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ABSTRACT

Modeling complex dynamical systems where only partial knowledge of their
physical mechanisms is available is a crucial problem across all scientific and
engineering disciplines. Purely data-driven approaches, which only make use of
an artificial neural network and data, often fail to accurately simulate the evo-
lution of the system dynamics over a sufficiently long time and in a physically
consistent manner. Therefore, we propose a hybrid approach that uses a neu-
ral network model in combination with an incomplete PDE solver that provides
known, but incomplete physical information. In this study, we demonstrate that
the results obtained from the incomplete PDEs can be efficiently corrected at ev-
ery time step by the proposed hybrid neural network – PDE solver model, so that
the effect of the unknown physics present in the system is correctly accounted
for. For validation purposes, the obtained simulations of the hybrid model are
successfully compared against results coming from the complete set of PDEs de-
scribing the full physics of the considered system. We demonstrate the validity of
the proposed approach on a reactive flow, an archetypal multi-physics system that
combines fluid mechanics and chemistry, the latter being the physics considered
unknown. Experiments are made on planar and Bunsen-type flames at various op-
erating conditions. The hybrid neural network - PDE approach correctly models
the flame evolution of the cases under study for significantly long time windows,
yields improved generalization, and allows for larger simulation time steps.

1 INTRODUCTION

Modeling and forecasting of complex physical systems described by nonlinear partial differential
equations (PDEs) are central to various domains with applications ranging from weather forecast-
ing (Kalnay, 2003), design of airplane wings (Rhie & Chow, 1983), to material science (Wheeler
et al., 1992). Typically, a chosen set of PDEs are solved iteratively until convergence of the solution.
Modeling complex physical dynamics requires a good understanding of the underlying physical phe-
nomena. For cases where the complete physics information is missing, deep learning models can
be employed to complete the physical description when additional data of the system is available.
Deep learning methods have shown promises to account for these unknown components of the sys-
tem (Yin et al., 2021). We consider a set of partial differential equations with partially unknown
physics represented. The corresponding PDE model for a general state ϕ is given by

∂ϕ

∂t
= Pi(ϕ,

∂ϕ

∂x
,
∂2ϕ

∂x2
, ...) + Sϕ, (1)

where Pi models the known but incomplete PDE description, Sϕ represents the unknown physics.

Within the scope of this model, the influence of Sϕ can lead to fundamentally different scenarios.
A commonly targeted case is when the governing equations of the complete PDE description are
computationally too expensive to solve, turbulence modeling in computational fluid dynamics (CFD)
being a good example. In CFD, a spacial filtering is performed on the original governing PDEs. This
step introduces unclosed terms in the model equations that correspond to unrepresented physics in
equation 1, due to the effects of the filtered scales. This is a widely studied problem, where the use
of deep learning models is currently being explored (Lapeyre et al., 2019; Kochkov et al., 2021; List
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et al., 2022; Stachenfeld et al., 2022). In the following, we are targeting a more challenging problem,
where increasing spacial resolution and/or reducing time-scales of the incomplete PDE solver does
not lead to a converged full solution. Rather, the incomplete and complete PDEs produce drastically
different solutions due to the unknown physics. The central learning objective is to correct this
behavior and retrieve the evolution that would be obtained with the complete PDE description.

Our work expands on the combination of incomplete PDE solvers and neural networks (NNs) (Yin
et al., 2021; Takeishi & Kalousis, 2021) to account for the effects of an incomplete physics model.
The NN aims to complete the PDE description, where the differences in complete and incomplete
PDE solutions are beyond the effects of spacial and temporal scales. We showcase that combining
the trained NN model with a differentiable solver for the incomplete PDE can accurately reproduce
the physical solutions of the complete, multi-physics PDE solver with stable long-term rollouts.

We demonstrate the capabilities of this approach for an archetypal multi-physics system, namely
a complex reactive flow which combines fluid mechanics and chemistry, where the latter is
considered unknown. Reactive flow modeling has applications in numerous domains such as
combustion processes in gas turbines (Lieuwen, 2012), climate modeling (Jacobson, 1999; Rol-
nick et al., 2022) and astrophysics simulations (Gamezo et al., 2003). Resolving the Navier-
Stokes equations lies at the core of these problems, where additionally the transport of dif-
ferent species of relevance must also be accounted for, together with their production or con-
sumption often following complex reaction mechanisms (Poinsot & Veynante, 2005). For chem-
ically reacting flows, generation or consumption of multiple species via some chemical reac-
tion are modeled using a net source term. It is a well-known fact that the incorporation
of a detailed chemical kinetic mechanism in a reacting flow model can result in a stiff sys-
tem of governing equations (Wanner & Hairer, 1996; Najm et al., 1998; Knio et al., 1999).
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Figure 1: The incomplete/non-reactive (top)
and complete/reactive (bottom) PDE solvers
we consider can yield fundamentally differ-
ent evolutions, as shown here for a sample
temperature field over time.

