum simulation, quantum chemistry, and quantum information processing.

4 MAIN RESULT: UNIVERSALITY APPROXIMATION THEOREM

In approximating arbitrary n -qubit quantum data distributions, we propose a systematic method that combines discretization techniques with MPE. The procedure consists of the following steps.

Discretizing the target distribution with an $\varepsilon/2$ -covering technique [Fig. 1(a)(b)]: This involves constructing a finite set of quantum states (an $\varepsilon/2$ -net) such that every state in \mathcal{Q}_t is within a trace distance of at most $\varepsilon/2$ from at least one state in the $\varepsilon/2$ -net. This step yields a discrete distribution that approximates \mathcal{Q}_t within an error bound of $\varepsilon/2$.

Applying the MPE [Fig. 1(c)(d)]: This constructs \mathcal{Q}_θ by leveraging partial measurements to approximate the discrete $\varepsilon/2$ -net within an error bound of $\varepsilon/2$.

The use of ε -covering ensures computational feasibility for continuous space, while the MPE framework leverages the structure of many-body quantum systems to achieve high-fidelity approximations. Here, we state the following universality theorem for the MPE framework:

Theorem 4.1 (Universality Approximation of the Many-body Projected Ensemble). *For any target quantum data distribution \mathcal{Q}_t over pure n -qubit states, there exists a parameterized quantum distribution \mathcal{Q}_θ , formulated through the Many-body Projected Ensemble (MPE) framework utilizing a covering technique and ancilla-assisted measurements, such that for any error bound $\varepsilon > 0$, there exists a parameter θ^* for which the 1-Wasserstein distance satisfies $W_1(\mathcal{Q}_t, \mathcal{Q}_{\theta^*}) \leq \varepsilon$.*

162 *Proof.* The proof constructs \mathcal{Q}_θ using the two steps above, supported by Lemmas 4.2, 4.3, and
 163 4.5. Lemma 4.2 establishes a discrete ensemble $\mathcal{Q} = \{(q_j, |\psi_j\rangle)\}_{j=0}^{N-1}$ such that $W_1(\mathcal{Q}_t, \mathcal{Q}) \leq \varepsilon/2$.
 164 Next, the MPE framework (Lemma 4.3 or Lemma 4.4) constructs a class of projected ensemble $\mathcal{P} =$
 165 $\{(p_j, |\psi_j\rangle)\}_{j=0}^{N-1}$ identified as \mathcal{Q}_θ such that there exist a parameter θ^* for which $W_1(\mathcal{Q}_{\theta^*}, \mathcal{Q}) \leq \varepsilon/2$.
 166 By the triangle inequality, we have $W_1(\mathcal{Q}_t, \mathcal{Q}_{\theta^*}) \leq W_1(\mathcal{Q}_t, \mathcal{Q}) + W_1(\mathcal{Q}, \mathcal{Q}_{\theta^*}) \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$. The
 167 scaling of N and the number of ancilla qubits are detailed in the lemmas below. \square
 168

169 4.1 $\varepsilon/2$ -COVERING FOR QUANTUM STATE DISTRIBUTION DISCRETIZATION 170

171 To enable the approximation of a quantum data distribution ensuring the usage of the MPE frame-
 172 work, we first introduce a key lemma that establishes the existence of a finite ensemble of pure
 173 quantum states approximating a target distribution within a 1-Wasserstein distance of $\varepsilon/2$.

174 **Lemma 4.2** (Finite Ensemble Approximation). *For any target quantum data distribution \mathcal{Q}_t over
 175 pure n -qubit states and any $\varepsilon > 0$, there exists a finite ensemble $\mathcal{Q} = \{(q_j, |\psi_j\rangle)\}_{j=0}^{N-1}$ such that the
 176 1-Wasserstein distance satisfies $W_1(\mathcal{Q}_t, \mathcal{Q}) \leq \frac{\varepsilon}{2}$.*
 177

178 *Proof.* Let $\delta = \varepsilon/2$. The trace distance between two pure quantum states $|\psi\rangle$ and $|\phi\rangle$ is defined as
 179 $d(|\psi\rangle, |\phi\rangle) = \frac{1}{2} \|\langle\psi|\phi\rangle\|_1$.
 180

181 **Existence of a finite δ -net** [Fig. 1(a)]: By compactness, there exists a finite set of pure states
 182 $\{|\psi_j\rangle\}_{j=0}^{N-1}$ (a δ -net) such that for every $|\psi\rangle \sim \mathcal{Q}_t$ there is some $|\psi_j\rangle$ satisfying $d(|\psi\rangle, |\psi_j\rangle) \leq \delta$.
 183 This δ -net forms the basis for discretizing the state space. Here, N is the δ -covering number of
 184 (\mathcal{Q}_t, δ) , which is the cardinality $\mathcal{N}(\mathcal{Q}_t, \delta)$ of the smallest δ -net of \mathcal{Q}_t . If we consider \mathcal{Q}_t is the D -
 185 dimensional subspace of the full Hilbert space \mathbb{C}^{2^n} ($D \geq 2$), standard results from high-dimensional
 186 geometry and geometry of quantum states provide an upper bound for $\mathcal{N}(\mathcal{Q}_t, \delta)$ as follows (see
 187 Appendix A.4 for the construction of δ -net and the formal proof for the bound of covering number):
 188

$$N = \mathcal{N}(\mathcal{Q}_t, \delta) \leq 5 \cdot D \ln(D) \cdot (1/\delta)^{2(D-1)}. \quad (2)$$

189 **Voronoi partition** [Fig. 1(b)]: We define measurable cells $\{C_j\}_{j=0}^{N-1}$ that partition the space of pure
 190 states as $C_j = \{|\psi\rangle : d(|\psi\rangle, |\psi_j\rangle) \leq d(|\psi\rangle, |\psi_i\rangle) \text{ for all } i\}$, where $|\psi_j\rangle$ is the center of C_j . By the
 191 property of the δ -net, for every $|\psi\rangle \in C_j$ we have $d(|\psi\rangle, |\psi_j\rangle) \leq \delta$. These cells form a Voronoi
 192 partition assigning each state to the nearest center in the δ -net. We define $q_j = \mathcal{Q}_t(C_j)$, which
 193 is the probability that \mathcal{Q}_t assigns to all pure states in cell C_j . The finite ensemble is defined as
 194 $\mathcal{Q} = \{(q_j, |\psi_j\rangle)\}_{j=0}^{N-1}$, representing a discrete approximation of \mathcal{Q}_t with each $|\psi_j\rangle$ weighted by the
 195 probability mass of its corresponding cell.
 196

197 **Bounding the 1-Wasserstein Distance:** We construct an explicit coupling $\pi \in \Pi(\mathcal{Q}_t, \mathcal{Q})$. For each
 198 state $|\psi\rangle \sim \mathcal{Q}_t$, identify the unique index j such that $|\psi\rangle \in C_j$ and pair the density operator $|\psi\rangle\langle\psi|$
 199 with $|\psi_j\rangle\langle\psi_j|$. The 1-Wasserstein distance is then bounded as

$$W_1(\mathcal{Q}_t, \mathcal{Q}) \leq \mathbb{E}_{|\psi\rangle \sim \mathcal{Q}_t} [d(|\psi\rangle, |\psi_j\rangle)] \leq \delta = \frac{\varepsilon}{2}. \quad (3)$$

200 Equation 3 completes the proof, where the second inequality holds because for each $|\psi\rangle \in C_j$ the
 201 trace distance to the center $|\psi_j\rangle$ is less than δ by the property of the δ -net and Voronoi partition. \square
 202

203 4.2 APPLYING THE MANY-BODY PROJECTED ENSEMBLE (MPE) 204

205 In our setting, the target distribution \mathcal{Q}_t is unknown, but samples from \mathcal{Q}_t are available for training.
 206 The $\varepsilon/2$ -covering technique provides the explicit construction of a δ -net $\{|\psi_j\rangle\}_{j=0}^{N-1}$ (Appendix A.4),
 207 though the probabilities $\{q_j\}_{j=0}^{N-1}$ remain unknown. The next step constructs a class of PQCs to
 208 produce a projected ensemble $\mathcal{P} = \{(p_j, |\psi_j\rangle)\}_{j=0}^{N-1}$ such that the probability distribution $p = \{p_j\}_j$
 209 approximating the target distribution $q = \{q_j\}_j$. This step leverages a composite quantum system
 210 comprising an ancilla system A with $n_a = \lceil \log_2 N \rceil$ qubits (ensuring $N \leq 2^{n_a}$), and a hidden
 211 system M with n_m qubits. The following lemmas establish the existence and construction of V
 212 acting on $A \otimes M$ that generates $\{p_j\}_j \approx \{q_j\}_j$. We use $j \in \{0, 1\}^{n_a}$ to denote the measurement
 213 outcome (binary string), and $j \in \{0, \dots, 2^{n_a} - 1\}$ is the decimal equivalent of binary string j .
 214

216 **Lemma 4.3** (Approximate Probability Distribution). *Given a target probability distribution $q = \{q_j\}_{j=0,1,\dots,2^{n_a}-1}$ and an error bound $\varepsilon > 0$, there exists a parameterized unitary V acting on*
 217 *the ancilla system A (with $n_a = \lceil \log_2 N \rceil$ qubits) and a hidden system M (with $n_m = n_a + \lceil \log_2(1/\varepsilon) \rceil$ qubits) such that after applying V and measuring A in the computational basis, the*
 218 *resulting probability distribution $p = \{p_j\}_{j=0,1,\dots,2^{n_a}-1}$ satisfies $\delta(p, q) \leq \frac{\varepsilon}{2}$, where the total*
 219 *variation distance is defined as $\delta(p, q) = \frac{1}{2} \sum_j |p_j - q_j|$. Here, $p_j = p(\mathbf{j})$ is the probability to*
 220 *obtain the measure outcome $\mathbf{j} \in \{0, 1\}^{n_a}$ in A . Furthermore, an explicit construction of V is*
 221 *provided, extending the result of Lemma 1 in Kurkin et al. (2025).*

222 *Proof Sketch.* The proof extends Lemma 1 in Kurkin et al. (2025), which establishes the existence
 223 of an Instantaneous Quantum Polynomial (IQP) (Shepherd & Bremner, 2009; Bremner et al., 2010)
 224 circuit V satisfying $\delta(p, q) \leq \varepsilon/2$ with $n_m = n_a + \lceil \log_2(1/\varepsilon) \rceil$. We propose a specific implemen-
 225 tation of V detailed in Appendix 4.3. \square

226 As detailed in Appendix 4.3, Lemma 4.3 constructs an approximate $p \approx q$ using the IQP circuits
 227 with total $2^{n_a+n_m}$ parameters, but restricted to only two real values 0 and π . The following lemma
 228 (Lemma 5 in Kurkin et al. (2025)) achieves exact $p = q$ with the same total parameters, but the pa-
 229 rameters are full complex values. The idea is to decompose q into mixtures of 2-sparse distributions
 230 with $n_m = n_a + 1$ hidden qubits and complex phases. The construction is independent of error, as
 231 it is exact, but complex phases increase parameter expressivity and training costs.

232 **Lemma 4.4** (Exact Probability Distribution). *There exists a parameterized unitary V acting on*
 233 *the ancilla system A (with $n_a = \lceil \log_2 N \rceil$ qubits) and a hidden system M (with sufficiently many*
 234 *qubits n_m) such that after applying V and measuring A in the computational basis, the resulting*
 235 *probability distribution $p = \{p_j\}_{j=0,1,\dots,2^{n_a}-1}$ exactly matches the target distribution, i.e., $p = q$.*

236 After applying V on the composite system $A \otimes M$ initialized in the state $|0\rangle_A|0\rangle_M$, we obtain a
 237 projected ensemble $\{(p(\mathbf{j}), |\phi(\mathbf{j})\rangle_M)\}_{\mathbf{j} \in \{0,1\}^{n_a}}$, where $|\phi(\mathbf{j})\rangle_M$ is the state in the hidden system
 238 M corresponding with the measurement outcome \mathbf{j} . This process is summarized as follows:

$$|0\rangle_A|0\rangle_M \xrightarrow{V} \sum_{\mathbf{j} \in \{0,1\}^{n_a}} \sqrt{p(\mathbf{j})} |\mathbf{j}\rangle_A \otimes |\phi(\mathbf{j})\rangle_M. \quad (4)$$

239 We select M such that the number n_m of qubits in M is larger than the number n_d of data qubits.
 240 Then M can be divided into the data system D and the complementary system $M \setminus D$.

241 Next, we apply a series of multi-qubits controlled unitaries $\text{CU}_0, \text{CU}_1, \dots$, such that if the mea-
 242 surement outcome in A is \mathbf{j} , the unitary U_j will transform the state $|\phi(\mathbf{j})\rangle_M$ to $|\psi_j\rangle_D \otimes |\mathbf{0}\rangle_{M \setminus D}$
 243 [Fig. 1(d)]. This operation is described as:

$$\sum_{\mathbf{j} \in \{0,1\}^{n_a}} \sqrt{p(\mathbf{j})} |\mathbf{j}\rangle_A \otimes |\phi(\mathbf{j})\rangle_M \xrightarrow{\prod_{j=0}^{2^{n_a}-1} \text{CU}_j} \sum_{j=0}^{2^{n_a}-1} \sqrt{p_j} |\mathbf{j}\rangle_A \otimes |\psi_j\rangle_D \otimes |\mathbf{0}\rangle_{M \setminus D}, \quad (5)$$

244 where $p_j = p(\mathbf{j})$. The resulting ensemble obtained from the data system D is $\mathcal{P} = \{(p_j, |\psi_j\rangle)\}_{j=0}^{N-1}$,
 245 designed to approximate $\mathcal{Q} = \{(q_j, |\psi_j\rangle)\}_{j=0}^{N-1}$ via the following lemma.

