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Abstract

Large-scale datasets for training many real-world machine learning models pose significant
computational resource challenges. One approach to mitigate this is via data condensation,
which aims at learning a small dataset but still sufficiently capturing the rich information in
the original one. Most of existing approaches learn the condensed dataset and task-related
model parameters (e.g., classifier) in a bi-level meta-learning way. The recently proposed
distribution matching (DM), however, avoids the expensive bi-level optimization but ignores
task-related models. This work proposes a novel class preserving DM framework consisting of
two key components. The first one is responsible for capturing the original data distribution
of each class based on energy distance, which can encourage the diversity in the generated
synthetic data. The other is classifier-critic constraint, which forces the learned synthetic
samples to fit pre-trained task-related models, such as an off-the-shelf classifier. Designing
the optimization loss in this way, we can generate more diverse and class preserving distilled
data without the bi-level optimization. Extensive experiments reveal that our method can
produce more effective condensed data for downstream tasks with less training cost and can
also be successfully applied to de-biased dataset condensation.

1 Introduction

Deep neural networks (DNNs) have demonstrated unprecedented results in many applications and come
with a cost: the training of DNNs heavily relies on the sheer amount of data, sometimes up to tens of
millions of samples. Although it becomes easier than ever to construct large scale datasets with advanced
data collection and labeling tools, the rapidly growing size of datasets not only posts challenges to data
storage and preprocessing, but also makes it increasingly expensive to train a model on the given large-scale
dataset. More importantly, designing new deep learning models or applying them to new tasks certainly
require substantially more computations, as they involve to train multiple models on the same dataset for
many times to verify the design choices, such as loss functions, architectures and hyperparameters (Cui
et al., 2022; Ying et al., 2019; Lee et al., 2022). As a result, there is a strong demand for techniques that
compress a large-scale dataset into a small subset of informative examples.

Numerous research endeavours have, therefore, focused on alleviating the cumbersome training process
through constructing small training sets. One well-studied approach is referred to as coreset or subset
selection (Agarwal et al., 2004; Sener & Savarese, 2018), which chooses important data points for training
based on some heuristic criteria. However, most selection procedures incrementally and greedily select sam-
ples, which are shortsighted and do not guarantee any optimal solution for the downstream tasks. Besides,
the presence of representative samples is not guaranteed (Zhao & Bilen, 2021; Zhao et al., 2021). Instead
of selecting from existing data points, recently, dataset condensation (DC) (Wang et al., 2018; Zhao et al.,
2021; Nguyen et al., 2021a;b; Zhao & Bilen, 2021; 2023; Lee et al., 2022; Cazenavette et al., 2022; Wang
et al., 2022) has emerged as a competitive alternative with promising results, which aims to condense a
small training set S from a large-scale one T so that models trained on S can generalize to test data. Once
the condensed dataset is learned, one can use it for various downstream classification applications, such as
implementing neural architecture search (NAS) (Dong & Yang, 2020). Compared to performing NAS with
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the original large-scale dataset, using the small condensed dataset for capturing the rich information in the
original one does save computational resources, which is the goal of data condensation.

Along this line, a meta-learning-based strategy is proposed (Wang et al., 2018) followed by lots of data
condensation methods. Among them, methods employing feature or distribution matching (DM) (Zhao &
Bilen, 2023; Zhao et al., 2023) have gained prominence due to their ability to maintain competitive accuracy
while requiring relatively low computational resources. Different from bi-level optimization based frameworks
(Zhao et al., 2021; Zhao & Bilen, 2021; Lee et al., 2022; Cazenavette et al., 2022; Wang et al., 2022; Loo
et al., 2022; 2023; Feng et al., 2023), DM-based techniques eliminate the requirement for nested optimization.
In terms of DM-based methods, synthesized dataset is usually optimized by minimizing the distributional
distance between real dataset and synthetic synthetic dataset. Therefore, a key challenge in DM is how to
design an effective metric for measuring the distributional distance. For example, Zhao & Bilen (2023); Zhao
et al. (2023); Zhang et al. (2024) adopt Maximum Mean Discrepancy (MMD) (Gretton et al., 2012) as the
metric; Yin et al. (2023) propose a matching metric based on batch normalization statistics; and Wang et al.
(2025) introduce Neural Characteristic Function Discrepancy.

In this paper, we stress that a condensed dataset should preserve the class information of the original dataset
and its samples should be diverse enough to represent the original dataset, so that a model trained on the
condensed dataset is generalizable to test data. Taking the DM (Zhao & Bilen, 2023) as the example, it
generates a condensed dataset independently for each class, without guaranteeing that the synthetic samples
actually belong to the class. In other words, the synthetic samples might ignore some discriminative features
of their corresponding class, which will harm their availability in various downstream classification tasks.
Moreover, the MMD distance used in DM ignores the diversity of the generated samples. As stated by
Sun et al. (2024), a high-quality should cover a wide range of samples and labels, which is essential for
robust learning and generalization. That is to say, diversity is a key point when we learning the synthetic
set since we expect each condensed sample plays a different role for reducing redundancy. To this end, we
propose a new distribution matching framework to satisfy above two factors simultaneously. To enhance
the class-preserving property of the condensed datasets, inspired by the idea of plug-and-play generative
models (Nguyen et al., 2015; 2017), we propose to pre-train an off-the-shelf model to capture the class
information in the training set and then use it to derive a classifier-critic regularization on the synthetic
dataset. Designed in this way, the learning of classification model and synthetic set is disentangled, which
avoids the bi-level optimization. However, moving beyond DM, we can preserve the class information of
the original dataset by learning the condensed samples from the view of the classifier-critic constraint. To
encourage the synthetic samples to be more diverse, we introduce to minimize the energy distance (Székely
et al., 2007; Rizzo & Székely, 2016) between the synthetic samples and the real ones. In addition to making
synthetic samples close to the real samples, energy distance enjoys an intrinsic mechanism to encourage the
synthetic samples to be different from each other. Due to its flexibility, our proposed loss can be easily
combined with most of existing distribution matching methods, which can further enhance the quality of
synthetic datasets. In the comprehensive experiments, ours achieves the competing performance on standard
dataset condensation tasks compared with other related methods. In addition, our proposed classifier-critic
constraint enables our method to generate synthetic samples that preserve other necessary information from
the original dataset, such as in the case of de-biased dataset condensation.

We summarize our contributions as follows: (1) We introduce energy distance to as the DM loss, for measuring
the distributional distance between real and synthetic samples. (2) We propose a class preserving distribution
matching approach for optimizing the condensed dataset, where we introduce a classifier-critic regularization
and combine it with DM loss. (3) As a plug-and-play matching loss, we instantiate how to combine ours with
classical or recent popular data condensation methods. (4) We conduct extensive experiments under diverse
scenarios and consider de-biased dataset condensation due to the flexibility of classifier-critic constraint.

2 Related Work
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2.1 Data Condensation Methods

Bi-level Optimization Methods. Bi-level dataset distillation methods formulate dataset condensation as
a nested optimization problem, where the task model is trained in the inner loop and the synthetic data is
optimized in the outer loop. Among them, a representative class of such methods is Meta-Model Matching,
which directly optimizes the transferability or generalization performance of models trained on synthetic
data. Typical approaches include Dataset Distillation (DD) (Wang et al., 2018), Kernel Inducing Points
(KIP) (Nguyen et al., 2021b), FRePo (Zhou et al., 2022), and LinBa (Deng & Russakovsky, 2022). Gradient
Matching aims to optimize the synthetic dataset by matching gradients between real and synthetic data,
such as Dataset Condensation (DC) (Zhao et al., 2021), Differentiable Siamese Augmentation (DSA) (Zhao
& Bilen, 2021), DC with contrastive signals (DCC) (Lee et al., 2022) and Information-intensive Dataset
Condensation (IDC) (Kim et al., 2022). Trajectory Matching matches the training trajectories of models
trained on original and synthetic data in multiple steps, such as MTT (Cazenavette et al., 2022) and TESLA
(Cui et al., 2023) , FTD (Du et al., 2023), ATT Liu et al. (2024), etc. To improve efficiency, (Loo et al.,
2022; 2023) introduce random feature approximations and convexified implicit gradients; (Feng et al., 2023)
simplifies unrolled optimization to reduce computational cost while retaining effectiveness.

