
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Revisiting Dynamic Graph Clustering via Matrix Factorization
Anonymous Author(s)

Abstract
Dynamic graph clustering aims to detect and track time-varying

clusters in dynamic graphs, revealing the evolutionary mechanisms

of complex real-world dynamic systems. Matrix factorization-based

methods are promising approaches for this task; however, these

methods often struggle with scalability and can be time-consuming

when applied to large-scale dynamic graphs. Moreover, they tend

to lack robustness and are vulnerable to real-world noisy data. To

address these issues, we make three key contributions. First, to

improve scalability, we propose temporal separated matrix factor-

ization, where a single matrix is divided into multiple smaller matri-

ces for independent factorization, resulting in faster computation.

Second, to improve robustness, we introduce bi-clustering regular-

ization, which jointly optimizes graph embedding and clustering,

thereby filtering out noisy features from the graph embeddings.

Third, to further enhance effectiveness and efficiency, we propose

selective embedding updating, where we update only the embed-

dings of dynamic nodes while the embeddings of static nodes are

fixed among different timestamps. Experimental results on six syn-

thetic and five real-world benchmarks demonstrate the scalability,

robustness and effectiveness of our proposed method.
1

CCS Concepts
• Computing methodologies→ Factorization methods.

Keywords
Graph Clustering, Temporal Networks, Community Detection.

ACM Reference Format:
Anonymous Author(s). 2018. Revisiting Dynamic Graph Clustering via Ma-

trix Factorization. In Proceedings of Make sure to enter the correct conference
title from your rights confirmation emai (Conference acronym ’XX). ACM,

New York, NY, USA, 18 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Dynamic graph clustering, also known as dynamic community de-

tection, aims to leverage graph topological structures and temporal

dependencies to detect and track evolving communities [6, 37, 51].

As an effective tool to reveal the complex evolutionary rules behind

complex real-world systems, dynamic graph clustering has drawn

great attention in various fields, such as social analysis [20, 33, 79,

84], recommendation [59, 67, 76, 80], and AI4Science [21, 57, 60].

1
For reproducibility, our code will be available on Github with the following anony-

mous version https://anonymous.4open.science/r/DyG-MF

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-XXXX-X/18/06

https://doi.org/XXXXXXX.XXXXXXX

arXiv dataset(b)Scalability on arXiv dataset(a)

DYNMOGA jLMDC RDMA OursDYNMOGA jLMDC RDMA Ours

Figure 1: Running time and performance on noisy data of
our proposed method and three matrix factorization-based
methods, i.e., DYNMOGA [15], jLMDC [30], and RDMA [51].

Much research in recent years has been proposed for dynamic

graph clustering, which can be broadly classified into two classes [53].

(i) Neural Network-based methods [16, 38, 69, 71] generally focus
on learning dynamic node embedding, with clustering methods of-

ten applied as a post-processing step. These methods separate node

embedding learning and clustering into two independent steps,

leading to sub-optimal performance [12, 30]. To relieve this issue,

(ii) Matrix Factorization-based methods [5, 10, 30, 35, 36, 41]

have been widely proposed. These methods can jointly optimize

clustering and dynamic node embedding learning simultaneously,

i.e., they cluster nodes at each timestamp while maintaining tem-

poral smoothness of node embedding among different timestamps,

achieving overall optimal performance on many benchmarks.

Despite the great success of matrix factorization-based meth-

ods, there are still two challenges. (i) Weak Scalability. Matrix

factorization is an NP-hard problem with a time complexity of ap-

proximately O(𝑛3) and a space complexity of O(𝑛2) for a single
graph containing 𝑛 nodes [44, 64]. A pre-experiment is shown in

Figure 1(a), best-performing matrix factorization-based baselines

require approximately 40,000 seconds to process the arXiv dataset,

which contains about 30,000 nodes, limiting their applicability to

real-world dynamic graphs with millions of nodes [29]. (ii) Low
Robustness. Real-world dynamic graphs contain noise and missing

data, which disrupt their regular evolution patterns and pose signif-

icant challenges for dynamic graph clustering [73, 78]. A case study

is shown in Figure 1(b), adding random noisy edges to dynamic

graphs leads to a sharp performance drop of these baselines.

To address these issues, we propose a scalable and robust dy-

namic graph clustering framework via seperated matrix factoriza-

tion, called DyG-MF , containing three key contributions. Firstly, to
enhance scalability, we propose (i) Temporal Separated Matrix
Factorization. We apply temporal matrix factorization in a “divide

and conquer” manner [34, 58], where we randomly divide the nodes

into subsets and transform the original large-scale matrix factoriza-

tion problem into several independent matrix factorization of these

subsets. Since matrix factorization is applied separately to these

1

https://doi.org/XXXXXXX.XXXXXXX
https://anonymous.4open.science/r/RS-MF-50FE/README.md
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

smaller subsets, it also reduces computational cost. To achieve this,

we design the temporal landmark selection, ensuring coherence

of node embeddings across different subsets at current timestamp

and maintaining consistency of node embedding between differ-

ent timestamps. Secondly, to improve robustness, we introduce (ii)
Bi-clustering Regularization, which reduces the impact of noisy

features on dynamic graph clustering by optimizing the rank of

the matrix. We further proof this regularization can be spreadable

and applied as a constraint in the matrix factorization of each node

subset. Finally, to further enhance effectiveness and efficiency, we

propose (iii) Selective Embedding Updating. We first divide the

nodes into dynamic and static groups by jointly considering their

topological and embedding changes. We then only update node

embeddings of the dynamic group while keeping the node embed-

dings in the static group fixed across different timestamps. The

main contributions of this study can be summarized as follows.

• To enhance scalability and efficiency of matrix factorization-

based methods, we design a temporal separated matrix factor-

ization framework, where we divide a single large matrix into

multiple smaller matrices for independent factorization.

• To improve robustness, we propose separable bi-clustering reg-

ularization to filter out noisy features from node embeddings.

• To further enhance effectiveness and efficiency, we propose

selective embedding updating, where only the node embeddings

of the dynamic group are updated at each timestamp.

• Experimental results on 11 benchmarks demonstrate the scala-

bility, robustness, efficiency, and effectiveness of DyG-MF.

2 Related Work
Neural Network-based Methods. Some neural network-based

methods employ coupled approaches, which first condense dynamic

graphs into one static graph and then apply clustering methods,

such as CNN-based [55, 82] and GNN-based methods [74, 83], to

identify clusters. Other methods employ two-stage approaches,

which first learn dynamic graph embeddings [2, 18, 75] and then

apply clustering methods to these embeddings to identify clus-

ters [8, 9, 40, 48, 68, 81]. For example, RNNGCN [69] and DGCN [16]

use RNNs or LSTM to capture temporal dependencies for graph em-

beddings, which are then clustered using graph convolutional layers.

ROLAND [71] extends static GNN-based graph embedding meth-

ods to dynamic graphs by using gated recurrent units to capture

temporal information. To reduce time consumption, SpikeNet [32]

uses spiking neural networks to model the evolving dynamics of

graph embeddings, achieving better performance with lower com-

putational costs. For more related work, refer to [4, 28, 77, 85]. The

main issue with neural network-based methods is their separation

of dynamic graph embedding and clustering into two independent

processes, making it difficult to ensure that graph embedding pro-

vides the most suitable features for clustering [12, 30]. Furthermore,

most of them face weak scalability and interpretability issues on

large-scale graphs [22, 65]. Thus, we focus on separated matrix

factorization, jointly optimizing dynamic graph embedding and

clustering, and improving scalability and interpretability (Fig.7(C)).

Matrix Factorization-basedMethods.Matrix factorization-based

methods cluster nodes at each timestamp using matrix factorization

while optimizing the temporal smoothness of node embeddings

among different timestamps. Recently, numerous methods with dif-

ferent strategies have been proposed to improve temporal smooth-

ness. For example, sE-NMF [42], jLMDC [30], and NE2NMF [31] esti-

mate temporal smoothness by analyzing topology changes between

graphs at the current and previous timestamps, while PisCES [35]

smooths clusters by considering topology changes across the entire

dynamic graph. In contrast, other methods use clustering metrics or

reconstruction loss to measure temporal smoothness. For example,

DynaMo [86] improves temporal smoothness by incrementally max-

imizing modularity between successive graphs, and PMOEO [56]

and MODPSO [70] employ evolutionary algorithms to minimize the

NMI of clusters across different timestamps. ePMCL [67] and HMM-

MODCD [1] use hiddenMarkovmodels to reconstruct clusters from

previous timestamps and capture evolutionary patterns. Although

these methods can simultaneously optimize clustering accuracy and

temporal smoothness, they often suffer from low robustness and

lack fine-grained node-level temporal smoothing strategies. In this

study, we address these issues and enhance robustness, scalability,

and practicality for large-scale real-world dynamic graphs.

3 Preliminary
Dynamic Graph Clustering.We consider a dynamic graph as a

sequence of snapshots and the 𝑡-th snapshot G𝑡 = (V𝑡 , E𝑡), defined
for 0 ≤ 𝑡 ≤ 𝜏 . Here, V𝑡 and E𝑡 represent the set of nodes and

edges in the 𝑡-th snapshot. Let the graph contain 𝑛 nodes and

𝑊𝑡 ∈ R𝑛×𝑛 and 𝑀𝑡 ∈ R𝑛×𝑛 represent the weighted adjacency

matrix and pointwise mutual information matrix [50] for the 𝑡-th

snapshot G𝑡 , respectively. In𝑀𝑡 , each element𝑚𝑖 𝑗 = log

𝑤𝑖 𝑗

∑
𝑘 𝑑𝑘

𝑑𝑖𝑑 𝑗

with 𝑑𝑖 as the degree of the 𝑖-th node. Dynamic graph clustering

seeks to detect a set of non-overlapping clusters for G𝑡 , which
corresponds to a partition ofV𝑡 . This partition is represented as

V𝑡 = {𝑉𝑖,𝑡 }𝜚𝑡𝑖=1, where 𝜚𝑡 represents the number of clusters.

Matrix Factorization.We first introduce a matrix factorization-

based baseline, which we refer to as temporal matrix factorization.

Inspired by Qiu et al. [50], factorizing pointwise mutual information

(PMI) matrix 𝑀𝑡 is equivalent to Skip-gram-based graph embed-

ding [49], which can encode graph topology information. Using

matrix factorization, graph embedding can be formulated as:

LSc

𝑡 = ∥𝑀𝑡 −𝐶𝑡𝐻𝑡 ∥2
F
, (1)

where LSc

𝑡 represents the snapshot clustering (Sc) cost, each row of

𝐶𝑡 ∈ R𝑛×𝑟 denotes the embedding of the corresponding node, each

column of 𝐻𝑡 ∈ R𝑟×𝑛 denotes the embedding of the corresponding

node when it is considered as context for other nodes, and 𝑟 ≪ 𝑛

is the number of selected features at timestamp 𝑡 .

Jointly considering node embedding learning and clustering

can mutually reinforce each other, e.g., node embedding learning

can select the most suitable features for clustering. Inspired by

Chris Ding et al. [11], adding non-negativity and normalization

constraints to matrix factorization of Eq.(1) makes it equivalent to

spectral clustering. Therefore, LSc

𝑡 can be re-formulated as follows:

LSc

𝑡 = ∥𝑀𝑡 −𝐶𝑡𝐻𝑡 ∥2
F
, 𝑠 .𝑡 . 𝐶𝑡 ≥ 0, 𝐻𝑡 ≥ 0, 𝐶𝑡1 = 1, (2)

where each row of 𝐶𝑡 not only represents the embedding of the

corresponding node, but also represents the clustering index of the

node, i.e., the rank of the maximum value in each row represents its

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Revisiting Dynamic Graph Clustering via Matrix Factorization Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

M

C

Ф

H Ψ

{

PMI matrix M t

Gt-1

(a) Temporal Landmark Selection
Clusters

(b) Randomly Subset Seperation

Arrange

Three Subsects { } { }{ }

Dynamic Graphs

Gt

Gt+1

Landmarks

t-th graph

(c) Separated Matrix Factorization

11
t

C2
t

C3
t

t M12
t M13

t M10
t

M21
t M22

t M23
t M20

t

M31
t M32

t M33
t M30

t

M01
t M02

t M03
t M00

t

1

t

t
1 Ht

2 Ht
3

t

(e) Selective Embedding Updating

M33
xx,t M 33

xy,t

M 33
yx,t M 33

yy,t

 Dynamic
(Optomize)

 Static
(Freeze)

(d) Bi-clustering Regularization
Nodes

 Dynamic nodes set.

 For nodes in M33
t

if Δɛ > threshold

else

Add the node to

 Static nodes set.
Add the node to

Endfor

Features

{
1
2
3
4
5
6
7
8

1
2
5
4
3
4
7
8

C3
tNodes

Features

C3
x,t

C3
y,t

Hx,t
3 Hy,t

3

C3
x,t

C3
y,t

Figure 2: Overview architecture of proposed DyG-MF. Our method (a) first selects temporal landmarks and (b) randomly
divides nodes into several groups for (c) separated matrix factorization ((a)-(c) introduced in Sec 4.1). In addition, we apply (d)
bi-clustering regularization (Sec 4.2) and (e) selective embedding updating (Sec 4.3) to dynamic graph clustering.

corresponding clustering category. For example, the 𝑖-th node with

three dimensions 𝐶𝑖,:=[0.2, 0.7, 0.1] belongs to the second cluster.

Incorporating temporal information to constrain node commu-

nity changes between consecutive timestamps consistently can

always enhance the accuracy of graph clustering. We can simply

define the temporal smoothing (Ts) cost as follows:

LTs

𝑡 = ∥𝐶𝑡 −𝐶𝑡−1∥2
F
, 𝑠 .𝑡 . 𝐶𝑡 ≥ 0, 𝐶𝑡1 = 1. (3)

Based on Eqs.(2) and (3), we obtain overall objective function as:

O𝑡 = LSc

𝑡 + 𝛼LTs

𝑡 , 𝑠 .𝑡 . 𝐶𝑡 ≥ 0, 𝐻𝑡 ≥ 0, 𝐶𝑡1 = 1, (4)

where LSc

𝑡 measures the cluster quality of the 𝑡-th snapshot, LTs

𝑡

measures the differences of clustering results between the 𝑡-th and

the (𝑡 − 1)-th snapshots, and 𝛼 is a hyperparameter to balance the

importance of there two items (we set 𝛼=0 when 𝑡=1). Please note

that a higher O𝑡 indicates worse clustering quality or smoothness.

4 Methodology
As shown in Figure 2, our method DyG-MF consists of three main

components: (i) temporal separated matrix factorization jointly

learns graph embedding and clustering in Sec 4.1, (ii) bi-clustering
regularization reduces noise and enhance robustness in Sec 4.2,

and (iii) selective embedding updating aims at better embedding

alignment in Sec 4.3. We will introduce each component in order.

4.1 Temporal Separated Matrix Factorization
Directly optimizing Eq.(4) is unacceptable time-consumption for

large-scale dynamic graphsm, since its time and space complexity

is O(𝑛3) and O(𝑛2) for a graph with 𝑛 nodes. To solve this issue, we
propose temporal separated matrix factorization which transforms

one large matrix factorization problem into several small matrix

factorization sub-problems. The key point is to select a few nodes,

called landmarks, to ensure consistency and coherence in node

embeddings across all small matrix factorization.

Temporal Landmark Selection in Fig 2(a). A simple idea is to

select the nodes closest to each cluster center as landmarks, ensur-

ing that these nodes are representative at the current timestamps.

If we follow K-means clustering, the 𝑙-th cluster centers at the 𝑡-th

timestamp 𝜽𝑙,𝑡 can be found by repeating the following process:

argmin

{Θ𝑙,𝑡 }𝜚𝑡𝑙=1

𝜚𝑡∑︁
𝑙=1

∑︁
𝑎∈Θ𝑙,𝑡

(∥𝒎𝑎.,𝑡 − 𝜽𝑙,𝑡 ∥22), (5)

where 𝒎𝑎.,𝑡 is the 𝑎-th row vector of𝑀𝑡 , 𝜚𝑡 is the number of clus-

ter centers, automatically determined by the elbow method [63],

{Θ𝑙,𝑡 }
𝜚𝑡
𝑙=1

represent current nodes’ clusters, 𝑎 ∈ Θ𝑙,𝑡 indicates that
the 𝑎-th row vector 𝒎𝑎.,𝑡 is closest to the 𝑙-th cluster center 𝜽𝑙,𝑡 .

The problem with the above strategy is that it does not consider

successive timestamps. To solve this issue, we propose a temporal

landmark selection strategy. We re-formulate Eq.(5) as follows:

argmin

{Θ𝑙,𝑡 }𝜚𝑡𝑙=1

𝜚𝑡∑︁
𝑙=1

∑︁
𝑎∈Θ𝑙,𝑡

(∥𝒎𝑎.,𝑡 − 𝜽𝑙,𝑡 ∥22 + 𝜆∥𝒎𝑎.,𝑡−1 − 𝜽𝑙,𝑡 ∥
2

2
), (6)

where the second term ensures that the selected landmarks are still

representative in consecutive timestamps, and 𝜆 serves as a hyper-

parameter to balance the importance of these items. Fortunately,

we can efficiently derive an analytical solution of Eq.(6) as follows:

𝜽𝑙,𝑡 =

∑

𝑎∈Θ𝑙,𝑡 𝒎𝑎.,𝑡

|Θ𝑙,𝑡 | , if 𝑡 = 1,

∑
𝑎∈Θ𝑙,𝑡 (1+𝜆) (𝒎𝑎.,𝑡+𝒎𝑎.,𝑡−1)

|Θ𝑙,𝑡 | , if 𝑡 > 1.

(7)

where |Θ𝑙,𝑡 | denotes the number of samples in the 𝑙-th cluster. By

iteratively updating Eq.(7) until convergence, we assign the nearest

|𝑈𝑡 |/𝜚𝑡 nodes to the 𝑙-th cluster center 𝜽𝑙,𝑡 (𝑙 ∈ {1, . . . , 𝜚𝑡 }) to 𝑈𝑡 ,
where 𝑈𝑡 denotes the temporal landmarks at the 𝑡-th timestamp

and |𝑈𝑡 | denotes the number of samples in𝑈𝑡 .