We consider the reactive flow simulation to be the
complete PDE description, while the non-reactive
flow simulation represents the incomplete PDE ba-
sis, where the chemical kinetic mechanisms are col-
lected in the unknown physics term of equation 1.
Figure 1 shows a visual example of the fundamental
differences in system dynamics that can be caused
by unknown reaction terms. We showcase the effec-
tiveness of our approach for different cases of planar
2D premixed methane-air flames, and the varying
transient evolution of Bunsen-type flames. We show
that the proposed approach can handle large domains
with highly resolved flames, which is closer to the
practical flame domains used in many industrial ap-
plications. Specifically we concentrate on training a
NN model to correct the spatio-temporal effects of
energy and species transport source terms. We show
that in addition to recovering the desired solutions,
this approach overcomes inherent problems of temporal stiffness due to the complex reaction mech-
anism. Lastly, we demonstrate the applicability of neural network model to control the flow inlet
velocities to arrive at desired flame shapes, when combined with a differentiable flow solver.

2 RELATED WORK

Deep learning methods have been widely used to model the solutions of partial differential equations
(Lagaris et al., 1998; Long et al., 2018; Han et al., 2018; Bar-Sinai et al., 2019) and in particular,
the Navier-Stokes equations (Thuerey et al., 2020; Fukami et al., 2019). These models can be
very fast and do not suffer from the time-step stability issues associated with traditional numerical
solvers. Nevertheless, as these purely data-driven approaches lack the physical understanding of the
system being modeled, they generally fail in generalizing to other operating conditions (Kim et al.,
2019; Lapeyre et al., 2019). To leverage the potential of deep learning in physical simulations, it is
therefore necessary to incorporate some physical information within the deep learning framework.
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Deep learning models can enforce physical constraints partially through the loss function (Bar-Sinai
et al., 2019; Raissi et al., 2019) or changes in neural network architecture (Greydanus et al., 2019; Lu
et al., 2021). However, these approaches struggle to enforce physical constraints such as boundary
conditions or predict the strong unsteadiness and chaotic nature of flows. Neural operators (Li et al.,
2020b; Bhattacharya et al., 2021; Patel et al., 2021), specifically, the Fourier neural operator (FNO)
of Li et al. (2020a) introduce an interesting line of work by learning mesh-free, infinite-dimensional
operators with neural networks, but do not necessarily offer advantages for longer term predictions.

Hybrid approaches that combine machine learning techniques with numerical PDE solvers (Wang
et al., 2020), have attracted a significant amount of interest due to their capabilities for generalization
(Chen et al., 2018). In this context, neural networks are typically used to model or replace a part
of the conventional PDE solver to improve aspects of the solving process. For example, Tompson
et al. (2017), Özbay et al. (2021) and Ajuria Illarramendi et al. (2020) proposed a convolutional
neural network based approach to solve the Poisson equation in CFD simulation. In recent years,
a number of deep learning based models have been introduced to accurately model turbulent flows
(Pathak et al., 2020; Stachenfeld et al., 2022; Dresdner et al., 2022). Um et al. (2020) and Belbute-
Peres et al. (2020) showed the advantages of training neural networks with differentiable physics
to correct the numerical errors that arise in the discretization of PDEs. Sirignano et al. (2020) and
Kochkov et al. (2021) additionally correct for closure error by integrating neural network with a
differentiable CFD simulator. These approaches demonstrate the capabilities of neural networks to
correct errors in a fast, under-resolved simulation.

Similar to the goals of our work, Yin et al. (2021) and Takeishi & Kalousis (2021) have introduced
frameworks of augmenting incomplete physical dynamics with neural network models. These ap-
proaches demonstrate the applicability on ODE/PDE systems, which are weakly nonlinear and the
unknown dynamics are linear combinations of the underlying flow fields. We expand on these works
to explore the significantly more challenging scenario of reactive flows. These are characterised by
a multi-physics system with nonlinear advective terms and strongly nonlinear dynamics, described
by exponential source terms that exhibit nonlinear combinations of the flow fields.

3 METHODOLOGY

We consider two different sets of PDEs with their associated numerical solver, which we denote as
the incomplete PDE Pi and the complete PDE Pc. By evaluating Pc on an input state ϕt at time t, we
can compute the points of the phase space sequences; ϕt+∆t = Pc(ϕt). Without loss of generality,
we assume a fixed time-step ∆t and denote a state ϕt+∆t at next time instance as ϕt+1. The main
goal of this study is to learn a correction function that models the effects of the unknown physical
system on the incomplete PDE solver to obtain the complete PDE solutions. We train a correction
model C(ϕ; θ) : X → X that maps Pi(ϕt) to ϕt+1, defined over a finite time interval [0, T ] and
a spacial domain Ω ⊂ R2. The learning objective is to find the best possible correction function
C(ϕ; θ) given the weights θ and an input flow state, ϕ. The model parameters θ are estimated
from the complete PDE solution trajectories (ϕ0, ϕ1, .., ϕT ). The learned predictions obtained after
repeatedly applying the corrector C and invoking Pi are denoted by (ϕ̃0, ϕ̃1, .., ϕ̃T ).