246 **Lemma 4.5** (Wasserstein Distance Bound for Projected Ensemble). *The projected ensemble $\mathcal{P} =$
 247 $\{(p_j, |\psi_j\rangle)\}_{j=0}^{N-1}$ constructed via the MPE framework (using Lemma 4.3 or Lemma 4.4, and Equa-
 248 tion 5) and the discrete ensemble $\mathcal{Q} = \{(q_j, |\psi_j\rangle)\}_{j=0}^{N-1}$ from Lemma 4.2 satisfy $W_1(\mathcal{P}, \mathcal{Q}) \leq \frac{\varepsilon}{2}$.*

249 *Proof.* By Lemma 4.3, the projected ensemble $\mathcal{P} = \{(p_j, |\psi_j\rangle)\}_{j=0}^{N-1}$ satisfies the total variation
 250 distance bound $\delta(p, q) = \frac{1}{2} \sum_{j=0}^{N-1} |p_j - q_j| \leq \frac{\varepsilon}{2}$, where $p = \{p_j\}_{j=0}^{N-1}$ and $q = \{q_j\}_{j=0}^{N-1}$ are the
 251 probability distributions of \mathcal{P} and \mathcal{Q} , respectively. The 1-Wasserstein distance is defined as

$$W_1(\mathcal{P}, \mathcal{Q}) = \inf_{\pi \in \Pi(\mathcal{P}, \mathcal{Q})} \sum_{j=0}^{N-1} \sum_{k=0}^{N-1} \pi_{jk} d(|\psi_j\rangle, |\psi_k\rangle), \quad (6)$$

270 where $\Pi(\mathcal{P}, \mathcal{Q})$ is the set of couplings π . Here, $\pi = (\pi_{jk})_{j,k=0}^{N-1}$ is a non-negative matrix satisfying
 271 $\sum_{j=0}^{N-1} \pi_{jk} = q_k$, $\sum_{k=0}^{N-1} \pi_{jk} = p_j$, $\pi_{jk} \geq 0$, and $d(|\psi_j\rangle, |\psi_k\rangle) = \frac{1}{2} \|\psi_j\rangle\langle\psi_j| - |\psi_k\rangle\langle\psi_k\|_1 =$
 272 $\sqrt{1 - |\langle\psi_j|\psi_k\rangle|^2} \leq 1$, with $d(|\psi_j\rangle, |\psi_j\rangle) = 0$.

273 To bound $W_1(\mathcal{P}, \mathcal{Q})$, we construct an explicit coupling $\pi^* \in \Pi(\mathcal{P}, \mathcal{Q})$ with diagonal terms
 274 $\pi_{jj}^* = \min(p_j, q_j)$ and off-diagonal terms π_{jk}^* (for $j \neq k$) distributing the remaining proba-
 275 bility mass to satisfy the marginal constraints. The distance is then bounded as $W_1(\mathcal{P}, \mathcal{Q}) \leq$
 276 $\sum_{j=0}^{N-1} \sum_{k=0}^{N-1} \pi_{jk}^* d(|\psi_j\rangle, |\psi_k\rangle)$. Since $d(|\psi_j\rangle, |\psi_j\rangle) = 0$, only the off-diagonal terms contribute:
 277 $W_1(\mathcal{P}, \mathcal{Q}) \leq \sum_{j \neq k} \pi_{jk}^* d(|\psi_j\rangle, |\psi_k\rangle) \leq \sum_{j \neq k} \pi_{jk}^*$, because $d(|\psi_j\rangle, |\psi_k\rangle) \leq 1$. The sum of the
 278 off-diagonal terms is $\sum_{j \neq k} \pi_{jk}^* = \sum_{j=0}^{N-1} \sum_{k=0}^{N-1} \pi_{jk}^* - \sum_{j=0}^{N-1} \pi_{jj}^* = 1 - \sum_{j=0}^{N-1} \min(p_j, q_j) =$
 279 $\frac{1}{2} \sum_{j=0}^{N-1} |p_j - q_j| = \delta(p, q)$, since $\sum_{j,k} \pi_{jk}^* = \sum_j p_j = \sum_k q_k = 1$ and we use
 280 $\sum_{j=0}^{N-1} \min(p_j, q_j) = \sum_{j=0}^{N-1} \left(\frac{p_j + q_j - |p_j - q_j|}{2} \right) = 1 - \frac{1}{2} \sum_{j=0}^{N-1} |p_j - q_j|$. Thus, $W_1(\mathcal{P}, \mathcal{Q}) \leq$
 281 $\delta(p, q) \leq \frac{\varepsilon}{2}$, where the final inequality follows from Lemma 4.3.

282 For Lemma 4.4, where $p = q$, we have $W_1(\mathcal{P}, \mathcal{Q}) = 0$. This completes the proof. \square

283 Combining Lemmas 4.2 and 4.5, we bound the 1-Wasserstein distance between \mathcal{Q}_t and the projected
 284 ensemble \mathcal{P} as $W_1(\mathcal{Q}_t, \mathcal{P}) \leq W_1(\mathcal{Q}_t, \mathcal{Q}) + W_1(\mathcal{Q}, \mathcal{P}) \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$. Using Lemma 4.4, the bound
 285 improves to: $W_1(\mathcal{Q}_t, \mathcal{P}) \leq \frac{\varepsilon}{2} + 0 = \frac{\varepsilon}{2}$. These results confirm that the MPE framework, supported
 286 by the construction of the unitary V in Lemma 4.3, enables the parameterized distribution $\mathcal{P} = \mathcal{Q}_\theta$
 287 to approximate \mathcal{Q}_t , as required for the universality approximation theorem (Theorem 4.1).

5 LEARNING QUANTUM DISTRIBUTIONS WITH INCREMENTAL MPE

296 Theorem 4.1 guarantees that the MPE can approximate any target distribution \mathcal{Q}_t over n -qubit pure
 297 states within a 1-Wasserstein distance of $\varepsilon > 0$. However, in this general case, constructing an effi-
 298 cient parameterized quantum distribution and collecting all states in the projected ensemble can re-
 299 quire intensive resources. Equation 2 implies $n_a = \lceil \log N \rceil = \mathcal{O}(D \log(2/\varepsilon))$ ancilla qubits, which
 300 becomes inefficient when D scales exponentially or polynomially (with high degree) with n . In
 301 practical scenarios with a structured \mathcal{Q}_t , we present an Incremental MPE framework that iteratively
 302 approximates \mathcal{Q}_t through a layer-wise training scheme, reducing computational complexity and em-
 303 pirically improving the trainability and convergence for the optimization. We employ the fidelity-
 304 based 1-Wasserstein distance metric for training. The fidelity-based distance provides the upper-
 305 bound for the trace distance via the Fuchs-van de Graaf inequality: $d(|\mu\rangle, |\phi\rangle) \leq \sqrt{1 - \kappa(|\mu\rangle, |\phi\rangle)}$,
 306 ensuring that low 1-Wasserstein distance implies low W_1 (Equation 3.1).

5.1 INCREMENTAL MPE FRAMEWORK

307 Given a target distribution \mathcal{Q}_t , the learning process aims to construct a parameterized \mathcal{Q}_θ that ap-
 308 proximates \mathcal{Q}_t through K iterative cycles of unitary transformations and measurements.

309 First, we sample a training dataset $\mathcal{S} = \{|\psi_0\rangle, \dots, |\psi_{N-1}\rangle\}$ consisting of N pure n -qubit states
 310 drawn from \mathcal{Q}_t . The process continues with an initial ensemble $\tilde{\mathcal{S}}_0 = \{|\tilde{\psi}_j^{(0)}\rangle\}_j$, where the states are
 311 sampled from a random distribution, such as Haar product states. At each cycle $k = 0, \dots, K-1$, we apply a parameterized unitary $V_k = V(\theta_k)$ to the composite system of the data system D (with
 312 $n_d = n$ qubits) and an auxiliary system F (with n_f qubits), initialized in the state $|\tilde{\psi}_j^{(k)}\rangle_D \otimes |0\rangle_F$.
 313 We can think F represents the composite system of A and $M \setminus D$. This is followed by a projective
 314 measurement on the ancilla system in the computational basis, yielding an outcome $\mathbf{z}_j^{(k)} \in \{0, 1\}^{n_f}$
 315 and a corresponding state $|\tilde{\psi}_j^{(k+1)}\rangle_D$ in the data system. The operation at cycle k is formalized as:

$$\Phi_j^{(k)}(|\tilde{\psi}_j^{(k)}\rangle) = \frac{(I_D \otimes \Pi_F) V_k |\tilde{\Psi}_j^{(k)}\rangle}{\sqrt{\langle \tilde{\Psi}_j^{(k)} | V_k^\dagger (I_D \otimes \Pi_F) V_k | \tilde{\Psi}_j^{(k)} \rangle}} = |\tilde{\psi}_j^{(k+1)}\rangle_D \otimes |\mathbf{z}_j^{(k)}\rangle_F, \quad (7)$$

324 where $\Pi_F = |\mathbf{z}_j^{(k)}\rangle\langle\mathbf{z}_j^{(k)}|_F$ is the projector onto the ancilla measurement outcome, and $|\tilde{\Psi}_j^{(k)}\rangle =$
 325 $|\tilde{\psi}_j^{(k)}\rangle_D \otimes |0\rangle_F$. The resulting ensemble $\tilde{\mathcal{S}}_{k+1} = \{|\tilde{\psi}_j^{(k+1)}\rangle\}_j$ mirrors the structure of the MPE
 326 framework but is generated iteratively to reduce resource demands.
 327

328 This process is repeated for K cycles, with the sequence of parameterized unitaries V_0, \dots, V_{K-1}
 329 defining \mathcal{Q}_θ . The parameters θ_k of V_k are optimized to minimize a loss function $\mathcal{D}(\mathcal{S}, \tilde{\mathcal{S}}_{k+1})$, which
 330 measures the dissimilarity between the training dataset \mathcal{S} and the ensemble $\tilde{\mathcal{S}}_{k+1}$. After optimization
 331 at the cycle k , θ_k is fixed and the process optimizes θ_{k+1} in the next cycle. This layer-wise
 332 training approach (Skolik et al., 2021; Zhang et al., 2024) decomposes the learning problem into K
 333 manageable sub-tasks, each with a small number of trainable parameters, facilitating convergence.
 334

335 In our numerical experiments, each V_k is constructed using a Hardware Efficient Ansatz on
 336 $n_q = n_d + n_f$ qubits with L layers as $V_k(\theta_k) = \prod_{l=1}^L \tilde{\Omega}_k \tilde{W}_k(\theta_k)$, where $\tilde{W}_k(\theta_k) =$
 337 $\prod_{j=1}^{n_q} e^{-i\theta_{k,2j-1}\frac{X_j}{2}} e^{-i\theta_{k,2j-2}\frac{Y_j}{2}}$ and $\tilde{\Omega}_k = \prod_{j=1}^{n_q-1} CZ_{j,j+1}$. Here, X_j and Y_j are Pauli-X and Pauli-
 338 Y operators acting on the j -th qubit, implementing single-qubit rotations about the y - and z -axes,
 339 parameterized by $\theta_{k,2j-1}$ and $\theta_{k,2j-2}$, respectively. The $CZ_{a,b}$ gate is a two-qubit controlled-Z gate
 340 that applies a Z operation to the target qubit (index b) when the control qubit (index a) is in the state
 341 $|1\rangle$, generating entanglement between qubit pairs in $\tilde{\Omega}_k$.
 342

343 5.2 METRICS TO COMPARE ENSEMBLES

344 To quantify the similarity between ensembles, we employ a symmetric, positive definite quadratic
 345 kernel $\kappa(|\mu\rangle, |\phi\rangle)$ to define loss functions. This kernel can be computed efficiently using techniques
 346 such as the SWAP test (for state fidelity) or classical shadows (for classical-based computation)
 347 Huang et al. (2020). Our study employs three key metrics:

348 1. **Maximum Mean Discrepancy (MMD):** The MMD distance between two ensembles $\mathcal{X} =$
 349 $\{|\mu_i\rangle\}_i$ and $\mathcal{Y} = \{|\psi_j\rangle\}_j$ is defined as:

$$\mathcal{D}_{\text{MMD}}(\mathcal{X}, \mathcal{Y}) = \bar{\kappa}(\mathcal{X}, \mathcal{X}) + \bar{\kappa}(\mathcal{Y}, \mathcal{Y}) - 2\bar{\kappa}(\mathcal{X}, \mathcal{Y}), \quad (8)$$

350 where $\bar{\kappa}(\mathcal{X}, \mathcal{Y}) = \mathbb{E}_{|\mu\rangle \in \mathcal{X}, |\phi\rangle \in \mathcal{Y}} [\kappa(|\mu\rangle, |\phi\rangle)]$.
 351