We then define the PMI matrix for temporal landmarks |𝑈𝑡 | as
𝑀00

𝑡 , which requires being factorized first as follows:

LLm

𝑡 = ∥𝑀00

𝑡 − Φ𝑡Ψ𝑡 ∥2F, 𝑠 .𝑡 .,Φ𝑡 ≥ 0,Ψ𝑡 ≥ 0,Φ𝑡1 = 1, (8)

where Φ𝑡 ,Ψ𝑡 are basis and coefficient matrices, respectively. These

matrices are kept fixed during the following processes to serve as

references, ensuring node embeddings’ coherence and consistency.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Randomly Subset Separation in Fig 2(b).We randomly divide

all nodes, except those selected as landmarks of G𝑡 , into 𝑠 subsets.
We find that 𝑠 = 50 is suitable for all large-scale dynamic graphs.

Separated Matrix Factorization in Fig 2(c). After dividing all

nodes into 𝑠 subsets, Eq.(2) can be re-formulated as follow:

𝑀𝑡 =

©«
𝑀11

𝑡 · · · 𝑀1𝑠
𝑡

.

.

.
. . .

.

.

.

𝑀𝑠1
𝑡 · · · 𝑀𝑠𝑠

𝑡

ª®®®®¬
≈

©«
𝐶1

𝑡𝐻
1

𝑡 · · · 𝐶1

𝑡𝐻
𝑠
𝑡

.

.

.
. . .

.

.

.

𝐶𝑠
𝑡𝐻

1

𝑡 · · · 𝐶𝑠
𝑡𝐻

𝑠
𝑡

ª®®®®¬
, 𝑠 .𝑡 .

𝐶𝑡 ≥ 0

𝐻𝑡 ≥ 0,

𝐶𝑡 1 = 1

(9)

where𝑀𝑖𝑖
𝑡 repents intra-subset information within the 𝑖-th subset,

while𝑀
𝑖 𝑗
𝑡 captures inter-subset information between two subsets.

Independently factorizing these matrices can result in a significant

embedding drift between𝐶𝑖𝑡 and𝐶
𝑗
𝑡 , i.e., nodes in these subsets may

be projected into different hidden spaces with distinct basis vectors.

Theorem 1. For ∀𝑖 satisfying 1 ≤ 𝑖 ≤ 𝑠 , assuming 𝐶𝑖𝑡 and 𝐻
𝑖
𝑡 in

Eq.(9) can be linearly represented by the basis and coefficient matrices
of the landmarks, i.e., 𝐶𝑖𝑡 = 𝑃𝑖𝑡Φ𝑡 and 𝐻 𝑖𝑡 = Ψ𝑡𝑄

𝑖
𝑡 . Then, jointly

considering the matrix factorization of the landmarks𝑀00

𝑡 with each
sub-matrix ensures embedding consistency between subsets of nodes.

According to Theorem 1, to ensure embedding consistency of intra-

subsets, intra-subsets matrix factorization is formulated as follows:

Lintra

𝑡 =

𝑠∑︁
𝑖=1

(∥𝑀𝑖𝑖
𝑡 − 𝐶𝑖

𝑡𝐻
𝑖
𝑡 ∥2F + ∥𝑀

0𝑖
𝑡 − Φ𝑡𝐻

𝑖
𝑡 ∥2F + ∥𝑀

𝑖0
𝑡 − 𝐶𝑖

𝑡Ψ𝑡 ∥2F) (10)

=

𝑠∑︁
𝑖=1

(∥𝑀𝑖𝑖
𝑡 − 𝑃𝑖𝑡𝑀00

𝑡 𝑄
𝑖
𝑡 ∥2F + ∥𝑀

0𝑖
𝑡 −𝑀00

𝑡 𝑄
𝑖
𝑡 ∥2F + ∥𝑀

𝑖0
𝑡 − 𝑃𝑖𝑡𝑀00

𝑡 ∥2F) .

And inter-subsets matrix factorization can be formulated as follows:

Linter𝑡 =

𝑠∑︁
1≤𝑖≤𝑠,𝑖≠𝑗

∥𝑀𝑖 𝑗
𝑡 − 𝑃

𝑖
𝑡𝑀

00

𝑡 𝑄
𝑖
𝑡 ∥2F + ∥𝑀

𝑗𝑖
𝑡 − 𝑃

𝑗
𝑡𝑀

00

𝑡 𝑄
𝑖
𝑡 ∥2F . (11)

Finally, the overall objective function can be formulated as follows:

O𝑡 = Lintra𝑡 + Linter𝑡 + 𝛼
𝑠∑︁
𝑖=1

∥𝐶𝑖
𝑡 − 𝐶𝑖

𝑡−1 ∥2F, 𝑠 .𝑡 .𝐶
𝑖
𝑡 , 𝐻

𝑖
𝑡 ≥ 0, 𝐶𝑖

𝑡 1 = 1 (12)

For the proof and optimization process, please refer to Appendix G.

4.2 Bi-clustering Regularization
Real-world dynamic graphs always contain much noise and irregu-

lar evolution patterns, directly obtaining communities from𝐶𝑡 will

be easily affected by noisy data (Figure 6). To improve robustness

against noise and jointly optimize graph embedding and clustering,

we introduce bi-clustering theory [47] as a regularization item into

our overall objective function Eq.(12). To realize this goal, we first

introduce the nuclear norm theory as follows.

Theorem 2. Let 𝐿𝑆𝑡 =𝐼 −𝐷−1/2𝑆𝑡𝐷−1/2 be the normalized Laplacian
matrix, where 𝐷 is the degree matrix of 𝑆𝑡 . The multiplicity 𝑘 of
the eigenvalue 0 of 𝐿𝑆𝑡 ∈ R𝑛×𝑛 is equal to the number of connected

components of the bipartite graph 𝑆𝑡 =
(
0 𝐶𝑡

𝐶𝑇𝑡 0

)
, where 𝑛 denotes the

dimension of 𝐿𝑆𝑡 and 𝑇 indicates the matrix transpose operation.

Theorem 2 indicates that if 𝑟𝑎𝑛𝑘 (𝐿𝑆𝑡) = 𝑛 − 𝑘 , 𝑆𝑡 has 𝑘 purity

connected components (clusters), i.e., we need to minimize the

𝑘 smallest eigenvalues of 𝐿𝑆𝑡 to be 0. Suppose 𝜎𝑖 (𝐿𝑆𝑡) is the 𝑖-th

smallest eigenvalue of 𝐿𝑆𝑡 and𝜎𝑖 (𝐿𝑆𝑡) ≥ 0 since 𝐿𝑆𝑡 is positive semi-

defined. Then, the issue can be formulated as

∑𝑘
𝑖=1 𝜎𝑖 (𝐿𝑆𝑡) ≈ 0, how-

ever, optimizing this item is difficult. According to KyFan’s Theo-

rem [13], minimizing the sum of 𝑘 smallest eigenvalues can be trans-

formed into an easy trace optimization issue,

∑𝑘
𝑖=1 𝜎𝑖 (𝐿𝑆𝑡) ⇐⇒

𝑇𝑟 (𝐹𝑇𝑡 𝐿𝑆𝑡 𝐹𝑡), where 𝑇𝑟 () denotes the trace of the matrix and 𝐹𝑡 is

a learnable parameter matrix with orthogonality constraint.

Theorem 3. The bi-clustering regularization on the 𝑖-th subset 𝑆𝑖𝑡
is equal to the imposing constraints on 𝐶𝑖𝑡 , i.e., when 𝑆

𝑖
𝑡 contains 𝑘

pure clusters, 𝐶𝑖𝑡 will also exhibit 𝑘 pure clusters. And bi-clustering
regularization is decomposable, i.e., the constraint on the matrix𝑀𝑡
is equal to the constraint on each of its node subsets.

According to Theorem 3, we can add the bi-clustering regularization

(Bcr) to each subset. Then, Eq.(12) can be re-formulated as follows:

O𝑡 = Lintra

𝑡 + Linter

𝑡 + 𝛼
𝑠∑︁
𝑖=1

∥𝐶𝑖
𝑡 − 𝐶𝑖

𝑡−1 ∥2F + 𝛽L
Bcr

𝑡 , (13)

𝑠.𝑡 .𝐶𝑖
𝑡 , 𝐻

𝑖
𝑡 ≥ 0,𝐶𝑖

𝑡 1 = 1, LBcr

𝑡 =

𝑠∑︁
𝑖=1

𝑇𝑟 ((𝐹 𝑖𝑡)𝑇 𝐿𝑆𝑖𝑡 𝐹
𝑖
𝑡), (𝐹 𝑖𝑡)𝑇 𝐹 𝑖𝑡 = I,

where I is the identity matrix, and 𝛼, 𝛽 are hyperparameters. Proof

is shown in Appendix H.

4.3 Selective Embedding Updating
The item

∑𝑠
𝑖=1 ∥𝐶𝑖𝑡 −𝐶𝑖𝑡−1∥

2

F
in Eq. (13) ensures temporal smooth-

ness between timestamps; however, the primary focus is on overall

smoothness, and the fine-grained smoothness between individual

node pairs is overlooked. This results in heterogeneity in node em-

bedding between successive snapshots, thus severely undermining

interpretability and visualizability during the analysis of dynamic

community trajectories. To avoid this issue and further improve

clustering efficiency and accuracy, we devise a fine-grained node-

level temporal smoothing strategy. We first separating nodes into

static and dynamic groups and then update only the embeddings of

those dynamically changing nodes, while the embeddings of static

nodes are fixed and shared between each timestamp.

Most nodes in dynamic graphs follow gradual and stable evolu-

tion patterns, maintaining their embeddings relatively unchanged

over time [39]. The remaining dynamic nodes are defined as those

whose topological structures undergo significant changes or whose

positions shift considerably relative to dynamic landmarks.

Based on this assumption, dynamic nodes can be defined as:

Δ𝜖𝑎,𝑡 = ∥𝒘𝑎.,𝑡 − 𝒘𝑎.,𝑡 ∥22︸ ︷︷ ︸
topological changes

+ ∥ (𝒘𝑎.,𝑡 − 𝜽𝑎,𝑡) − (𝒘𝑎.,𝑡 − 𝜽𝑎,𝑡) ∥22︸ ︷︷ ︸
relative positions shift

, (14)

where𝒘𝑎.,𝑡 is the 𝑎-th row of weighted adjacency matrix𝑊𝑡 ,𝒘𝑎.,𝑡
is the average among three successive snapshots:𝒘𝑎.,𝑡 = (𝒘𝑎.,𝑡−1 +
𝒘𝑎.,𝑡 +𝒘𝑎.,𝑡+1)/3, 𝜽𝑎,𝑡 is the clustering center closest to 𝒘𝑎.,𝑡 , and

𝜽𝑎.,𝑡 is the averaged among three clustering centers closest to𝒘𝑎.,𝑡 ,

i.e., 𝜽𝑎.,𝑡 = (𝜽𝑎.,𝑡−1 + 𝜽𝑎.,𝑡 + 𝜽𝑎.,𝑡+1)/3. When 𝑡=1 or 𝑡=𝜏 , we ignore

𝒘𝑎.,0/𝜽𝑎.,0 and𝒘𝑎.,𝜏+1/𝜽𝑎.,𝜏+1, respectively. Δ𝜖.,𝑡 can be considered

as a threshold, measuring the dynamics of each node, to divide the

nodes into a dynamic set 𝑋𝑡 with 𝜇% nodes and a static set 𝑌𝑡 .

We then fix the static node embeddings in𝑌𝑡 unchanged and only

update the 𝜇% dynamic node embeddings in 𝑋𝑡 . Then, landmarks

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Revisiting Dynamic Graph Clustering via Matrix Factorization Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

factorization of Eq.(8) can be re-formulated as follows:

˜LLm𝑡 =

(
𝑀00

𝑥𝑥,𝑡 𝑀00

𝑥𝑦,𝑡

𝑀00

𝑦𝑥,𝑡 𝑀00

𝑦𝑦,𝑡

)
−

(
Φ𝑥,𝑡

Φ𝑦,𝑡

)
(Ψ𝑥,𝑡 ,Ψ𝑦,𝑡)

2

F

, (15)

𝑠 .𝑡 . Φ𝑦,𝑡 = Φ𝑦,𝑡−1, Ψ𝑦,𝑡 = Ψ𝑦,𝑡−1,

where 𝑀00

𝑥𝑥,𝑡 and 𝑀00

𝑦𝑦,𝑡 represent the PMI matrix of static and

dynamic nodes in𝑀00

𝑡 , respectively. Φ𝑥,𝑡 and Φ𝑦,𝑡 denote the sub-
blocks of Φ𝑡 for the dynamic and static landmarks, respectively.

Following Eq.(15), the overall objective function Eq.(13) can be

factorized by only updating dynamic node embeddings while re-

moving the temporal smoothing item, re-formulated as follows:

O𝑡 = ˜Lintra

𝑡 + ˜Linter

𝑡 + 𝛽 ˜LBcr

𝑡 , (16)

where
˜Lintra

𝑡 ,
˜Linter

𝑡 , and
˜LBcr

𝑡 are the versions where the selective

embedding updating has been applied.

By applying the constraint of fixing static node embeddings, we

gain two advantages: (i) it prevents updates to static node em-
beddings from introducing noise, allowing us to better leverage
historical information to improve model performance; (ii) it al-
lows us to remove the smoothness term ∥𝐶𝑖𝑡 −𝐶𝑖𝑡−1∥

2

F
in Eq.(13),

which significantly reduces computational cost. Please refer to Ap-

pendix I for a detailed definition and optimization of Eq.(16).

4.4 Complexity Analysis
Time Complexity. The time complexity of selecting |𝑈𝑡 | land-
marks with 𝜚𝑡 clustering centers of all nodes |𝑉𝑡 | using Eq.(7)

is O(|𝑉𝑡 |𝜚𝑡 𝑙1), where 𝑙1 is the number of iterations for converg-

ing to the optimal global solution. The time complexity of per-

forming Φ𝑡 and Ψ𝑡 by using Eq.(I.12) and Eq.(I.14) is O(|𝑈𝑡 |2𝑟𝑙2),
where r is the number of dimensions and 𝑙2 is the number of it-

erations to optimize Eq.(15) by gradient descent. The time com-

plexity of updating 𝐹 𝑖𝑡 in Eq.(I.27) for block 𝐶𝑖𝑡 with |Γ𝑖𝑡 | nodes is
O(|𝑈𝑡 |3 + |𝑈𝑡 |2 |Γ𝑖𝑡 |) [47]. Taking into account the above complexity,

the total time complexity of using our method for dynamic graphs

with 𝜏 timestamps is O(|𝑈𝑡 |3 + |𝑈𝑡 |2 |Γ𝑖𝑡 | + |𝑈𝑡 |2𝑟𝑙2 + |𝑉𝑡 |𝜚𝑡 𝑙1) =
O(max{ |𝑈𝑡 |, |Γ𝑖𝑡 |, 𝑟𝑙2 } |𝑈𝑡 |2), while standard matrix factorization

methods need time complexity of O(|𝑉𝑡 |3). Compared to standard

matrix factorization methods, our method is more efficient.

Space Complexity. Since our method takes only snapshots G𝑡−1,
G𝑡 , and G𝑡+1 as input to identify communities in the 𝑡-th timestamp,

the space complexity is O(|𝑉𝑡 |2) including the space O(|𝑉𝑡 |𝑟) to
store the matrices 𝐶𝑡 and 𝐻𝑡 with 𝑟 as the dimensions of matrix.

5 Experiment
Datasets. As shown in Table 1, following previous works [31, 72],

we evaluate baselines on six synthetic dynamic graphs and five

real-world dynamic graphs with varying number of nodes and

edges. Synthetic dynamic graphs are generated following regular

evolution rules. SYN-FIX/SYN-VAR [24] randomly exchange com-

munities of some nodes. Green datasets [15] consider four evolution

events including Birth-Death: existing communities are removed or

generated by randomly selecting nodes from other communities;

Expand-Contract: communities are expanded or contracted; Hide:
communities are randomly hidden; Merge-Split: communities are

split or merged. We also evaluate on various real-world domains,

Table 1: Detailed statistics of dynamic graph benchmarks.

Dynamic Graphs # of Nodes # of Edges # of Snapshots

SYN-FIX 128 1,248,231 10

SYN-VAR 256 6,259,526 10

Birth-Death 30K& 100K 12M&24M 10& 20

Expansion 30K& 100K 13M&26M 10& 20

Hide 30K& 100K 13M&28M 10& 20

Merge-Split 30K& 100K 14M&29M 10& 20

Wikipedia 8,400 162,000 5

Dublin 11,000 415,900 5

arXiv 28,100 4,600,000 5

Flickr 2,302,925 33,100,000 5

Youtube 3,200,000 12,200,000 5

including Academic Graphs: arXiv [27]; Social Graphs: Dublin [19]

and Flickr [43] and Website Interaction Graphs: Wikipedia [26] and

Youtube [43]. Appendix C provides more details.

Baselines. We compare our method with 14 best-performing base-

lines, i.e.,Neural Network-basedmethods: CSEA [14], DSCPCD [66],

SepNE [34], node2vec [17], LINE [62], RNNGCN [69], ROLAND [71],

and TGC [38]; andMatrix Factorization-basedmethods: PisCES [35],

DYNMOGA [15], NE2NMF [31], RTSC [72], RDMA [51], and jL-

MDC [30]. Appendix D provides more details about these baselines.

Implementation Details. Following previous works [35, 42], we
use normalized mutual information (NMI) [10] and normalized F1-

score (NF1) [52] to measure clustering accuracy. We reproduced

the baselines using their optimal parameters and reported average

performance over five repeated runs with different random seeds.

We conducted multiple t-tests with Benjamini-Hochberg [3] cor-

rection to assess the statistical significance of the performance. We

took Birth-Death-30K as validation datasets for hyperparameter

tuning.With grid search, our method achieves the best performance

when number of blocks 𝑠 = 50, dimension of embeddings 𝑟 = 1, 000,

percentage of landmarks ∥𝑈𝑡 ∥ = 0.5, percentage of dynamic nodes

𝜇 = 0.16, 𝜆 = 0.2 in Eq.(6) and 𝛽 = 20 in Eq.(16).