3.1 PARTIAL DIFFERENTIAL EQUATIONS FOR REACTIVE FLOWS

The physical system we investigate is a laminar premixed methane-air flame with a single step
chemistry. It is governed by the following Navier-Stokes equations (Poinsot & Veynante, 2005)

∂ρ

∂t
+

∂ρui

∂xi
= 0 ρCp(

∂T

∂t
+

∂uiT

∂xi
) = ω̇′

T +
∂

∂xi
(λ

∂T

∂xi
)

∂ρuj

∂t
+

∂ρuiuj

∂xi
= − ∂p

∂xj
+

∂τij
∂xi

∂ρYk

∂t
+

∂ρuiYk

∂xi
= ω̇k +

∂

∂xi
(ρDk

∂Yk

∂xi
)

(2)

where ρ, ui, p, T , Yk denote the density, velocity, pressure, temperature, and species mass fractions
of species k, respectively. τ , Dk, λ are the strain rate tensor, the diffusion coefficient of species k
and mixture thermal conductivity. In addition, Cp denotes the mixture specific heat capacity. ω̇k and
ω̇′
T are the species reaction rate and heat release rate, respectively.
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Figure 2: (A) Multi-step training framework helps to learn the dynamics of complete PDE solver
over longer rollouts. (B1) Details of the input flow state and predictor block used in a purely data-
driven approach and (B2) the hybrid NN-PDE approach, where S denotes the concatenation of
different fields to obtain the complete flow state ϕ̃ at next time step.

We consider a one-step chemical system of the type υ′
FF + υ′

OO → products, where υ′
F and υ′

O
are the stoichiometric coefficients corresponding to fuel and oxidizer. The simplifications proposed
by Williams (1985) and Mitani (1980) are used to model the reaction rates ω̇k for each species. The
fuel consumption rate ω̇F is assumed to have the Arrhenius form.

ω̇F = υ′
FWFB1T

β1(
ρYF

WF
)nF (

ρYO

WO
)nO exp(− Ea

RT
). (3)

The heat release source term ω̇′
T and the fuel source term ω̇F are linked by ω̇′

T = −Qω̇F , where
Q is the heat of reaction per unit mass. Following Poinsot & Veynante (2005), parameters corre-
sponding to a real-world methane-air flame are chosen as: B1 = 1.08107 uSI; β1 = 0; Ea =
83600 J/mole; nF = 1; nO = 0.5; Q = 50100 kJ/kg; Cp = 1450 J/(kgK). Taken together,
the system of equations above is a challenging scenario even for classical solvers, and due to its
practical relevance likewise a highly interesting environment for deep learning methods.

3.2 PROBLEM FORMULATION

The incomplete PDE solver solves the set of equations 2 without the source terms and reaction rates
ω̇k and ω̇′

T , while the complete PDE solver solves the full set from equation 2. The neural network
model, denoted by C(Pi(ϕ)|θ), corrects the incomplete/non-reacting flow states Pi(ϕ) to obtain the
complete/reacting states Pc(ϕ) as shown in figure 2 (B2). The neural network is trained to model the
effects of the unknown chemistry using parameters θ given an input flow state, ϕ = [ui, p, T, Yf , Yo].
As seen from equation 2, and equation 3, the temperature and species mass fractions fields are
strongly coupled which significantly increases the prediction problem complexity. A slight error in
one of the fields will quickly propagate into the other fields, making the predictions diverge. In the
following, a subscript Cs(◦) will denote that the neural network C generates the field s, e.g., CT gen-
erating the temperature field. ϕ̃t+1 = [ui,t+1, pt+1, CT (Pi(ϕ̃t)|θ), CYf

(Pi(ϕ̃t)|θ), CYo(Pi(ϕ̃t)|θ)]
where ·̃ indicates a corrected state. ui,t+1 and pt+1 are the time-advanced velocity and pressure
field, respectively, predicted using the incomplete PDE solver.

3.3 TRAINING METHODOLOGY

We employ a hybrid NN-PDE approach that augments a neural network model with a PDE solver
(Um et al., 2020; Kochkov et al., 2021). In contrast to previous work, we use the incomplete PDE
solver as a basis, and hence the solver does not converge to the desired solutions under refinement,
as explained in 3.1. The neural network is integrated and trained in a loop with the incomplete PDE
solver using stochastic gradient descent for m time steps, as shown in figure 2 (A,B2). Here, the
number of temporal look-ahead steps, m, is an important hyper-parameter of the training process.
Higher m provides the network with longer-term feedback at training time through the gradient roll-
outs. This gives the model improved feedback on how the time dynamics of the incomplete PDE
solver affect the input states, and hence which corrections need to be inferred by the model.
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A central component of the hybrid NN-PDE model is the differentiable solver, which allows us to
embed the solver for the incomplete PDE system in the training of a neural network. The differen-
tiable solver acts as additional non trainable layers in the network. Instead, they provide derivatives
of the outputs of the simulation with respect to its inputs and parameters. Here, we use the differ-
entiable PDE solver from the phiflow framework of Holl et al. (2019) in combination with Tensor-
flow to obtain the non-reactive flow solver and reactive flow solver solutions. The marker-and-cell
method (Harlow & Welch, 1965) is adopted to represent temperature, pressure, density, species mass
fraction fields in a centered grid, and velocities in a staggered grid.