Distribution Matching Methods. Different from bi-level optimization methods, DM methods aim to
align the statistical or structural distributions of real and synthetic data, without involving the nested
model optimization. Some methods, including DD, Zhao & Bilen (2023), M3D (Zhang et al., 2024)and IDM
(Zhao et al., 2023), aim to minimize the maximum mean discrepancy (MMD) between synthetic and real
datasets. Some methods also align feature distributions without explicitly optimizing statistical distances,
such as CAFE (Wang et al., 2022), Datadam (Sajedi et al., 2023), IID (Deng et al., 2024). Yin et al. (2023)
propose to match batch normalization statistics and relabeling synthetic data using pretrained classifiers.
Wang et al. (2025) reformulate distribution matching as a minmax optimization problem and propose neural
characteristic function discrepancy (NCFD) as the distance measure between datapoints.

Ours falls into the group of distribution matching. In contrast to existing DM methods, which either minimize
MMD (e.g., in DD, M3D, IDM) or align feature distributions implicitly (e.g., CAFE, Datadam, IID), our
method introduces a flexible and fundamental loss based on Energy Distance (ED). ED can simultaneously
encourage real-synthetic alignment and intra-synthetic diversity. To further enhance class separability and
optimization stability, we incorporate a lightweight classifier loss as a regularization term. As an explicit
loss, our proposed method is flexible, compatible with learnable feature mappings like NCFD, and can also
be easily integrated as an auxiliary loss into broader optimization frameworks.

Diverse Dataset Condensation Methods. Recent works have highlighted the importance of diversity
in dataset condensation to avoid mode collapse and improve generalization. MMDiff (Gu et al., 2024)
formulates distillation as a minimax optimization over a diffusion-inspired potential, encouraging synthetic
samples to spread across the data manifold efficiently. DSDM (Li et al., 2024) introduces class-wise semantic
distribution matching to enhance diversity. It aligns real and synthetic feature distributions while promoting
intra-class variation in the semantic space. RDED (Sun et al., 2024) balances sample diversity and realism via
a dual-objective loss, combining inter-sample repulsion with perceptual realism constraints from pretrained
discriminators. Compared to these, our method promotes diversity via the repulsive term in the energy
distance, while maintaining semantic consistency through a classifier-guided constraint and the matching
part in energy distance. Importantly, our design is modular and can be flexibly combined with various
objectives, without relying on generators or bi-level training.

2.2 Selection-based Methods

The classic technique to compress the training set is coreset or subset selection (Agarwal et al., 2004; Chen
et al., 2010; Wei et al., 2015). In addition to one naive method, which randomly picks data from the original
dataset, most of these methods incrementally select important data points based on some heuristic selection
criteria. For example, (Sener & Savarese, 2018) select data points such that the largest distance between
a data point and its nearest center is minimized. (Aljundi et al., 2019) use the parameter gradient as the
feature to maximize the diversity of samples in the replay buffer. However, these heuristic selection criteria
cannot ensure that the selected subset is optimal for the downstream task, especially for training DNNs.
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Besides, the information in the dataset is usually uniformly distributed over all samples, thus finding such
an informative coreset may not always be possible (Zhao & Bilen, 2021; Zhao et al., 2021).

2.3 Plug and Play Generative models

Our work is also closely related to generative models such as variational auto-encoder (Kingma & Welling,
2014) and generative adversarial networks (GANs) (Goodfellow et al., 2014). The difference is that image
generation aims to generate real-looking and high-fidelity images that can fool human eyes. As explored by
(Zhao et al., 2021), the images produced by GANs have similar performances to those randomly selected
real images and are usually weaker than the dataset condensation methods. Another related work is plug-
and-play generative networks (PPGN) (Nguyen et al., 2017; Graikos et al., 2022), which composes of 1) a
generator for drawing a wide range of image types, and 2) a replaceable “condition” network that tells the
generator what to draw, similar to our classifier-critic constraint. Despite of the recent community interest in
PPGN, the possibility of the constraint in dataset condensation has not been explored. Instead of producing
“real-looking” samples under some constraints, we aim to generate a condensed informative training set for
the target task.

3 Preliminary

3.1 Energy distance

Energy distance is a statistical distance between probability distributions (Rizzo and Szekely ,2016). For
two independent random vectors X and Y in Rd, the energy distance between them is defined as

ε(X,Y) = 2E∥X − Y∥ − E ∥X − X′∥ − E ∥Y − Y′∥

where E means expectation operator, ∥ ·∥ is the Euclidean norm, E∥X∥ < ∞, E∥Y∥ < ∞,X′ and Y′ denote
the independent and identically distributed (iid) copy of X and Y, respectively.

A significant advantage of the energy distance is that ε(X,Y) = 0 if and only if X and Y are identically
distributed. Thus, the energy distance can be used for testing of equal distributions or multivariate goodness-
of-fit measure. Another advantage of the energy distance is that it is distribution free. That is to say, the
estimated value of energy distance does not depend on the distribution form of random vectors, although it
can be represented as the form of characteristic function. Therefore, the energy distance can be estimated
with the following surprisingly simple form. Denoting x1, . . . ,xn1 as the samples of X and y1, . . . ,yn2 as
the samples of Y, we can estimate the energy distance as follows

εn1,n2(X,Y) = 2 1
n1n2

n1∑
i=1

n2∑
j=1

∥xi − yj∥ − 1
n2

1

n1∑
i=1

n2∑
j=1

∥xi − xj∥ − 1
n2

2

n1∑
i=1

n2∑
j=1

∥yi − yj∥ (1)

3.2 Previous Works: Distribution Matching Methods for Dataset Condensation

Denote a large-scale dataset as T = {xi,yi}||T |
i=1 with |T | image and label pairs and C classes, and denote

the small (synthetic) dataset as S =
{

sj ,yj

}∣∣|S|
j=1. We can further represent the real set and synthetic set in

class c as Tc and Sc, respectively. DM (Zhao & Bilen, 2023) learn Sc by minimizing the empirical estimate
of MMD between the real and synthetic samples of the class c:

Eθ∼Pθ

∥∥∥∥∥∥ 1
|Tc|

|Tc|∑
i=1

fθ (xi) − 1
|Sc|

|Sc|∑
j=1

fθ (sj)

∥∥∥∥∥∥
2

, (2)

where fθ is the embedding function parameterized with θ sampled from Pθ, |Tc| and |Sc| is the number of
samples of Tc and Sc. DM obtains the whole synthetic dataset S by summarizing Sc in each class. Different
from others (Zhao & Bilen, 2021; Zhao et al., 2021; Wang et al., 2022), DM avoids the expensive bi-level
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optimization and second-order derivative with promising performance. However, DM ignores whether the
synthetic set Sc can actually be helpful to the classification of the class c when optimizing them. Moreover,
DM ignores the diversity of distilled samples when using MMD and produces undesired performance with a
slightly larger compression ratio.

4 Method

4.1 Proposed Method: Class-preserving Distribution Matching

In this work, we explore a novel efficient dataset condensation approach with the following intuition: a
condensed synthetic set is desired if the generated samples can not only match the distribution of origi-
nal training set but also can be confidently classified its corresponding labels by a well-trained classifier.
Therefore, we introduce a distribution matching loss and a classifier-critic constraint to learn the condensed
dataset S, described below in detail.

4.2 Classifier-critic Constraint

Existing dataset condensation methods put their attention on the standard dataset condensation task, where
they assume the original large-scale training set is high-quality without subpopulation shift or other prob-
lems. However, datasets in real world are usually not perfect. Below, we first introduce the classifier-critic
constraint for standard (commonly-used) dataset condensation and then explain how to design the corre-
sponding classifier-critic constraint for de-biased dataset condensation.

Standard dataset condensation. Specifically, we can assume gϕ is a classifier pre-trained on the training
set T , e.g., based on the Cross-Entropy (CE) loss. Then we can use the given classifier gϕ to design a classifier-
critic regularization with CE loss when optimizing each synthetic samples s with label y, formulated as:

ℓ = − log Pr(y | s; gϕ) (3)

where gϕ is frozen during the learning of S since it already has the acceptable classification ability. In
addition to using a classifier pre-trained on T , we can also adopt existing available classifers, such as the
powerful Contrastive Language¨CImage Pre-training (CLIP) model (Radford et al., 2021), which efficiently
learns visual concepts from natural language supervision based a sufficiently large dataset rather than T .
This constraint forces the to-be-learned synthetic samples s being classified into its corresponding label
y using the pre-trained classifier gϕ. That is to say, we consider distilling the discriminative information
beneficial for the classification task into the synthetic set S.