5.1 Performance Evaluation
The performance of various baselines in terms of NMI and NF1

scores on synthetic and real-world dynamic graphs is shown in Ta-

ble 2. We observe that DyG-MF achieves the highest NMI and NF1

scores across all dynamic graphs. This can be attributed to its tem-

poral separated matrix factorization, bi-clustering regularization,

and selective embedding updating. Specifically, compared to the

neural network-based methods RNNGCN and ROLAND, DyG-MF

improves NMI scores by 5% and 3.8% on Flickr and Youtube, since

DyG-MF jointly optimizes node embeddings and clustering, ensur-

ing that node embeddings provide the most suitable features for

clustering. In comparison with matrix factorization-based baselines,

DyG-MF outperforms them by leveraging fine-grained temporal

smoothness to capture dynamics at the node level (w/o SEU versus

DyG-MF in Table 2) and utilizing bi-clustering regularization to

reduce noise in real-world dynamic graphs (w/o BR versus DyG-MF

in Table 2). Figure 3 further shows the performance of the baselines

at each timestamp, showing that DyG-MF consistently outperforms

baselines and can be effectively applied to real world.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 2: Overall performances on dynamic graphs. Bold and Underline indicates the best and second-best performing methods.
Symbol † indicates that DyG-MF significantly surpassed all baselines with a p-value< 0.005. The top eight methods are neural
network-based methods, and the other methods are matrix factorization-based methods. ✗ means that it cannot be executed
due to memory and running time constraints. DyG-MF w/o TSMF, w/o BR, and w/o SEU are introduced in Sec 5.4.

Methods SYN-FIX SYN-VAR Birth-30K Expand-30K Hide-100K Merge-100K Wikipedia Dublin arXiv Flickr Youtube

NMI NF1 NMI NF1 NMI NF1 NMI NF1 NMI NF1 NMI NF1 NMI NF1 NMI NF1 NMI NF1 NMI NF1 NMI NF1

CSEA [14] 70.8 73.1 72.4 74.2 88.6 68.8 87.3 67.2 74.9 62.3 76.6 61.9 28.6 7.5 29.6 10.2 28.3 9.8 30.2 13.6 29.6 14.4

DSCPCD [66] 73.2 75.2 76.1 77.3 89.2 69.8 88.9 70.3 79.6 63.5 81.0 64.4 28.2 7.3 32.4 11.9 31.8 10.9 34.3 18.2 32.6 15.9

SepNE [34] 96.9 96.8 91.3 88.8 92.5 89.4 92.1 81.8 89.0 81.1 89.2 78.6 31.4 9.8 49.2 21.0 42.8 25.8 40.3 22.4 39.5 21.0

node2vec [17] 98.3 97.9 92.6 91.3 93.8 85.8 93.2 83.6 91.2 85.6 89.0 78.2 33.5 10.2 50.3 23.2 44.3 26.8 42.4 25.5 42.8 24.5

LINE [62] 97.8 97.6 91.2 89.3 92.1 85.9 92.3 84.8 89.5 82.2 88.0 77.6 31.2 9.6 49.8 21.2 43.2 26.0 41.5 24.6 41.9 23.8

RNNGCN [69] 99.2 98.8 95.5 90.3 96.6 84.5 95.9 85.1 92.1 84.3 91.2 80.9 40.3 22.5 52.2 31.6 45.4 26.2 48.5 30.2 47.6 32.3

ROLAND [71] 98.2 97.7 93.8 89.2 95.5 83.2 94.1 83.8 93.3 85.8 92.8 81.6 42.2 22.3 53.6 31.6 46.8 27.6 47.5 31.4 48.4 33.2

TGC [38] 98.3 97.9 93.5 90.6 95.3 83.0 93.8 83.6 92.8 85.4 91.5 81.2 41.3 22.3 52.8 31.3 45.8 26.8 47.8 31.6 47.9 32.6

PisCES [35] 99.0 99.7 88.1 56.6 91.2 41.6 92.6 49.0 ✗ ✗ ✗ ✗ 32.1 9.9 46.3 16.2 38.2 14.5 ✗ ✗ ✗ ✗
DYNMOGA [15] 92.5 95.6 84.2 61.6 98.1 78.1 98.2 65.3 ✗ ✗ ✗ ✗ 36.2 9.9 49.8 20.1 39.1 24.5 ✗ ✗ ✗ ✗
NE2NMF [31] 97.8 95.9 94.2 93.6 97.1 76.1 97.5 63.1 ✗ ✗ ✗ ✗ 34.1 8.2 47.9 18.9 38.2 22.9 ✗ ✗ ✗ ✗
RTSC [72] 99.2 99.0 98.7 98.2 92.8 55.3 92.1 53.2 ✗ ✗ ✗ ✗ 30.6 11.3 46.6 19.3 38.2 20.2 ✗ ✗ ✗ ✗
jLMDC [30] 99.7 99.9 99.9 98.4 98.0 77.4 97.6 66.6 ✗ ✗ ✗ ✗ 44.6 22.1 48.3 21.9 45.6 26.9 ✗ ✗ ✗ ✗
RDMA [51] 98.4 97.8 95.5 94.8 95.3 69.8 94.8 85.5 ✗ ✗ ✗ ✗ 33.8 10.2 47.2 18.6 41.6 25.2 ✗ ✗ ✗ ✗

DyG-MF (Ours) 100 100 100 100 99.9† 90.2† 99.2† 90.9† 94.3† 86.5† 94.4† 83.2† 50.4† 25.8† 56.1† 33.7† 51.8† 30.2† 52.3† 33.6† 51.8† 34.5†
w/o TSMF 100 100 100 100 99.9 90.3 99.3 90.9 ✗ ✗ ✗ ✗ 50.6 25.9 56.4 33.9 52.0 30.5 ✗ ✗ ✗ ✗
w/o BR 99.0 99.5 88.9 71.8 97.3 78.2 97.8 82.6 90.8 84.5 88.7 78.1 45.8 21.5 52.1 30.6 45.8 25.8 48.2 29.6 48.5 31.6

w/o SEU 99.8 99.8 96.5 94.8 98.9 88.2 98.9 86.8 93.1 85.2 92.3 81.4 48.2 23.9 54.8 32.4 48.6 28.5 50.3 32.8 50.6 33.3

1 2 3 4 5
(A) Timestamps of Dublin

46.0

48.0

50.0

52.0

54.0

56.0

N
M

I

1 2 3 4 5
(B) Timesteps of Flickr

40

42

44

46

48

50

52

54

N
M

I

1 2 3 4 5
(C) Timesteps of Youtube

40

42

44

46

48

50

52

N
M

I

1 2 3 4 5
(D) Timesteps of arXiv

37.5

40.0

42.5

45.0

47.5

50.0

52.5

N
M

I

SepNE
node2vec
Line
RNNGCN
ROLAND
TGC
DYNMOGA
NE2NMF
jLMDC
RDMA
DyG-MF

Figure 3: Performance on varying timestamps of selected best-performing baselines on four real-world datasets.

Moreover, we also employ two additional metrics, Modular-

ity [45] and Density [7], to evaluate the quality of detected dy-

namic communities. This is necessary because NMI and NF1 rely

on ground-truth labels, which can be easily affected by incorrect

labeling. Specifically, Modularity evaluates the quality of inter-

connections between nodes within a community, while Density

measures outer-connections among communities without relying

on labels. Figure 4 shows that DyG-MF outperforms three best-

performing baselines on real-world dynamic graphs, indicating the

effectiveness of DyG-MF in identifying high-quality communities.

SepNE

ROLAND

RNNGCN
DyG

-MF

Flickr

0.30

0.35

0.40

0.45

0.50

0.55

M
od

ul
ar

ity

SepNE

ROLAND

RNNGCN

DyG
-MF

Youtube

0.30

0.35

0.40

0.45

0.50

M
od

ul
ar

ity

SepNE

ROLAND

RNNGCN
DyG

-MF

Flickr

0.06

0.08

0.10

0.12

0.14

0.16

D
en

si
ty

SepNE

ROLAND

RNNGCN
DyG

-MF

Youtube

0.06

0.08

0.10

0.12

0.14

0.16

D
en

si
ty

Figure 4: Modularity and Density on large dynamic graphs.

5.2 Scalability Evaluation
Table 3 shows the detailed running time of DyG-MF and baselines

on large-scale dynamic graphs. Compared to the fastest baseline,

SepNE, DyG-MF reduces the running time by 44.61% across all dy-

namic graphs, with a 52.27% reduction on synthetic dynamic graphs

and 37.00% on real-world ones. To further investigate the scalability

of DyG-MF, we conduct additional experiments on the Birth-Death

dataset with varying numbers of snapshots and nodes, as shown in

Figure 5. Specifically, DyG-MF’s running time increases linearly as

the number of snapshots and nodes grows, while the baselines show

nearly exponential growth. This demonstrates DyG-MF’s strong

scalability for larger-scale real-world dynamic graphs, which can

be attributed to its separated matrix factorization and selective

embedding updating. Specifically, the temporal separated matrix

factorization strategy breaks down the large-scale matrix factoriza-

tion problem into smaller, more manageable subproblems without

compromising clustering accuracy (jLMDC vs. DyG-MF in Tables 2

and 3). Moreover, compared to other matrix factorization-baselines

like DYNMOGA, which update the embeddings of all nodes at each

timestamp, DyG-MF updates only a small fraction of dynamically

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Revisiting Dynamic Graph Clustering via Matrix Factorization Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 3: Running Time for DyG-MF and baselines on large-scale synthetic and real-world dynamic graphs (sec). ✗ indicates that
the corresponding methods could not be executed due to memory constraints or exceeded the time limit.

Methods Synthetic dynamic graphs (↓) Real-world dynamic graphs (↓)
Bir-Dea-100K Expand-100K Hide-100K Mer-Spl-100K Avg. Wikipedia Dublin arXiv Flickr Youtube Avg.

CSEA 11,355 12,233 13,211 12,122 12,230 9,342 10,242 10,211 85,363 96,299 42,291

DSCPCD 10,255 11,323 10,232 11,211 10,755 8,882 9,323 9,299 82,242 94,233 40,795

SepNE 7,232 7,599 7,104 7,562 7,374 3,519 3,974 5,602 40,752 58,608 22,491

LINE 23,633 22,566 20,963 21,555 22,179 7,820 9,464 13,029 117,000 132,000 55,862

node2vec 16,963 17,070 17,799 17,705 17,384 5,474 7,098 10,032 99,450 121,440 48,698

RNNGCN 25,342 24,983 24,518 25,388 25,057 15,512 17,035 20,846 263,250 294,360 122,200

ROLAND 25,983 25,268 24,399 23,598 24,812 8,602 10,883 15,374 146,250 172,920 70,805

TGC 21,252 20,488 19,458 20,269 20,366 8,420 10,232 14,535 138,455 168,345 67,997

PisCES ✗ ✗ ✗ ✗ ✗ 44,365 50,287 98,382 ✗ ✗ ✗
DYNMOGA ✗ ✗ ✗ ✗ ✗ 24,582 33,442 62,579 ✗ ✗ ✗
NE2NMF ✗ ✗ ✗ ✗ ✗ 39,482 44,377 79,255 ✗ ✗ ✗
RTSC ✗ ✗ ✗ ✗ ✗ 42,242 43,345 81,334 ✗ ✗ ✗
jLMDC ✗ ✗ ✗ ✗ ✗ 18,541 25,233 38,433 ✗ ✗ ✗
RDMA ✗ ✗ ✗ ✗ ✗ 33,482 48,257 66,598 ✗ ✗ ✗
DyG-MF 3,434 3,523 3,425 3,693 3,518 1,829 2,304 2,717 32,460 40,752 16,012
w/o TSMF ✗ ✗ ✗ ✗ ✗ 31,363 33,595 55,282 ✗ ✗ ✗

evolving nodes (16%), showing its potential applicability in real-

world scenarios. Figure 5(C-D) also confirms that higher efficiency

and scalability do not reduce the NMI scores.

0 10 20 30 40 50
(A) Running time w.r.t. varying snapshots

0.0

2.0

4.0

6.0

8.0

10.0

R
un

ni
ng

 T
im

e
(h

rs
)

10e+3 10e+4 10e+5 10e+6
(B) Running time w.r.t. varying nodes

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

R
un

ni
ng

 T
im

e
(h

rs
)

SepNE
node2vec
ROLAND
DyG-MF

10 20 30 40 50
(C) Performance versus varying snapshots

84.0

86.0

88.0

90.0

92.0

94.0

96.0

98.0

100.0

N
M

I

SepNE
node2vec
ROLAND
DyG-MF

10e+3 10e+4 10e+5 10e+6
(D) Performance versus varying nodes

86.0

88.0

90.0

92.0

94.0

96.0

98.0

100.0

N
M

I

Figure 5: Scalability w.r.t. varying snapshots and nodes.

5.3 Robustness Evaluation
Real-world dynamic graphs often contain much noise and exhibit ir-

regular evolution patterns. Table 2 and Figure 3 show that DyG-MF

outperforms all baselines on real-world dynamic graphs, demon-

strating its ability to filter out noise and capture more complex

evolution patterns. To further support our statement, as shown in

Figure 6, we contaminate dynamic graphs by adding 5%∼30% noisy

edges in each snapshot, following Tan et al. [61]. Compared to

the best-performing baselines, DyG-MF shows a less performance

degradation, indicating its robustness against temporal noisy edges.

We also observe that w/o bi-clustering regularization significantly

decreases the NMI score, showing that bi-clustering regularization

serves as the main component of DyG-MF in maintaining robust-

ness against noise attacks in dynamic graphs.

0% 5% 10% 15% 20% 25% 30%
(A) Percentage of noisy edges of Bir-Dea-30K

85.0

87.5

90.0

92.5

95.0

97.5

100.0
N

M
I

0% 5% 10% 15% 20% 25% 30%
(B) Percentage of noisy edges of Dublin

40.0

45.0

50.0

55.0

N
M

I

node2vec
RNNGCN

ROLAND
DYGMOGA

jLMDC
w/o Bi-cluster

DyG-MF

Figure 6: Noise Attacks. NMI w.r.t. percentage of noisy edges.

Table 4: Ablation study on landmark selection strategies.
Dynamic means landmarks are updated at each timestamp.

Strategies Bir-Dea-30K Hide-30k Wikipedia

DyG-MF+ NMI NF1 NMI NF1 NMI NF1

Fixed Random Selection 90.2 83.2 89.2 80.1 42.2 19.5

Fixed Greedy Selection 92.6 85.5 92.1 82.3 44.8 21.3

Fixed 𝐾 -means Selection 94.2 86.9 94.5 84.5 46.5 23.1

Dynamic Random Selection 88.2 81.5 90.3 82.3 41.8 17.9

Dynamic Greedy Selection 93.5 86.2 94.1 83.6 45.7 22.7

Dynamic 𝐾 -means Selection (Eq. (5)) 96.3 87.5 96.2 86.1 47.5 23.8

Our Selection (Eq. (6)) 99.9 90.2 98.9 89.9 50.4 25.8

5.4 Ablation Study
We conduct an ablation study to evaluate the necessity of each

component of DyG-MF. We consider the following three variants of

DyG-MF: (i) without Temporal SeparatedMatrix Factorization
(w/o TSMF): remove separated matrix factorization introduced

in Sec 4.1 and replace it with Eq.(4); (ii) without Bi-clustering
Regularization (w/o BR): remove bi-clustering regularization in-

troduced in Sec 4.2; (iii) without Selective Embedding Updating
7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

β

N
M
I

(B) SMFBC on Birth-Death-30K (C) The percentage of dynamic nodes (D) The percentage of landmark nodes

N
M
I

(A) Elbow method for number of clusters

D
ec

isi
on

 S
co

re

0.0
0.5
1.0
1.5
2.0
2.5

Fi
t T

im
e

(S
ec

s)
0 10 20 30 40 50 60

N
M
I

0.95
0.96
0.97
0.98
0.99

700800900
100

0
110

0
120

0
130

0 1614
18 20

22
24 26

r 0.92

0.98
0.99

0.97

0.93

0.95
0.96

0.94

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.960

0.990
0.985

0.965

0.975
0.980

0.970

(A) Elbow method for number of clusters (C) The percentage of dynamic nodes (D) The percentage of landmark nodes

R
un
ni
ng
Ti
m
e
(S
ec
s)

N
M
I

(C) Number of subsets (D) The percentage of dynamic nodes (E) The percentage of landmark nodes(B) Dimension r and parameter beta

Figure 7: (A)-(C) and show the number of clusters, and hyperparameter tuning of 𝑟 , 𝛽 and 𝑠 on the first snapshot of Birth-Death-
30K. (D)-(E) show the percentage of dynamic nodes and landmarks of four synthetic datasets with 30K nodes.

(w/o SEU): remove fine-grained temporal smoothing strategy in-

troduced in Sec 4.3. As shown in Table 2, removing any of these

components negatively impacts overall performance on dynamic

graph clustering, demonstrating their effectiveness and necessity.

To understand the role of temporal landmarks, as shown in Ta-

ble 4, we selecte random sampling, greedy search [34] and𝐾-means

as potential strategies. We have three observations. (i) Temporal
landmarks selection is crucial, as it can significantly affect per-

formance on dynamic graph clustering. If landmarks cannot cover

the entire feature space, there can be severe information loss for

certain samples, leading to clustering errors. (ii) Greedy sampling
may not be as effective as the 𝐾-means method, while it is faster.

(iii) Fixed setting underperforms the dynamic one because the
core landmarks will change over time. Thus, dynamically updating

landmark selection can further improve performance.