A purely data-driven model (PDD) is used as a baseline. It employs a neural network model to learn
the complete flow states Pc(ϕ) given an input flow state ϕS where ϕS = [T, Yf , Yo], as shown in
figure 2 (B1). The new state predicted by the trained neural network model is ϕ̃S

t+1 = C(ϕ̃S
t |θ).

For the hybrid NN-PDE as well as PDD, the neural network part of the predictor block in figure
2 consists of a fully convolutional neural network model. For both, we experimented with both
the ResNet (He et al., 2016) and UNet (Ronneberger et al., 2015) architectures. We found that the
ResNet performed the best for the PDD setting, while for the hybrid NN-PDE approach the UNet
performed consistently better. Hence, the following results will use a ResNet for PDD models, and
a UNet for the NN-PDE hybrids. Additional details of the neural network architectures are provided
in the appendix. The network receives the input states as shown in figure 2. The output of the neural
network model is used to obtain the corrected state ϕ̃t+1 as specified above. We constrain the mass
fraction fields Yk to contain physical values in the range Yf ∈ [0, 0.05] and Yo ∈ [0, 1]. All models
are trained for 100 epochs with a batch size of 3 and a learning rate of 0.0001.

We additionally compare against the Fourier neural operator (FNO) of Li et al. (2020a) as an
example of a state-of-the-art neural operator method. The new state predicted by the trained
model is given by ϕ̃S

t+1 = C(ϕ̃S
t |θ) where ϕ̃S = [T, Yf , Yo] and C(◦) represents the Fourier

neural operator. All three approaches use an L2 based loss that is evaluated for m steps as
L(θ) =

∑t+m
n=t+1

∑
ϕ={T,Yf ,Yo} ||ϕ̃n,Pc(ϕn)||2 .

4 NUMERICAL EXPERIMENTS

We consider a case of planar 2D premixed methane-air flame propagating in a quiescent mixture
(Planar-v0) and two cases of the transient evolution of initially planar laminar premixed flame
into a Bunsen-type flame under different inlet velocity conditions (uniform-Bunsen, nonUniform-
Bunsen). We obtain the target data by considering the source terms as defined by equation 3 with
the parameters mentioned in section 3.1.

Planar-v0 For the most basic case, the planar 2D flame model setup, we consider the reacting
Navier-Stokes equations described in section 3 with zero inlet velocity i.e. ux = 0, uy = 0. We
consider a square domain of size 0.05 m × 0.05 m with 32 × 32 resolution and closed boundary
conditions. The simulation is initialized using a steep transition between a premixed methane-air
mixture and burnt gases. Our training data consists of 6 simulations of 300 steps created by varying
the equivalence ratio E. It represents the stoichiometric mixture (φ) of fuel Yf and oxidizer Yo

mass fractions, i.e., E = φ
Yf

Yo
and thus fundamentally influences the dynamics of the chemical

reaction. For the training data we use Etrain = {1.0, 0.9, 0.8, 0.7, 0.6}, while the test dataset contains
Etest = {0.95, 0.85, 0.75, 0.65}.

uniform-Bunsen In contrast to the planar case, the premixed methane-air mixture is now fed with
a constant inlet velocity. The boundary conditions upstream, at y = 0, are (ux, uy)x,y=0 = (0, κ)
where κ is a n-dimensional vector with constant amplitude. The target simulation contains a heat
release rate term, and in this case the initial temperature field evolves into different Λ-shaped flames
at the end of the 300th time step. Training and testing datasets are created by varying the equivalence
ratio and inlet velocity amplitude U : Etrain = {1.0, 0.9, 0.8} and Utrain = {0.45, 0.4, 0.3}. The test
dataset uses Etest = {0.95, 0.85} Utest = {0.43, 0.375, 0.325}. The length and temperature of the
flame significantly vary depending on the inlet velocity and equivalence ratio provided. Further
details on the boundary conditions and training data visualizations can be found in the appendix.

nonUniform-Bunsen As a third case we consider the transient evolution of a premixed methane-
air flame with non-uniform inlet velocity. The boundary conditions upstream, at y = 0, are
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Figure 3: 1D cut of the planar flame simulation over 300 steps. The initial state is plotted in red,
target state in green. Hybrid NN-PDE approach predicts physically accurate results over longer
rollouts with correct flame temperature and relative displacement of flame front across different
equivalence ratios.