352 2. **1-Wasserstein Distance:** Given a normalized kernel $(\kappa(|\phi\rangle, |\phi\rangle) = 1$ for all $|\phi\rangle$), we
 353 define a pairwise cost matrix $\mathbf{C} = (C_{i,j}) \in \mathbb{R}^{|\mathcal{X}| \times |\mathcal{Y}|}$ with $C_{i,j} = 1 - \kappa(|\mu_i\rangle, |\psi_j\rangle)$. The
 354 1-Wasserstein distance is computed as the solution to the optimal transport problem:
 355

$$\mathcal{D}_{\text{Wass}}(\mathcal{X}, \mathcal{Y}) = \min_{\mathbf{P}} \sum_{i,j} P_{i,j} C_{i,j}, \quad \text{s.t.} \quad \mathbf{P} \mathbf{1}_{|\mathcal{Y}|} = \mathbf{a}, \quad \mathbf{P}^\top \mathbf{1}_{|\mathcal{X}|} = \mathbf{b}, \quad \mathbf{P} \geq 0, \quad (9)$$

356 where $\mathbf{1}_{|\mathcal{X}|}$ and $\mathbf{1}_{|\mathcal{Y}|}$ are all-ones vectors of sizes $|\mathcal{X}|$ and $|\mathcal{Y}|$, respectively, and $\mathbf{a} \in \mathbb{R}^{|\mathcal{X}|}$,
 357 $\mathbf{b} \in \mathbb{R}^{|\mathcal{Y}|}$ are probability vectors (typically set to uniform, $\mathbf{a} = \frac{1}{|\mathcal{X}|} \mathbf{1}_{|\mathcal{X}|}$, $\mathbf{b} = \frac{1}{|\mathcal{Y}|} \mathbf{1}_{|\mathcal{Y}|}$).
 358

359 3. **Vendi Score (VS):** The Vendi Score (VS) (Friedman & Dieng, 2023) is a metric designed
 360 to evaluate the diversity of a set of samples. Given an ensemble $\mathcal{X} = \{|\mu_i\rangle\}_i$, and the
 361 normalized kernel matrix $\mathcal{K} = \kappa(|\mu_i\rangle, |\mu_j\rangle)$ defined in \mathcal{X} , the VS is computed as the
 362 exponential of the negative sum of the eigenvalues λ_i (normalized by the sample size N)
 363 multiplied by their logarithms, or equivalently, the exponential of the negative trace of the
 364 normalized similarity matrix \mathcal{K}/N times its logarithm. Mathematically, it is expressed
 365 as: $VS(\mathcal{X}) = \exp\left(-\sum_{i=1}^N \lambda_i \log \lambda_i\right) = \exp\left(-\text{tr}\left(\frac{\mathcal{K}}{N} \log \frac{\mathcal{K}}{N}\right)\right)$. The VS measures the
 366 spread or redundancy of samples: a high score indicates broad coverage with diverse and
 367 non-repetitive samples, while a low score suggests collapsed distributions.
 368

369 6 DEMONSTRATION

370 To assess the efficacy of the Incremental MPE framework, we performed numerical experiments on
 371 two representative datasets: a synthetic clustered quantum state distribution and a quantum
 372 distribution derived from a chemistry dataset. Quantum circuits were simulated using the TensorCircuit
 373 library (Zhang et al., 2023), while JAX (Bradbury et al., 2018) facilitated automatic differentiation
 374 for gradient-based optimization. Circuit parameters were initialized uniformly in the interval
 375 $[-\pi, \pi]$, and optimization was conducted via the Adam algorithm with a learning rate of 0.001.
 376

378
379

6.1 MULTI-CLUSTER QUANTUM DISTRIBUTION

380
381
382
383

We consider a mixture of n -qubit pure states centered around distinct clusters, modeling multimodal quantum data relevant to applications such as quantum chemistry and error correction. The experiments demonstrate the framework’s ability to approximate the target distribution \mathcal{Q}_t with high fidelity, its scalability across varying qubit numbers, and its robustness to noise.

384
385
386
387
388
389

We construct a target distribution \mathcal{Q}_t as a mixture of three clusters (40% with cluster 1, 40% with cluster 2, and 20% with cluster 3) of n -qubit ($n = 6$) pure states. Cluster 1 is centered on $|0\rangle^{\otimes n}$, cluster 2 on $|1\rangle^{\otimes n}$, and cluster 3 on the GHZ state $\frac{1}{\sqrt{2}}(|0\rangle^{\otimes n} + |1\rangle^{\otimes n})$. For each cluster, noise is introduced by applying random single-qubit rotations with angles drawn from a Gaussian distribution $(\mathcal{N}(0, \sigma^2), \sigma = 0.05)$ to simulate quantum device imperfections.

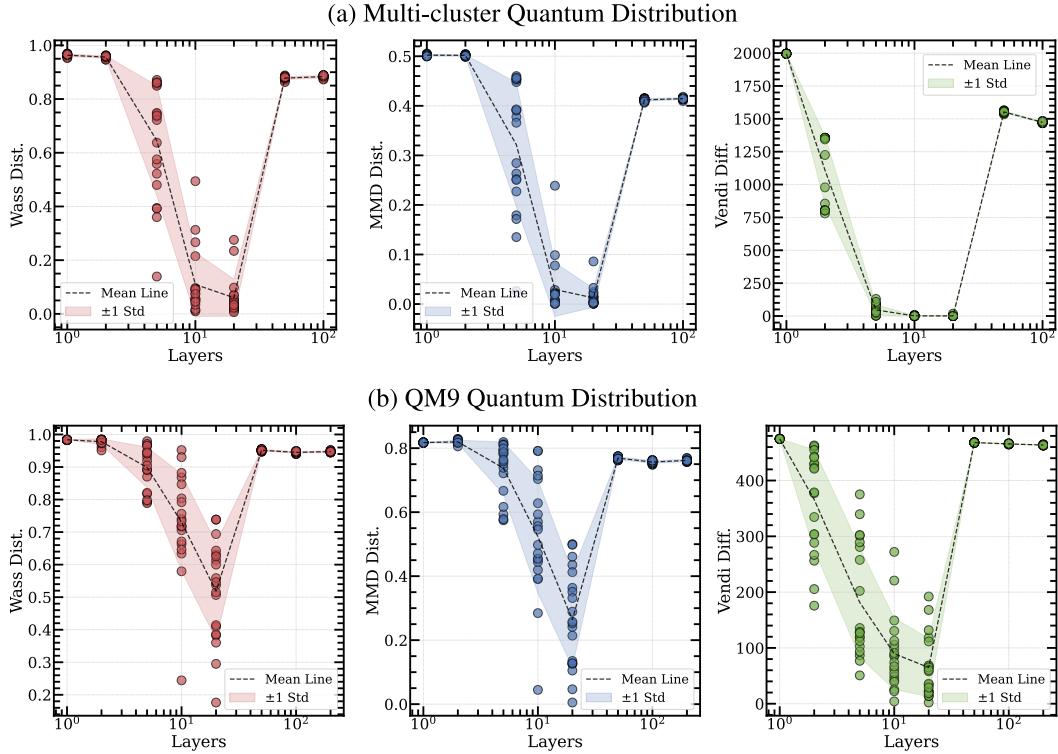
390
391
392
393
394
395
396
397
398
399
400
401414
415
416
417
418

Figure 2: Variation of the evaluation metric with changing circuit ansatz layers using the Incremental MPE framework to learn quantum distributions for (a) multi-cluster states and (b) molecular quantum states from a QM9 subset. Circle markers indicate individual trials, dotted lines show the mean over 20 trials, and shaded areas represent one standard deviation.

419
420
421
422
423
424
425
426

In our numerical experiments, we set $n_f = n/2$ and vary the number of incremental steps $K = 1, 2, 5, 10, 20, 50, 100$, with each unitary V_k comprising $L = 100/K$ layers to maintain a constant total number of layers. Training to optimize each V_k employs 1000 samples over $100 \times L$ epochs, with the number of epochs scaling with the number of layers, as more parameters necessitate additional epochs for effective optimization. We adopt mini-batch training, where each epoch consists of 10 iterations, processing 10 mini-batches of size $B = 100$. At each iteration, the loss function is the 1-Wasserstein distance $\mathcal{D}_{\text{Wass}}(S_{\text{train}}, S_{\text{out}})$, where S_{train} is a set of B quantum states sampled from the target distribution, and S_{out} is a set of B quantum states generated by the model.

427
428
429
430
431

Figure 2(a) depicts the variation of the evaluation metric with the number of layers, utilizing the 1-Wasserstein distance, MMD distance, and VS difference between 3000 generated and target samples. The experiments are conducted with 20 trials. All metrics indicate optimal performance around a specific number of layers L , where distances and differences are minimized, suggesting enhanced alignment between generated and target samples, though variability increases beyond this point. For a small L , even with a large number of steps $K = 100/L$, the expressivity of V_k remains in-

432 sufficient, leading to local minima in each incremental step. Conversely, an excessively large L
 433 introduces excessive expressivity in each V_k , leading to overparameterization or barren plateaus,
 434 resulting in optimization being challenging. The optimal L achieves an average 1-Wasserstein dis-
 435 tance of less than 0.1, an average MMD distance of less than 0.05, and an average VS difference of
 436 less than 1.0, facilitating the effective learning of the multi-cluster quantum distribution.
 437

438 6.2 QM9 QUANTUM DISTRIBUTION

440 We demonstrate our framework to learn the QM9 dataset (Ramakrishnan et al., 2014), a widely
 441 recognized benchmark in computational chemistry. This dataset comprises approximately 134,000
 442 small organic molecules, each with up to 9 heavy atoms (C, N, O, F) and additional hydrogens,
 443 totaling up to 29 atoms per molecule, along with their molecular properties and 3-D coordinates.
 444 Derived from the GDB-17 database (Ruddigkeit et al., 2012), QM9 is curated for quantum chemistry
 445 tasks, including molecular property prediction and 3-D structure generation. Given the current scale
 446 of our quantum simulation, evaluating the whole dataset is impractical. Therefore, we filter QM9 to
 447 include only molecules with exactly 7 heavy atoms and 2 distinct ring systems, yielding a specific
 448 subset of 488 molecules with uniform structural properties. Each 3-D molecule within this subset is
 449 encoded into a 7-qubit quantum state (see Appendix A.6 for details), enabling the task of learning
 450 the quantum data distribution corresponding to this QM9 subset.
 451

452 In our numerical experiments, we set $n_d = 7$, $n_f = 3$, and vary the number of incremental steps
 453 $K = 1, 2, 5, 10, 20, 50, 100, 200$, with each unitary V_k comprising $L = 200/K$ layers. We employ
 454 mini-batch training with a batch size $B = 100$ for each V_k , utilizing 200 training samples over
 455 $100 \times L$ epochs. The experiments are conducted over twenty trials. The loss function, measuring
 456 the divergence between two ensembles S_{train} and S_{out} , is defined as a linear combination of the 1-
 457 Wasserstein distance and the Vendi Score (VS) square difference: $\mathcal{D}_{\text{Wass}}(S_{\text{train}}, S_{\text{out}}) + \lambda [VS(S_{\text{train}}) -$
 458 $VS(S_{\text{out}})]^2$, where $\lambda = 0.0001$ balances the contributions. Figure 2(b) illustrates the variation of the
 459 metrics with the number of layers, based on comparisons between 488 generated and target samples.
 460 The model exhibits optimal performance around $L = 20$ layers; however, the high distances indicate
 461 incomplete convergence. To potentially reduce the Wasserstein distance below 0.1, increasing the
 462 number of training epochs, n_f , and refining the ansatz circuit design could prove beneficial.
 463

464 7 CONCLUSION

465 In this study, we have developed a universality approximation theorem for the MPE framework,
 466 demonstrating its ability to approximate any n -qubit pure state distribution within a specified 1-
 467 Wasserstein distance error. This theoretical result highlights the MPE framework’s potential as a
 468 versatile tool for quantum data generation in QML. While the primary contribution lies in this univer-
 469 sity theorem, the proposed Incremental MPE variant enhances practical applicability by mitigating
 470 optimization issues through layer-wise training, rendering it well-suited for NISQ devices. Numer-
 471 ical validations conducted on clustered quantum states and QM9 molecular datasets substantiate
 472 the framework’s effectiveness in learning complex quantum distributions. These findings provide
 473 a robust foundation for advancing quantum generative modeling, with significant implications for
 474 quantum chemistry, materials science, and related fields.
 475

476 **Limitations and Future Work.** While the universality approximation theorem presents the for-
 477 mal theoretical findings to approximate any distribution of quantum data with arbitrary error, the
 478 sample complexity often exhibits exponential scaling with the intrinsic dimension of the data man-
 479 ifold (Narayanan & Mitter, 2010). Future work may reduce this scale due to a specific shape of
 480 the target distribution, where smoother assumptions or symmetries can yield polynomial rates. The
 481 MPE framework relies on precise ancilla-assisted measurements, which may introduce errors in
 482 NISQ hardware due to imperfect gate operations. Additionally, while layer-wise training of Incre-
 483 mental MPE improves trainability, the computational cost of optimizing large-scale quantum circuits
 484 remains significant. Future work could focus on optimizing resource requirements for approxima-
 485 tion protocols to enhance efficiency. Extending the MPE framework to mixed state distributions
 486 would broaden its applicability to open quantum systems. A potential direction is to incorporate the
 487 concept of the mixed projected ensemble (Yu et al., 2025), which is built from a local region of a
 488 quantum many-body system with a partial loss of measurement outcomes.
 489