5.5 Hyperparameters Analysis
We use the first snapshot of four synthetic event datasets as val-

idation data to tune the hyperparameters {𝑠, 𝑟, 𝛽, 𝜇, |𝑈𝑡 |}, where
𝑠 represents the number of separated subsets, 𝑟 is the dimension

of the node embeddings, 𝛽 is the balanced parameter in Eq.(16),

𝜇 indicates the number of dynamic nodes, and |𝑈𝑡 | refers to the

number of landmarks. Following previous studies [69, 71], we adopt

a grid search method to tune each hyperparameter while keeping

the other parameters fixed. In Figure 7(A), the number of clusters 𝜚

is automatically determined by the elbow method. Figure 7(B)-(C)

shows that with 𝑟 = 1, 000, 𝛽 = 20 and 𝑠 = 50, DyG-MF achieves

the highest NMI scores on the validation dataset. We do not display

these parameters for the other three synthetic datasets, as they

follow a similar trend. Figure 7(D)-(E) shows that when 𝜇 ∈ [16, 20]
and |𝑈𝑡 | ∈ [0.48, 0.52], DyG-MF achieves the best performance.

Thus, we set 𝜇 = 16 and |𝑈𝑡 | = 0.5 for the rest experiments. Note

that for small-scale datasets like SYN-FIX/SYN-VAR, we set 𝑠 = 1.

5.6 Case Study
To clearly demonstrate the effectiveness of DyG-MF, we present

a visualization of the detected clusters using the t-SNE plot of the

second snapshot from Wikipedia. As shown in Figure 8(A), the

initialized node embeddings are randomly distributed in the two-

dimensional space, without any discernible community structures.

After optimizing by DyG-MF, we learn representative and suitable

node embeddings that can automatically cluster nodes into distinct

clusters, as illustrated in Figure 8(B).

To further illustrate the effectiveness, interpretability, and ro-

bustness of DyG-MF, we provide a case study using a Sankey plot

(A) (B)

(C1) (C2)

Figure 8: t-SNE of the 2nd snapshot of Wikipedia: (A) initial-
ized and (B) DyG-MF learned node embeddings. Communi-
ties of 3rd (C1) and 4th (C2) snapshots in SYN-VAR.

to show community structures in the 3rd and 4th snapshots of the

SYN-VAR, as shown in Figure 8(C1)-(C2). DyG-MF can effectively

track the evolution patterns of individual node, i.e., nodes from the

second cluster in the 3rd snapshot are split into the second and third

clusters in the 4th snapshot, highlighting DyG-MF’s effectiveness

and interpretability. Benefiting from the bi-clustering regulariza-

tion, we can easily obtain the community evolution of nodes, where

each diagonal block represents a community and the middle parts

illustrate the transitions and changes between communities.

6 Conclusion
In this study, we proposed a novel scalable and robust temporal

separated matrix factorization method to reveal the evolution mech-

anism of complex real-world complex systems. By jointly estimating

graph embedding and clustering with Bi-clustering regularization

and selective embedding updating, our method can achieve SOTA

performance on synthetic and real-world dynamic graphs, illus-

trating its scalability, robustness, and effectiveness. In the future,

we will design more separated matrix factorization strategies to

preserve more global information, use incremental clustering to

reduce time complexity during landmark selection, introduce dif-

fusion models to enhance robustness, and extend our method to

continuous-time dynamic graphs to enhance its flexibility.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Revisiting Dynamic Graph Clustering via Matrix Factorization Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References
[1] Amenah D. Abbood, Bara’a Ali Attea, et al. 2023. Community detection model for

dynamic networks based on hidden Markov model and evolutionary algorithm.

Artif. Intell. Rev. 56, 9 (2023), 9665–9697.
[2] Anna Beer, Andrew Draganov, Ellen Hohma, Philipp Jahn, Christian MM Frey,

and Ira Assent. 2023. Connecting the Dots–Density-Connectivity Distance

unifies DBSCAN, k-Center and Spectral Clustering. In Proc. of SIGKDD. 80–92.
[3] Yoav Benjamini and Yosef Hochberg. 1995. Controlling the false discovery rate:

a practical and powerful approach to multiple testing. J R Stat Soc B 57, 1 (1995),

289–300.

[4] Yukuo Cen, Zhenyu Hou, Yan Wang, Qibin Chen, Yizhen Luo, Zhongming Yu,

Hengrui Zhang, Xingcheng Yao, Aohan Zeng, Shiguang Guo, Yuxiao Dong, Yang

Yang, Peng Zhang, Yu Wang, Chang Zhou, Hongxia Yang, and Jie Tang. 2023.

CogDL: A Comprehensive Library for Graph Deep Learning. In Proc. of WWW.

[5] D. Chakrabarti, R. Kumar, and A. Tomkins. 2006. Evolutionary clustering. In

Proc. of SIGKDD. 554–560.
[6] Jie Chen, Licheng Jiao, Xu Liu, Lingling Li, Fang Liu, Puhua Chen, Shuyuan Yang,

and Biao Hou. 2024. Hierarchical Dynamic Graph Clustering Network. IEEE
Trans. Knowl. Data Eng. 36, 9 (2024), 4722–4735.

[7] Mingming Chen, Tommy Nguyen, and Boleslaw K Szymanski. 2013. On mea-

suring the quality of a network community structure. In Proc. of SocialCom.

122–127.

[8] Man-Sheng Chen, Chang-DongWang, Dong Huang, Jian-Huang Lai, and Philip S

Yu. 2022. Efficient orthogonal multi-view subspace clustering. In Proc. of SIGKDD.
127–135.

[9] Zeyu Cui, Zekun Li, Shu Wu, Xiaoyu Zhang, Qiang Liu, Liang Wang, and Meng-

meng Ai. 2024. DyGCN: Efficient Dynamic Graph Embedding With Graph

Convolutional Network. IEEE Trans. Neural Networks Learn. Syst. 35, 4 (2024),
4635–4646.

[10] Leon Danon, Albert Díaz-Guilera, Jordi Duch, and Alex Arenas. 2005. Comparing

community structure identification. J STAT MECH-THEORY E 05, 09 (2005),

P09008.

[11] Chris Ding, Xiaofeng He, and Horst D. Simon. 2005. On the Equivalence of

Nonnegative Matrix Factorization and Spectral Clustering. In Proc. of ICDM.

606–610.

[12] Xiao Dong, Lei Zhu, Xuemeng Song, Jingjing Li, and Zhiyong Cheng. 2018.

Adaptive Collaborative Similarity Learning for Unsupervised Multi-view Feature

Selection. In Proc. of IJCAI. ijcai.org, 2064–2070. https://doi.org/10.24963/IJCAI.

2018/285

[13] K. Fan. 1949. On a theorem of weyl concerning eigenvalues of linear transforma-

tions. PNAS 35, 11 (1949), 652.
[14] Rong Fei, Yuxin Wan, Bo Hu, Aimin Li, and Qian Li. 2023. A novel network core

structure extraction algorithm utilized variational autoencoder for community

detection. Expert Syst. Appl. 222 (2023), 119775.
[15] Francesco Folino and Clara Pizzuti. 2014. An evolutionary multiobjective ap-

proach for community discovery in dynamic networks. IEEE Trans. Knowl. Data.
Eng. 26, 8 (2014), 1838–1852.

[16] Chao Gao, Junyou Zhu, Fan Zhang, Zhen Wang, and Xuelong Li. 2023. A Novel

Representation Learning for Dynamic Graphs Based on Graph Convolutional

Networks. IEEE Trans. Cybern. 53, 6 (2023), 3599–3612.
[17] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for

networks. In Proc. of SIGKDD. 855–864.
[18] Xingzhi Guo, Baojian Zhou, and Steven Skiena. 2022. Subset node anomaly

tracking over large dynamic graphs. In Proc. of SIGKDD. 475–485.
[19] Lorenzo Isella, Juliette Stehlé, et al. 2011. Analysis of face-to-face behavioral

networks. Journal of The. Bio. 271, 1 (2011), 166–180.
[20] Shuo Ji, Mingzhe Liu, Leilei Sun, Chuanren Liu, and Tongyu Zhu. 2024. MemMap:

An Adaptive and Latent Memory Structure for Dynamic Graph Learning. In Proc.
of SIGKDD. 1257–1268.

[21] Shuo Ji, Xiaodong Lu, Mingzhe Liu, Leilei Sun, Chuanren Liu, Bowen Du, and

Hui Xiong. 2023. Community-based Dynamic Graph Learning for Popularity

Prediction. In Proc. of SIGKDD. 930–940.
[22] Hyeonsoo Jo, Fanchen Bu, and Kijung Shin. 2023. Robust Graph Clustering

via Meta Weighting for Noisy Graphs. In Proc. of CIKM (Birmingham, United

Kingdom) (CIKM ’23). 1035–1044. https://doi.org/10.1145/3583780.3615038

[23] Hyunsoo Kim and Haesun Park. 2008. Nonnegative Matrix Factorization Based

on Alternating Nonnegativity Constrained Least Squares and Active Set Method.

SIAM J. Matrix Anal. Appl. 30, 2 (2008), 713–730.
[24] Min-Soo Kim and Jiawei Han. 2009. A Particle-and-Density Based Evolutionary

Clustering Method for Dynamic Networks. Proc. of VLDB 2, 1 (2009), 622–633.

[25] Daniel Lee and H. Sebastian Seung. 2000. Algorithms for Non-negative Matrix

Factorization. In Proc. of NeurIPS, Vol. 13. 1–7.
[26] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. 2010. Governance in

social media: A case study of theWikipedia promotion process. In Proc. of ICWSM.

98–105.

[27] Jure Leskovec, Jon M. Kleinberg, and Christos Faloutsos. 2005. Graphs over time:

densification laws, shrinking diameters and possible explanations. In Proc. of

SIGKDD. 177–187.
[28] Bolian Li, Baoyu Jing, and Hanghang Tong. 2022. Graph Communal Contrastive

Learning. In Proc. of WWW. 1203–1213.

[29] Dongyuan Li, Qiang Lin, and Xiaoke Ma. 2021. Identification of dynamic commu-

nity in temporal network via joint learning graph representation and nonnegative

matrix factorization. Neurocomputing 435 (2021), 77–90.

[30] Dongyuan Li, Xiaoke Ma, and Maoguo Gong. 2023. Joint Learning of Feature

Extraction and Clustering for Large-Scale Temporal Networks. IEEE Transactions
on Cybernetics 53, 3 (2023), 1653–1666.

[31] Dongyuan Li, Xiaoxiong Zhong, Zengfa Dou,MaoguoGong, and XiaokeMa. 2021.

Detecting dynamic community by fusing network embedding and nonnegative

matrix factorization. Knowl. Based Syst. 221 (2021), 106961.
[32] Jintang Li, Zhouxin Yu, et al. 2023. Scaling Up Dynamic Graph Representation

Learning via Spiking Neural Networks. In Proc. of AAAI. 8588–8596.
[33] Yicong Li, Yu Yang, Jiannong Cao, Shuaiqi Liu, Haoran Tang, and Guandong Xu.

2024. Toward Structure Fairness in Dynamic Graph Embedding: A Trend-aware

Dual Debiasing Approach. In Proc. of SIGKDD. 1701–1712.
[34] Z. Li, L. Zhang, and G. Song. 2019. Sepne: Bringing separability to network

embedding. In Proc. of AAAI. 4261–4268.
[35] Fuchen Liu, David Choi, Lu Xie, and Kathryn Roeder. 2018. Global spectral

clustering in dynamic networks. PNAS 115, 5 (2018), 927–932.
[36] Fanzhen Liu, Jia Wu, Shan Xue, Chuan Zhou, Jian Yang, and Quanzheng Sheng.

2019. Detecting the evolving community structure in dynamic social networks.

In Proc. of WWW. 1–19.

[37] Fanzhen Liu, Jia Wu, Chuan Zhou, and Jian Yang. 2019. Evolutionary Community

Detection in Dynamic Social Networks. In Proc. of IJCNN. 1–7.
[38] Meng Liu, Yue Liu, Ke Liang, Wenxuan Tu, Siwei Wang, Sihang Zhou, and

Xinwang Liu. 2024. Deep Temporal Graph Clustering. In Proc. of ICLR.
[39] Zhining Liu, Dawei Zhou, et al. 2020. Towards Fine-Grained Temporal Network

Representation via Time-Reinforced Random Walk. Proc. of AAAI (2020), 4973–
4980.

[40] Bin Lu, Xiaoying Gan, Weinan Zhang, Huaxiu Yao, Luoyi Fu, and Xinbing Wang.

2022. Spatio-Temporal Graph Few-Shot Learning with Cross-City Knowledge

Transfer. In Proc. of SIGKDD.
[41] Huixin Ma, Kai Wu, HandingWang, and Jing Liu. 2024. Higher Order Knowledge

Transfer for Dynamic Community Detection With Great Changes. IEEE Trans.
Evol. Comput. 28, 1 (2024), 90–104.

[42] Xiaoke. Ma and Di. Dong. 2017. Evolutionary nonnegative matrix factorization

algorithms for community detection in dynamic networks. IEEE Trans. Data.
Eng. 29, 5 (2017), 1045–1058.

[43] Alan Mislove, Hema Swetha Koppula, et al. 2008. Growth of the Flickr Social

Network. In Proc. of WOSN. 25–30.
[44] Khalil Mouhah, Hind Faiz, and Safae Bourhnane. 2023. Large Matrix Multiplica-

tion Algorithms: Analysis and Comparison. In Proc. of ICACS. 7–12.
[45] M. E. J. Newman. 2006. Modularity and community structure in networks. PNAS

103, 23 (2006), 8577–8582.

[46] M. E. J. Newman and M. Girvan. 2004. Finding and evaluating community

structure in networks. Phys. Rev. E 69 (2004), 026113–026129. Issue 2.

[47] F. Nie, C. Wang, and X. Li. 2019. A multiple-means clustering method with

specified k clusters. In Proc. of SIGKDD. 959–967.
[48] Namyong Park, Ryan Rossi, Eunyee Koh, Iftikhar Ahamath Burhanuddin,

Sungchul Kim, Fan Du, Nesreen Ahmed, and Christos Faloutsos. 2022. CGC:

Contrastive Graph Clustering for Community Detection and Tracking. In Proc.
of WWW. 1115–1126.

[49] B. Perozzi, R. Al-Rfou, and S. Skiena. 2014. Deepwalk: Online learning of social

representations. In Proc. of SIGKDD. 701–710.
[50] Jiezhong Qiu, Yuxiao Dong, and et al. 2018. Network Embedding as Matrix Fac-

torization: Unifying DeepWalk, LINE, and Node2vec. In Proc. of WSDM. 459–467.

[51] Somayeh Ranjkesh, Behrooz Masoumi, and Seyyed Mohsen Hashemi. 2024. A

novel robust memetic algorithm for dynamic community structures detection in

complex networks. Proc. of WWW 27, 1 (2024), 3.

[52] Giulio Rossetti. 2017. RDYN: graph benchmark handling community dynamics.

Journal of Complex Networks 5, 6 (2017), 893–912.
[53] Giulio Rossetti and Rémy Cazabet. 2018. Community Discovery in Dynamic

Networks: A Survey. ACM Comput. Surv. 51, 2 (2018), 35:1–35:37.
[54] Giulio Rossetti, Luca Pappalardo, and Salvatore Rinzivillo. 2016. A Novel Ap-

proach to Evaluate Community Detection Algorithms on Ground Truth. In Proc.
of the 7th Workshop on Complex Networks., Vol. 644. 133–144.

[55] Aniello De Santo, Antonio Galli, Vincenzo Moscato, and Giancarlo Sperlì. 2021.

A deep learning approach for semi-supervised community detection in Online

Social Networks. Knowl. Based Syst. 229 (2021), 107345.
[56] Xin Shen, Xiangjuan Yao, Huijie Tu, and Dunwei Gong. 2022. Parallel multi-

objective evolutionary optimization based dynamic community detection in

software ecosystem. Knowl. Based Syst. 252 (2022), 109404.
[57] Chuan Shi, Junze Chen, Jiawei Liu, and Cheng Yang. 2024. Graph foundation

model. Frontiers of Computer Science 18, 6 (2024), 186355.
[58] Guojie Song, Liang Zhang, Ziyao Li, and Yi Li. 2022. Large Scale Network

Embedding: A Separable Approach. IEEE Trans. Knowl. Data Eng. 34, 4 (2022),

9

https://doi.org/10.24963/IJCAI.2018/285
https://doi.org/10.24963/IJCAI.2018/285
https://doi.org/10.1145/3583780.3615038

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1829–1842.

[59] Jiajie Su, Chaochao Chen,Weiming Liu, FeiWu, Xiaolin Zheng, andHaoming Lyu.

2023. Enhancing Hierarchy-Aware Graph Networks with Deep Dual Clustering

for Session-based Recommendation. In Proc. of WWW. 165–176.

[60] Haoxin Sun, Xiaotian Zhou, and Zhongzhi Zhang. 2024. Fast Computation for

the Forest Matrix of an Evolving Graph. In Proc. of SIGKDD. 2755–2764.
[61] Shiyin Tan, Jingyi You, and Dongyuan Li. 2022. Temporality- and Frequency-

aware Graph Contrastive Learning for Temporal Network. In Proc. of CIKM.

1878–1888.

[62] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.

2015. Line: Large-scale information network embedding. In Proc. of WWW.

1067–1077.

[63] Robert L Thorndike. 1953. Who belongs in the family? Psychometrika 18, 4

(1953), 267–276.

[64] Stephen A. Vavasis. 2009. On the Complexity of Nonnegative Matrix Factoriza-

tion. SIAM J. Optim. 20, 3 (2009), 1364–1377.
[65] RongWang, Huimin Chen, Yihang Lu, Qianrong Zhang, Feiping Nie, and Xuelong

Li. 2023. Discrete and Balanced Spectral Clustering With Scalability. IEEE Trans.
Pattern Anal. Mach. Intell. 45, 12 (2023), 14321–14336.

[66] Yuyao Wang, Jie Cao, Zhan Bu, Jia Wu, and Youquan Wang. 2023. Dual Struc-

tural Consistency Preserving Community Detection on Social Networks. IEEE
Transactions on Knowledge and Data Engineering (2023), 1–14.

[67] Zhen Wang, Chunyu Wang, Xianghua Li, Chao Gao, Xuelong Li, and Junyou

Zhu. 2022. Evolutionary Markov Dynamics for Network Community Detection.