Table 1: Mean and standard deviation of errors over all time steps of all testsets. The Hybrid NN-
PDE approach outperforms all other baselines considered.

Baseline Baseline Hybrid Hybrid
FNO NN NN-PDE NN-PDE-dt

M
A

PE

Planar-v0 8.27 ± 5.51% 6.33 ± 3.05% 1.40 ± 0.65% 1.21 ± 0.39%
uniform-Bunsen 15.57 ± 8.72% 7.58 ± 3.73% 0.72 ± 0.37% 1.11 ± 0.47%

nonUniform-Bunsen32 12.30 ± 7.98% 12.48 ± 11.31% 2.04 ± 1.39% 2.46 ± 1.61%
nonUniform-Bunsen100 - - 3.23 ± 3.76% 4.14 ± 4.99%

M
SE

Planar-v0 88316 ± 124394 34491 ± 43966 1122 ± 1300 292 ± 296
uniform-Bunsen 220817 ± 167024 72563 ± 56919 721 ± 1007 1267 ± 1622

nonUniform-Bunsen32 184860 ± 185694 130219 ± 142094 9647 ± 13903 17569 ± 24392
nonUniform-Bunsen100 - - 23293 ± 37451 26862 ± 47639

(ux, uy)x,y=0 = (0, κ) where κ is a n-dimensional vector whose elements are each sampled from
a uniform distribution from [0.2, 0.65]. We experiment with two different domain sizes, 32 × 32
(nonUniform-Bunsen32) and 100 × 100 (nonUniform-Bunsen100), as shown in figure 4. The
larger domain size used is closer to the practical reactive flow domain used in CFD applications
(Jaensch et al., 2017) with a highly resolved flame. These inlet velocity conditions generate com-
plex flame shapes which increase the difficulty of the prediction problem. We consider simulation
sequences with 500 steps as it takes longer time for the flame to reach the steady-state solution.

5 RESULTS

We demonstrate the capabilities of the proposed learning approach to represent the complete PDE
description with the aforementioned cases of increasing difficulty. We also study its ability to gener-
alize to unseen operating conditions such as equivalence ratios, simultaneous variations in constant
inlet velocity and equivalence ratio, and non-uniform inlet velocity profiles. The source code of our
work will be published upon acceptance. As baselines, we compare against a purely data-driven
approach; a neural network model with exactly the same look-ahead steps, and the Fourier neural
operator of Li et al. (2020a) that likewise includes m look-ahead steps as discussed in section 3.3.

5.1 QUALITATIVE AND QUANTITATIVE ANALYSIS

Table 1 compares the mean absolute percentage errors (MAPE) and mean squared errors (MSE)
of temperature field for all the cases discussed in section 4. For Planar-v0, the FNO and PDD
approaches yield large errors with a MAPE of 8.27% and 6.33%, respectively. On the other hand,
the hybrid NN-PDE model trained with 32 look-ahead steps reduces the error to 1.4%, and thus
performs significantly better than the two baselines. This behavior is visualized in figure 3 with
a 1D transverse cut of the simulation domain over 300 time-steps. The hybrid NN-PDE approach
successfully captures the propagation of the flame.

In figure 3 (E), we also compare two important physical quantities, the flame temperature and relative
displacement of the flame front, across different equivalence ratios. It can be seen that the hybrid
NN-PDE model (blue circles) accurately predicts the flame temperature for different test cases (solid
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Figure 4: Left : Inlet velocity profile used. (a-d) Temperature field prediction by hybrid NN-PDE
approach over different steps given the inlet velocity profile. (e) Ground truth data. Right : Differ-
ence between ground truth data and hybrid NN-PDE output at last snapshot. Top to bottom: 32 ×
32 resolution cases of (A) uniform-Bunsen, (B) nonUniform-Bunsen32, and (C) 100 × 100 testcase
nonUniform-Bunsen100. ϵ represents the instantaneous MAPE.

blue line). The relative displacement of the flame front is computed as |x̃t−x̃0|/|xt−x0|, where xt is
the position along the flame normal at time t on the 1200K isotherm of the ground truth simulation,
and x̃ denotes the predicted position. For all test cases, the hybrid approach accurately predicts the
flame displacement over t = 300 steps, while the other approaches yield significant errors.

For uniform-Bunsen case, amongst the baseline models, PDD performs better with an error of 7.58%
compared to FNO model which yields an error of 15.57%. A neural network model combined with
an incomplete PDE solver for 32 look-ahead steps yields a significantly lower error of 0.72% as
shown in table 1. This means, the hybrid approach reduces the errors by a factor of 10 over the
baselines considered. Figure 4(A) shows the temporal evolution of the hybrid NN-PDE approach
predicted over 300 time steps for the uniform-Bunsen case. It shows the results for a test case with
U = 0.4375 and E = 0.95. It predicts a symmetric flame with accurate flame height and achieves
very low instantaneous MAPE of 0.73% at t=300, when compared with the ground truth data.