De-biased dataset condensation. Subpopulation shift widely exists in many real-world applications,
where subpopulations are seen but underrepresented in the training data (Han et al., 2022; Yao et al., 2022),
such as fairness of machine learning and class imbalance (Hashimoto et al., 2018; Japkowicz, 2000). Then
models may perform poorly when they falsely rely on the spurious correlation between the particular subpop-
ulation and the label. Thus, a practical research is condensing a training dataset with biased demographic
subpopulations into a small de-biased synthetic dataset. Here A denotes the number of spurious attributes
like gender and ethnicity, where we can represent the attribute vector of synthetic sample s as a. Now we
can pre-train two classifiers on original dataset T , where one is the label classifier gϕ1 for predicting class
while other is spurious attribute classifier gϕ2 . To enforce the presence of label and absence of the spurious
attribute, we can define the classifier-critic as follows:

ℓ = − log Pr(y | s; gϕ1) + log Pr(a | s; gϕ2). (4)

By minimizing the CE loss about label and maximizing the CE loss about the spurious attribute, we can
encourage the synthetic image to be classified as its label and not be recognized as its spurious attribute. It
reduces the spurious correlations of label on subpopulation group in condensed samples.
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4.3 Energy Distance between Sc and Tc

Enforcing the matching between Sc and Tc is also important, otherwise we might encounter “spurious”
examples that have high classification performance only under pre-trained classifier but ignore the structure
in data, which may cause poor generalization performance when using S to train downstream classification
tasks. Different from generative models that aim to generates real-looking images, dataset condensation
aims to accurately match the distribution of the real training data with limited synthetic data. Despite DM
learning S with MMD and proving its effectiveness, it may ignore the diversity in the synthesized samples,
which plays a key role in reducing the redundancy of condensed samples. To this end, we propose to learn S
by minimizing the energy distance between the real and synthetic data distributions for each class. We first
introduce the definition of energy distance (Rizzo & Székely, 2016). Denoting X and Y as two independent
random vectors in Rd, their energy distance is defined as:

ε(X,Y) = 2E∥X − Y∥ − E ∥X − X′∥ − E ∥Y − Y′∥ , (5)

where ∥ · ∥ indicates the Euclidean norm, E∥X∥ < ∞, E∥Y∥ < ∞, X′ and Y′ denote the independent and
identically distributed (iid) copy of X and Y, respectively. A significant advantage of the energy distance is
that ε(X,Y) = 0 if and only if X and Y are identically distributed.

In this work, taking the class c as the example, we have samples x and s from Tc and Sc, respectively. Now
the energy distance between Tc and Sc can be estimated as follows:

ε(Tc,Sc) = 2
|Tc||Sc|

|Tc|∑
i=1

|Sc|∑
j=1

d (xi, sj) − 1
|Sc|2

|Sc|∑
i,j=1

d (si, sj) − 1
|Tc|2

|Tc|∑
i,j=1

d (xi,xj) , (6)

where we compute the distance function in embedding spaces following DM (Zhao & Bilen, 2023), i.e.
d (xi, sj) = ∥fθ(xi) − fθ(sj)∥ with fθ denoting the feature extractor sampled from Pθ. The main difference
between Eq. (2) in DM and our adopted energy distance is the presence of a repulsive term between generated
data, d (si, sj), which encourages the condensed samples to capture the full distribution and improve the
representativeness.

Discussion about why adding the energy distance can help improve diversity: Recall that our adopted
energy distance in Eq (5) is composed of

∑
i,j=1 d(xi, sj),

∑
i,j=1 d(si, sj) and

∑
i,j=1 d(xi, xj), where the

third term can be ignored for only computing the distance between real samples, i.e., xi and xj . The
first term

∑
i,j=1 d(xi, sj) aims to minimize the distance between real and synthetic samples, which is the

attractive term similar to the empirical estimate of MMD in Eq (1). The second term
∑

i,j=1 d(si, sj) of ED
in Eq (5) aims to maximize the distance between the condensed data points, playing the role of a repulsive
term. Therefore, the main difference between the adopted ED in Eq (5) and the empirical estimate of MMD
in Eq (1) is the repulsive term. And we had conducted the ablation study to compare the ED and MMD
(i.e., DM) in Table 2 in experiments, where ED produces superior performance than that of DM. Especially,
ED outperforms DM by large margins with larger IPCs. It is reasonable since ED not only minimizes
the distance between synthetic data and real dataset, but also maximizes the distance between synthetic
samples. Therefore, we stress that ED enjoys an intrinsic mechanism to encourage the synthetic samples to
be different from each other, improving the diversity of synthetic samples.

4.4 Training Loss

Recall that we aim to learn the class preserving and diverse condensed samples, which can be solved by
introducing a classifier-critic constraint and the energy distance between Tc and Sc. Therefore, to learn the
synthetic set Sc of class c for standard (or de-biased) dataset condensation, we can jointly minimize the
energy distance in (6) and the CE loss in (3) (or in (4)). Therefore, the optimization loss can be formulated
as follows:

min
Sc

L = Eθ∼Pθ
[ε(Tc,Sc)] − λEs∼Sc

[log Pr(y | s; gϕ)], (7)

where the trade-off hyper-parameter λ= maxiter−t
maxiter with t denoting the t-th iteration and maxiter denoting

the maximum number of iterations. We summarize the training process of standard dataset condensation
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Algorithm 1 Workflow of our method.
Require: Training set T , synthetic set S randomly initialized from T with corresponding labels, off-the-
shelf classifier gϕ, feature extractor fθ, number of classes C, max-iter and learning rate η.
for t in maxiter do

Randomly sample θ from Pθ and compute λ;
Randomly sample a minibatch BT

c ∼ Tc and Sc ∼ S for each class c in C;
Compute L=

∑C

c

(
ε(BT

c (θ), Sc(θ))−λEs∼Sc [Pr(y | s; gϕ)
)

Update S ← S − η∇SL;
end for
Output: a synthetic dataset S

in Algorithm 1, which targets at image classification problems. Following Zhao & Bilen (2023; 2021), we
initialize the synthetic images using randomly sampled real images with corresponding labels before training.
At each training iteration, we can randomly sample embedding function θ from Pθ and a mini-batch of real
samples for each class. Our method enforces the synthetic data to assimilate the task-related information by a
very flexible classifier-critic constraint parameterized with already-learned ϕ, avoiding a bi-level optimization
and second-order derivative. It is different from DM which ignores classifier-related model when learning
the synthesized dataset, i.e. without considering the classification performance of the synthetic samples; and
also different from other related work (Zhao et al., 2021; Wang et al., 2022; Zhao & Bilen, 2021) that usually
couples the learning of the synthesized set with the learning of task-related model at each training iteration.
Besides, it improves the diversity of the condensed samples by introducing the energy distance.

5 Combination between Ours and Baselines

As discussed above, our proposed loss is flexible for being an explicit loss. Therefore, it can be easily
combined with other methods. Below, we consider two specific examples.

5.1 Combining Characteristic Function Distance with Energy Distance in Ours

Characteristic Function Distance (CFD). To better compare probability distributions, we consider
the characteristic function distance (CFD) proposed by Wang et al. (2025) as an alternative to traditional
pairwise distances. Given a random variable x ∈ Rd, its characteristic function is defined as the Fourier
transform of its probability distribution:

Φx(t) = Ex

[
eit⊤x

]
, t ∈ Rd (8)

This representation uniquely determines the distribution and has been widely used in distribution testing
and generative modeling. Given two samples x and x̃, the characteristic function distance is defined as:

CT (x, x̃) =
∫

t

√
(Φx(t) − Φx̃(t))

(
Φx(t) − Φx̃(t)

)
dFT (t) (9)

In practice, this integral can be estimated by Monte Carlo sampling over t, and each input is passed through
a learnable feature extractor fθ, enabling learnable and expressive distance modeling.

CFD-enhanced Energy Distance. We propose to incorporate CFD into the empirical energy distance
structure. Recall the empirical energy distance in Eq. (6) , we replace the Euclidean distance d(·, ·) with
our proposed CFD and can replace the first term in Eq.(7) with following equation:

LCFD-ED(Tc, Sc) = 2 · Ex∼Tc,s∼ScCT (x, s; fθ, ψ)
− Es,s′∼ScCT (s, s′; fθ, ψ) − Ex,x′∼TcCT (x, x′; fθ, ψ)

(10)
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where CT (x, x̃; fθ, ψ) is the characteristic function distance computed in the feature space:

CT (x, x̃; fθ, ψ) =
∫

t

√(
Φfθ(x)(t) − Φfθ(x̃)(t)

) (
Φfθ(x)(t) − Φfθ(x̃)(t)

)
dFT (t;ψ), (11)

where projection parameter ψ governs the distribution or transformation of frequency inputs t, which are
treated as learnable or fixed random variables; please see more details in Wang et al. (2025). The formulation
in Eq.(10) inherits the structural benefits of energy distance and characteristic function distance.