486 ETHICS STATEMENT
487488 This research does not involve human subjects, sensitive datasets, or applications with direct societal
489 harm. We have ensured compliance with the ICLR Code of Ethics, particularly regarding research
490 integrity and transparency. All experiments were conducted using publicly available datasets, and
491 no conflicts of interest or external sponsorship influenced the research outcomes.492
493 REPRODUCIBILITY STATEMENT
494495 To ensure the reproducibility of our results, we provide detailed information in the main paper, ap-
496 pendix, and supplementary materials. The proposed model and algorithms are described in the main
497 text, with implementation details in Appendices 4.3 and A.6. Anonymous source code is available in
498 the supplementary materials. For experiments, we used the QM9 dataset, with preprocessing steps
499 fully documented in Appendix A.6.500
501 LLM USAGE
502503 We used a large language model (LLM) to assist with polishing the English language in this paper.
504 Specifically, the LLM was used to enhance the grammar, clarity, and readability of the text without
505 altering its original meaning. All LLM-generated content was carefully reviewed and edited by the
506 authors to ensure accuracy, originality, and alignment with the research objectives. No LLMs were
507 used for research ideation, data analysis, or generating discussion for the results.508
509 REFERENCES
510511 Rdkit: Open-source cheminformatics. <https://www.rdkit.org>. Version [2025.03.6]; DOI:
512 10.5281/zenodo.591637.513 Seiseki Akibue, Go Kato, and Seiichiro Tani. Quadratic improvement on accuracy of approximating
514 pure quantum states and unitary gates by probabilistic implementation, 2022. URL <https://arxiv.org/abs/2111.05531>.515 Kerstin Beer and Gabriel Müller. Dissipative quantum generative adversarial networks, 2021. URL
516 <https://arxiv.org/abs/2112.06088>.517 Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and Seth Lloyd.
518 Quantum machine learning. *Nature*, 549(7671):195–202, Sep 2017. doi: 10.1038/nature23474.
519 URL <https://doi.org/10.1038/nature23474>.520 Joseph Bowles, David Wierichs, and Chae-Yeon Park. Backpropagation scaling in parame-
521 terised quantum circuits. *Quantum*, 9:1873, October 2025. ISSN 2521-327X. doi: 10.22331/q-
522 2025-10-02-1873. URL <https://doi.org/10.22331/q-2025-10-02-1873>.523 James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
524 Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
525 Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL <https://github.com/jax-ml/jax>.526 Michael J. Bremner, Richard Jozsa, and Dan J. Shepherd. Classical simulation of commuting quan-
527 tum computations implies collapse of the polynomial hierarchy. *Proceedings of the Royal Society
528 A: Mathematical, Physical and Engineering Sciences*, 467(2126):459–472, August 2010. ISSN
529 1471-2946. doi: 10.1098/rspa.2010.0301. URL [http://dx.doi.org/10.1098/rspa.
530 2010.0301](http://dx.doi.org/10.1098/rspa.2010.0301).531 M. Cerezo, Martin Larocca, Diego García-Martín, N. L. Diaz, Paolo Braccia, Enrico Fontana,
532 Manuel S. Rudolph, Pablo Bermejo, Aroosa Ijaz, Supanut Thanasilp, Eric R. Anschuetz, and
533 Zoë Holmes. Does provable absence of barren plateaus imply classical simulability? *Nat. Com-
534 mun.*, 16(1):7907, 2025. doi: 10.1038/s41467-025-63099-6. URL [https://doi.org/10.
535 1038/s41467-025-63099-6](https://doi.org/10.1038/s41467-025-63099-6).

540 Nai-Hui Chia, András Gilyén, Tongyang Li, Han-Hsuan Lin, Ewin Tang, and Chunhao Wang.
 541 Sampling-based sublinear low-rank matrix arithmetic framework for dequantizing quantum ma-
 542 chine learning. In *Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of*
 543 *Computing*, STOC 2020, pp. 387–400, New York, NY, USA, 2020. Association for Com-
 544 puting Machinery. ISBN 9781450369794. doi: 10.1145/3357713.3384314. URL <https://doi.org/10.1145/3357713.3384314>.

545
 546 Koki Chinzei, Shinichiro Yamano, Quoc Hoan Tran, Yasuhiro Endo, and Hirotaka Oshima. Trade-
 547 off between gradient measurement efficiency and expressivity in deep quantum neural networks.
 548 *npj Quantum Inf.*, 11(1):79, 2025. doi: 10.1038/s41534-025-01036-7. URL <https://doi.org/10.1038/s41534-025-01036-7>.

549
 550 Joonhee Choi, Adam L. Shaw, Ivaylo S. Madjarov, Xin Xie, Ran Finkelstein, Jacob P. Covey,
 551 Jordan S. Cotler, Daniel K. Mark, Hsin-Yuan Huang, Anant Kale, Hannes Pichler, Fernando
 552 G. S. L. Brandão, Soonwon Choi, and Manuel Endres. Preparing random states and bench-
 553 marking with many-body quantum chaos. *Nature*, 613(7944):468–473, 2023. ISSN 0028-
 554 0836. doi: 10.1038/s41586-022-05442-1. URL <https://www.nature.com/articles/s41586-022-05442-1>.

555
 556 Jordan S. Cotler, Daniel K. Mark, Hsin-Yuan Huang, Felipe Hernández, Joonhee Choi, Adam L.
 557 Shaw, Manuel Endres, and Soonwon Choi. Emergent quantum state designs from individual
 558 many-body wave functions. *PRX Quantum*, 4(1):010311, 2023. doi: 10.1103/prxquantum.
 559 4.010311. URL <https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.4.010311>.

560
 561 Vedran Dunjko, Jacob M. Taylor, and Hans J. Briegel. Quantum-enhanced machine learning. *Phys.*
 562 *Rev. Lett.*, 117:130501, Sep 2016. doi: 10.1103/PhysRevLett.117.130501. URL <https://link.aps.org/doi/10.1103/PhysRevLett.117.130501>.

563
 564 Editorial. Seeking a quantum advantage for machine learning. *Nat. Mach. Intell.*, 5(8):813–813,
 565 Aug 2023. ISSN 2522-5839. doi: 10.1038/s42256-023-00710-9. URL <http://dx.doi.org/10.1038/s42256-023-00710-9>.

566
 567 Dan Friedman and Adji Boussou Dieng. The vendi score: A diversity evaluation metric for machine
 568 learning. *Transactions on Machine Learning Research*, 2023. ISSN 2835-8856. URL <https://openreview.net/forum?id=g970HbQyk1>.

569
 570 Sevag Gharibian and François Le Gall. Dequantizing the quantum singular value transformation:
 571 hardness and applications to quantum chemistry and the quantum pcp conjecture. In *Proceedings*
 572 *of the 54th Annual ACM SIGACT Symposium on Theory of Computing*, STOC 2022, pp. 19–32,
 573 New York, NY, USA, 2022. Association for Computing Machinery. ISBN 9781450392648. doi:
 574 10.1145/3519935.3519991. URL <https://doi.org/10.1145/3519935.3519991>.

575
 576 Elies Gil-Fuster, Casper Gyurik, Adrian Perez-Salinas, and Vedran Dunjko. On the re-
 577 lation between trainability and dequantization of variational quantum learning mod-
 578 els. In Y. Yue, A. Garg, N. Peng, F. Sha, and R. Yu (eds.), *International Con-
 579 ference on Representation Learning*, volume 2025, pp. 24069–24093, 2025. URL
 580 https://proceedings.iclr.cc/paper_files/paper/2025/file/3c215225324f9988858602dc92219615-Paper-Conference.pdf.

581
 582 András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe. Quantum singular value transforma-
 583 tion and beyond: exponential improvements for quantum matrix arithmetics. In *Proceedings of*
 584 *the 51st Annual ACM SIGACT Symposium on Theory of Computing*, STOC 2019, pp. 193–204,
 585 New York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450367059. doi:
 586 10.1145/3313276.3316366. URL <https://doi.org/10.1145/3313276.3316366>.

587
 588 Hsin-Yuan Huang, Richard Kueng, and John Preskill. Predicting many properties of a quantum
 589 system from very few measurements. *Nat. Phys.*, 16(10):1050–1057, October 2020. ISSN 1745-
 590 2473,1745-2481. doi: 10.1038/s41567-020-0932-7. URL <https://www.nature.com/articles/s41567-020-0932-7>.

594 Amir Khoshaman, Walter Vinci, Brandon Denis, Evgeny Andriyash, Hossein Sadeghi, and Moham-
 595 mad H Amin. Quantum variational autoencoder. *Quantum Science and Technology*, 4(1):014001,
 596 September 2018. doi: 10.1088/2058-9565/aada1f. URL <http://dx.doi.org/10.1088/2058-9565/aada1f>.

598 Leeseok Kim, Seth Lloyd, and Milad Marvian. Hamiltonian quantum generative adversarial net-
 599 works. *Phys. Rev. Res.*, 6:033019, Jul 2024. doi: 10.1103/PhysRevResearch.6.033019. URL
 600 <https://link.aps.org/doi/10.1103/PhysRevResearch.6.033019>.

601 Andrii Kurkin, Kevin Shen, Susanne Pielawa, Hao Wang, and Vedran Dunjko. Note on the uni-
 602 versality of parameterized iqp circuits with hidden units for generating probability distributions,
 603 2025. URL <https://arxiv.org/abs/2504.05997>.

604 Martín Larocca, Supanut Thanasilp, Samson Wang, Kunal Sharma, Jacob Biamonte, Patrick J.
 605 Coles, Lukasz Cincio, Jarrod R. McClean, Zoë Holmes, and M. Cerezo. Barren plateaus in
 606 variational quantum computing. *Nature Reviews Physics*, 7(4):174–189, 2025. doi: 10.1038/s42254-025-00813-9. URL <https://doi.org/10.1038/s42254-025-00813-9>.

607 Seth Lloyd and Christian Weedbrook. Quantum generative adversarial learning. *Phys. Rev. Lett.*,
 608 121:040502, Jul 2018. doi: 10.1103/PhysRevLett.121.040502. URL <https://link.aps.org/doi/10.1103/PhysRevLett.121.040502>.

609 Jarrod R. McClean, Sergio Boixo, Vadim N. Smelyanskiy, Ryan Babbush, and Hartmut Neven.
 610 Barren plateaus in quantum neural network training landscapes. *Nat. Commun.*, 9(1):4812,
 611 2018. doi: 10.1038/s41467-018-07090-4. URL <https://www.nature.com/articles/s41467-018-07090-4>.

612 Hariharan Narayanan and Sanjoy Mitter. Sample complexity of testing the manifold hy-
 613 pothesis. In J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta (eds.),
 614 *Advances in Neural Information Processing Systems*, volume 23. Curran Associates, Inc.,
 615 2010. URL https://proceedings.neurips.cc/paper_files/paper/2010/file/8a1e808b55fde9455cb3d8857ed88389-Paper.pdf.

616 Michael A. Nielsen and Isaac L. Chuang. *Quantum Computation and Quantum Information: 10th
 617 Anniversary Edition*. Cambridge University Press, Cambridge, 2010. ISBN 9781107002173.

618 Murphy Yuezhen Niu, Alexander Zlokapa, Michael Broughton, Sergio Boixo, Masoud Mohseni,
 619 Vadim Smelyanskiy, and Hartmut Neven. Entangling quantum generative adversarial networks.
 620 *Phys. Rev. Lett.*, 128:220505, Jun 2022. doi: 10.1103/PhysRevLett.128.220505. URL <https://link.aps.org/doi/10.1103/PhysRevLett.128.220505>.

621 Raghunathan Ramakrishnan, Pavlo O. Dral, Matthias Rupp, and O. Anatole von Lilienfeld. Quan-
 622 tum chemistry structures and properties of 134 kilo molecules. *Scientific Data*, 1(140022), Au-
 623 gust 2014. ISSN 2052-4463. doi: 10.1038/sdata.2014.22. URL <http://dx.doi.org/10.1038/sdata.2014.22>.

624 Lakshika Rathi, Edith Tretschk, Christian Theobalt, Rishabh Dabral, and Vladislav Golyanik. 3d-
 625 qae: Fully quantum auto-encoding of 3d point clouds, 2023. URL <https://arxiv.org/abs/2311.05604>.

626 Erik Recio-Armengol, Shahnawaz Ahmed, and Joseph Bowles. Train on classical, deploy on
 627 quantum: scaling generative quantum machine learning to a thousand qubits, 2025. URL
 628 <https://arxiv.org/abs/2503.02934>.

629 Lars Ruddigkeit, Ruud van Deursen, Lorenz C. Blum, and Jean-Louis Reymond. Enumeration
 630 of 166 billion organic small molecules in the chemical universe database gdb-17. *Journal of
 631 Chemical Information and Modeling*, 52(11):2864–2875, November 2012. ISSN 1549-960X.
 632 doi: 10.1021/ci300415d. URL <http://dx.doi.org/10.1021/ci300415d>.

633 Dan Shepherd and Michael J. Bremner. Temporally unstructured quantum computation. *Pro-
 634 ceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 465(2105):
 635 1413–1439, February 2009. ISSN 1471-2946. doi: 10.1088/rspa.2008.0443. URL <http://dx.doi.org/10.1088/rspa.2008.0443>.