Next, we study a complex scenario of nonUniform-Bunsen flame with 32 × 32 resolution. The hy-
brid NN-PDE approach outperforms the PDD approach and FNO with an improvement of ∼ 80%.
The MSE values show this trend even more clearly. The large standard deviations of the MSE num-
bers indicate that the predictions made by the baseline approaches contain substantial deviations
from target values. Important to highlight is that, despite using the same training data and similar
neural network architecture, with same look-ahead steps, the hybrid approach outperforms the PDD
approach thanks to its learned collaboration with the incomplete PDE solver. It accurately repro-
duces the complete PDE behavior. Figure 4(B) highlights this with a visualization of the hybrid
NN-PDE model predictions for nonUniform-Bunsen32 case. The trained model accurately predicts
the flame simulation over long roll-outs of 500 steps and achieves the complex flame shape with a
low, instantaneous MAPE of 2.38%. Finally, we showcase the ability of hybrid approach to predict
the temporal evolution of highly resolved flames with the uniform-Bunsen100 scenario. Despite the
increased complexity of the larger resolution, it achieves a very good overall MAPE of 3.23% over
12 test cases of 500 simulation steps. Figure 4(C) shows an example of physically accurate predic-
tions made by the hybrid NN-PDE model. We omit the evaluation of baselines for high resolution
cases as they do not succeed to model the flame dynamics for low resolution cases.

Effect of training dataset size Figure 5 (A) shows that increasing the number of training sets has
little or no effect on the prediction capabilities of the PDD models for nonUniform-Bunsen32 case.
The hybrid model with 12 training sets achieves a MAPE of 12.49 ± 4.17%, an improvement of 38%
over the PDD model with 32 training sets. This result strengthens the hypothesis that integrating the
incomplete PDE solver into the neural network training yields a learning signal that fundamentally
differs from that produced by training with precomputed data. The purely data-driven models cannot
achieve the same level of accuracy even in the presence of large amounts of data.

Generalization to incorrect PDE parameters The proposed hybrid NN-PDE model is capable of
completing the PDE description even if the underlying incomplete PDE solver does not have access
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Figure 6: Left : Constant inlet velocity profile used. (a-d) uniform-Bunsen case trained and inferred
at double time-step 2 ∆tc, using hybrid NN-PDE approach. It achieves same flame shape at t = 150
for which the complete PDE solver requires 300 time-steps.

to the correct parameters, referred to as ‘incomplete, incorrect PDE’. For this test we assume that
the values of τ , Dk, λ in equation 2 are unknown and set to incorrect values. For the nonUniform-
Bunsen32 case, the hybrid model with the incomplete, incorrect solver achieves an overall MAPE
of 2.48 ± 1.20 %, a slight increase over the MAPE of 2.04 ± 1.39 % for the hybrid model with the
incomplete, correct PDE. Additional details can be seen in appendix C.

5.2 RELAXING TEMPORAL STIFFNESS IN THE PDE SOLVER

Traditionally, the source terms and reaction rate terms involved in modeling the fast chemistry of
reacting flows require the use of very small time-steps in simulations due to the stiffness of the
chemical mechanisms. The incomplete PDE solver used in the hybrid NN-PDE approach, does
not contain the source terms and reaction rate terms. Therefore, the time scales associated with
the chemical reactions play a less important role in maintaining numerical stability, and it becomes
possible for the solver to employ larger time steps. To illustrate this advantage, we train the neural
network model with a time-step that is twice as large as the largest time-step ∆tc required for the
complete PDE solver to yield a stable result.

We mimic the setup described in section 4, but now the incomplete PDE solver uses a time-step of
2∆tc, which is too large for the complete PDE solver by itself to converge to a solution. Figure 6,
shown as a first example, indicates that the results obtained from the models trained with a larger
time-step at t = {25, 50, 100, 150} are in good agreement with the target data for the difficult
uniform-Bunsen case. The flame dynamics are predicted accurately while using less simulation
steps. For the uniform-Bunsen case, the hybrid approach takes 8.23±0.011s to infer one simulation
run, whereas the complete PDE solver requires 15.21 ± 0.003s. Similar performance gains are
observed across the other cases studied. Note that for the previous cases, the trained model incurs a
negligible runtime overhead. In these cases, even for costly runs with high resolutions the incomplete
PDE solver would not converge to the solutions of the complete description.

The last column of table 1 (Hybrid NN-PDE-dt) summarizes the errors of the large time-step ap-
proach for all four reactive cases considered. Despite an effectively doubled computational per-
formance, this model achieves similar errors to the hybrid NN-PDE approach. This highlights the
capabilities of learned, hybrid PDE solvers, which can produce these solutions without the stability
problems exhibited by the complete PDE solver, while at the same time being more accurate than
pure data-driven predictions.