5.2 Ours Serving as a Regularization Term

The M3D method (Zhang et al., 2024) performs dataset condensation by minimizing the discrepancy between
real and synthetic data distributions in a reproducing kernel Hilbert space (RKHS). It introduces an efficient
Maximum Mean Discrepancy (MMD) loss to match higher-order statistics without relying on a classifier.
Given a real data batch Tc and a synthetic data batch Sc for class c, the M3D loss is defined as:

LM3D(Tc, Sc) = 1
|Tc|2

∑
x,x′∈Tc

k(fθ(x), fθ(x′)) + 1
|Sc|2

∑
s,s′∈Sc

k(fθ(s), fθ(s′)) − 2
|Tc||Sc|

∑
x∈Tc,s∈Sc

k(fθ(x), fθ(s))

(12)
where k(·, ·) is a universal kernel function (e.g., Gaussian RBF kernel k(x, x′) = exp(−λ||x − x′||2)); please
find more details from Zhang et al. (2024). While effective for global distribution matching, M3D lacks
explicit mechanisms for semantic preservation and intra-class diversity. To address these, our proposed loss
in Eq. (7) can serve as the regularization term of M3D. The resulting overall objective is:

Ltotal = LM3D + αL, (13)

where α is trade-off hyperparameter and we set as α = 1. This formulation unifies model-agnostic distribution
matching with semantic consistency and diversity control. Besides, ours can also be combined with SRe2L
that minimizing the distance of batch normalization statistics between real and synthetic datasets (Yin et al.,
2023). Similar to M3D+OURS, SRe2L+OURS is implemented by introducing our loss as the regularization
loss of SRe2L when optimizing the condensed images.

6 Experiments

6.1 Datasets and Implementation Details

Datasets. For standard dataset condensation, we consider two widely adopted image datasets, including
CIFAR10 and CIFAR100. CIFAR10 (Krizhevsky et al., 2009) and CIFAR100 (Krizhevsky et al., 2009)
consists of tiny colored natural images from 10 and 100 categories, respectively. Each dataset has 50K training
images and 10K test images with the size of 32 × 32. Besides, following Yin et al. (2023), we also evaluate
our proposed method on large-scale TinyImageNet. TinyImageNet (Le & Yang, 2015) incorporates 200
classes derived from ImageNet1K, with each class comprising 500 images processing a resolution 64 × 64.

Implementation Details. Following previous work (Zhao & Bilen, 2023; Wang et al., 2025), we adopt
the commonly-used DSA augmentation (Zhao & Bilen, 2021) and learn 1/10/50 image(s) per class as (IPC)
synthetic sets for CIFAR-10/100 using the ConvNet architecture. The ConvNet includes three repeated
convolutional blocks, and each block involves a 128-kernel convolution layer, instance normalization layer
(Ulyanov et al., 2016), ReLU activation function (Nair & Hinton, 2010) and average pooling. For large-scale
datasets, we employ ResNet18 as the backbone of TinyImageNet Yin et al. (2023). To evaluate the synthesis-
based methods, we learn 5 synthetic datasets and train 20 randomly initialized classifiers on each synthetic
dataset; then report the mean and standard deviation of 100 test accuracies. We set maxiter = 40K and
learn model parameters ϕ using the original training set, which adopts the same architecture and setting with
the downstream classifier in the standard dataset condensation. Besides, we also utilize CLIP1 to represent
off-the-shelf model. We defer the learning rate, mini-batch size and training details for ϕ to Appendix A.

1https://github.com/openai/CLIP
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Table 1: Comparison with baseline models on CIFAR-10/100. We cite the results from Wang et al. (2025).
Category Method CIFAR-10 CIFAR-100

1 (0.02%) 10 (0.2%) 50 (1%) 1 (0.2%) 10 (2%) 50 (10%)

Traditional
Random 14.4±2.0 26.0±1.2 43.4±1.0 4.2±0.3 14.6±0.5 30.0±0.4

Herding 21.5±1.2 31.6±0.7 40.4±0.6 8.4±0.3 17.3±0.3 33.7±0.5

Forgetting 13.5±1.2 23.3±1.0 23.3±1.1 4.5±0.2 15.1±0.3 30.5±0.3

Diverse DSDM 45.0±0.4 66.5±0.3 75.8±0.3 19.5±0.2 46.2±0.3 54.1±0.2

Bi-level

DC 28.3±0.5 44.9±0.5 53.9±0.5 12.8±0.3 25.2±0.3

DSA 28.8±0.7 52.1±0.5 60.6±0.5 13.9±0.3 32.3±0.4 42.8±0.4

DCC 32.9±0.8 49.4±0.5 61.6±0.4 13.3±0.3 30.6±0.4 40.0±0.3

MTT 46.3±0.8 65.3±0.7 71.6±0.2 24.3±0.3 40.1±0.4 47.7±0.2

TESLA 48.5±0.8 66.4±0.8 72.6±0.4 24.8±0.4 41.7±0.3 -
FTD 46.8±0.3 66.6±0.3 73.8±0.2 25.2±0.2 43.4±0.3 48.5±0.3

ATT 48.3±1.0 67.7±0.6 74.5±0.2 26.1±0.4 44.0±0.5 51.2±0.3

FrePo 46.8±0.7 65.5±0.4 71.7±0.2 28.7±0.2 42.5±0.2 44.3±0.2

Distribution matching

CAFE 30.3±1.1 46.3±0.6 55.5±0.6 12.9±0.2 27.8±0.3 37.9±0.3

IDM 45.6±0.7 58.6±0.1 67.5±0.2 20.1±0.3 45.1±0.1 50.0±0.2

DM 26.0±0.8 48.9±0.6 63.0±0.4 11.4±0.3 29.7±0.3 43.6±0.4

OURS 29.3±0.3 53.4±0.2 65.9±0.3 12.8±0.2 33.4±0.2 45.2±0.2

M3D 45.3±0.3 63.5±0.2 69.9±0.2 26.2±0.3 42.4±0.2 50.9±0.7

M3D+OURS 45.9±0.2 63.2±0.1 71.0±0.3 27.6±0.2 43.2±0.4 52.5±0.5

NCFM (Reproduced) 47.0±0.2 69.9±0.6 77.80±0.4 30.0±0.2 48.5±0.1 54.2±0.1

NCFM + OURS 47.2±0.5 69.6±0.4 77.9±0.6 30.3±0.3 48.7±0.1 54.6±0.2

Whole Dataset 84.8±0.1 56.2±0.3

Baselines. We compare our method to (1) coreset selection methods, including Random and K-Center
(Sener & Savarese, 2018). (2) Bi-level optimization methods, including DC (Zhao et al., 2021), DSA (Zhao
& Bilen, 2021), DCC (Lee et al., 2022), MTT (Cazenavette et al., 2022), TESLA (Cui et al., 2023), FTD
(Du et al., 2023), ATT Liu et al. (2024). (3) Distribution matching methods, including DM (Zhao & Bilen,
2023), CAFE (Wang et al., 2022), IDM (Zhao et al., 2023), M3D (Zhang et al., 2024),and SRe2L (Yin
et al., 2023), NCFD (Wang et al., 2025). (4) Diverse condensation methods, including DSDM (Li et al.,
2024). Following Cui et al. (2022), DSA augmentation is enabled during evaluation for all base methods to
make a fair comparison. For the implementation details of the baselines, please refer to dataset condensation
Benchmark (Cui et al., 2022) for more details. Due to the flexibility of ours, we can also combine it with other
methods, where we use their official code. Here, we consider adding our proposed loss with the matching loss
in M3D and SRe2L, denoted as OURS+M3D and OURS+SRe2L, respectively, where we set the coefficient
for two losses as 1 without exhausted adjustment. Besides, we can also use characteristic function to compute
the point-wise distance in energy distance, denoted as OURS+NCFM.