648 Andrea Skolik, Jarrod R. McClean, Masoud Mohseni, Patrick van der Smagt, and Martin Leib.
 649 Layerwise learning for quantum neural networks. *Quantum Machine Intelligence*, 3(5), January
 650 2021. ISSN 2524-4914. doi: 10.1007/s42484-020-00036-4. URL <http://dx.doi.org/10.1007/s42484-020-00036-4>.
 651

652 Ewin Tang. A quantum-inspired classical algorithm for recommendation systems. In *Proceedings
 653 of the 51st Annual ACM SIGACT Symposium on Theory of Computing*, STOC 2019, pp. 217–228,
 654 New York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450367059. doi:
 655 10.1145/3313276.3316310. URL <https://doi.org/10.1145/3313276.3316310>.
 656

657 Ewin Tang. Quantum principal component analysis only achieves an exponential speedup
 658 because of its state preparation assumptions. *Phys. Rev. Lett.*, 127:060503, Aug 2021.
 659 doi: 10.1103/PhysRevLett.127.060503. URL <https://link.aps.org/doi/10.1103/PhysRevLett.127.060503>.
 660

661 Quoc Hoan Tran, Shinji Kikuchi, and Hirotaka Oshima. Variational denoising for variational quan-
 662 tum eigensolver. *Phys. Rev. Res.*, 6:023181, May 2024. doi: 10.1103/PhysRevResearch.6.023181.
 663 URL <https://link.aps.org/doi/10.1103/PhysRevResearch.6.023181>.
 664

665 Huaijin Wu, Xinyu Ye, and Junchi Yan. QVAE-mole: The quantum VAE with spherical latent
 666 variable learning for 3-d molecule generation. In *The Thirty-eighth Annual Conference on Neu-
 667 ral Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=RqvesBxqDo>.
 668

669 Xie-Hang Yu, Wen Wei Ho, and Pavel Kos. Mixed state deep thermalization, 2025. URL <https://arxiv.org/abs/2505.07795>.
 670

671 Bingzhi Zhang, Peng Xu, Xiaohui Chen, and Quntao Zhuang. Generative quantum machine learn-
 672 ing via denoising diffusion probabilistic models. *Phys. Rev. Lett.*, 132:100602, Mar 2024.
 673 doi: 10.1103/PhysRevLett.132.100602. URL <https://link.aps.org/doi/10.1103/PhysRevLett.132.100602>.
 674

676 Shi-Xin Zhang, Jonathan Allcock, Zhou-Quan Wan, Shuo Liu, Jiace Sun, Hao Yu, Xing-Han Yang,
 677 Jiezhong Qiu, Zhaofeng Ye, Yu-Qin Chen, Chee-Kong Lee, Yi-Cong Zheng, Shao-Kai Jian,
 678 Hong Yao, Chang-Yu Hsieh, and Shengyu Zhang. TensorCircuit: a Quantum Software Frame-
 679 work for the NISQ Era. *Quantum*, 7:912, February 2023. ISSN 2521-327X. doi: 10.22331/q-2023-02-02-912. URL <https://doi.org/10.22331/q-2023-02-02-912>.
 680

681 Christa Zoufal, Aurélien Lucchi, and Stefan Woerner. Quantum generative adversarial networks
 682 for learning and loading random distributions. *npj Quantum Information*, 5(103), November
 683 2019. doi: 10.1038/s41534-019-0223-2. URL <http://dx.doi.org/10.1038/s41534-019-0223-2>.
 684

685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701

702 **A APPENDIX**
 703

704 **A.1 BACKGROUND ON QUANTUM COMPUTING**
 705

706 We provide the essential concepts in quantum computing necessary for understanding our study. For
 707 a comprehensive treatment, we refer the reader to [Nielsen & Chuang \(2010\)](#).

708 **Quantum bit and quantum states.** A fundamental unit in quantum computing is the quantum bit,
 709 or qubit, which represents the state of a quantum system. Before measurement, a qubit can exist in
 710 a superposition of basis states, but upon measurement, it collapses into one of the basis states with
 711 probabilities determined by the quantum state.

712 The pure state of a quantum system consisting of n qubits is described by a vector in a Hilbert space
 713 $\mathcal{H} = (\mathbb{C}^2)^{\otimes n}$. The mathematical representation of a quantum state depends on the choice of basis.

714 For instance, using the orthogonal computational basis states $|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, a single-
 715 qubit state can be expressed as a linear combination $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$, where $\alpha, \beta \in \mathbb{C}$ are complex
 716 amplitudes satisfying the normalization condition $|\alpha|^2 + |\beta|^2 = 1$. Computational basis states for
 717

718 multi-qubit systems are tensor products, such as $|01\rangle = |0\rangle \otimes |1\rangle = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$. Any pure quantum state
 719

720 $|\psi\rangle \in \mathcal{H}$ satisfies $\langle\psi|\psi\rangle = 1$, where $\langle\psi|$ denotes the conjugate transpose of $|\psi\rangle$.
 721

722 Pure states represent systems in definite quantum states, while mixed states describe statistical en-
 723sembles of pure states. A mixed state is represented by a density operator ρ , which is a positive
 724 semidefinite Hermitian operator with trace one ($\text{Tr}(\rho) = 1$). For a pure state $|\psi\rangle$, the density
 725 operator is $\rho = |\psi\rangle\langle\psi|$. For a mixed state as a probabilistic mixture of pure states $\{|\psi_i\rangle\}$ with prob-
 726 abilities $\{p_i\}$, the density operator is $\rho = \sum_i p_i |\psi_i\rangle\langle\psi_i|$. For example, the density matrix for $|0\rangle$ is
 727

$$\rho_0 = |0\rangle\langle 0| = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}.$$

728 **Quantum gates and circuits.** A quantum computer operates via quantum circuits, consisting of
 729 wires (for qubits) and unitary gates that evolve quantum states. Each gate U is a unitary operator
 730 on \mathcal{H} , and the circuit's overall action is the matrix product of these unitaries, computable via tensor
 731 products.

732 A fundamental single-qubit gate is the Hadamard gate H , which creates superposition from com-
 733 putational basis states: $H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$. Applying H to $|0\rangle$ yields the equal superposition
 734 $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$, and to $|1\rangle$ yields $\frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$.

735 Examples of parameterized single-qubit gates include the rotation gates:
 736

$$737 R_y(\theta) = \begin{pmatrix} \cos\left(\frac{\theta}{2}\right) & -\sin\left(\frac{\theta}{2}\right) \\ \sin\left(\frac{\theta}{2}\right) & \cos\left(\frac{\theta}{2}\right) \end{pmatrix}, \quad R_z(\theta) = \begin{pmatrix} e^{-i\theta/2} & 0 \\ 0 & e^{i\theta/2} \end{pmatrix}. \quad (10)$$

738 Common two-qubit gates include the controlled-Z (CZ) gate:
 739

$$740 \text{CZ} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}, \quad (11)$$

741 which applies a phase flip to the target qubit if the control qubit is $|1\rangle$.
 742

743 An example of a parameterized two-qubit gate is the controlled rotation:
 744

$$745 CR_x(\theta) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \cos\left(\frac{\theta}{2}\right) & -i\sin\left(\frac{\theta}{2}\right) \\ 0 & 0 & -i\sin\left(\frac{\theta}{2}\right) & \cos\left(\frac{\theta}{2}\right) \end{pmatrix}. \quad (12)$$

756 Another important parameterized two-qubit gate is the rotation around the ZZ axis:
 757

$$758 \quad R_{ZZ}(\theta) = \exp\left(-i\frac{\theta}{2}Z \otimes Z\right) = \begin{pmatrix} e^{-i\theta/2} & 0 & 0 & 0 \\ 0 & e^{i\theta/2} & 0 & 0 \\ 0 & 0 & e^{i\theta/2} & 0 \\ 0 & 0 & 0 & e^{-i\theta/2} \end{pmatrix}, \quad (13)$$

762 which generates entangling interactions between two qubits and is diagonal in the computational
 763 basis.
 764

765 **Quantum measurement.** Quantum measurements extract classical information from a quantum
 766 state, fundamentally altering it via collapse. For a projective measurement defined by a Hermitian
 767 observable M on \mathcal{H} , we decompose $M = \sum_m mP_m$, where m are the distinct eigenvalues and P_m
 768 are the corresponding orthogonal projectors satisfying $\sum_m P_m = I$ and $P_m P_{m'} = \delta_{mm'} P_m$. Given
 769 a pure state $|\psi\rangle$, the probability of outcome m is $p(m) = \langle\psi|P_m|\psi\rangle = \langle\psi|P_m|\psi\rangle$. Upon observing
 770 m , the state collapses to the normalized post-measurement state $\frac{P_m|\psi\rangle}{\sqrt{p(m)}}$.
 771

772 For mixed states described by ρ , the outcome probability generalizes to $p(m) = \text{Tr}(P_m\rho)$, and the
 773 updated density operator is $\rho' = \frac{P_m\rho P_m}{p(m)}$. In the common case of measuring individual qubits in
 774 the computational basis, the projectors are $P_0 = |0\rangle\langle 0|$ and $P_1 = |1\rangle\langle 1|$ per qubit, yielding binary
 775 outcomes with probabilities given by the diagonal elements of the reduced density matrix. This col-
 776 lapsed from superposition to a definite basis state underscores the irreversible nature of measurement
 777 in quantum mechanics.
 778
 779

780 A.2 LEARNING AN ENSEMBLE OF QUANTUM STATES

781 In quantum information science, ensembles of quantum states play a pivotal role in characterizing
 782 randomness and universality in quantum systems. An ensemble of quantum states $\mathcal{E} = \{(p_j, |\psi_j\rangle)\}$
 783 consists of a set of pure quantum states $|\psi_j\rangle$ in a Hilbert space \mathcal{H} , each weighted by a probability
 784 p_j such that $\sum_j p_j = 1$. This ensemble represents a probabilistic mixture, capturing stochastic
 785 processes that generate quantum states. Unlike an individual wave function or density matrix, ran-
 786 domness is an emergent property of the ensemble.
 787

788 We want to clarify that learning an ensemble of quantum states is a different problem from preparing
 789 the density matrix $\rho = \sum_j p_j |\psi_j\rangle\langle\psi_j|$ of the ensemble. Here, ρ alone does not uniquely determine
 790 the ensemble, as multiple distinct ensembles can yield the same density matrix. The goal of learning
 791 an ensemble of quantum states is to learn how to sample quantum states from an unknown distribu-
 792 tion. The density matrix encodes the average expectation values of an observable O :
 793

$$794 \quad \sum_j p_j \langle\psi_j|O|\psi_j\rangle = \text{Tr}(O\rho). \quad (14)$$

795 The density matrix is insufficient to distinguish ensembles, which require higher-order moments.
 796 For example, the k -th moment operator is $\rho_{\mathcal{E}}^{(k)} = \sum_j p_j (|\psi_j\rangle\langle\psi_j|)^{\otimes k}$. This acts on k copies of the
 797 Hilbert space and describes an incoherent sum of k identical states. From the k -th moment operator,
 798 we can calculate the k -the moment of the observable O as:
 799

$$800 \quad \sum_j p_j (\langle\psi_j|O|\psi_j\rangle)^k = \text{Tr}(O^{\otimes k} \rho_{\mathcal{E}}^{(k)}). \quad (15)$$

801 In general, learning an ensemble involves estimating its density matrix, moments, or nonlinear prop-
 802 erties from samples. While the first moment (density matrix) is accessible via standard quantum
 803 state tomography, higher moments require statistical estimation from labeled samples drawn from
 804 \mathcal{E} . One of the most interesting problems is to construct an ensemble that mimics (or approximates)
 805 the Haar ensemble up to the k -th moment. An ε -approximate k -designs satisfies $\|\rho_{\mathcal{E}}^{(k)} - \rho_{\text{Haar}}^{(k)}\| \leq \varepsilon$.
 806 Approximate designs emerge in physical systems, such as random unitary circuits or Hamiltonian
 807 evolutions.
 808

810 Many projected ensembles (MPEs) offer a natural realization of ε -approximate k -designs (Choi
 811 et al., 2023; Cotler et al., 2023). Given a many-body state $|\Psi\rangle$ on subsystems A (n_a qubits) and M
 812 (n_m qubits), projective measurements on A in a local basis $\{|\mathbf{z}_A\rangle\}$ yield the ensemble on M as
 813

$$\mathcal{E}_{\Psi,M} = \{(p(\mathbf{z}_A), |\psi(\mathbf{z}_A)\rangle_M)\}_{\mathbf{z}_A}, \quad (16)$$

814 with $p(\mathbf{z}_A) = \langle\Psi|(|\mathbf{z}_A\rangle\langle\mathbf{z}_A| \otimes \mathbf{1}_M)|\Psi\rangle$ and $|\psi(\mathbf{z}_A)\rangle_M = (\langle\mathbf{z}_A| \otimes \mathbf{1}_M)|\Psi\rangle/\sqrt{p(\mathbf{z}_A)}$. The MPE
 815 generates a classical probability distribution $p(\mathbf{z}_A)$ over measurement outcomes, but the projected
 816 states $|\psi(\mathbf{z}_A)\rangle_M$ are genuinely quantum. Such ensembles approximate k -designs for generic generator
 817 states $|\Psi\rangle$, particularly in chaotic systems when n_a is sufficiently large.
 818