IEEE Trans. Knowl. Data Eng. 34, 3 (2022), 1206–1220.
[68] Renchi Yang, Yidu Wu, Xiaoyang Lin, Qichen Wang, Tsz Nam Chan, and Jieming

Shi. 2024. Effective Clustering on Large Attributed Bipartite Graphs. In Proc. of
SIGKDD. 3782–3793.

[69] Yuhang Yao and Carlee Joe-Wong. 2021. Interpretable Clustering on Dynamic

Graphs with Recurrent Graph Neural Networks. In Proc. of AAAI. 4608–4616.
[70] Ying Yin, Yuhai Zhao, He Li, and Xiangjun Dong. 2021. Multi-objective evolu-

tionary clustering for large-scale dynamic community detection. Inf. Sci. 549
(2021), 269–287.

[71] Jiaxuan You, Tianyu Du, and Jure Leskovec. 2022. ROLAND: Graph Learning

Framework for Dynamic Graphs. In Proc. of SIGKDD. 2358–2366.
[72] Jingyi You, Chenlong Hu, et al. 2021. Robust Dynamic Clustering for Temporal

Networks. In Proc. of CIKM. 2424–2433.

[73] Haonan Yuan, Qingyun Sun, Xingcheng Fu, Cheng Ji, and Jianxin Li. 2024. Dy-

namic Graph Information Bottleneck. In Proc. of WWW. 469–480.

[74] Han Zhang, Feiping Nie, and Xuelong Li. 2023. Large-Scale Clustering With

Structured Optimal Bipartite Graph. IEEE Trans. Pattern Anal. Mach. Intell. 45, 8
(2023), 9950–9963.

[75] Kaike Zhang, Qi Cao, et al. 2023. DyTed: Disentangled Representation Learning

for Discrete-time Dynamic Graph. In Proc. of SIGKDD. 3309–3320.
[76] Kaike Zhang, Qi Cao, Gaolin Fang, Bingbing Xu, Hongjian Zou, Huawei Shen,

and Xueqi Cheng. 2023. Dyted: Disentangled representation learning for discrete-

time dynamic graph. In Proc. of SIGKDD. 3309–3320.
[77] Qianru Zhang, Chao Huang, Lianghao Xia, Zheng Wang, Zhonghang Li, and

Siuming Yiu. 2023. Automated Spatio-Temporal Graph Contrastive Learning. In

Proc. of WWW. 295–305.

[78] Siwei Zhang, Yun Xiong, Yao Zhang, Yiheng Sun, Xi Chen, Yizhu Jiao, and

Yangyong Zhu. 2023. RDGSL: Dynamic Graph Representation Learning with

Structure Learning. In Proc. of CIKM. 3174–3183.

[79] Yanfu Zhang, Hongchang Gao, Jian Pei, and Heng Huang. 2022. Robust self-

supervised structural graph neural network for social network prediction. In

Proc. of WWW. 1352–1361.

[80] Yao Zhang, Yun Xiong, Yongxiang Liao, Yiheng Sun, Yucheng Jin, Xuehao Zheng,

and Yangyong Zhu. 2023. TIGER: Temporal Interaction Graph Embedding with

Restarts. In Proc. of WWW.

[81] Peng Zhao, Hou-Cheng Yang, Dipak K Dey, and Guanyu Hu. 2023. Spatial

clustering regression of count value data via bayesian mixture of finite mixtures.

In Proc. of SIGKDD. 3504–3512.
[82] Zhongying Zhao, Hui Zhou, et al. 2021. Inductive Representation Learning via

CNN for Partially-Unseen Attributed Networks. IEEE Transactions on Net. Sci.
and Eng. 8, 1 (2021), 695–706.

[83] Yanping Zheng, Hanzhi Wang, Zhewei Wei, Jiajun Liu, and Sibo Wang. 2022.

Instant graph neural networks for dynamic graphs. In Proc. of SIGKDD. 2605–
2615.

[84] Yongjian Zhong, Hieu Vu, Tianbao Yang, and Bijaya Adhikari. 2024. Efficient

and Effective Implicit Dynamic Graph Neural Network. In Proc. of SIGKDD.
4595–4606.

[85] Yifan Zhu, Fangpeng Cong, Dan Zhang, Wenwen Gong, Qika Lin, Wenzheng

Feng, Yuxiao Dong, and Jie Tang. 2023. Wingnn: Dynamic graph neural networks

with random gradient aggregation window. In Proc. of SIGKDD. 3650–3662.
[86] Di Zhuang, J. Morris Chang, and Mingchen Li. 2021. DynaMo: Dynamic Com-

munity Detection by Incrementally Maximizing Modularity. IEEE Trans. Knowl.
Data Eng. 33, 5 (2021), 1934–1945.

A Limitations
The first limitation of this study is that DyG-MF only addresses

non-overlapping clustering, while its performance on overlapping

clustering remains underexplored. The second limitation is that

DyG-MF has only been evaluated on large-scale real-world datasets

containing up to 3,200,000 nodes, leaving its performance on even

larger datasets still unexamined. Finally, with the advancement of

natural language processing, many graph foundation models have

been proposed. Exploring how to integrate these graph foundation

models to obtain well-initialized node embeddings for improved

performance is a promising area for future research.

B Pseudocode of DyG-MF
We give a Pseudocode of DyG-MF in Algorithm 1.

Algorithm 1: Pseudocode of our method.

Input: G{1,· · · ,𝜏 } : Dynamic Graphs; 𝑠, 𝑟, 𝛽, 𝜇, 𝜆: Hyperparameters.

Output: {𝑉𝑙 }𝑘𝑡𝑙=1 (𝑡 ∈ {1 . . . , 𝜏 }) : Dynamic Communities.

1 for 𝑡 ∈ {1, . . . , 𝜏 } do
2 Part I: Dynamic Graphs Separation and Processing.
3 Randomly partition V𝑡 into 𝑠 subsets;

4 Temporal landmarks selection of𝑈𝑡 by Eq.(7);

5 Partition nodes into static set 𝑌𝑡 and dynamic set 𝑋𝑡 by Eq.(14);

6 Part II: Landmarks Matrix Factorization of Eq.(15)
7 repeat
8 Update Φ𝑥,𝑡 by using Eq.(I.12);

9 Update Ψ𝑥,𝑡 by using Eq.(I.14);

10 until converge;
11 Part III: Separated Matrix Factorization of Eq.(16)
12 for 𝑖 ∈ {1, . . . , 𝑠 } do
13 repeat
14 Fix other variables, update 𝐹 𝑖𝑥,𝑡 by using Eq.(I.27);

15 Fix other variables, update𝑄𝑖
𝑥,𝑡 by using Eq.(I.29);

16 Fix other variables, update 𝑃𝑖𝑥,𝑡 by using Eq.(I.33);

17 until converge;
18 Calculate𝐶𝑖

𝑡 = [𝑃𝑖𝑥,𝑡Φ𝑡 ;𝑃
𝑖
𝑦,𝑡Φ𝑡]

19 end
20 Recognizing clusters from𝐶𝑖

𝑡 for ∀𝑖 satisfying 1 ≤ 𝑖 ≤ 𝑠 ;
21 end

C More Details about Datasets
We conducted experiments on 11 widely used datasets, including

six synthetic and five real-world datasets, as shown in Table 1.

SYN Datasets. SYN-FIX and SYN-VAR were constructed with dif-

ferent dynamic settings for vertices and communities [24]. SYN-FIX

fixes the number of communities at four and generates snapshots

by randomly moving three vertices from each original community

to new communities from the second to the final timestamp. In

contrast, SYN-VAR consists of 256 vertices belonging to four equal-

sized communities, randomly moving eight vertices from each of

the four communities to form a new community with 32 vertices

from the second to the fifth timestamp. The generated snapshots

are then copied and reversed to create the final five snapshots.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Revisiting Dynamic Graph Clustering via Matrix Factorization Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Green Datasets. Considering the network sizes and the limited

dynamic evolution of SYN-FIX/VAR, we generated four event-based

temporal networks starting from the second timestamp [15]:

• Birth-Death: 5% existing communities are removed or gener-

ated by randomly selecting vertices from other communities;

• Expansion: 10% of communities are expanded or contracted by

50% of their original size;

• Hide: 10% of the communities are randomly hidden;

• Merge-Split: 20% of communities are split or merged in pairs.

We repeated the above process (𝜏-1) times to construct the corre-

sponding temporal networks, setting the number of timestamps

to 10, the number of vertices to 30K/100K, the average degree of

each snapshot at 100, the maximum degree at 200, the number of

communities in the range [40, 60], and the mixing parameter to

0.2. As a result, we obtained Green datasets with 30K and 100K

vertices, while we evaluated the evolutionary methods only on the

30K temporal networks.

Real-world Datasets. Following previous studies [31, 72], we con-
ducted experiments on five widely used real-world temporal net-

works covering multiple applications. (1) Academic graphs: The
arXiv dataset [?] is a collaboration graph that describes the authors

of scientific papers, covering papers from January 1993 to April 2003

(124 months) and consisting of 28,100 papers with 4,600,000 edges.

(2) Social networks: The Dublin dataset [19] contains dynamic

person-contact networks with 20-second intervals collected during

the Infectious SocioPatterns event at the Science Gallery in Dublin.

The Flickr dataset [43] is a dynamic social network with data col-

lected over three months, featuring 950,143 new users and more

than 9.7 million new links, focusing on how new links are formed.

(3) Website interaction networks: The Wikipedia dataset [?] is
a bipartite editing network that contains temporal edits by users of

Wikipedia pages. The Youtube dataset [43] includes a list of user-

to-user links from the video-sharing website Youtube. To evaluate

clustering accuracy, gold community labels are necessary for each

vertex. We obtained gold community labels during the generation

of synthetic temporal networks.

For real-world temporal networks, following previous studies [15]

by aggregating all edges across all timestamps into a single graph

and applying DYNMOGA to compute a soft modularity score Q [46],

where the highest Q was considered the gold label for all vertices.

D More Details about Baselines
We compare our method with 14 best-performing baselines, which

can be classified mainly into the following three classes:

Coupling Baselines:

• CSEA [14] first uses the Variational Autoencoder to reduce the

dimension of the adjacency matrix and extracts the core struc-

ture of the coupling network. Then, 𝐾-means clustering is used

to obtain information about the community structure.

• DSCPCD [66] detects community structures by maximizing the

dual structural consistency of the coupling network, i.e., the
original explicit graph and the potential implicit graph have a

consistent community structure.

Two-stage Baselines:

• SepNE [34] ignores the temporal information and estimates

the clustering accuracy of separated matrix factorization in a

proximity matrix from the given dynamic graphs. 𝐾-means is

then used in the factorized matrix to obtain dynamic clusters.

• node2vec [17] uses a biased random walk procedure to explore

neighborhoods in a breadth-first and depth-first samplingmethod

so that neighborhood information can be maximally preserved.

After obtaining graph embedding, 𝐾-means is used to capture

dynamic clusters.

• LINE [62] is a breadth-first edge sampling method and considers

both adjacent and deep interactions between vertices to learn

graph embedding instead of using randomwalks. After obtaining

graph embedding, 𝐾-means is used to capture dynamic clusters.

• RNNGCN [69] uses an RNN to learn the decay rates of each

edge over timestamps to characterize the importance of his-

torical information for current clustering. A two-layer graph

convolutional network is used for dynamic graph clustering.

• ROLAND [71] extends the GNN to dynamic scenes by viewing

the node representation at different layers as hierarchical node

states and using GRUs to update these hierarchical vertex states

based on newly observed vertices and edges.

• TGC [38] propose a general framework for deep Temporal Graph

Clustering, which introduces deep clustering techniques to suit

the interaction sequence-based batch-processing pattern of tem-

poral graphs. They then discuss differences between temporal

graph clustering and static graph clustering from several levels.

Evolutionary Baselines:

• PisCES [35] globally estimates and optimizes clustering drift on

all snapshots. It uses non-negative matrix factorization, which

is equal to spectral clustering, for dynamic graph clustering.

• DYNMOGA [15] estimates the clustering drift by minimizing

the NMI between the community structures detected between

two successive snapshots. And it maximizes clustering precision

by directly decomposing the adjacencymatrix and uses𝐾-means

for dynamic graph clustering.

• NE2NMF [31] uses previous and current snapshots to character-

ize cluster drift and locally optimizes drift at each timestamp.

After decomposing the adjacency matrix by NMF to obtain a

vertex representation matrix, it continues to detect communities

by decomposing the vertex representation matrix.

• RTSC [72] uses the previous, current, and subsequent graphs to

measure clustering drift. It applies non-negative matrix factor-

ization to the common feature matrix of three successive graphs

to estimate clustering precision. Finally, RTSC uses 𝐾-means as

post-processing for dynamic graph clustering.

• jLMDC [30] propose a novel joint learning model for dynamic

community detection through joint feature extraction and clus-

tering. This model is formulated as a constrained optimization

problem. Vertices are classified into dynamic and static groups

by exploring the topological structure of temporal networks to

fully exploit their dynamics at each time step. Then, jLMDC

updates the features of dynamic vertices by preserving features

of static ones during optimization. The advantage of jLMDC is

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

that the features are extracted under the guidance of clustering,

promoting performance, and saving running time.

• RDMA [51] propose the robust memetic method and use the idea

to optimize the detection of dynamic communities in complex

networks. They work with dynamic data that affect the two

main parts of the initial population value and the calculation of

the evaluation function of each population, and there is no need

to determine the number of communities in advance.

E Introduction of Criteria and Significant Tests
Following previous studies [35, 42], we used normalized mutual

information (NMI) [10] and normalized F1 score (NF1) [52] to mea-

sure the precision of clustering. Let 𝑘∗ and 𝑘 be the gold and the

predicted number of communities. We denote a confusion matrix

𝑁 ∈ R𝑘
∗×𝑘

, where the rows correspond to the gold communi-

ties {V∗
𝑙
}𝑘∗
𝑙=1

, columns correspond to the predicted communities

{V𝑙 }𝑘𝑙=1, and 𝑛𝑖 𝑗 is the number of vertices overlapped between the

𝑖-th real and 𝑗-th predicted communities. NMI can be formulated

NMI =

−2∑𝑘∗
𝑖=1

∑𝑘
𝑗=1 𝑛𝑖 𝑗 log(

𝑛𝑖 𝑗 |𝑁 |
|n𝑖 . | |n. 𝑗 |)∑𝑘∗

𝑖=1 |n𝑖 . |log(
|n𝑖 . |
|𝑁 |) +

∑𝑘
𝑗=1 |n. 𝑗 |log(

|n. 𝑗 |
|𝑁 |)

,

where the sum of all elements of 𝑁 is denoted as |𝑁 |, sum over the

𝑖-row n𝑖 . and 𝑗-th column n. 𝑗 are denoted as |n𝑖 . | and |n. 𝑗 |.
Before introducing NF1, we first define that Precision is the

percentage of vertices inV𝑖 labelled asV∗
𝑗
:

Precision(V𝑖 ,V∗𝑗) =
|V𝑖 ∩V∗𝑗 |
|V𝑖 |

∈ [0, 1], (17)

and Recall is the percentage of vertices inV∗
𝑗
covered byV𝑖 :

Recall(V𝑖 ,V∗𝑗) =
|V𝑖 ∩V∗𝑗 |
|V∗
𝑗
| ∈ [0, 1] . (18)

Following Rossetti et al. [54], we combine precision and recall

into their harmonic mean to define the F1 score as

F1(V𝑖 ,V∗𝑗) = 2

Recall(V𝑖 ,V∗𝑗) ∗ Precision(V𝑖 ,V
∗
𝑗
)

Recall(V𝑖 ,V∗𝑗) + Precision(V𝑖 ,V
∗
𝑗
) ∈ [0, 1],

where we then averaged F1(V𝑖 ,V∗𝑗) across all the identified pairs

between the {V∗
𝑙
}𝑘∗
𝑙=1

and {V𝑙 }𝑘𝑙=1.
Following Rossetti [52], NF1 can be defined as

NF1 =
F1 ∗ Coverage
Redundancy

∈ (0, 1], (19)

where Coverage identified the percentage of communities inV∗
that were matched by at least one object inV:

Coverage =
|V∗
𝑖𝑑
|

|V∗ | ∈ [0, 1], (20)

where V∗
𝑖𝑑

was the subset of communities in V∗ matched by V .

Redundancy is the percentage of unmatched real communities:

Redundancy =
|V|
|V∗
𝑖𝑑
| ∈ [1, +∞) . (21)

Benjamini-Hochberg Correction (B-H) is a powerful tool that

decreases the false discovery rate [3]. Considering the reproducibil-

ity of the multiple significant test, we introduce how we adopt the

B-H correction and give the hyperparameter values that we used.

We first performed a t-test with the default parameters
2
to calcu-

late the p-value between each of the comparison methods with our

method. We then put the individual p-values in ascending order as

input to calculate the corrected p-value using the B-H correction.

We directly use the “multipletests(*args)” function from Python

package
3
and set the hyperparameter of the false discovery rate

𝑄 = 0.05, which is a widely used default value. Finally, we obtain

a cutoff value as the output of themultipletests function, where
cut-off is a dividing line that distinguishes whether two groups of

data are significant. If the p-value is smaller than the cut-off value,

we can conclude that two groups of data are significantly different.

F Extension of DyG-MF in Complex Scenarios

Table 5: Performance with invisible subsequent graphs and
varying number of total nodes setting.