6.2 Experimental Results on Standard Dataset Condensation

Results on CIFAR-10/100. We adopt a common evaluation method for dataset condensation methods,
i.e. measuring the test accuracy of the neural networks trained on the condensed data. Here we report
the performance comparison with different IPCs in Table 1 on CIFAR-10/100. While DSA and CAFE
can condense more data-efficient samples when IPC=1, our method outperforms them at IPC=10/50. A
similar phenomenon has been observed by DM. The possible reason is that DSA and CAFE on bigger
synthetic data use limited iterations in the inner-loop model optimization to ensure scalability, making them
less accurate. Despite both DM and ours adopting the distribution matching and avoiding the bi-level
optimization, ours significantly outperforms DM on various settings. It is not surprising since we introduce
the classifier-critic regularization and energy distance, whose effectiveness will be further explored in ablation
studies. Considering our proposed method is flexible, we can also combine ours with state-of-the-art (SOTA)
methods to optimize the synthetic samples. For example, we can take M3D and NCFM as two examples
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and explore where ours can be combined with them. We find that combining ours can usually obtain
performance gains in most settings. The possible reason for the improvement is that ours loss enforces the
synthetic dataset to match the real large-scale dataset in the embedding space with energy distance and
classifier-critic constraint, which might be complementary to the representation matching in M3D and the
characteristic function in NCFM. It demonstrates the desired generalization and flexibility of ours.

Results on Tiny-ImageNet. We also evaluate ours on the large-scale datasets, where we consider Tiny-
ImageNet following SRe2L by Yin et al. (2023) and adopt the same backbone. Since ours is so flexible that
it can be combined with other methods, we consider combine it with SRe2L, denoted as SRe2L+OURS. As
shown in Table 2, we can find that introducing ours can obtain consistent boosts on performance. That is to
say, matching energy distance between real and synthetic datasets in ours is complementary to matching the
statistics between real and synthetic datasets. It demonstrates that ours is still effective even in large-scale
dataset with more diverse classes and larger backbone, proving its generalization and effectiveness.

Table 2: Results of our method on Tiny-ImageNet.
Dataset IPC MTT (ConvNet4) DM(ConvNet4) Ours(ConvNet4) SRe2L(ResNet18) SRe2L + OURS(ResNet18)

Tiny-ImageNet 50 28.0± 0.3 22.7± 0.3 28.1± 0.2 41.1 ± 0.4 44.28 ± 0.56
100 - - - 49.7 ± 0.3 50.16 ± 0.21

Table 3: Comparison of training speed (s/iter) and peak
GPU memory (GB) on CIFAR-100 with a single NVIDIA
A100 80G. OOM indicates out-of-memory cases.

Resource Speed (s/iter) GPU Memory (GB)
IPC 10 IPC 50 IPC 10 IPC 50

MTT 1.92 OOM 61.6 OOM
FTD 1.68 OOM 61.4 OOM

TESLA 5.71 28.24 10.3 44.2
NCFM 1.33 1.36 1.6 2.0

NCFM+OURS 2.15 2.68 2.1 3.3

Computational Efficiency. Considering the
importance of training cost when optimizing
the condensed dataset, without loss of general-
ity, we evaluated the training speed and GPU
memory required by our method and several
strong baselines across different datasets un-
der identical distillation settings. As reported
in Table 3, although trajectory matching based
methods usually achieve better results than
distribution matching, they encounter out of
memory (OOM) issues at IPC = 50. Besides,
ours introduce the modest increase in compu-
tation time than NCFM, which is acceptable for maintaining competitive efficiency, especially compared with
bi-level trajectory matching methods. This indicates that our method strikes a practical balance between
effectiveness and computational cost.
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Figure 1: Performance comparison on
CIFAR-10 under different IPCs using Ran-
dom, K-Center, DC, DSA, DM and Ours.

Learning Larger Synthetic Sets. Prior works mainly eval-
uate the condensed dataset of sizes up to 50 IPCs, such as
1% compression ratio for CIFAR10, which is a rather extreme
case. To get a more informative subset in most practical ap-
plications, we further explore the performance of condensation
algorithms under larger compression ratios on CIFAR10, where
we set IPC up to 1,000. As shown in Figure 1, the performance
gain of ours over baselines is obvious for IPCs larger than 100
and less than 500. When IPC > 500, the performance gap
between data condensation methods and the random baseline
narrows, where ours still outperforms other competitors. Espe-
cially, our method needs only about 500 images for each class to
reach the performance of baselines trained for IPC = 1000. All
methods achieve similar performance to the random baseline
when IPC=1000. The possible reason is that randomly select-
ing more samples will approach the whole dataset, which we consider as the upper-bound. In summary, our
method can be successfully applied into realistic settings, where the synthetic data of different classes can
be learned independently and in parallel for avoiding bi-level optimization and second-order derivative.
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Table 4: Ablation study on CIFAR10, where we only perform IPC=10,50,100 for diversity-based loss due to
its degraded performance.

Method 10 50 100 200 300
DM 47.64±0.55 61.99±0.33 65.12±0.40 69.15±0.17 69.36±0.35

DM + KL 48.43±0.28 62.39±0.28 66.37±0.18 70.29±0.31 70.56±0.36
DM + CLIP 50.25±0.23 63.07±0.05 66.30±0.15 71.26±0.26 71.83±0.42

DM + Classifier 50.34±0.01 64.79±0.18 69.44±0.23 72.45±0.43 73.54±0.32
Diversity 31.02 ± 0.74 41.06± 0.29 55.61 ± 0.37 - -

Diversity + Classifier 39.91 ± 0.51 48.58± 0.48 62.98 ± 0.33 - -
ED 50.71±0.30 63.30±0.33 67.88±0.25 71.92±0.31 73.85±0.34

ED + KL 51.12±0.25 65.19±0.12 68.43±0.02 72.88±0.25 74.01±0.37
ED + CLIP 50.34±0.22 64.02±0.24 69.01±0.29 72.27±0.63 75.11±0.33

ED + Classifier 51.34±0.24 65.92±0.30 69.47±0.30 73.73±0.21 76.02±0.26

6.3 Ablation Studies

Energy distance. To illustrate the effectiveness of our introduced energy distance, we compare it with
another distribution matching method, i.e. DM (Zhao & Bilen, 2023). Here we discard our proposed con-
straint for a fair comparison and denote ED as our decayed variant. As listed in Table 4, ED produces
superior performance than that of DM. Especially, ED outperforms DM by large margins with larger IPCs.
It is reasonable since ED not only minimizes the distance between synthetic data and whole-dataset, but
also maximizes the diversity of synthetic samples. Besides, we also discard the first term (i.e., matching
term between real dataset and synthetic dataset) in energy distance and we report their performance for
IPC=10, 50,100. We can find that discarding the matching part can reduce the performance a lot. This
is because that the matching term guides the synthetic samples toward the real data distribution. When
discarding the matching term, the resultant loss only pushes the synthetic samples to move away from each
other in each class (via the repulsion term), without providing direction toward the target distribution.
These observations suggest that using the energy distance to match feature distributions of the synthetic
and original training images is effective in dataset condensation.

Classifier-critic constraint. To evaluate the effectiveness of our proposed classifier-critic constraint for
training the synthetic images, we consider different ways to build the pre-trained classifier, including tradi-
tional classifier trained on original training set and CLIP. Besides, we also implement the constraint following
knowledge distillation (Hinton et al.) by minimizing the KL divergence KL

(
pϕ(y|BT

c )∥pϕ(y|BS
c )

)
, where we

keep the mini-batch size for real data in accord with the size of synthetic set. As listed in Table 4, adopting
the CLIP, which is trained on a public dataset instead of the target large-scale training set, is inferior to
using the traditional classifier. The reason behind this might be that the traditional classifier is optimized by
the original training set. However, replacing the traditional classifier with CLIP only reduce the performance
a little. Compared with ignoring the classification constraint, introducing CLIP to implement the classifier-
critic can result in a remarkable performance improvement when IPC is equal or greater than 50, where
DM+CLIP is better than DM, ED+CLIP is better than ED, and ED+CLIP still outperforms DM+CLIP.
Thus, even using existing available classifiers trained on different dataset, such as CLIP model, ours can
still achieve a desired performance. Besides, KL is inferior to our method. The possible reason is that KL
provides the soft label predicated by classifier gϕ on the real dataset as the target of the synthetic set but
we use the ground-truth label. To sum up, introducing KL, CLIP or traditional classifier as the constraint
can usually result in a remarkable performance improvement. Thus, we claim that the classifier-critic con-
straint on synthetic images is a key-point in data condensation settings; this highlights the contribution and
originality of our method.