The PDD approach is not restricted by the time-step of the PDE solver. Therefore, we investigate
the performance of the PDD approach on the nonUniform-Bunsen32 case with larger time-steps as
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Figure 7: Temperature field predictions achieved by the neural network model T̃NN
∗ from given

initial flame shape T0 to achieve target flame shape T̃∗ by controlling flow velocity.

shown in the figure 5 (B). PDD achieves higher MAPE of 22.44 % for 8∆tc setup as compared to
the MAPE of 12.48 % for ∆tc setup. The PDD approach does not predict the dynamics accurately
for any of the larger time-steps considered. Additional visualizations can be found in appendix C.

5.3 FLAME SHAPE CONTROL

We lastly demonstrate the potential of our approach with a problem from multi-physics system
control: we test the joint applicability of a neural network with reactive flow solver to obtain a
desired flame shape. We use a predictor-corrector approach (Holl et al., 2019) with a differentiable
physics loss function and control sequence refinement for nonUniform-Bunsen case with 32 × 32
resolution. The learning objective is to arrive at a target temperature field with the desired flame
shape from an arbitrary, given initial configuration by controlling the velocity field. We assume that
the temperature and mass-fraction fields are observable and only the velocity field is controllable.
Figure 7 (a-e) shows the transition achieved and compares the target flame shape obtained using
the neural network model with the target flame shape (T∗) for a test case. Figure 7 (f,g) compares
the flame shape obtained for additional test cases. The neural network model is able to control
the velocity of fuel-air mixture flow to obtain the desired flame shape. To quantify these results,
the learned model achieves MAPE of 1.87 ± 0.73% over 50 test cases considered. It achieves an
improvement of 52% compared to a baseline model without a predictor network for the long term
prediction of temperature fields. This baseline model has a MAPE of 3.91 ± 2.19%. This case
highlights the capabilities of differentiable multi-physics solvers, and that our full neural network
model is able to reliably control the complex physics of the reactive flow over long time spans.

6 CONCLUSIONS

These results demonstrate that neural networks can be employed for learning the completion of par-
tial PDE solvers in the context of a multi-physics system. The trained neural network model works
alongside a partial solver to accurately account for and predict the effects of unknown physics. The
ability of the presented hybrid NN-PDE approach to predict the long-term temporal evolution of
multi-physics systems was demonstrated on the specific case of a reacting flow in different configu-
rations. When compared with a purely data-driven approach and state-of-the-art FNO approach, the
qualitative and quantitative performance of the hybrid NN-PDE model is found to be clearly supe-
rior. The incomplete PDE description helps the neural network model recover the target simulation
with a significantly improved accuracy. This hybrid NN-PDE model is able to predict the correct
evolution of the important features of the multi-physics system (in our case, the flame interface and
flame shape) for longer simulation steps in all scenarios and is able to generalize to other (initial
and boundary) conditions of the system. This is demonstrated by variations in the equivalence ratio
and inlet velocity forcing. We also show that such hybrid approach may have the added benefits of
allowing to relax numerical constraints linked to the potential stiffness of the unknown physics.

Our work represents a stepping stone for numerous avenues of future work, e.g., the proposed hybrid
NN-PDE solver could be further utilized to predict and control the dynamics of other tightly coupled
systems (Levy, 1999; Dowell & Hall, 2001). Here, the inclusion of transfer learning techniques
would pose an interesting avenue for future work. We note that the proposed approach does not
seek to replace the classical physical simulation approaches. However, it is an important step in
the direction of harnessing the capabilities of neural network models using the knowledge of partial
differential equations for complex multi-physical systems.
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APPENDIX

A NEURAL NETWORK ARCHITECTURE

All results provided in the main paper use a fully convolutional neural network. Different input flow
field quantities have different value ranges of the data e.g. T ∈ [400, 2500], Yf ∈ [0, 0.05]. There-
fore, the input data provided to the neural network model is normalized using mean and standard
deviation. The output of the neural network model is then transformed back using the same mean
and standard deviation. When predicting correction of Yk fields, the output of the neural network
is constrained to provide values in the range Yf ∈ [0, 0.05], Yo ∈ [0, 1]. In the hybrid NN-PDE
approach, the output of the neural network model is provided to the incomplete PDE solver as an
input, as shown in figure 2. Each network is trained for 100 epochs with learning rate of 0.0001. An
L2 based loss function is used as defined in section 3.3.

We additionally experimented with ResNet and UNet architectures for the neural network part of
the purely data driven and hybrid NN-PDE approach discussed in the paper. Table 2 provides details
of the convolutional blocks, layers of the network, and activation function. The UNet32 architecture
with 2 layers is used for 32 × 32 cases and the UNet100 architecture with 3 layers is used for 100 ×
100 case discussed in the paper. Table 3 shows the comparison between MAPE achieved by ResNet
vs. UNet architecture for the purely data-driven and the hybrid NN-PDE approach for different cases
considered in the paper. For the hybrid NN-PDE approach with 32 × 32 resolution cases, ResNet and
UNet achieve comparable performance with the UNet yielding the lowest error. The main difference
arises in the 100 × 100 resolution case. The ResNet fails to converge during training, leading
to high test error. On the contrary, the UNet achieves low training and testing errors. The main
advantage of UNet comes from transforming high resolution input to low resolution representation
and reconstructing it back to the high resolution output. Therefore, we choose the UNet architecture
for the hybrid NN-PDE approach. For the purely data-driven approach ResNet was found to be
better for 2 out of 3 cases. Specifically for the nonUniform-Bunsen32 case, UNet performs very
poorly for the PDD approach. Therefore, we report ResNet errors for the PDD approach throughout
the paper. Figure 2 shows the details of the predictor block for PDD and hybrid NN-PDE approach.