Methods Dublin arXiv Flickr Youtube

NMI NF1 NMI NF1 NMI NF1 NMI NF1

RNNGCN 52.2 31.6 45.4 26.2 48.5 30.2 47.6 32.3

ROLAND 53.6 31.6 46.8 27.6 47.5 31.4 48.4 33.2

TGC 52.8 31.3 45.8 26.8 47.8 31.6 47.9 32.6

DyG-MF (w/o sub) 54.2 31.8 50.2 28.7 49.5 31.6 49.9 33.6

DyG-MF (Original) 56.1 33.7 51.8 30.2 52.3 33.6 51.8 34.5

For any given dynamic graph, DyG-MF initializes the set of

vertices𝑉1 based on the first snapshot. In the following timestamps,

DyG-MF determines the current timestamp as the final one and

computes Eq.(14) using only historical information w𝑎.,𝑡−1 and

current information w𝑎.,𝑡 . Meanwhile, for newly added vertices,

we randomly initialize their representations and group them into a

new block and merge this block with𝑀𝑡−1 to construct the current
𝑀𝑡 . To account for vertices that exist in the previous snapshot

but disappear in the current snapshot, we merge blocks that fill

with zeros for the vanishing vertices, ensuring that𝑀𝑡−1 and𝑀𝑡
maintain the same size. We also construct𝑊𝑡 in a similar way. We

consider newly added vertices as both landmarks and dynamic

vertices, updating their representations with our overall objective

equation in Eq.(16). We denote this configuration as “Ours (w/o

sub)”. As shown in Table 5, our method outperforms Ours (w/o

sub) because the additional block for newly appearing vertices

increases the number of blocks 𝑠 , which results in less preserved

landmark information. In addition, using only previous and current

snapshots provides less information for selecting dynamic vertices

compared to using three successive snapshots. Although Ours (w/o

sub) performs worse than our method in Table 5, Ours (w/o sub)

achieves the highest NMI and NF1 compared to other baselines.

This result indicates the effectiveness of Ours (w/o sub) and its

potential for separated matrix factorization.

2
https://docs.scipy.org/scipy.stats.ttest_ind.html

3
https://www.statsmodels.org/statsmodels.stats.multitest.multipletests.html

12

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind.html
https://www.statsmodels.org/dev/generated/statsmodels.stats.multitest.multipletests.html

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Revisiting Dynamic Graph Clustering via Matrix Factorization Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

G Optimization for Eq.(12)
We first list the 𝑖-th sub-issue of optimizing Eq.(12) as:

O𝑖,𝑡 = Lintra

𝑖,𝑡 + Linter

𝑖,𝑡 + 𝛼 ∥𝐶𝑖𝑡 −𝐶𝑖𝑡−1∥
2

F
. (G.1)

We follow the step of Li et al. [34] to estimate Φ𝑡 and Ψ𝑡 in advance. Considering that the time complexity for SVD is 𝑂 (𝑛3) which is

time-cost, we conduct Φ𝑡 and Ψ𝑡 with gradient descent instead. Based on the Karush-Kuhn-Tucker (KKT) condition [23], Φ𝑡 and Ψ𝑡 in Eq.(8)

are updated iteratively at each timestamp as

Φ𝑡 ← Φ𝑡 ·
𝑀00

𝑡 (Ψ𝑡)𝑇

Φ𝑡Ψ𝑡 (Ψ𝑡)𝑇
, (G.2)

Ψ𝑡 ← Ψ𝑡 ·
(Φ𝑡)𝑇𝑀00

𝑡

(Φ𝑡)𝑇Φ𝑡Ψ𝑡
. (G.3)

By giving the converged steps Φ𝑡 and Ψ𝑡 , we iteratively update 𝑄𝑖𝑡 and 𝑃
𝑖
𝑡 steps. We fix 𝑃𝑖𝑡 to deduce Eq.(G.1) as:

O𝑖,𝑡 = ∥𝑀𝑖𝑖
𝑡 − 𝑃𝑖𝑡𝑀00

𝑡 𝑄
𝑖
𝑡 ∥ + ∥𝑀0𝑖

𝑡 −𝑀00

𝑡 𝑄
𝑖
𝑡 ∥ +

∑︁
𝑗≠𝑖

∥𝑀 𝑗𝑖
𝑡 −𝑀

𝑗0
𝑡 𝑄

𝑖
𝑡 ∥. (G.4)

The update rule for 𝑄𝑖𝑡 is then conducted as:

𝑄𝑖𝑡 ← 𝑄𝑖𝑡 ·
(𝑀00

𝑡)𝑇 𝐽1 +
∑
𝑗≠𝑖 (𝑀

𝑗0
𝑡)𝑇𝑀

𝑗𝑖
𝑡

(𝑀00

𝑡)𝑇 𝐽2𝑀00

𝑡 𝑄
𝑖
𝑡 +

∑
𝑗≠𝑖 (𝑀

𝑗0
𝑡)𝑇𝑀

𝑗0
𝑡 𝑄

𝑖
𝑡

, (G.5)

where 𝐽1 = (𝑃𝑖𝑡)𝑇𝑀𝑖𝑖
𝑡 +𝑀0𝑖

𝑡 , and 𝐽2 = 𝐼 + (𝑃𝑖𝑡)𝑇 𝑃𝑖𝑡 .
We also fix 𝑄𝑖𝑡 to deduce Eq.(G.1) as:

O𝑖,𝑡 = ∥𝑀𝑖𝑖
𝑡 − 𝑃𝑖𝑡𝑀00

𝑡 𝑄
𝑖
𝑡 ∥ +

∑︁
𝑗≠𝑖

∥𝑀𝑖 𝑗
𝑡 − 𝑃

𝑖
𝑡𝑀

0𝑗
𝑡 ∥ + ∥𝑀

𝑖0
𝑡 − 𝑃𝑖𝑡𝑀00

𝑡 ∥ + 𝛼 ∥𝑃𝑖𝑡Φ𝑡 − 𝑃𝑖𝑡−1Φ𝑡 ∥. (G.6)

The update rule for 𝑃𝑖𝑡 is then conducted as

𝑃𝑖𝑡 ← 𝑃𝑖𝑡 ·
𝐽3 (𝑀00

𝑡)𝑇 +
∑
𝑗≠𝑖 𝑀

𝑖 𝑗
𝑡 (𝑀

0𝑗
𝑡)𝑇 + 𝛼 (𝑃𝑖𝑡−1Φ𝑡Φ

𝑇
𝑡)

𝑃𝑖𝑡𝑀
00

𝑡 𝐽4 +
∑
𝑗≠𝑖 𝑃

𝑖
𝑡𝑀

0𝑗
𝑡 (𝑀

0𝑗
𝑡)𝑇 + 𝛼 (𝑃𝑖𝑡Φ𝑡Φ𝑇𝑡)

, (G.7)

where 𝐽3 = 𝑀
𝑖𝑖
𝑡 (𝑄𝑖𝑡)𝑇 +𝑀𝑖0

𝑡 , and 𝐽4 = 𝑄
𝑖
𝑡 (𝑀00

𝑡 𝑄
𝑖
𝑡)𝑇 + (𝑀00

𝑡)𝑇 .

H Proof for Theorems
H.1 Proof for Theorem 1
Theorem 1 For ∀𝑖 satisfying 1 ≤ 𝑖 ≤ 𝑠 , assuming 𝐶𝑖𝑡 and 𝐻

𝑖
𝑡 in Eq.(9) can be linearly represented by the basis and coefficient matrices of the

landmarks, i.e.,𝐶𝑖𝑡 = 𝑃
𝑖
𝑡Φ𝑡 and 𝐻

𝑖
𝑡 = Ψ𝑡𝑄

𝑖
𝑡 . Then, jointly considering the matrix factorization of the landmarks𝑀00

𝑡 with each sub-matrix ensures
embedding consistency between subsets of nodes.

Proof. We begin by considering the matrix factorization of the node subsets𝑀
𝑖 𝑗
𝑡 and𝑀

𝑝𝑞
𝑡 as follows:

∥𝑀𝑖 𝑗
𝑡 −𝐶

𝑖
𝑡𝐻

𝑗
𝑡 ∥

2

F
. ∥𝑀𝑝𝑞

𝑡 −𝐶
𝑝
𝑡 𝐻

𝑞
𝑡 ∥

2

F
. (H.1)

Here, 𝐶𝑖𝑡 and 𝐶
𝑝
𝑡 represent the node embeddings of the subsets 𝑖 and 𝑝 , respectively. It is evident that the embeddings of 𝐶𝑖𝑡 and 𝐶

𝑝
𝑡 are

independent, and there is no constraint enforcing them to reside in the same latent space. Without such a constraint, the embeddings learned

for the different subsets are disjoint and inconsistent, resulting in discontinuities between them and undermining the overall quality of

the embeddings. To resolve this issue, we impose conditions 𝐶𝑖𝑡 = 𝑃
𝑖
𝑡Φ𝑡 and 𝐻

𝑖
𝑡 = Ψ𝑡𝑄

𝑖
𝑡 , where Φ𝑡 and Ψ𝑡 act as shared basis matrices for

embedding consistency across all subsets of nodes. Under these constraints, the matrix factorization for𝑀
𝑖 𝑗
𝑡 and𝑀

𝑝𝑞
𝑡 becomes:

∥𝑀𝑖 𝑗
𝑡 − 𝑃

𝑖
𝑡Φ𝑡 ((𝑄

𝑗
𝑡)
𝑇Ψ𝑇𝑡)𝑇 ∥2F . ∥𝑀

𝑝𝑞
𝑡 − 𝑃

𝑝
𝑡 Φ𝑡 ((𝑄

𝑞
𝑡)
𝑇Ψ𝑇𝑡)𝑇 ∥2F . (H.2)

Φ𝑡 serves as a shared basis for the hidden space, and 𝑃𝑖𝑡 and 𝑃
𝑝
𝑡 are coefficient matrices that describe the node embeddings in terms

of linear combinations of the basis vectors in Φ𝑡 . Consequently, the embeddings of different node subsets are aligned to the same latent

space, ensuring that they are consistent across subsets. Additionally, Ψ𝑡 acts as a transformation matrix that projects the node embeddings

of each subset into a common hidden space, thus further enforcing consistency between the embeddings of different subsets. Thus, by

jointly considering the matrix factorization of the landmarks𝑀00

𝑡 along with each sub-matrix𝑀
𝑖 𝑗
𝑡 and𝑀

𝑝𝑞
𝑡 , we guarantee that the node

embeddings across different subsets are consistent and reside in the same latent space. This proves that embedding consistency is achieved

between subsets of nodes.

13

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

□

H.2 Proof for Theorem 2
Theorem 2 Let 𝐿𝑆𝑡 =𝐼 − 𝐷−1/2𝑆𝑡𝐷−1/2 be the normalized Laplacian matrix, where 𝐷 is the degree matrix of 𝑆𝑡 . The multiplicity 𝑘 of the

eigenvalue 0 of 𝐿𝑆𝑡 ∈ R𝑛×𝑛 is equal to the number of connected components of the bipartite graph 𝑆𝑡 =
(
0 𝐶𝑡

𝐶𝑇𝑡 0

)
, where 𝑛 denotes the dimension

of 𝐿𝑆𝑡 and 𝑇 indicates the matrix transpose operation.

Proof. To proof Theorem 2, we need the following prior lemma.

Lemma 1. Let𝐶𝑡 ∈ R𝑛×𝑟 , 𝑆𝑡 ∈ R𝑛×𝑛 and 𝐿𝑆𝑡 ∈ R(𝑛+𝑟)×(𝑛+𝑟) . For any vector matrix 𝐹 ∈ R(𝑛+𝑟)×(𝑛+𝑟) with f ∈ R𝑛 as its row vector, we have
𝐹T𝐿𝑆𝑡 𝐹 = 1

2

∑𝑛+𝑟
𝑎=1

∑𝑛+𝑟
𝑏=1
∥f𝑎. − f𝑏.∥22𝑠𝑎𝑏 .

For any matrix 𝐹 , we can derive the following formula:

𝑇𝑟 (𝐹𝑇 𝐿𝑆𝑐 𝐹) = 𝑇𝑟 (𝐹
𝑇𝐷𝑆𝑐 𝐹) −𝑇𝑟 (𝐹

𝑇 𝑆𝑐𝐹)

=𝑇𝑟 ([f𝑇
1., · · · , f

𝑇
𝛿.
]

𝑑11 0 · · · 0

0 𝑑22 · · · 0

.

.

.
.
.
.

. . .
.
.
.

0 0 · · · 𝑑𝛿𝛿

f1.
.
.
.

f𝛿.

) −𝑇𝑟 ([f
𝑇
1., · · · , f

𝑇
𝛿.
]

𝑠11 𝑠12 · · · 𝑠

1𝛿

𝑠21 𝑠22 · · · 𝑠
2𝛿

.

.

.
.
.
.

. . .
.
.
.

𝑠𝛿1 𝑠𝛿2 · · · 𝑠𝛿𝛿

f1.
.
.
.

f𝛿.

)
=𝑇𝑟 ([f𝑇

1.𝑑11, · · · , f
𝑇
𝛿.
𝑑𝛿𝛿])

f1.
.
.
.

f𝛿.

) −𝑇𝑟 ([f
𝑇
1.𝑠11 + · · · + f

𝑇
𝛿.
𝑠𝛿1, · · · , f𝑇1.𝑠1𝛿 + · · · + f

𝑇
1.𝑠𝛿𝛿])

f1.
.
.
.

f𝛿.

)
=

𝛿∑︁
𝑎=1

f𝑎.𝑑𝑎𝑎f𝑇𝑎. −
𝛿∑︁
𝑎=1

𝛿∑︁
𝑏=1

f𝑏.𝑠𝑎𝑏f
𝑇
𝑎.

=
1

2

(2
𝛿∑︁
𝑎=1

f𝑎.𝑑𝑎𝑎f𝑇𝑎. − 2
𝛿∑︁
𝑎=1

𝛿∑︁
𝑏=1

f𝑏.𝑠𝑎𝑏f
𝑇
𝑎.)

=
1

2

(
𝛿∑︁
𝑎=1

𝛿∑︁
𝑏=1

𝑠𝑎𝑏f
2

𝑎. − 2
𝛿∑︁
𝑎=1

𝛿∑︁
𝑏=1

f𝑎.𝑠𝑎𝑏f
𝑇
𝑏.
+

𝛿∑︁
𝑏=1

𝛿∑︁
𝑎=1

𝑠𝑎𝑏f
2

𝑏.
)

=
1

2

𝛿∑︁
𝑎=1

𝛿∑︁
𝑏=1

∥f𝑎. − f𝑏.∥22𝑠𝑎𝑏 (H.3)

Since the Laplacian matrix 𝐿𝑆𝑡 is symmetric and positive semi-definite [47], its determinant is 0. If f is the all-ones vector 1 ∈ 𝑅𝑛+𝑟 , we
can then obtain:

𝐿𝑆𝑡 f = 𝐿𝑆𝑡 1 = (𝐷 − 𝑆𝑡)1 = [d1 . . . d𝑛]𝑇 − [
𝑛∑︁
𝑗=1

𝑠1𝑗 · · ·
𝑛∑︁
𝑗=1

𝑠𝑛𝑗]𝑇 = 0 (H.4)

Thus, 1 is the eigenvector corresponding to the eigenvalue 0. Since 𝐿𝑆𝑡 is positive semi-definite, its eigenvalue is non-negative, and the

minimum eigenvalue of 𝐿𝑆𝑡 is 0, with 1 as the corresponding eigenvector.

The theorem will be proved for two cases below:

(i) Case 1: k=1, i.e., G is a connected graph.
We need to prove that 𝐿𝑆𝑡 has only one eigenvalue of 0. Let f be the eigenvector corresponding to eigenvalue 0. Then, we have the

following equation:

0 = fTL𝑆𝑡 f =
1

2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑤𝑖 𝑗
(
𝑓𝑖 − 𝑓𝑗

)
2

(H.5)

This implies 𝑓𝑖 = 𝑓𝑗 . This equality is transmitted alone all connected paths, meaning all elements of the eigenvector f must be equal and

are in the span of the vector whose elements are all 1. Consequently, no other eigenvector corresponding to the eigenvalue 0. The prood

is complete.

(ii) Case 2: k > 1, we need to prove that L𝑆𝑡 has 0 eigenvalue with multiplicity k.
The nodes are numbered according to the connected subgraphs. Since there are no edges between different connected subgraphs, the

Laplace matrix L𝑆𝑡 has a block structure:

14

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

Revisiting Dynamic Graph Clustering via Matrix Factorization Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

𝐿1 0 · · · 0

0 𝐿2 · · · 0

.

.

.
.
.
.

. . .
.
.
.

0 0 · · · 𝐿𝑘

(H.6)

Each submatrix 𝐿𝑖 is also a Laplacian matrix for its connected component. By the same argument as in Case 1, the spectrum of 𝐿𝑖 is the

union of the spectra of the 𝐿𝑖 ’s. The eigenvector corresponding to the eigenvalue 0 of 𝐿𝑆𝑖 is the eigenvector of 𝐿𝑖 , with all other positions

filled with 0. Specifically, the eigenvector corresponding to the eigenvalue of the vertices of the 𝑖-th connected components is 1 at the 𝑖-th

component and 0 elsewhere, represented as [0 . . . 0 1 . . . 1 0 . . . 0].
Since each 𝐿𝑖 is a Laplacian matrix for a connected component, its 0 eigenvalue has multiplicity 1. Therefore, the number of linearly

independent eigenvectors corresponding to the 0 eigenvalue of 𝐿𝑆𝑡 is equal to the number of connected components, and these eigenvectors

are the indicator vectors of the connected components.

□

H.3 Proof for Theorem 3
Theorem 3 The bi-clustering regularization on the 𝑖-th subset 𝑆𝑖𝑡 is equal to the imposing constraints on𝐶𝑖𝑡 , i.e., when 𝑆

𝑖
𝑡 contains 𝑘 pure clusters,

𝐶𝑖𝑡 will also exhibit 𝑘 pure clusters. And bi-clustering regularization is decomposable, i.e., the constraint on the matrix𝑀𝑡 is equal to the constraint
on each of its subsets.