Hyperparameter λ. The hyperparameter λ in Eq. (7) indicates the importance of the log-likelihood of
the task-related information in synthetic set, i.e. the weight of task-related loss. To explore the effect of λ in
our method, we design ablation study on CIFAR10 with IPC=10/50. As listed in Table 5, a small λ, such
as 0.01, achieves slightly better or even worse performance than abandoning the task-related loss i.e.λ = 0.
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Both settings of λ = 10 and λ = maxiter−t
maxiter can produce a better performance than others. Since we aim to

use a much more general hyperparameter rather than searching a perfect λ for each dataset with each IPC
jadedly, we set λ = maxiter−t

maxiter . That is to say, we wish to learn synthetic set with more emphasis on p(C|S)
during the early training stage and pay more attention on p(S) during the late training stage. Our proposed
method achieves desired performance in various tasks using this hyperparameter varying with the training
iterations.

Table 5: Ablation study of hyperparameter λ on CIFAR10 with IPC=10 and IPC=50.
λ 10 1 0.1 0.01 maxiter−t

maxiter 0
IPC=10 51.26±0.38 50.30±0.54 50.80±0.48 50.17±0.26 53.42±0.17 50.71±0.30
IPC=50 66.72±0.24 65.48±0.49 63.90±0.17 63.59±0.22 65.92±0.30 63.30±0.33

The efficiency of the CE loss during the training. Recall that the coefficient of the additional CE loss
is set to be gradually reduced during the training. To further explore the efficiency of the CE loss during the
whole training process, we compare the test performance learned by ours and DM with varying number of
training iterations, where we consider ours with CE loss and ours without CE loss. As shown in Figure 2, we
evaluate the performance of the condensed samples at each 2000 training iterations. We can find that ours
with CE loss performs better than DM in the whole training stage. Besides, ours with CE loss outperforms
ours without CE loss all the time. Therefore, CE loss is not only beneficial in the later phase of the training
but also useful in the beginning phase.

6.4 Transferability

Table 6: Testing accuracy of different methods on ConvNet versus transferred to other architectures, where
IPC=10/50. The “Transfer” column records the average results on MLP, ResNet18, ResNet152 and ViT.

Dataset CIFAR-10 CIFAR-100 TinyImageNet

Method IPC=50 IPC=10 IPC=50 IPC=10 IPC=50 IPC=10
ConvNet Transfer ConvNet Transfer ConvNet Transfer ConvNet Transfer ConvNet Transfer ConvNet Transfer

Random 50.55 36.39 31.00 24.16 34.66 23.12 18.64 11.31 18.62 8.85 6.88 3.53
K-Center 56.00 41.45 41.19 31.01 38.64 26.17 25.04 15.31 22.02 10.77 11.38 5.42

DC 56.81 31.42 50.99 32.22 30.56 14.95 28.42 11.95 12.66 4.62 12.83 3.74
DSA 60.28 38.37 52.96 31.15 43.13 27.11 32.23 15.77 25.31 10.93 16.34 6.75
DM 61.99 40.04 47.64 30.66 42.32 25.22 29.23 13.59 22.76 9.75 13.51 4.08

OURS 65.92 41.55 53.42 31.74 44.90 26.83 32.80 16.22 28.10 23.24 16.41 7.13
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Figure 2: The test performance of ours (w/
CE loss or w/o CE loss) and DM on CI-
FAR10 (IPC=50) with the varying number
of training iterations.

Following (Cui et al., 2022), we explore the transferability of
different condensation methods on the 3 datasets using 5 archi-
tectures, including ConvNet, MLP, ResNet18 (He et al., 2016),
ResNet152 (He et al., 2016) and ViT (Dosovitskiy et al., 2020).
More details about architectures and transfer results on each
architecture can be found in the Appendix B. As shown in
Table 6, although the performance of all methods drops when
transferring to other architectures, ours still produces a desired
balance between the seen ConvNet and unseen architectures.
When IPC=10 on CIFAR10 and IPC=50 on CIFAR100, ours is
slightly worse than DC or DSA. In addition to above-mentioned
setings, ours achieves the better performance over the seen
ConvNet and better-averaged generalization performance over
the unseen architectures. Remarkably, when IPC=50 on Tiny-
ImageNet, the performance gain of ours over DSA is about
14%. The possible reason is that learning the synthetic data
from TinyImageNet is very challenging and ours extract more
class-relevant information with less architectural inductive bias
than other baselines; see the visualization below. Thus, our
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proposed method is reliable and generalizable whose condensed images using one architecture can be effec-
tively used to train other unseen ones.

6.5 Neural Architecture Search (NAS)

Table 7: We implement NAS on CIFAR10 using NAS-
Bench-201. The correlation of the original dataset is
lower than 1.0 as we use a small architecture and per-
form ranking based on the validation set.

Random K-Center DC DSA DM OURS Whole
Correlation ↑ -0.06 0.11 -0.19 -0.37 -0.37 -0.17 0.7487
Top 1 (%) ↑ 91.9 91.78 86.44 73.54 92.16 92.47 93.5

NAS aims to automatically search for a top archi-
tecture from a vast search space, which typically re-
quires expensive training of numerous architectures
multiple times on the whole training set and pick-
ing the best performing ones on a validation set.
It is beneficial that applying the smaller condensed
dataset to NAS (Zhao et al., 2021). Following the
implementations of (Cui et al., 2022), we randomly
sample 100 networks from NAS-Bench-201 (Dong & Yang, 2020), which contains the ground-truth perfor-
mance of 15,625 networks. We reduce the number of repeated blocks from 15 to 3 during the search phase,
making the size of condensed dataset adapt the networks. All models are trained on CIFAR10 and IPC=50
for 50 epochs under 5 random seeds and ranked according to their average accuracy on a held-out validation
set of 10k images. We consider two metrics 1) Spearman’s rank correlation coefficient between the ranking
of models trained on condensed dataset and the original dataset; 2) The ground-truth performance of the
best architecture trained on the condensed dataset (Top 1). As we can see in Table 7, all methods produce
negative correlation between the performance on condensed and full dataset except for K-Center, indicating
the difficulty of utilizing the condensed dataset to guide model designs. Besides, ours still achieves a rel-
atively better trade-off between correlation and ground-truth performance than other methods. It verifies
that our condensed images can be used to efficiently train multiple networks to identify the best network for
saving computation resources.

6.6 Continual Learning (CL)

CL (Kirkpatrick et al., 2017) aims to address the catastrophic forgetting problem when the model learns
sequentially from a stream of tasks. Due to its highly condensed nature, distilled samples have been success-
fully applied to the CL. We evaluate the effectiveness of the condensed dataset in CL. Following (Zhao &
Bilen, 2023), we set up the baseline based on GDumb (Prabhu et al., 2020) which stores class-balanced train-
ing samples in memory greedily and trains a model from scratch on the latest memory only. We randomly
and evenly split the 100 classes from CIFAR100 dataset into 5 steps, i.e. 20 classes per step respectively. The
memory budget is 20 images/class for all seen classes. We compare our method with other baselines. Figure
3 shows that the proposed method is superior to other baselines. It indicates that our method can pro-
duce a better and more informative condensed set for training models than those produced by competitors.
Similarly, the results of 10 step class-incremental learning are shown in Figure 4.

6.7 Visualization of Data Distribution

Considering data condensation methods synthesize a small dataset, one natural question is whether it intro-
duces any bias into the data distribution. Therefore, we visualize the data distribution of the real dataset
and the synthetic datasets by different methods in Figure 5 for CIFAR10 with IPC=50. Specifically, we
use the ResNet18 pretrained on the real dataset to extract features and visualize the features with T-SNE
(Van der Maaten & Hinton, 2008), where we plot the samples from the first class, second class and fourth
class. We find that the synthetic images learned by baselines are usually biased to real image distribution,
especially for DC and CAFE. However, ours can obtain more evenly distributed samples and cover the real
image distribution in a better way. It thus proves the effectiveness of ours in above-mentioned downstream
tasks.
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Figure 3: Test accuracy of 5 steps continual learn-
ing with condensed samples on CIFAR100 with
IPC=20 for Random, DM, DSA and ours, respec-
tively.
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Figure 4: Test accuracy of 10 steps continual learn-
ing with condensed samples on CIFAR100 with
IPC=20 for Random, DM, DSA and ours, respec-
tively.
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Figure 5: Visualization of synthetic dataset distribution (red points) and original dataset (blue points) on
CIFAR10 with IPC=50, where the first row is the first class, and the second row is the second class and the
third row is the fourth class.