819 MPEs were originally developed to approximate k -designs from Haar-random ensembles. However,
 820 in our study, they are used innovatively to prove the universality of learning distributions from quan-
 821 tum states. While low-entanglement MPEs may be classically simulable, the framework’s advantage
 822 lies in quantum hardware efficiently preparing the many-body state $|\Psi\rangle$ for sampling complex, non-
 823 local distributions (e.g., in quantum chemistry, where classical methods struggle with superposition
 824 and entanglement). This offers the potential for quantum speedups over classical generative models
 825 for tasks such as simulating molecular ensembles, as classical sampling from such distributions can
 826 require exponential resources.
 827

828 A.3 CHALLENGES IN QUANTUM MACHINE LEARNING (QML)

829
 830
 831 QML has garnered significant interest for its potential to leverage quantum systems for enhanced
 832 data processing and generative tasks. However, recent advancements have highlighted several chal-
 833 lenges and negative results that temper claims of quantum advantage. This appendix provides an
 834 overview of these issues, drawing from key literature, and positions our MPE framework in this
 835 context. We focus on dequantization results, trainability bottlenecks such as barren plateaus, and
 836 classical simulability, while noting promising mitigation strategies.
 837

838 **Dequantization and Classical Equivalents.** A growing body of work demonstrates that many
 839 QML algorithms, initially thought to offer exponential speedups, can be “dequantized”—simulated
 840 classically with comparable efficiency under realistic assumptions, such as access to classical data
 841 models (e.g., length-squared sampling). For instance, Tang (2019) provides dequantization for quan-
 842 tum recommendation systems, showing that classical algorithms can achieve similar performance
 843 with polynomial resources. Tang (2021) extends this to quantum principal component analysis, pro-
 844 viding a classical counterpart that matches quantum outputs under standard data access. Chia et al.
 845 (2020) and Gharibian & Le Gall (2022) dequantize aspects of quantum singular value transforma-
 846 tions (Gilyén et al., 2019), revealing classical simulations for tasks like quantum linear algebra.
 847

848 More recent studies, such as Cerezo et al. (2025) and Gil-Fuster et al. (2025), apply dequantiza-
 849 tion to variational QML models, underscoring that claimed advantages often vanish when consid-
 850 ering trivial datasets or sampling models of trivial distributions. These results suggest that QML’s
 851 edge may be limited to regimes with inherent quantum structure, such as high-entanglement quan-
 852 tum many-body systems, where classical simulation becomes inefficient. In our MPE framework,
 853 we position it as potentially resistant to such dequantization in these high-entanglement scenarios.
 854 MPE leverages measurement-induced ensembles from many-body wave functions, which can cap-
 855 ture non-local quantum correlations that classical methods struggle to replicate efficiently. While we
 856 do not claim a guaranteed quantum advantage, this motivates further exploration of MPE for tasks
 857 like quantum chemistry simulations, where entanglement plays a central role.
 858

859 **Barren Plateaus.** A major bottleneck in QML using PQCs is the barren plateau phenomenon,
 860 where gradients vanish exponentially with system size or circuit depth, rendering optimization in-
 861 tractable (McClean et al., 2018). This arises from random initialization in high-dimensional param-
 862 eter spaces, global measurements, excessive entanglement in the initial state, the circuit ansatz, and
 863 the existence of hardware noise, leading to flat loss landscapes (Larocca et al., 2025). Our Incre-
 864 mental MPE variant aims to address this by leveraging layer-wise training (Skolik et al., 2021), but
 865 full theoretical guarantees for this heuristic are lacking.
 866

867 **Backpropagation Scaling.** The backpropagation scaling problem in PQCs refers to the inefficiency
 868 of gradient computation during the training of variational quantum algorithms. Unlike classical
 869

864 neural networks, where gradients scale with constant or logarithmic overhead via backpropagation,
 865 PQCs rely on stochastic measurements and methods like the parameter-shift rule, leading to costs
 866 that grow linearly with the number of parameters. This arises from requiring separate circuit eval-
 867 uations per parameter, amplified by shot noise, making large-scale optimization impractical. There
 868 are promising directions to mitigate this issue, such as constructing structured PQCs with commut-
 869 ing generators to enable parallel gradient estimation (Bowles et al., 2025), balancing expressivity
 870 and trainability (Chinzei et al., 2025), and classical surrogates for loss functions where classical
 871 approximations guide quantum optimization (Recio-Armengol et al., 2025).

872 These challenges could limit the practicality and trainability of MPE in real quantum hardware.
 873 However, the argument for classical simulability in training is particularly relevant for generative
 874 models: one can classically train a variational state by minimizing expectation values, but sampling
 875 from such states classically is often prohibitively expensive. This highlights a key distinction: while
 876 training may be dequantized, quantum hardware offers advantages for sampling entangled ensem-
 877 bles. From this perspective, our universality theorem is complementary. It ensures MPE can, in
 878 principle, capture any pure-state distribution before optimizing for hardware, focusing on expressiv-
 879 ity rather than guaranteed speedup.

880

881 A.4 PROOF FOR THE BOUND OF δ -COVERING NUMBER

882

883 We present an intuition for an iterative algorithm to construct a δ -net of a given quantum distribution
 884 \mathcal{Q}_t . Pick a point $|\psi_1\rangle \sim \mathcal{Q}_t$ arbitrarily sampled from \mathcal{Q}_t , then pick $|\psi_2\rangle \sim \mathcal{Q}_t$ that is farther than
 885 δ from $|\psi_1\rangle$, then pick $|\psi_3\rangle \sim \mathcal{Q}_t$ that is farther than from both $|\psi_1\rangle$ and $|\psi_2\rangle$, and so on. If \mathcal{Q}_t is
 886 compact, this process stops in finite time and gives an δ -net of \mathcal{Q}_t .

887 In quantum mechanics, the Hilbert space \mathbb{C}^D (a D -dimensional complex vector space) describes a
 888 quantum system with D possible basis states. A pure state of this system is represented by a unit
 889 vector $|\psi\rangle \in \mathbb{C}^D$ satisfying $\langle\psi|\psi\rangle = 1$, but physically equivalent states differ by a global phase:
 890 $|\psi\rangle \sim e^{i\theta}|\psi\rangle$ for any real θ , as this phase does not affect observable quantities like probabilities
 891 or expectation values. Thus, the set of distinct pure states is not the full unit sphere $S^{2D-1} \subset$
 892 \mathbb{R}^{2D} (real/imaginary parts of \mathbb{C}^D), but rather the quotient space obtained by identifying vectors
 893 that differ by a phase factor from the group $U(1)$ (unit complex numbers). This quotient is the
 894 complex projective space \mathbb{CP}^{D-1} , defined as $\mathbb{CP}^{D-1} = S^{2D-1}/U(1)$, where each point in \mathbb{CP}^{D-1}
 895 corresponds to a 1-dimensional complex subspace (a “ray”) in \mathbb{C}^D . Then if we define the manifold
 896 $\mathcal{M} = \{|\psi\rangle\langle\psi| : |\psi\rangle \in \mathbb{C}^D\}$ of pure states in \mathbb{C}^D , we have the relation $\mathcal{M} \cong \mathbb{CP}^{D-1}$.
 897

898 Let $S \subset \mathbb{C}^{2^n}$ be a fixed D -dimensional complex subspace (i.e., S has an orthonormal basis with
 899 D elements $|e_1\rangle, \dots, |e_D\rangle$), and define $\mathcal{K} = \{|\psi\rangle\langle\psi| : |\psi\rangle \in S, \langle\psi|\psi\rangle = 1\}$ as the submanifold
 900 of pure states supported entirely within S . Equipped with the trace distance $d(\rho, \sigma) = \frac{1}{2}\|\rho - \sigma\|_1$,
 901 the metric space (\mathcal{K}, d) is isometric to the manifold of pure states on \mathbb{C}^D under the induced Fubini-
 902 Study metric (rescaled to match trace distance). This ensures that covering numbers, volumes, and
 903 discretization strategies for K inherit directly from \mathbb{CP}^{D-1} , without dilution from the larger space.

904 We consider the δ -net discretizing the manifold \mathcal{M} of pure states in \mathbb{C}^D under the trace distance
 905 metric d . Based on Lemma 1 in Akibue et al. (2022), we estimate $\mathcal{N}(\mathcal{M}, d, \delta)$ —the cardinality of
 906 the smallest δ -net of \mathcal{M} and derive formal lower and upper bounds in terms of D and δ .

907 **Lemma A.1** (Bound for covering number). *Let $\mathcal{M} = \{|\psi\rangle\langle\psi| : |\psi\rangle \in \mathbb{C}^D\}$ be the manifold of pure
 908 states in \mathbb{C}^D , equipped with the trace distance d . For $\delta \in (0, 1]$ and $D \geq 2$:*

$$909 \quad (1/\delta)^{2(D-1)} \leq \mathcal{N}(\mathcal{M}, d, \delta) \leq 5 \cdot D \ln(D) \cdot (1/\delta)^{2(D-1)} \quad (17)$$

910

911

912 *Proof.* The proof relies on volumetric arguments using the unitarily invariant probability measure μ
 913 on $\mathcal{P}(\mathbb{C}^D)$, which normalizes the total volume to $\mu(\mathcal{P}(\mathbb{C}^D)) = 1$. The measure μ is a probability
 914 measure on \mathbb{CP}^{D-1} , meaning it assigns sizes to subsets such that the entire space has measure 1. It is
 915 derived from the Haar measure on the unitary group $U(D)$, inducing a uniform distribution: picking
 916 a random unitary and applying it to a fixed state (e.g., $|0\rangle$) samples uniformly from μ . Without
 917 normalization, the raw volume of \mathbb{CP}^{D-1} under Fubini-Study is $\pi^{D-1}/(D-1)!$ but we scale it to 1
 918 for convenience to convert absolute volumes into probabilities.

918 **Proof for the lower bound.** First, we use the result presented in Appendix A in [Akibue et al. \(2022\)](#)
 919 to derive the volume of δ -ball $B_\delta(\phi) := \{\psi \in \mathcal{P}(\mathbb{C}^D) : d(\phi, \psi) < \delta\}$ as follows:
 920

$$921 \quad \forall D \in \mathbb{N}, \forall \delta \in (0, 1], \forall \phi \in \mathcal{P}(\mathbb{C}^D), \quad \mu(B_\delta(\phi)) = \delta^{2(D-1)}. \quad (18)$$

922 Here, for the convenient with $|\psi\rangle, |\phi\rangle \in \mathbb{C}^D$, we write $\psi = |\psi\rangle\langle\psi| \in \mathcal{P}(\mathbb{C}^D)$ and $\phi = |\phi\rangle\langle\phi| \in$
 923 $\mathcal{P}(\mathbb{C}^D)$, and the trace distance $d(\phi, \psi) = \frac{1}{2}\|\phi - \psi\|_1$.

924 Since the total measure is 1 (as normalized) and each ball $B_\delta(\phi)$ has measure $\delta^{2(D-1)}$, to cover the
 925 space at least $1/\delta^{2(D-1)}$ balls are needed. Formally,
 926

$$927 \quad \mathcal{N}(\mathcal{M}, d, \delta) \geq \frac{\mu(\mathcal{P}(\mathbb{C}^D))}{\max_\phi \mu(B_\delta(\phi))} = \frac{1}{\delta^{2(D-1)}}. \quad (19)$$

929 **Proof for the upper bound.** For the upper bound, based on Appendix B in [Akibue et al. \(2022\)](#), we
 930 construct an explicit δ -net using a greedy probabilistic method. The idea is to sample random pure
 931 states to cover most of the space, then greedily add points to cover the remainder. Let $D_{\text{eff}} = 2(D -$
 932 $1) \geq 2$ (effective real dimension of the projective space). Sample J_R random pure states $\{\phi_j\}_{j=0}^{J_R-1}$
 933 from μ^{J_R} . The expected uncovered measure in the region (A^c) not covered by $A := \bigcup_{j=0}^{J_R-1} B_{\delta_R}(\phi_j)$
 934 is calculated as follows:
 935

$$936 \quad \int d\mu^{J_R} \mu(A^c) = \int d\mu^{J_R} \int d\mu(\psi) \prod_{j=1}^{J_R} I[d(\psi, \phi_j) \geq \delta_R] \quad (20)$$

$$937 \quad = \int d\mu(\psi) \prod_{j=1}^{J_R} \int d\mu(\phi_j) I[d(\psi, \phi_j) \geq \delta_R] \quad (21)$$

$$938 \quad \leq \left(1 - \delta_R^{D_{\text{eff}}}\right)^{J_R} \leq \exp(-J_R \delta_R^{D_{\text{eff}}}), \quad (22)$$

939 where we use Fubini's theorem and $\mu(B_\delta(\phi)) = \delta^{D_{\text{eff}}}$. Here, $I[X] \in \{0, 1\}$ is the indicator function,
 940 i.e., $I[X] = 1$ iff X is true. Thus, there exists a set $\{\phi_j\}_{j=0}^{J_R-1}$ with $\mu(A^c) \leq \exp(-J_R \delta_R^{D_{\text{eff}}})$. Now,
 941 pack disjoint δ_P -balls ($\delta_P \leq \delta_R \leq 1$) into A^c with centers $\{\psi_j\}_{j=0}^{J_P-1}$ as much as possible (greedy
 942 packing). The packing gives the following estimation:
 943

$$944 \quad J_P \leq \frac{\mu(A^c)}{\delta_P^{D_{\text{eff}}}} \leq \frac{\exp(-J_R \delta_R^{D_{\text{eff}}})}{\delta_P^{D_{\text{eff}}}}. \quad (23)$$