Proof. We can separate the bi-clustering item LBcr

𝑖,𝑡
in Eq.(16) based on dynamic and static nodes. Specifically, we further deduce the

following relation between clustering structure 𝑆𝑖𝑥,𝑡 and landmark-related matrix 𝑆𝑖
𝑃𝑥 ,𝑡

, as

𝑆𝑖𝑥,𝑡 =

(
0 𝐶𝑖𝑥,𝑡

(𝐶𝑖𝑥,𝑡)𝑇 0

)
=

(
𝐼 0

0 Φ𝑇𝑡

) (
0 𝑃𝑖𝑥,𝑡

(𝑃𝑖𝑥,𝑡)𝑇 0

)
︸ ︷︷ ︸

𝑆𝑖
𝑃𝑥,𝑡

(
𝐼 0

0 Φ𝑡

)
. (H.7)

Since the left and right matrices of 𝑆𝑖
𝑃𝑥,𝑡

are scalars, the trace optimization of 𝐶𝑖𝑥,𝑡 is proportional to the matrix 𝑃𝑖𝑥,𝑡 , i.e.,

𝑇𝑟 ((𝐹 𝑖𝑡)𝑇 𝐿𝑆𝑖𝑡 𝐹
𝑖
𝑡) ∝ 𝑇𝑟 ((𝐹 𝑖𝑥,𝑡)𝑇 𝐿𝑆𝑖𝑥,𝑡 𝐹

𝑖
𝑥,𝑡) ∝ 𝑇𝑟 ((𝐹 𝑖𝑥,𝑡)𝑇 𝐿𝑆𝑖

𝑃𝑥,𝑡

𝐹 𝑖𝑥,𝑡), (H.8)

□

I Optimization for Overall Objective Function Eq. (16)
To further reduce running time and improve performance, we focus on the time-varying features of dynamic nodes and only update their

node embeddings. The embeddings for the static nodes are fixed and are ignored for optimization. Therefore, optimization can be further

facilitated due to fewer active nodes. We permute and divide the diagonal and off-diagonal blocks in Eq.(9),𝑀𝑖𝑖
𝑡 and𝑀

𝑖 𝑗
𝑡 , into four sub-blocks:

𝑀𝑖𝑖
𝑡 =

(
𝑀𝑖𝑖
𝑥𝑥,𝑡 𝑀𝑖𝑖

𝑥𝑦,𝑡

𝑀𝑖𝑖
𝑦𝑥,𝑡 𝑀𝑖𝑖

𝑦𝑦,𝑡

)
, 𝑀

𝑖 𝑗
𝑡 =

(
𝑀
𝑖 𝑗
𝑥𝑥,𝑡 𝑀

𝑖 𝑗
𝑥𝑦,𝑡

𝑀
𝑖 𝑗
𝑦𝑥,𝑡 𝑀

𝑖 𝑗
𝑦𝑦,𝑡

)
, (I.1)

where𝑀
𝑖 𝑗
𝑥𝑦,𝑡 ∈ R |𝑋

𝑖
𝑡 |× |𝑌

𝑗
𝑡 | denotes the sub-block of𝑀

𝑖 𝑗
𝑡 associated with dynamic nodes in Γ𝑖𝑡 and static ones in Γ

𝑗
𝑡 . Similarly, the landmark

information in Eq.(8) is re-formulated as:

LLm

𝑡 =

(
𝑀00

𝑥𝑥,𝑡 𝑀00

𝑥𝑦,𝑡

𝑀00

𝑦𝑥,𝑡 𝑀00

𝑦𝑦,𝑡

)
−

(
Φ𝑥,𝑡
Φ𝑦,𝑡

)
(Ψ𝑥,𝑡 ,Ψ𝑦,𝑡)

2
F

, (I.2)

𝑠 .𝑡 . Φ𝑦,𝑡 = Φ𝑦,𝑡−1, Ψ𝑦,𝑡 = Ψ𝑦,𝑡−1,

where Φ𝑥,𝑡 and Φ𝑦,𝑡 denote the sub-blocks of Φ𝑡 for the dynamic and static landmarks, respectively. By adding such constraint of fixing

static node representations, we have two advantages: (1) we can prevent updates to static node representations from bringing more noise

and we can better utilize historical information to help improve model performance. (2) we can remove the smoothness item ∥𝐶𝑖𝑡 −𝐶𝑖𝑡−1∥
2

F
in

Eq.(16), which can significantly reduce computation cost and further accelerate the our method.

The intra-information Lintra

𝑖,𝑡
in Eq.(16) can be formulated as:(𝑀𝑖𝑖

𝑥𝑥,𝑡 𝑀𝑖𝑖
𝑥𝑦,𝑡

𝑀𝑖𝑖
𝑦𝑥,𝑡 𝑀𝑖𝑖

𝑦𝑦,𝑡

)
−

(
𝐶𝑖
𝑥,𝑡

𝐶𝑖
𝑦,𝑡

)
(𝐻 𝑖𝑥,𝑡 , 𝐻 𝑖𝑦,𝑡)

2
F

+
(𝑀0𝑖

𝑥𝑥,𝑡 𝑀0𝑖
𝑥𝑦,𝑡

𝑀0𝑖
𝑦𝑥,𝑡 𝑀0𝑖

𝑦𝑦,𝑡

)
−

(
Φ𝑥,𝑡

Φ𝑦,𝑡

)
(𝐻 𝑖𝑥,𝑡 , 𝐻 𝑖𝑦,𝑡)

2
F

+
(𝑀𝑖0

𝑥𝑥,𝑡 𝑀𝑖0
𝑥𝑦,𝑡

𝑀𝑖0
𝑦𝑥,𝑡 𝑀𝑖0

𝑦𝑦,𝑡

)
−

(
𝐶𝑖
𝑥,𝑡

𝐶𝑖
𝑦,𝑡

)
(Ψ𝑥,𝑡 ,Ψ𝑦,𝑡)

2
F

.

𝑠 .𝑡 . Φ𝑦,𝑡 = Φ𝑦,𝑡−1, 𝐻 𝑖𝑦,𝑡 = 𝐻
𝑖
𝑦,𝑡−1,𝐶

𝑖
𝑦,𝑡 = 𝐶

𝑖
𝑦,𝑡−1,Ψ𝑦,𝑡 = Ψ𝑦,𝑡−1 . (I.3)

15

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

The inter-information Linter

𝑖,𝑡
in Eq.(16) can be formulated as:

(
𝑀
𝑖 𝑗
𝑥𝑥,𝑡 𝑀

𝑖 𝑗
𝑥𝑦,𝑡

𝑀
𝑖 𝑗
𝑦𝑥,𝑡 𝑀

𝑖 𝑗
𝑦𝑦,𝑡

)
−

(
𝐶𝑖𝑥,𝑡
𝐶𝑖𝑦,𝑡

)
(𝐻 𝑗
𝑥,𝑡 , 𝐻

𝑗
𝑦,𝑡)

2
F

+

(
𝑀
𝑗𝑖
𝑥𝑥,𝑡 𝑀

𝑗𝑖
𝑥𝑦,𝑡

𝑀
𝑗𝑖
𝑦𝑥,𝑡 𝑀

𝑗𝑖
𝑦𝑦,𝑡

)
−

(
𝐶
𝑗
𝑥,𝑡

𝐶
𝑗
𝑦,𝑡

)
(𝐻 𝑖𝑥,𝑡 , 𝐻 𝑖𝑦,𝑡)

2
F

.

𝑠 .𝑡 . 𝐶𝑖𝑦,𝑡 = 𝐶
𝑖
𝑦,𝑡−1, 𝐻

𝑗
𝑦,𝑡 = 𝐻

𝑗

𝑦,𝑡−1,𝐶
𝑗
𝑦,𝑡 = 𝐶

𝑗

𝑦,𝑡−1, 𝐻
𝑖
𝑦,𝑡 = 𝐻

𝑖
𝑦,𝑡−1 . (I.4)

Interestingly, we can separate the bi-clustering item LBcr

𝑖,𝑡
= 𝑇𝑟 ((𝐹 𝑖𝑡)𝑇 𝐿𝑆𝑖𝑡 𝐹

𝑖
𝑡) in Eq.(16) based on dynamic and static nodes. Combining

Eqs.(I.2,I.3,I.4), the overall objective function of our proposed method can be modeled as:

O𝑡 = Linter

𝑡 + Lintra

𝑡 + 𝛽LBcr

𝑡 . (I.5)

Compared with Eq.(13), our method has two specific advantages. First, it eliminates the term ∥𝐶𝑖𝑡 − 𝐶𝑖𝑡−1∥
2

F
for temporal smoothing,

simplifying the optimization process. Second, it transforms the separability of temporal networks by exploiting only dynamic nodes,

significantly reducing the time complexity.

Since LLm

𝑡 of Eq.(I.2) is optimized first to help enhance the consistency of representations between different subsets, we can fix Φ𝑡 and Ψ𝑡
unchanged during the optimization of Eq.(16). First, we update the variable Φ𝑥,𝑡 . We use FΦ𝑥,𝑡

to denote Eq.(I.2) as:

FΦ𝑥,𝑡
=

(
𝑀00

𝑥𝑥,𝑡 𝑀00

𝑥𝑦,𝑡

𝑀00

𝑦𝑥,𝑡 𝑀00

𝑦𝑦,𝑡

)
−

(
Φ𝑥,𝑡
Φ𝑦,𝑡

)
(Ψ𝑥,𝑡 ,Ψ𝑦,𝑡)

 , (I.6)

𝑠 .𝑡 . Φ𝑦,𝑡 = Φ𝑦,𝑡−1,Ψ𝑦,𝑡 = Ψ𝑦,𝑡−1 .

By removing all irrelevant variables, Eq.(I.6) can be re-formulated as:

FΦ𝑥,𝑡
=∥𝑀00

𝑥𝑥,𝑡 − Φ𝑥,𝑡Ψ𝑥,𝑡 ∥2F + ∥𝑀
00

𝑥𝑦,𝑡 − Φ𝑥,𝑡Ψ𝑦,𝑡 ∥

=𝑇𝑟 ((𝑀00

𝑥𝑥,𝑡 − Φ𝑥,𝑡Ψ𝑥,𝑡)𝑇 (𝑀00

𝑥𝑥,𝑡 − Φ𝑥,𝑡Ψ𝑥,𝑡)) +𝑇𝑟 ((𝑀00

𝑥𝑦,𝑡 − Φ𝑥,𝑡Ψ𝑦,𝑡)𝑇 (𝑀00

𝑥𝑦,𝑡 − Φ𝑥,𝑡Ψ𝑦,𝑡))

=𝑇𝑟 ((𝑀00

𝑥𝑥,𝑡)𝑇𝑀00

𝑥𝑥,𝑡 − (𝑀00

𝑥𝑥,𝑡)𝑇Φ𝑥,𝑡Ψ𝑥,𝑡 − (Φ𝑥,𝑡Ψ𝑥,𝑡)𝑇𝑀00

𝑥𝑥,𝑡 + (Φ𝑥,𝑡Ψ𝑥,𝑡)𝑇Φ𝑥,𝑡Ψ𝑥,𝑡
+ (𝑀00

𝑥𝑦,𝑡)𝑇𝑀00

𝑥𝑦,𝑡 − (𝑀00

𝑥𝑦,𝑡)𝑇Φ𝑥,𝑡Ψ𝑦,𝑡 − (Φ𝑥,𝑡Ψ𝑦,𝑡)𝑇𝑀00

𝑥𝑦,𝑡 + (Φ𝑥,𝑡Ψ𝑦,𝑡)𝑇Φ𝑥,𝑡Ψ𝑦,𝑡) . (I.7)

We removed constant items (𝑀00

𝑥𝑥,𝑡)𝑇𝑀00

𝑥𝑥,𝑡 and (𝑀00

𝑥𝑦,𝑡)𝑇𝑀00

𝑥𝑦,𝑡 , so that FΦ𝑥,𝑡
can be estimated by:

FΦ𝑥,𝑡 = 𝑇𝑟 (−(𝑀00

𝑥𝑥,𝑡)𝑇Φ𝑥,𝑡Ψ𝑥,𝑡 − (Φ𝑥,𝑡Ψ𝑥,𝑡)𝑇𝑀00

𝑥𝑥,𝑡 + (Φ𝑥,𝑡Ψ𝑥,𝑡)𝑇Φ𝑥,𝑡Ψ𝑥,𝑡 − (𝑀00

𝑥𝑦,𝑡)𝑇Φ𝑥,𝑡Ψ𝑦,𝑡 − (Φ𝑥,𝑡Ψ𝑦,𝑡)𝑇𝑀00

𝑥𝑦,𝑡) + (Φ𝑥,𝑡Ψ𝑦,𝑡)𝑇Φ𝑥,𝑡Ψ𝑦,𝑡) . (I.8)

We can then obtain the gradient of Φ𝑥,𝑡 from Eq.(I.8) as:

𝜕FΦ𝑥,𝑡

𝜕Φ𝑥,𝑡
=
𝜕𝑇𝑟 (−(𝑀00

𝑥𝑥,𝑡)𝑇Φ𝑥,𝑡Ψ𝑥,𝑡)
𝜕Φ𝑥,𝑡

+
𝜕𝑇𝑟 (−(Φ𝑥,𝑡Ψ𝑥,𝑡)𝑇𝑀00

𝑥𝑥,𝑡)
𝜕Φ𝑥,𝑡

+
𝜕𝑇𝑟 ((Φ𝑥,𝑡Ψ𝑥,𝑡)𝑇Φ𝑥,𝑡Ψ𝑥,𝑡)

𝜕Φ𝑥,𝑡

+
𝜕𝑇𝑟 (−(𝑀00

𝑥𝑦,𝑡)𝑇Φ𝑥,𝑡Ψ𝑦,𝑡)
𝜕Φ𝑥,𝑡

+
𝜕𝑇𝑟 (−(Φ𝑥,𝑡Ψ𝑦,𝑡)𝑇𝑀00

𝑥𝑦,𝑡)
𝜕Φ𝑥,𝑡

+
𝜕𝑇𝑟 ((Φ𝑥,𝑡Ψ𝑦,𝑡)𝑇Φ𝑥,𝑡Ψ𝑦,𝑡)

𝜕Φ𝑥,𝑡

= −𝑀00

𝑥𝑥,𝑡 (Ψ𝑥,𝑡)𝑇 −𝑀00

𝑥𝑥,𝑡 (Ψ𝑥,𝑡)𝑇 + 2(Φ𝑥,𝑡Ψ𝑥,𝑡) (Ψ𝑥,𝑡)𝑇 −𝑀00

𝑥𝑦,𝑡 (Ψ𝑦,𝑡)𝑇 −𝑀00

𝑥𝑦,𝑡 (Ψ𝑦,𝑡)𝑇 + 2(Φ𝑥,𝑡Ψ𝑦,𝑡) (Ψ𝑦,𝑡)𝑇

= −2𝑀00

𝑥𝑥,𝑡 (Ψ𝑥,𝑡)𝑇 − 2𝑀00

𝑥𝑦,𝑡 (Ψ𝑦,𝑡)𝑇 + 2(Φ𝑥,𝑡Ψ𝑥,𝑡) (Ψ𝑥,𝑡)𝑇 + 2(Φ𝑥,𝑡Ψ𝑦,𝑡) (Ψ𝑦,𝑡)𝑇 . (I.9)

According to Lee et al. [25], we update Φ𝑥,𝑡 by using gradient descent as:

Φ𝑥,𝑡 ← Φ𝑥,𝑡 − 𝜌
𝜕FΦ𝑥,𝑡

𝜕Φ𝑥,𝑡
, (I.10)

where 𝜌 is set to a small and positive number:

𝜌 =
Φ𝑥,𝑡

2(Φ𝑥,𝑡Ψ𝑥,𝑡) (Ψ𝑥,𝑡)𝑇 + 2(Φ𝑥,𝑡Ψ𝑦,𝑡) (Ψ𝑦,𝑡)𝑇
. (I.11)

Finally, our update rule for Φ𝑥,𝑡 is conducted as:

Φ𝑥,𝑡 ← Φ𝑥,𝑡 ·
𝑀00

𝑥𝑥,𝑡 (Ψ𝑥,𝑡)𝑇 +𝑀00

𝑥𝑦,𝑡 (Ψ𝑦,𝑡)𝑇

(Φ𝑥,𝑡Ψ𝑥,𝑡) (Ψ𝑥,𝑡)𝑇 + (Φ𝑥,𝑡Ψ𝑦,𝑡) (Ψ𝑦,𝑡)𝑇
. (I.12)

Similarly, for Ψ𝑥,𝑡 , we have

FΨ𝑥,𝑡 =𝑇𝑟 (−(𝑀00

𝑥𝑥,𝑡)𝑇Φ𝑥,𝑡Ψ𝑥,𝑡 − (Φ𝑥,𝑡Ψ𝑥,𝑡)𝑇𝑀00

𝑥𝑥,𝑡 + (Φ𝑥,𝑡Ψ𝑥,𝑡)𝑇Φ𝑥,𝑡Ψ𝑥,𝑡
− (𝑀00

𝑦𝑥,𝑡)𝑇Φ𝑦,𝑡Ψ𝑥,𝑡 − (Φ𝑦,𝑡Ψ𝑥,𝑡)𝑇𝑀00

𝑦𝑥,𝑡) + (Φ𝑦,𝑡Ψ𝑥,𝑡)𝑇Φ𝑦,𝑡Ψ𝑥,𝑡) . (I.13)

16

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

Revisiting Dynamic Graph Clustering via Matrix Factorization Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

The gradient for Ψ𝑥,𝑡 is

𝜕FΨ𝑥,𝑡
𝜕Ψ𝑥,𝑡

= −2(Φ𝑥,𝑡)𝑇𝑀00

𝑥𝑥,𝑡 − 2(Φ𝑦,𝑡)𝑇𝑀00

𝑦𝑥,𝑡 + 2(Φ𝑥,𝑡)𝑇Φ𝑥,𝑡Ψ𝑥,𝑡 + 2(Φ𝑦,𝑡)𝑇Φ𝑦,𝑡Ψ𝑥,𝑡 .

The update rule for Ψ𝑥,𝑡 is

Ψ𝑥,𝑡 ← Ψ𝑥,𝑡 − 𝜌
𝜕FΨ𝑥,𝑡
𝜕Ψ𝑥,𝑡

, (I.14)

where 𝜌 =
Ψ𝑥,𝑡

2(Φ𝑥,𝑡)𝑇 Φ𝑥,𝑡Ψ𝑥,𝑡+2(Φ𝑦,𝑡)𝑇 Φ𝑦,𝑡Ψ𝑥,𝑡
.