6.8 Debiased Dataset Condensation

We examine whether ours can be used to compress a biased training set into a small de-biased synthetic
dataset. Here we adopt the CelebA face dataset (Liu et al., 2015) that includes 40 attributes. We use
the hair color (blond, not− blond) as the target and gender (male, female) as the spurious attribute, where
the label is spuriously correlated with gender. We now have 4 groups: (blond, male), (not blond, female),
(blond, female), (not blond, male). To reduce the computational resource, we resize the original image into
64 × 64 and keep the proportions of 4 groups in original dataset to randomly drop some samples, resulting
in 10000 training examples with 85 in the smallest group (blond-haired males). See Appendix C for more
details. We adopt the official test split to evaluate the methods and report the average and worst-group
performance. We follow (Graikos et al., 2022) that uses the pretrained ResNet18 face attribute classifier on
CelebA to realize both ϕ1 and ϕ2. We consider random selection, DM, ED, and ED+label as our baselines,
where ED+label adds the minimization about the CE loss of label in the distilled image to the ED. Ours
further adds the maximization about the CE loss of spurious attribute to the ED+label. As listed in Table
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Table 8: Performance on CelebA with different IPCs. The average and worst performance on the whole
dataset are 94.53 ± 0.19 and 93.85 ± 0.27, respectively.

Method 10 50 100 200 300
Avg. Worst Avg. Worst Avg. Worst Avg. Worst Avg. Worst

RANDOM 80.30±0.29 76.18±0.29 86.68±0.13 77.44±0.41 83.45±0.23 81.69±0.57 88.05±0.09 84.66±0.66 88.29±0.26 86.37±0.12
DM 86.68±5.31 66.71±2.64 87.56±1.48 84.44±1.44 88.51±0.56 87.89±0.04 89.74±0.40 88.64±0.28 89.40±0.36 88.36±0.38
ED 86.48±1.17 69.42±1.48 86.86±0.75 84.63±0.36 88.86±1.07 88.38±0.88 90.61±0.56 89.60±0.30 90.72±0.05 89.56±0.90

ED+label 86.76±1.49 75.64±0.95 87.85±1.07 86.48±1.68 89.31±0.25 87.04±0.80 90.33±0.31 89.66±0.25 91.09±0.32 89.84±0.13
OURS 86.66±1.38 76.78±1.68 87.85±0.06 86.48±0.48 89.54±0.56 88.38±0.26 90.71±0.63 89.71±0.66 91.48±0.38 90.74±0.09

8, ours can generally achieve the better worst-group and average performance than its baselines, indicating
the effectiveness of introduced constraints in de-biased dataset condensation. Besides, adding the constraint
about the label usually leads to improved average performance. It is reasonable since ED+label pays more
attention to all groups. These observations claim that introducing classifier-critic constraint about the
specific task is effective in dataset condensation and can provide more applications. We also perform a
data condensation on point cloud classification task using our proposed method and report the results in
Appendix 7, to validate the effectiveness of ours on different modalities.

6.9 Visualization of Condensed Dataset

Figure 6: Visualization of synthetic images on CIFAR10 with IPC=50. Please zoom in for a better display.

We visualize the synthetic images on CIFAR10 with IPC=50 in Figure 6. Due to the limited space, we defer
the generated synthetic sets of CIFAR10 with IPC=10 in Figure 7 of Appendix and the generated synthetic
sets of CelebA with IPC=10 in Figure 8 of Appendix, respectively. With the development of IPC, it is easy
to find that the synthetic images generated by our method is visually similar to original real CIFAR10 images
but looks more class-representative. Taking the Figure 6 (the visualization of synthetic images CIFAR10
with IPC=50) as the example, the 50 images per class results are diverse which cover the main variations,
such as the various airplanes in the first row (“airplane” class). For CelebA, we consider the debiased dataset
condensation, where the hair color (blond or not-blond) is the label and the gender (male or female) is the
spurious attributes. That is to say, we aim to obtain a condensed face dataset with two classes, where one
class is composed of blond hair face images and another is composed of non-blond hair face images and both
of them can not keep the gender information in the images as soon as possible. As shown in Figure 8 of
Appendix, we can see that the condensed can meet the expected constraints to a great extent.

7 Results on Other Modalities

To validate the effectiveness of ours on different modalities, we perform a data condensation on point cloud
classification task using our proposed method. Here we use preprocessed modelnet10 dataset (Wu et al.,
2015), which contains 3981 training and 400 testing samples from 10 categories and each sample is com-
posed of 10K points (x;y; z-coordinates;R;G;B). Researchers usually utilize random subsampling to achieve
fewer points (e.g., 2048) for each object. We compare random sampling and DM, our proposed ED, and
ED+classifier to achieve fewer points. We randomly sample 100 training samples and condense each sample
with 10K 3D points (x;y; z-coordinates) into a synthetic sample with 64 3D points. We then utilize condensed
datasets to train the pointnet++ for point cloud classification task, where we set epoch=50. We adopt a
common evaluation method for dataset condensation methods, i.e. measuring the test accuracy of the neural
networks trained on the condensed data, where we use all test samples and report instance accuracy (IA)
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and class accuracy (CA). The test performance is summarized in Table 9. Compared with random sampling
and DM, ours can generate more data-efficient samples, indicating the effectiveness of our proposed data
condensation method in 3D.

Table 9: The accuracy comparison of IA and CA for point cloud classification.
Method Random ED DM ED+classifier

IA 51.92 62.87 62.20 67.24
CA 53.43 65.01 64.28 68.93

8 Conclusion

This work aims to compress the original training dataset into a condensed set via class-preserving distribution
matching. To this end, we design the optimization method of synthetic samples from two key points. One is
responsible for capturing the original data distribution, where we introduce energy distance to increase the
diversity. The other aims to introduce the task-related information, such as classification, into the learning of
synthetic samples without a bi-level optimization. We introduce a classifier-critic constraint based on an off-
the-shelf pre-trained classifier to implement the second goal. By minimizing the energy distance between real
and synthetic samples and the classifier-critic constraint, we learn a diverse and class-preserving synthetic
set with less training cost, avoiding an expensive bi-level optimization. Extensive experiments demonstrate
the effectiveness of our proposed method in commonly used downstream tasks and the de-biased dataset
condensation task.
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A Detailed Implementation Settings

We list our used learning rate for each dataset with varying IPCs in Table 10 and the mini-batch size of the
real dataset in Table. 11. We also report the pretraining details for the model parameters ϕ on different
datasets in Table 12. For a standard dataset condensation task, ϕ indicates a classifier and its training details
can be found in 12, where we adopt the same architecture and settings with the downstream classification
task. For the di-biased dataset condenstaion task, ϕ represents a face attribute classifier, we use a well
pretrained model following (Graikos et al., 2022).
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Table 10: Learning rate on CIFAR-10, CIFAR-100, TinyImageNet and CelebA with different IPCs. To
obtain the results in Figure 1, we set the learning rate as 6 with IPC ≥ 300 on CIFAR-10.

IPC CIFAR-10 CIFAR-100 TinyImageNet CelebA
1 0.1 0.1 0.2 -
10 0.1 0.1 0.2 10
50 0.1 0.1 0.2 10
100 1 - - 10
200 1 - - 10
300 5 - - 10

Table 11: Mini-batch size of real dataset on CIFAR-10, CIFAR-100 and TinyImageNet with different IPCs.

Dataset IPC
1 10 50 100 200 300 400 500 600 700 800 900 1000

CIFAR-10 512 512 512 512 512 512 512 512 256 256 64 64 64
CIFAR-100 512 512 512 - - - - - - - - - -

TinyImageNet 512 512 256 - - - - - - - - - -
CelebA - 512 512 512 512 512 - - - - - - -

Table 12: Training details when ϕ indicates a classifier on CIFAR-10, CIFAR-100 and TinyImageNet, where
BS denotes Batch Size, E denotes Epoch, lR denotes Learning rate, Optim denotes Optimizer, Mome denotes
Momentum and WD denotes Weight Decay.

Data Model BS E LR Scheduler Optim Mome WD
CIFAR10 ConvNet 256 1000 0.01 STEPLR SGD 0.9 5e-4
CIFAR100 ConvNet 256 1000 0.01 STEPLR SGD 0.9 5e-4

TinyImageNet ConvNetD4 32 1000 0.01 STEPLR SGD 0.9 5e-4
CelebA ResNet18 256 1000 0.01 STEPLR SGD 0.9 5e-4

B More Details about Transfer Experiments

Following (Cui et al., 2022), the evaluated network architectures are as follows:

ConvNet: A standard convolutional network which is classical in vision tasks, is used to extract features
from the synthetic and original datasets in previous works (Zhao & Bilen, 2023). The structure includes
three 3×3 convolutional layers followed by a 2×2 avgpooling and instance normalization with hidden widths
of 128 on CIFAR-10 and CIFAR-100. For TinyImagenet, a four layers network called ConvNetD4 is used for
better performance and ability in extracting features following (Cui et al., 2022). There are 0.32M trainable
parameters in ConvNet and 0.45M in ConvNetD4, correspondingly.