945 The combined set $\{\phi_j\}_{j=0}^{J_R-1} \cup \{\psi_j\}_{j=0}^{J_P-1}$ covers with radius $\delta_R + \delta_P = \delta$ and size $J = J_R + J_P$.
 946 Set $J_R = \lceil D_{\text{eff}} \delta_R^{-D_{\text{eff}}} \ln(\delta_R/\delta_P) \rceil$, $\delta_P = \delta_R/x$, $\delta_R = x\delta/(1+x)$ with $x \geq 1$. This yields:
 947

$$948 \quad J = J_R + J_P \leq \left\lceil \frac{D_{\text{eff}} \ln x}{\delta_R^{D_{\text{eff}}}} \right\rceil + \frac{1}{\delta_R^{D_{\text{eff}}}} \leq \frac{1}{\delta_{\text{eff}}^{D_{\text{eff}}}} \left\{ \left(1 + \frac{1}{x}\right)^{D_{\text{eff}}} (D_{\text{eff}} \ln x + 1) + 1 \right\} = \frac{\alpha(D_{\text{eff}}, x)}{\delta_{\text{eff}}^{D_{\text{eff}}}}, \quad (24)$$

949 where $\alpha(D_{\text{eff}}, x) = (1 + 1/x)^{D_{\text{eff}}} (D_{\text{eff}} \ln x + 1) + 1$.
 950

951 Now, we select $x = D_{\text{eff}} \ln D_{\text{eff}} > 1$ and consider the function
 952

$$953 \quad f(D) = \frac{\alpha(D_{\text{eff}}, D_{\text{eff}} \ln D_{\text{eff}})}{D \ln D}. \quad (25)$$

954 Numerically, we can check that $\frac{\partial f}{\partial D}(D=2) > 0$, $\frac{\partial f}{\partial D}(D=3) > 0$, and $\frac{\partial f}{\partial D}(D_0) < 0$ for $D_0 \geq 4$.
 955 If we think D is a continuous real variable, then the derivative $\frac{\partial f}{\partial D}$ has a critical point $D^* \in (3, 4)$.
 956 Numerical calculation provides that $D^* \approx 3.032879$ and $f(D^*) \approx 4.927605 < 5$. Therefore, we
 957 have the following upper bound for $\mathcal{N}(\mathcal{M}, d, \delta)$:
 958

$$959 \quad \mathcal{N}(\mathcal{M}, d, \delta) \leq J \leq \frac{D \ln D}{\delta^{D_{\text{eff}}}} f(D) \leq \frac{D \ln D}{\delta^{D_{\text{eff}}}} f(D^*) < \frac{5D \ln D}{\delta^{D_{\text{eff}}}} = 5 \cdot D \ln(D) \cdot (1/\delta)^{2(D-1)}. \quad (26)$$

960 \square

961 Since $\mathcal{Q}_t \subseteq \mathcal{K}$, then we obtain $\mathcal{N}(\mathcal{Q}_t, d, \delta) \leq \mathcal{N}(\mathcal{K}, d, \delta) = \mathcal{N}(\mathcal{M}, d, \delta)$, which is the upper bound
 962 in Equation 2.
 963

972 A.5 PROOF OF LEMMA 4.3
973

974 The proof constructs a unitary V acting on the ancilla system A (with n_a qubits) and the hidden
975 system M (with $n_m = n_a + \lceil \log_2(1/\varepsilon) \rceil$ qubits) to generate a probability distribution p that approx-
976 imates the target distribution q . Following Kurkin et al. (2025), we provide a concrete construction
977 using an Instantaneous Quantum Polynomial (IQP) (Shepherd & Bremner, 2009; Bremner et al.,
978 2010) circuit architecture. The proof proceeds in three steps: defining the IQP circuit, generating a
979 logical model state, and approximating the target probability distribution.

980 A.5.1 STEP 1: IQP CIRCUIT ARCHITECTURE
981

982 IQP circuits form a class of quantum circuits consisting of commuting gates that are diagonal in the
983 Z basis. A parameterized IQP circuit on n qubits consists of three components: (1) Hadamard gates
984 $H^{\otimes n}$ on all qubits (initialized at $|0\rangle^{\otimes n}$) to create a uniform superposition, (2) a layer of parameter-
985 ized gates of the form $\exp(i\theta_j Z_{\mathbf{g}_j})$, where $Z_{\mathbf{g}_j}$ is a tensor product of Pauli Z operators acting on a
986 subset of qubits specified by the nonzero entries of $\mathbf{g}_j \in \{0, 1\}^n$, and (3) another layer of Hadamard
987 gates $H^{\otimes n}$. Formally, an IQP circuit is $U = H^{\otimes n} D H^{\otimes n}$, where $D = \exp\left(i \sum_j \theta_j Z_{\mathbf{g}_j}\right)$. A pa-
988 rameterized IQP circuit with hidden units is a parameterized IQP circuit in which a chosen subset of
989 qubits is traced out.

990 IQP circuits are particularly useful for sampling problems and exhibit properties that make them hard
991 to simulate classically under certain complexity assumptions. In our framework, parameterized IQP
992 circuits with hidden units provide an efficient parameterization for generating complex probability
993 distributions over measurement outcomes.

994 To describe the parameterized IQP circuits with hidden units, we initialize the system in the state
995 $|0\rangle^{\otimes(n_a+n_m)}$ and apply the unitary V as:

996 1. **First Layer:** Apply Hadamard gates to all qubits, $H^{\otimes(n_a+n_m)}$, creating a uniform super-
997 position:

$$1000 |0\rangle^{\otimes(n_a+n_m)} \rightarrow \frac{1}{\sqrt{2^{n_a+n_m}}} \sum_{j \in \{0,1\}^{n_a}} \sum_{\mathbf{k} \in \{0,1\}^{n_m}} |j\rangle_A |\mathbf{k}\rangle_M. \quad (27)$$

1001 2. **Middle Layer:** Apply a parameterized diagonal gate $D(\boldsymbol{\theta}) = \prod_{j \in \{0,1\}^{n_a}, \mathbf{k} \in \{0,1\}^{n_m}} e^{i\theta_{j,\mathbf{k}} Z_{j,\mathbf{k}}}$, where $Z_{j,\mathbf{k}}$ is a tensor product of Pauli- Z opera-
1002 tors acting on subsets of qubits in $A \otimes M$, and $\theta_{j,\mathbf{k}} \in \mathbb{R}$ are trainable phases encoding the
1003 target distribution. The resulting state is:

$$1004 |\psi\rangle = \frac{1}{\sqrt{2^{n_a+n_m}}} \sum_{j \in \{0,1\}^{n_a}} \sum_{\mathbf{k} \in \{0,1\}^{n_m}} e^{i\theta_{j,\mathbf{k}}} |j\rangle_A |\mathbf{k}\rangle_M. \quad (28)$$

1005 This is referred to as the Uniform Mixture Approximation (UMA) state.

1006 3. **Final Layer:** Apply Hadamard gates ($H^{\otimes n_a} \otimes I^{\otimes n_m}$) to the ancilla system to prepare the
1007 state for measurement in the computational basis of A .

1008 A.5.2 STEP 2: GENERATING THE LOGICAL MODEL STATE
1009

1010 To approximate the target distribution $q = \{q_b\}_{b=0,1,\dots,2^{n_a}-1}$, we consider a logical model state
1011 defined by a mapping $v : \{0, 1, \dots, 2^{n_m} - 1\} \rightarrow \{0, 1, \dots, 2^{n_a} - 1\}$, where $n_m > n_a$. Here,
1012 we use bold letters for binary index, such as $\mathbf{b} \in \{0, 1\}^{n_a}$ and normal letters for their decimal
1013 equivalent, such as $b \in \{0, 1, \dots, 2^{n_a} - 1\}$. Therefore, $v(\mathbf{b})$ has the same meaning with $v(b)$. We
1014 define the state:

$$1015 |\psi'\rangle = \frac{1}{\sqrt{2^{n_m}}} \sum_{k=0}^{2^{n_m}-1} |v(k)\rangle_A |k\rangle_M, \quad (29)$$

1016 where $v(k)$ maps the hidden state index k to an ancilla state index. Measuring the ancilla system A
1017 in the computational basis yields outcome $\mathbf{b} \in \{0, 1\}^{n_a}$ with probability:

$$1018 p(\mathbf{b}) = \frac{|\{\mathbf{k} \in \{0, 1\}^{n_m} : v(\mathbf{k}) = \mathbf{b}\}|}{2^{n_m}}. \quad (30)$$

1026 We show that the UMA state $|\psi\rangle$ can be transformed into $|\psi'\rangle$ via a unitary, and that applying
 1027 $H^{\otimes n_a} \otimes I^{\otimes n_m}$ to $|\psi'\rangle$ produces:
 1028

$$1029 \quad (H^{\otimes n_a} \otimes I^{\otimes n_m})|\psi'\rangle = \frac{1}{\sqrt{2^{n_a+n_m}}} \sum_{j \in \{0,1\}^{n_a}} \sum_{k \in \{0,1\}^{n_m}} (-1)^{v(\mathbf{k}) \cdot j} |j\rangle_A |\mathbf{k}\rangle_M, \quad (31)$$

1031 where $v(\mathbf{k}) \cdot j$ is the inner product modulo 2. This state is a UMA state with phases $\theta_{j,k} = 0$ if
 1032 $v(\mathbf{k}) \cdot j$ is even, and $\theta_{j,k} = \pi$ if $v(\mathbf{k}) \cdot j$ is odd. Applying $H^{\otimes n_a} \otimes I^{\otimes n_m}$ to this state recovers $|\psi'\rangle$,
 1033 and measuring A in the computational basis yields the same probability distribution $p(\mathbf{b})$.
 1034

1035 A.5.3 STEP 3: PROBABILITY APPROXIMATION

1037 The probability of outcome $\mathbf{b} \in \{0, 1\}^{n_a}$ is:

$$1039 \quad p(\mathbf{b}) = \frac{c_{\mathbf{b}}}{2^{n_m}}, \quad \text{where } c_{\mathbf{b}} = |\{\mathbf{k} \in \{0, 1\}^{n_m} : v(\mathbf{k}) = \mathbf{b}\}|, \quad (32)$$

1040 and $c_{\mathbf{b}}$ is the number of hidden states mapped to outcome \mathbf{b} . To ensure $p(\mathbf{b}) \approx q(\mathbf{b})$, we choose the
 1041 mapping v as follows:
 1042

- 1043 1. For each $\mathbf{b} \in \{0, 1\}^{n_a}$, set $c_{\mathbf{b}} = \lfloor q(\mathbf{b})2^{n_m} \rfloor$. Compute the sum $S = \sum_{\mathbf{b} \in \{0, 1\}^{n_a}} c_{\mathbf{b}} \leq 2^{n_m}$,
 1044 with $2^{n_m} - S \leq 2^{n_a}$.
- 1045 2. If $S < 2^{n_m}$, distribute the remaining $2^{n_m} - S$ states by incrementing $c_{\mathbf{b}} = \lfloor q(\mathbf{b})2^{n_m} \rfloor + 1$
 1046 for the first $2^{n_m} - S$ outcomes \mathbf{b} , ensuring $\sum_{\mathbf{b} \in \{0, 1\}^{n_a}} c_{\mathbf{b}} = 2^{n_m}$.
- 1047 3. Assign hidden states $k = 0, 1, \dots, 2^{n_m} - 1$:
 - 1048 • Assign the first $c_{\mathbf{b}_1}$ states ($k = 0, \dots, c_{\mathbf{b}_1} - 1$) to $v(k) = \mathbf{b}_1$ (e.g., $\mathbf{b}_1 = 00 \dots 0$).
 - 1049 • Assign the next $c_{\mathbf{b}_2}$ states ($k = c_{\mathbf{b}_1}, \dots, c_{\mathbf{b}_1} + c_{\mathbf{b}_2} - 1$) to $v(k) = \mathbf{b}_2$, and continue
 1050 until all 2^{n_m} states are assigned.
 1051

1053 The error for each outcome is:

$$1054 \quad |q(\mathbf{b}) - p(\mathbf{b})| = \left| q(\mathbf{b}) - \frac{c_{\mathbf{b}}}{2^{n_m}} \right| = \frac{|q(\mathbf{b})2^{n_m} - c_{\mathbf{b}}|}{2^{n_m}} \leq \frac{1}{2^{n_m}}. \quad (33)$$

1057 The total variation distance is:

$$1058 \quad \delta(p, q) = \frac{1}{2} \sum_{\mathbf{b} \in \{0, 1\}^{n_a}} |p(\mathbf{b}) - q(\mathbf{b})| \leq \frac{1}{2} \cdot 2^{n_a} \cdot \frac{1}{2^{n_m}} = \frac{2^{n_a}}{2^{n_m+n_a}} = \frac{1}{2^{n_m-n_a+1}}. \quad (34)$$

1061 Choosing $n_m = n_a + \lceil \log_2(1/\varepsilon) \rceil$, we have: $2^{n_m-n_a} \geq \frac{1}{\varepsilon} \implies \frac{1}{2^{n_m-n_a}} \leq \varepsilon$. Thus: $\delta(p, q) \leq \frac{1}{2}$.
 1062 $\frac{1}{2^{n_m-n_a}} \leq \frac{\varepsilon}{2}$. This completes the proof, with the unitary $V = (H^{\otimes n_a} \otimes I^{\otimes n_m}) \cdot D(\boldsymbol{\theta}) \cdot H^{\otimes (n_a+n_m)}$
 1063 explicitly constructed to achieve the desired approximation.
 1064

1066 A.6 ENCODING 3-D MOLECULES TO QUANTUM STATES

1069 This process ensures compatibility with quantum amplitude encoding, which requires input vectors
 1070 to be normalized to unit norm. The molecules in the QM9 dataset—small organic compounds with
 1071 up to 9 heavy atoms (C, N, O, F) plus hydrogens, totaling up to 29 atoms per molecule—are rep-
 1072 resented as attributed point clouds. Each molecule (index $j = 0, 1, \dots, N - 1$ in the dataset) is
 1073 denoted as $\{(\mathbf{v}_i^j, \mathbf{a}_i^j)\}_{i=0}^{m_j-1}$, where m_j is the number of atoms, $\mathbf{v}_i^j \in \mathbb{R}^3$ are the 3-D coordinates,
 1074 and $\mathbf{a}_i^j \in \{0, 1\}^k$ is the one-hot encoded atom type, corresponding to j th molecule. Here, for sim-
 1075 plification, we only consider heavy atoms in our model, leading to the number of atom types $k = 4$.
 1076 The dataset can be represented by $\{(\mathbf{v}_i^j, \mathbf{a}_i^j)\}_{i=0}^{m_j-1}_{j=0}^{M-1}$.
 1077

1078 The encoding needs to address challenges of arbitrary translations, rotations, atom ordering, and
 1079 quantum normalization constraints, where the amplitudes of encoded quantum states are non-
 1080 negative real values to simplify the encoding and reconstruction process. We adopt the encoding
 1081 method in [Rathi et al. \(2023\)](#); [Wu et al. \(2024\)](#) with details in the following steps.