Fixing 𝐻 𝑖𝑦,𝑡 and 𝐶
𝑖
𝑦,𝑡 , we can remove items without variables.𝑀𝑖𝑖

𝑦𝑦,𝑡 ≈ 𝐶𝑖𝑦,𝑡𝐻 𝑖𝑦,𝑡 ,𝑀0𝑖
𝑥𝑦,𝑡 ≈ Φ𝑥,𝑡𝐻

𝑖
𝑦,𝑡 and𝑀

0𝑖
𝑦𝑦,𝑡 ≈ Φ𝑦,𝑡𝐻

𝑖
𝑦,𝑡 . The first item in

Eq.(I.3) can be re-formulated as:

∥𝑀𝑖𝑖
𝑥𝑥,𝑡 − 𝐶𝑖

𝑥,𝑡𝐻
𝑖
𝑥,𝑡 ∥2F + ∥𝑀

𝑖𝑖
𝑥𝑦,𝑡 − 𝐶𝑖

𝑥,𝑡𝐻
𝑖
𝑦,𝑡 ∥2F + ∥𝑀

𝑖𝑖
𝑦𝑥,𝑡 − 𝐶𝑖

𝑦,𝑡𝐻
𝑖
𝑥,𝑡 ∥2F . (I.15)

The second item of intra-information can be reduced as:

∥𝑀0𝑖
𝑥𝑥,𝑡 − Φ𝑥,𝑡𝐻 𝑖𝑥,𝑡 ∥2F + ∥𝑀

0𝑖
𝑦𝑥,𝑡 − Φ𝑦,𝑡𝐻 𝑖𝑥,𝑡 ∥2F . (I.16)

Let𝑀
𝑖 𝑗
·𝑥,𝑡 = [𝑀

𝑖 𝑗
𝑥𝑥,𝑡 , 𝑀

𝑖 𝑗
𝑦𝑥,𝑡]𝑇 , Eq.(I.16) can be formulated as:

∥𝑀0𝑖
·𝑥,𝑡 − Φ𝑡𝐻 𝑖𝑥,𝑡 ∥2F . (I.17)

Similarly, by setting𝑀
𝑖 𝑗
𝑥 ·,𝑡 = [𝑀

𝑖 𝑗
𝑥𝑥,𝑡 , 𝑀

𝑖 𝑗
𝑥𝑦,𝑡], we formulate the third item of intra-information for𝑀𝑖0

𝑡 in Eq.(I.3) as:

∥𝑀𝑖0
𝑥 ·,𝑡 −𝐶𝑖𝑥,𝑡Ψ𝑡 ∥2F . (I.18)

Combining Eqs.(I.15, I.17, I.18), intra-information loss of Eq.(I.3) can be reformulated as:

Lintra𝑖,𝑡 = ∥𝑀0𝑖
·𝑥,𝑡 − Φ𝑡𝐻

𝑖
𝑥,𝑡 ∥2F + ∥𝑀

𝑖0
𝑥 ·,𝑡 − 𝐶𝑖

𝑥,𝑡Ψ𝑡 ∥2F︸ ︷︷ ︸
Landmark feature preservation

+ ∥𝑀𝑖𝑖
𝑥𝑥,𝑡 − 𝐶𝑖

𝑥,𝑡𝐻
𝑖
𝑥,𝑡 ∥2F + ∥𝑀

𝑖𝑖
𝑥𝑦,𝑡 − 𝐶𝑖

𝑥,𝑡𝐻
𝑖
𝑦,𝑡 ∥2F + ∥𝑀

𝑖𝑖
𝑦𝑥,𝑡 − 𝐶𝑖

𝑦,𝑡𝐻
𝑖
𝑥,𝑡 ∥2F︸ ︷︷ ︸

intra-information inside each subset

. (I.19)

Considering that 𝐶𝑖𝑡 , 𝐻
𝑗
𝑡 can be represented as linear combinations of columns in Φ𝑡 ,Ψ𝑡 , we define 𝐶

𝑖
𝑡 = 𝑃

𝑖
𝑡Φ𝑡 and 𝐻

𝑗
𝑡 = Ψ𝑡𝑄

𝑗
𝑡 . Then, the

first item of Eq.(I.4) is formulated as:
(
𝑀
𝑖 𝑗
𝑥𝑥,𝑡 𝑀

𝑖 𝑗
𝑥𝑦,𝑡

𝑀
𝑖 𝑗
𝑦𝑥,𝑡 𝑀

𝑖 𝑗
𝑦𝑦,𝑡

)
−

(
𝑃𝑖𝑥,𝑡
𝑃𝑖𝑦,𝑡

)
Φ𝑡 (𝐻 𝑗

𝑥,𝑡 , 𝐻
𝑗
𝑦,𝑡)︸ ︷︷ ︸

𝑀
0𝑗
𝑡

2

F

. (I.20)

By removing the item related to 𝑃𝑖𝑦,𝑡 , Eq.(I.20) is formulated as:

∥𝑀𝑖 𝑗
𝑥𝑥,𝑡 − 𝑃

𝑖
𝑥,𝑡𝑀

0𝑗
𝑥 ·,𝑡 ∥

2

F
+ ∥𝑀𝑖 𝑗

𝑥𝑦,𝑡 − 𝑃
𝑖
𝑥,𝑡𝑀

0𝑗
𝑦 ·,𝑡 ∥

2

F
= ∥𝑀𝑖 𝑗

𝑥 ·,𝑡 − 𝑃
𝑖
𝑥,𝑡𝑀

0𝑗
𝑡 ∥

2

F
. (I.21)

Similarly, the second item of inter-information in Eq.(I.4) is

∥𝑀 𝑗𝑖
𝑥𝑥,𝑡 −𝑀

𝑗0
𝑥 ·,𝑡𝑄

𝑖
𝑥,𝑡 ∥2F + ∥𝑀

𝑗𝑖
𝑦𝑥,𝑡 −𝑀

𝑗0
𝑦 ·,𝑡𝑄

𝑖
𝑥,𝑡 ∥2F = ∥𝑀 𝑗𝑖

·𝑥,𝑡 −𝑀
𝑗0
𝑡 𝑄

𝑖
𝑥,𝑡 ∥2F . (I.22)

Combining Eqs.(I.20, I.22), Eq.(I.4) can be re-formulated as:

Linter

𝑡 =
∑︁
𝑗≠𝑖

(∥𝑀𝑖 𝑗
𝑥 ·,𝑡 − 𝑃

𝑖
𝑥,𝑡𝑀

0𝑗
𝑡 ∥

2

F
+ ∥𝑀 𝑗𝑖

·𝑥,𝑡 −𝑀
𝑗0
𝑡 𝑄

𝑖
𝑥,𝑡 ∥2F). (I.23)

We can separate the bi-clustering item LBcr

𝑖,𝑡
in Eq.(16) based on dynamic and static nodes. Specifically, we further deduce the following

relation between clustering structure 𝑆𝑖𝑥,𝑡 and landmark-related matrix 𝑆𝑖
𝑃𝑥 ,𝑡

, as:

𝑆𝑖𝑥,𝑡 =

(
0 𝐶𝑖𝑥,𝑡

(𝐶𝑖𝑥,𝑡)𝑇 0

)
=

(
𝐼 0

0 Φ𝑇𝑡

) (
0 𝑃𝑖𝑥,𝑡

(𝑃𝑖𝑥,𝑡)𝑇 0

)
︸ ︷︷ ︸

𝑆𝑖
𝑃𝑥,𝑡

(
𝐼 0

0 Φ𝑡

)
. (I.24)

Since the left and right matrices of 𝑆𝑖
𝑃𝑥,𝑡

are scalars, the trace optimization of 𝐶𝑖𝑥,𝑡 is proportional to the matrix 𝑃𝑖𝑥,𝑡 , i.e.,

𝑇𝑟 ((𝐹 𝑖𝑡)𝑇 𝐿𝑆𝑖𝑡 𝐹
𝑖
𝑡) ∝ 𝑇𝑟 ((𝐹 𝑖𝑥,𝑡)𝑇 𝐿𝑆𝑖𝑥,𝑡 𝐹

𝑖
𝑥,𝑡) ∝ 𝑇𝑟 ((𝐹 𝑖𝑥,𝑡)𝑇 𝐿𝑆𝑖

𝑃𝑥,𝑡

𝐹 𝑖𝑥,𝑡), (I.25)

17

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

Combining Eqs.(I.19,I.23,I.25), the overall objective function of our method can be modeled as

O𝑖,𝑡 = Lintra

𝑖,𝑡 + Linter

𝑖,𝑡 + 𝛽LBcr

𝑖,𝑡 , (I.26)

𝑠 .𝑡 . LBcr

𝑖,𝑡 = 𝑇𝑟 ((𝐹 𝑖𝑥,𝑡)𝑇 𝐿𝑆𝑖
𝑃𝑥,𝑡

𝐹 𝑖𝑥,𝑡), 𝑃𝑖𝑥,𝑡 ≥ 0, 𝑄𝑖𝑥,𝑡 ≥ 0, 𝑃𝑖𝑥,𝑡1 = 1, (𝐹 𝑖𝑥,𝑡)𝑇 𝐹 𝑖𝑥,𝑡 = I.

By giving the converged Φ𝑡 and Ψ𝑡 , we follow Nie et al. [47] to iteratively update 𝐹 𝑖𝑥,𝑡 , 𝑄
𝑖
𝑥,𝑡 , and 𝑃

𝑖
𝑥,𝑡 steps. Specifically, we first fix 𝑃

𝑖
𝑥,𝑡

and 𝑄𝑖𝑥,𝑡 to update 𝐹 𝑖𝑥,𝑡 by transforming Eq.(I.27) into a trace optimization as:

min

𝐹 𝑖𝑥,𝑡 ∈R
(|𝑋𝑖

𝑡 |+𝑟)×𝑘𝑡 ,(𝐹 𝑖𝑥,𝑡)𝑇 𝐹 𝑖𝑥,𝑡=𝐼
𝑇𝑟 ((𝐹 𝑖𝑥,𝑡)𝑇 𝐿𝑆𝑃𝑖𝑥,𝑡

𝐹 𝑖𝑥,𝑡), (I.27)

where |𝑋 𝑖𝑡 | is the number of dynamic vertices, and the optimal 𝐹 𝑖𝑥,𝑡 is the 𝑘𝑡 smallest eigenvectors of 𝐿𝑆
𝑃𝑖𝑥,𝑡

.

Analogously, we fix 𝐹 𝑖𝑥,𝑡 and 𝑃
𝑖
𝑥,𝑡 to deduce Eq.(I.27) as:

∥𝑀𝑖𝑖
·𝑥,𝑡 − 𝑃𝑖𝑡𝑀00

𝑡 𝑄
𝑖
𝑥,𝑡 ∥ +

∑︁
𝑗≠𝑖

∥𝑀 𝑗𝑖
·𝑥,𝑡 −𝑀

𝑗0
𝑡 𝑄

𝑖
𝑥,𝑡 ∥ + ∥𝑀0𝑖

·𝑥,𝑡 −𝑀00

𝑡 𝑄
𝑖
𝑥,𝑡 ∥, (I.28)

and obtain the update rule for 𝑄𝑖𝑥,𝑡 as:

𝑄𝑖𝑥,𝑡 ← 𝑄𝑖𝑥,𝑡 ·
(𝑀00

𝑡)𝑇 𝐽1 +
∑
𝑗≠𝑖 (𝑀

𝑗0
𝑡)𝑇𝑀

𝑗𝑖
·𝑥,𝑡

(𝑀00

𝑡)𝑇 𝐽2𝑀00

𝑡 𝑄
𝑖
𝑥,𝑡 +

∑
𝑗≠𝑖 (𝑀

𝑗0
·𝑥,𝑡)𝑇𝑀

𝑗0
𝑡 𝑄

𝑖
𝑥,𝑡

, (I.29)

where 𝐽1 = (𝑃𝑖𝑡)𝑇𝑀𝑖𝑖
·𝑥,𝑡 +𝑀0𝑖

·𝑥,𝑡 , and 𝐽2 = 𝐼 + (𝑃𝑖𝑥,𝑡)𝑇 𝑃𝑖𝑥,𝑡 + (𝑃𝑖𝑦,𝑡)𝑇 𝑃𝑖𝑦,𝑡 .
When fixing 𝑄𝑖𝑥,𝑡 and 𝐹

𝑖
𝑥,𝑡 to consider 𝑃𝑖𝑥,𝑡 as the variable, Eq.(I.27) is deduced as:

∥𝑀𝑖𝑖
𝑥 ·,𝑡 − 𝑃𝑖𝑥,𝑡𝑀00

𝑡 𝑄
𝑖
𝑡 ∥ +

∑︁
𝑗≠𝑖

∥𝑀𝑖 𝑗
𝑥 ·,𝑡 − 𝑃

𝑖
𝑥,𝑡𝑀

0𝑗
𝑡 ∥ + ∥𝑀

𝑖0
𝑥 ·,𝑡 − 𝑃𝑖𝑥,𝑡𝑀00

𝑡 ∥ + 𝛽𝑇𝑟 ((𝐹 𝑖𝑥,𝑡)𝑇 𝐿𝑆𝑖
𝑃𝑥,𝑡

𝐹 𝑖𝑥,𝑡). (I.30)

In accordance with 𝑇𝑟 (𝐹𝑇 𝐿𝑆𝐹) =
∑𝑛
𝑎=1

∑𝑟
𝑏=1
∥f𝑎. − f𝑛+𝑏.∥22𝑐𝑎𝑏 , the trace optimization in Eq.(I.30) can be formulated as:

𝑇𝑟 ((𝐹 𝑖𝑥,𝑡)𝑇 𝐿𝑆𝑖
𝑃𝑥,𝑡

𝐹 𝑖𝑥,𝑡) =
|𝑋 𝑖

𝑡 |∑︁
𝑎=1

𝑟∑︁
𝑏=1

∥f𝑖𝑎.,𝑥𝑡 − f𝑖|𝑋 𝑖
𝑡 |+𝑏.,𝑥𝑡

∥2
2
𝑝𝑖
𝑎𝑏,𝑥𝑡

, (I.31)

where the vector f𝑖𝑎.,𝑥𝑡 is the 𝑎-th row of 𝐹 𝑖𝑥,𝑡 , and 𝑝
𝑖
𝑎𝑏,𝑥𝑡

is the element at the 𝑎-th row and 𝑏-th column of 𝑃𝑖𝑥,𝑡 . By substituting Eq.(I.31) into

Eq.(I.30), the objective function is re-formulated as:

O𝐼 𝐼 ,𝑃
𝑖,𝑡

= ∥𝑀𝑖𝑖
𝑥 ·,𝑡 − 𝑃𝑖𝑥,𝑡𝑀00

𝑡 𝑄
𝑖
𝑡 ∥ +

∑︁
𝑗≠𝑖

∥𝑀𝑖 𝑗
𝑥 ·,𝑡 − 𝑃

𝑖
𝑥,𝑡𝑀

0𝑗
𝑡 ∥ + ∥𝑀

𝑖0
𝑥 ·,𝑡 − 𝑃𝑖𝑥,𝑡𝑀00

𝑡 ∥ + 𝛽
|𝑋 𝑖

𝑡 |∑︁
𝑎=1

𝑟∑︁
𝑏=1

∥f𝑖𝑎.,𝑥𝑡 − f𝑖|𝑋 𝑖
𝑡 |+𝑏.,𝑥𝑡

∥2
2
𝑝𝑖
𝑎𝑏,𝑥𝑡

. (I.32)

Because Eq.(I.32) only involves 𝑃𝑖𝑥,𝑡 , by setting 𝜕O𝐼 𝐼 ,𝑃
𝑖,𝑡
/𝜕p𝑖𝑎.,𝑥𝑡 = 0, we independently update each row p𝑖𝑎.,𝑥𝑡 of 𝑃

𝑖
𝑥,𝑡 as:

p𝑖𝑎.,𝑥𝑡 ← p𝑖𝑎.,𝑥𝑡 ·
(𝜸1 (𝑄𝑖𝑡)𝑇 +𝜸2) (𝑀00

𝑡)𝑇 +
∑
𝑗≠𝑖 𝜸3 (𝑀

0𝑗
𝑡)𝑇

p𝑖𝑎.,𝑥𝑡𝑀
00

𝑡 𝐽3 +
∑
𝑗≠𝑖 p𝑖𝑎.,𝑥𝑡𝑀

0𝑗
𝑡 (𝑀

0𝑗
𝑡)𝑇 + 𝛽e𝑖𝑎.,𝑥𝑡

, (I.33)

where 𝐽3 = 𝑄
𝑖
𝑡 (𝑀00

𝑡 𝑄
𝑖
𝑡)𝑇 + (𝑀00

𝑡)𝑇 , e𝑖𝑎.,𝑥𝑡 is a vector, the 𝑏-th element of which is 𝑒𝑖
𝑎𝑏,𝑥𝑡

= ∥f𝑖𝑎.,𝑥𝑡 − f𝑖|𝑋 𝑖
𝑡 |+𝑏.,𝑥𝑡

∥2
2
. The 𝜸1, 𝜸2, and 𝜸3 are the

𝑎-th row of𝑀𝑖𝑖
𝑥 ·,𝑡 ,𝑀

𝑖0
𝑥 ·,𝑡 , and𝑀

𝑖 𝑗
𝑥 ·,𝑡 , respectively.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

18

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminary
	4 Methodology
	4.1 Temporal Separated Matrix Factorization
	4.2 Bi-clustering Regularization
	4.3 Selective Embedding Updating
	4.4 Complexity Analysis

	5 Experiment
	5.1 Performance Evaluation
	5.2 Scalability Evaluation
	5.3 Robustness Evaluation
	5.4 Ablation Study
	5.5 Hyperparameters Analysis
	5.6 Case Study

	6 Conclusion
	References
	A Limitations
	B Pseudocode of DyG-MF
	C More Details about Datasets
	D More Details about Baselines
	E Introduction of Criteria and Significant Tests
	F Extension of DyG-MF in Complex Scenarios
	G Optimization for Eq.(12)
	H Proof for Theorems
	H.1 Proof for Theorem 1
	H.2 Proof for Theorem 2
	H.3 Proof for Theorem 3

	I Optimization for Overall Objective Function Eq. (16)