MLP: A simple fully connected network with 3 layers and 128 neurons in each layer is considered to evaluate
methods. There are 0.41M trainable parameters in MLP.

ResNet18/ResNet152: Standrad architecture includes 4/50 residual blocks, resepectively. A ReLU acti-
vation layer and batch normalization layer in each block follow two convolution layers. There are 11.17M
trainable parameters in ResNet18 and 58.16M in ResNet152.

ViT: Vision Transformer is a new and competitive model architecture used in image processing, which is
based on transformer structure. There are 10M trainable parameters in our ViT.

Previously, we show the transfer results in Table. 6 with IPC=50. We further report the detailed transfer
results on each architecture in Table. 14 for easier references.

20



Under review as submission to TMLR

C Details about the De-biased Dataset Condensation

We extract features and evaluate the synthetic images in ResNet18, where we use the same architecture in
transfer experiments. Refer to Table. 13 for details about dataset.

Table 13: Number of samples in different groups in training dataset and test dataset on CelebA.
Group Blond Male Not blond Male Blond Famale Not blond Famale All

Original training dataset 1387 66874 22880 71629 162770
Our training dataset 85 4101 1405 4401 10000

Test dataset 180 2480 7536 9767 19963

D Visualization of the Learned Synthetic Samples

• We visualize the generated synthetic sets of CIFAR10 with IPC=10 in Figure7, respectively.

• We visualize the generated synthetic sets of CelebA with IPC=10 in Figure8 , respectively.

We can observe that the synthetic images can capture diverse appearances in the categories. Besides, the
synthetic images in each class are less redundant.

Figure 7: Visualization of synthetic images on CIFAR10 with IPC=10.
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Figure 8: Visualization of synthetic images on CelebA with IPC=10. Please zoom in for a better display.

22



Under review as submission to TMLR

Table 14: Comprehensive transferability results of different methods tested on ConvNet, MLP, ResNet18,
ResNet152 and ViT with IPC 1, 10 and 50. We report testing accuracy.

Dataset Method IPC Network
ConvNet MLP ResNet18 ResNet152 ViT

CIFAR-10

Random
1 15.40±0.28 14.37±0.38 16.56±0.46 12.15±1.80 14.19±0.99
10 31.00±0.48 25.08±0.27 29.52±0.87 15.84±0.91 26.21±0.49
50 50.55±0.32 25.21±0.44 47.26±0.27 23 36±2.31 39.73±0.52

K-Center
1 25.16±0.45 24.01±0.32 25.99±0.57 14.64±1.30 21.54±0.55
10 41.49±0.73 32.92±0.38 40.08±0.88 19.35±0.71 31.95±0.57
50 56.00±0.29 40.61±0.34 52.69±0.70 27.84±1.07 44.65±0.39

DC
1 29.34±0.37 29.02±0.52 27.43±0.71 15.31±0.36 28.14±1.11
10 50.99±0.62 34.06±0.40 43.96±1.37 16.51±0.89 34.36±0.35
50 56.81±0.44 31.63±0.55 45.94±1.41 17.98±1.06 30.14±0.51

DSA
1 27.76±0.47 25.04±0.77 25.59±0.56 15.12±0.65 23.70±0.20
10 52.96±0.41 34.49±0.47 42.11±0.56 16.10±1.03 31.88±0.35
50 60.28±0.37 41.01±0.36 49.52±0.72 19.65±1.16 43.30±0.43

DM
1 26.45±0.39 10.02±0.55 20.64±0.47 14.09±0.58 20.47±0.46
10 47.64±0.55 34.44±0.30 38.21±1.05 15.60±1.51 34.37±0.49
50 61.99±0.33 40.49±0.38 52.76±0.44 21.67±1.34 45.22±0.37

CAFE
1 - - - - -
10 50.68±0.17 35.94±0.65 42.40±0.88 25.51±0.41 35.22±0.16
50 61.97±0.22 24.41±0.17 26.12±0.77 14.78±0.55 25.10±0.37

OURS
1 29.30±0.33 24.58±0.10 24.56±0.34 13.60±0.21 20.74±0.30
10 53.42±0.14 34.94±0.36 40.65±0.14 17.20±0.33 34.17±0.16
50 65.92±0.24 41.40±0.67 55.49±0.21 23.12±0.42 46.20±0.29

CIFAR-100

Random
1 5.30±0.23 4.27±0.09 4.36±0.15 1.73±0.12 4.45±0.15
10 18.64±0.25 10.20±0.18 15.77±0.24 5.19±0.46 14.07±0.21
50 34.66±0.41 16.80±0.31 30.23±0.61 18.55±1.29 26.90±0.33

K-Center
1 10.89±0.17 7.96±0.17 8.75±0.43 2.22±0.19 7.81±0.13
10 25.04±0.30 13.92±0.20 22.18±0.59 7.14±0.79 17.98±0.44
50 38.64±0.43 19.32±0.36 34.00±0.51 21.25±1.46 30.12±0.65

DC
1 13.66±0.29 9.78±0.27 9.71±0.46 2.67±0.16 9.27±0.14
10 28.42±0.29 12.36±0.20 17.94±0.59 5.28±1.05 12.22±0.17
50 30.56±0.56 13.29±0.30 17.64±0.31 11.36±0.95 17.51±0.15

DSA
1 13.73±0.45 10.56±0.22 9.95±0.55 2.95±0.44 9.48±0.27
10 32.23±0.35 16.17±0.26 21.86±0.43 5.45±1.04 19.61±0.15
50 43.13±0.33 21.42±0.31 34.34±0.44 20.79±1.76 31.89±0.49

DM
1 11.20±0.27 8.17±0.21 5.36±0.31 2.11±0.13 4.59±0.26
10 29.23±0.26 14.68±0.18 18.72±0.49 3.91±0.73 17.06±0.25
50 42.32±0.37 20.14±0.24 33.34±0.40 17.29±2.41 30.11±0.25

OURS
1 12.80±0.20 6.71±0.16 5.76±0.11 2.26±0.32 7.28±0.19
10 33.39±0.22 16.06±0.08 22.58±0.33 6.73±0.17 19.51±0.23
50 45.19±0.18 19.63±0.17 38.54±0.66 18.44±0.36 30.70±0.21

TinyImageNet

Random
1 1.65±0.11 1.37±0.08 1.27±0.08 0.63±0.08 1.71±0.03
10 6.88±0.25 3.12±0.13 3.34±0.16 1.01±0.15 6.63±0.21
50 18.62±0.22 5.28±0.2 10.35±0.33 2.90±0.40 16.87±0.20

K-Center
1 3.03±0.12 2.53±0.13 2.29±0.10 0.82±0.10 2.27±0.02
10 11.38±0.26 4.73±0.08 5.46±0.24 1.55±0.21 9.92±0.34
50 22.02±0.40 5.99±0.17 13.51±0.34 3.91±0.49 19.70±04

DC
1 5.27±0.10 2.67±0.17 3.17±0.21 0.90±0.14 2.00±0.12
10 12.83±0.14 4.12±0.11 5.44±0.21 1.24±0.18 4.17±0.10
50 12 66±0.36 3.81±0.17 7.05±0.21 2.39±0.21 5.22±0.23

DSA
1 5.67±0.14 3.90±0.16 3.20±0.13 0.84±0.12 3.17±0.03
10 16.34±0.21 6.31±0.21 7.60±0.36 1.90±0.21 11.17±0.15
50 25.31±0.22 6.72±0.20 13.36±0.40 3.78±0.56 19.87±0.44

DM
1 3.82±0.21 3.11±0.10 1.79±0.17 0.89±0.07 3.21±0.07
10 13.51±0.31 4.24±0.13 3.57±0.20 1.06±0.19 7.46±0.20
50 22.76±0.28 5.74±0.27 11.07±0.39 3.33±0.46 18.88±0.36

OURS
1 4.41±0.37 2.20±0.17 1.64±0.07 0.81±0.16 3.74±0.11
10 16.94±0.15 3.57±0.16 8.98±0.28 6.28±0.04 9.69±0.21
50 28.10±0.21 25.04±0.12 22.44±0.31 23.74±0.42 21.72±0.37
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