1. **Structural normalization for unique representation:** Atoms are reordered using canonical SMILES strings generated via RDKit toolkit ([rdk](#)), ensuring a consistent, graph-based ordering independent of the original input.
2. **Conformation fixing (translation and rotation):** The molecule is centered by subtracting the centroid (center of mass) from all coordinates, aligning it to the origin. It then rotates the position of the first atom in the SMILES string onto the z-axis.
3. **Positive octant adjustment:** After centering and rotation, coordinates may include negative values. The minimum and maximum coordinates across all dimensions, $v_{\min,a}$ and $v_{\max,a}$, are determined as $v_{\min,a} = \min_{j=0, \dots, N-1; i=0, \dots, m_j-1} v_{j,a}^i$ and $v_{\max,a} = \max_{j=0, \dots, N-1; i=0, \dots, m_j-1} v_{j,a}^i$, where $v_{i,a}^j \in \mathbb{R}$ is the coordinate of v_i^j along axis $a \in \{x, y, z\}$. Consider the side length $s = \max_{a \in \{x, y, z\}} (v_{\max,a} - v_{\min,a})$, the coordinates of each atom can be shifted by $(v_{\min,x}, v_{\min,y}, v_{\min,z})$ and re-scaled by s , bounding all $x_i, y_i, z_i \in [0, 1]$.
4. **Introduction of auxiliary value and per-atom vector construction:** For each normalized atom i with position $\tilde{v}_i = (x_i, y_i, z_i)$, an auxiliary value $\sqrt{3 - x_i^2 - y_i^2 - z_i^2}$ is added, forming a 4D vector $(x_i, y_i, z_i, \sqrt{3 - x_i^2 - y_i^2 - z_i^2})$ with norm $\sqrt{3}$. The atom type a_i (one-hot vector) has norm 1, yielding a per-atom vector $(x_i, y_i, z_i, a_i[1], \dots, a_i[k], \sqrt{3 - x_i^2 - y_i^2 - z_i^2})$ with total norm $\sqrt{4 + k} = 2$ and length $4 + k = 9$ (for $k = 5$).
5. **Concatenation, global normalization, and amplitude encoding:** Per-atom vectors are concatenated into a per-molecule vector of length $m_j \times (4 + k)$ with norm $2\sqrt{m_j}$. This vector is divided by $2\sqrt{m_j}$ to achieve unit norm. If $m_j < m_{\max} = 9$ (QM9's maximum atoms in our setting), it is zero-padded to $m_{\max} \times (4 + k) = 72$. The unit-norm vector is encoded via amplitude encoding into $|\psi\rangle = \sum_{j=0}^{2^n-1} \alpha_j |j\rangle$, where $\{\alpha_j\}$ are the vector elements (padded with zeros if needed) and $n = \lceil \log_2(m_{\max} \times (4 + k)) \rceil = 7$ qubits.

Specifically, for a molecule with m atoms, the initial state is given by: $|\psi_0\rangle = \frac{1}{2\sqrt{m}} \sum_{i=0}^{m-1} \left(x_i |r_i\rangle + y_i |r_i + 1\rangle + z_i |r_i + 2\rangle + |r_i + 3 + t_i\rangle + \sqrt{3 - x_i^2 - y_i^2 - z_i^2} |r_i + k + 3\rangle \right) + \sum_{j=m(4+k)}^{2^n-1} 0 |j\rangle$, where $r_i = (k + 4)i$ defines the base index for the i -th atom's block in the state vector, t_i is the integer index corresponding to the atom type of the i -th atom (e.g., 0 for C, 1 for N, 2 for O, 3 for F, reflecting the one-hot encoding with a single 1 at the appropriate position), and $k = 4$ is the number of atom types.

A.7 MORE RESULTS IN LEARNING QUANTUM DISTRIBUTION

We present additional results on learning the multi-cluster quantum distribution, as described in the main text. Figure 3 illustrates the variation of the 1-Wasserstein distance between the generated test ensemble and the true ensemble with the number of training states N . The number of steps in the Incremental MPE is set to $K = 10$, with each unitary V_k containing $L = 10$ layers (for 4-qubit states) and $L = 20$ layers (for 6-qubit states). Here, N is tractable in our tasks.

We present empirical results showing that training a large number of layers simultaneously yields poor performance, whereas maintaining the same total number of layers but iteratively optimizing shallow circuits (with a small number of layers) can lead to superior results. Figure 4 illustrates the variation in the evaluation metric with the number of incremental steps in the Incremental MPE framework for learning multi-cluster quantum distributions. Here, $L = 20$ layers are trained for 2000 epochs at each incremental step, resulting in a total of $2000 \times k$ training epochs up to the k -th step. We compare the result at $k = 5$ with standard training of $L = 100$ layers for 10^4 epochs without Incremental MPE. Thus, the total number of training epochs is the same for both methods, but the Incremental MPE requires only 1/10 of the parameters compared to the standard approach. The Incremental MPE yields significantly better results, while the standard method becomes stuck during training, empirically supporting our observation that Incremental MPE provides an effective strategy for practical training.

We further investigate the behavior of the loss function in the incremental MPE framework compared to standard training. Figure 5 depicts the loss functions for learning the multi-cluster quantum

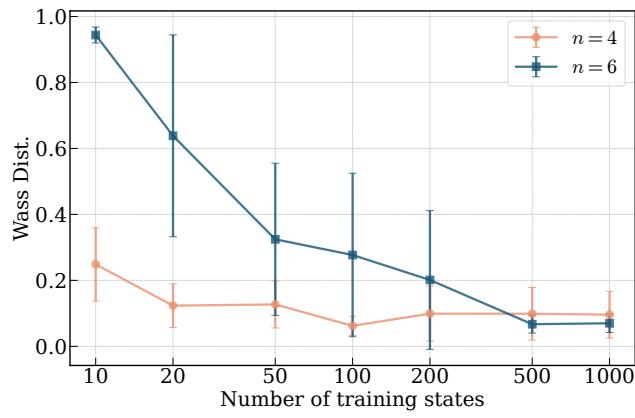


Figure 3: The 1-Wasserstein distance between the generated ensemble and the true ensemble, varying with the number of training states K in the Incremental MPE framework for learning the multi-cluster quantum distributions of n -qubit quantum states ($n = 4, 6$). The solid lines represent the average accuracy over 10 trials (with error bars).

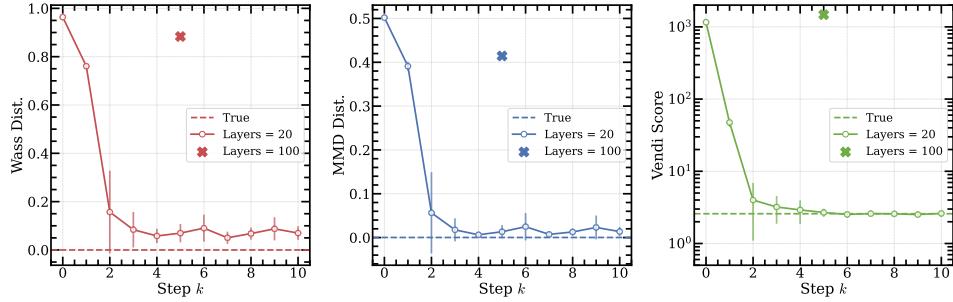


Figure 4: Evaluation metric variation with the number of incremental steps K in the Incremental MPE framework for learning the multi-cluster quantum distributions. The solid lines represent the average accuracy over 10 trials (with error bars) where $L = 20$ layers are trained at each step. The cross markers represent the standard training with $L = 100$ layers without incremental steps. We plot the positions of the cross markers at step $k = 5$ to illustrate that training 20 layers over 5 steps (a total of 100 layers) is significantly better than training 100 layers at once.

distributions of $n = 6$ qubits. We compare the incremental MPE framework with $L = 10$ layers per incremental step (red curve) and direct training with $L = 100$ layers (blue curve). A barren plateau-like phenomenon is evident when training a large number of layers simultaneously (blue curve). However, even with a large total number of layers, gradually training in incremental steps enables the loss to converge to a significantly lower value. This empirically confirms the effectiveness of our incremental MPE framework in mitigating the barren plateau problem.

On learning molecular quantum states using a subset of the QM9 dataset, Fig. 6 illustrates the variation of evaluation metrics as a function of the number of incremental steps K in the Incremental MPE framework. A larger K generally results in lower metric values, indicating improved performance, though the metrics saturate beyond a sufficiently large K . Increasing the number of qubits n_f in the auxiliary system F can further enhance performance.

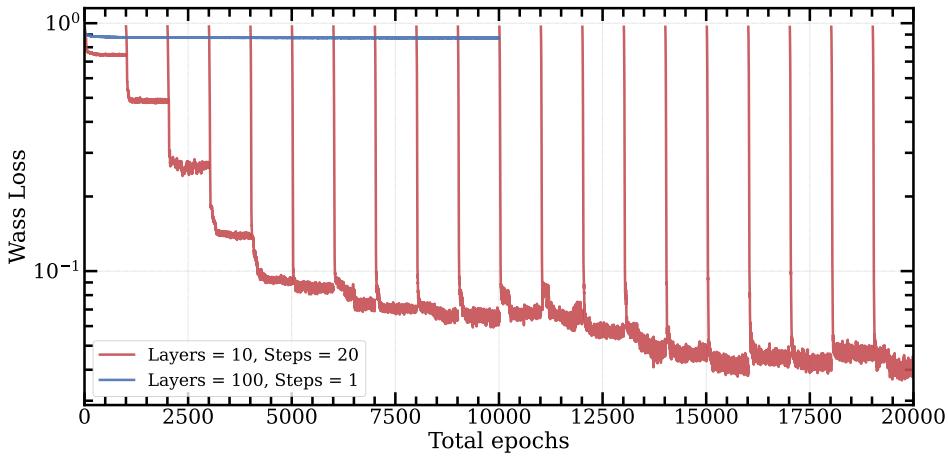


Figure 5: The training loss functions (1-Wasserstein distance) of the Incremental MPE (red) and standard training (blue) for learning the multi-cluster quantum distributions of $n = 6$ qubits. Here, we compare training Incremental MPE with $L = 10$ layers over 20 incremental steps, and standard training with $L = 100$ layers. The solid lines represent the median values at each epoch over 20 trials.

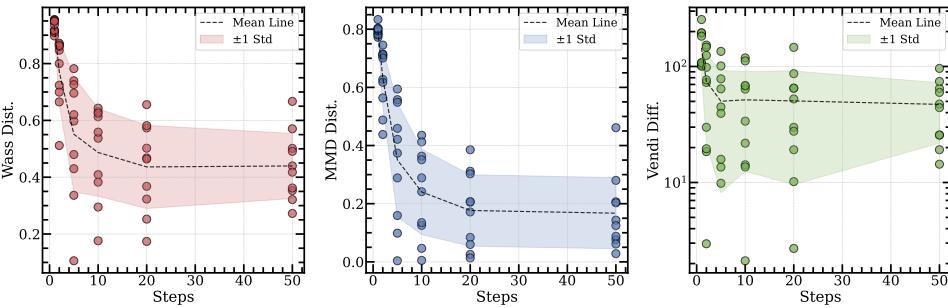


Figure 6: Evaluation metric variation with the number of incremental steps K in the Incremental MPE framework for learning quantum distributions of molecular data from a QM9 subset. Circle markers represent individual trials, dotted lines indicate the mean over 10 trials, and shaded regions denote one standard deviation.