Table 2: Details of various neural network architectures used in this paper.

Hyper-parameters ResNet UNet32 UNet100
Kernel size 5 5 5
Latent size 32
Activation LeakyReLu LeakyReLu ReLu

Loss MSE MSE MSE
# ResBlocks 5

# UNet layers 2 3
CNN stack depth 2 3 2
Base latent size 16 16

Spacial down-sample by layer 2 2
latent sizes (32) (32,64)

# trainable parameters 261,953 136,227 362,371

Table 3: Mean and standard deviation of errors over different architectures for purely data-driven
and hybrid NN-PDE approach.

PDD PDD Hybrid NN-PDE Hybrid NN-PDE
ResNet UNet ResNet UNet

M
A

PE

Planar-v0 6.33 ± 3.05% 7.09 ± 4.40% 1.62 ± 0.44% 1.40 ± 0.65%
uniform-Bunsen 7.58 ± 3.73% 2.87 ± 1.53% 2.01 ± 0.99% 0.72 ± 0.37%

nonUniform-Bunsen32 12.48 ± 11.31% 19.19 ± 14.92% 3.25 ± 2.35% 2.04 ± 1.39%
nonUniform-Bunsen100 - - 15.68 ± 10.44% 3.23 ± 3.76%
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Table 4: Details of the boundary conditions used for the planar flame case and various cases of
Bunsen-type flames. The uniform-Bunsen case is obtained with κ = constant and nonUniform-
Bunsen case is obtained with κ ∈ Rn as discussed in section 4
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Figure 8: Instances of (A): incomplete PDE solver; (B): complete PDE solver for different operating
conditions. (C): Snapshot of complete PDE solver at t = 300 for all training and testing datasets of
uniform-Bunsen case. (D): Snapshot of complete PDE solver at t = 500 for all training and testing
datasets of nonUniform-Bunsen32 case.

B DATA GENERATION

To generate input and target data for training, we simulate the temperature T , mass fractions Yf ,
Yo and velocity ux, uy fields of all flames under study. Table 4 summarizes the boundary condi-
tions applied for the planar and Bunsen-type flame cases discussed in the paper. No-slip boundary
conditions are used for the velocity field uy to obtain the Λ-shaped flames.

We consider variations in equivalence ratio E and inlet velocity amplitude uy to obtain training and
test datasets. Figure 8 (A) shows the temperature field evolution of the incomplete PDE solver at
different time instances for 3 different operating conditions for the uniform-Bunsen case. Figure 8
(B) shows the corresponding target training data for the uniform-Bunsen case. All the simulations
are run for 300 steps. It shows the difference between non-reactive and reactive flow solver simu-
lations for different operating conditions over 300 time-steps. Figure 8 (C) shows the last snapshot
(t = 300) of 9 training simulations and 6 testing datasets with operating parameters interpolated be-
tween the training data parameters for uniform-Bunsen case. These datasets are obtained by varying
equivalence ratio and constant inlet velocity as discussed in section 4. Flame temperature depends
on the equivalence ratio used and flame height depends on the inlet velocity amplitude. Figure 8 (D)
showcases the snapshots of training and testing dataset at t = 500 for nonUniform-Bunsen32 case.
Non-uniform variations in inlet velocity profile leads to different complex flame shapes. We use 12
datasets with 500 simulation steps to train the models and test it on 12 test cases shown in figure 8
(D).
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Figure 9: Generalization to incorrect PDE parameters (A) visualization of differences in temperature
fields due to incorrect parameters in incomplete PDE description. (B) Modified hybrid NN-PDE
model, which combines the incomplete, incorrect PDE solver with neural network model is able to
recover solutions of complete, correct PDE.
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Figure 10: Effect of longer look-ahead steps. MAPE of temperature field predictions by hybrid
NN-PDE model, over all testsets. Models trained with higher look-ahead steps m accurately predict
the temporal evolution of dynamics for longer duration across all cases considered.

C ABLATION STUDY

Effect of training dataset size We study the effect of training dataset size on the accuracy of PDD
predictions. We train PDD models with different numbers of simulations in the training dataset.
Each simulation contains 500 time-steps. Figure 5 (A) shows the MAPE of PDD models trained
with {4, 8, 12, 16, 24, 32} training datasets, over a fixed testset. We compare the performance of
these PDD models with an equivalent (trained with same look-ahead steps m = 2) hybrid NN-PDE
model, trained with 12 simulation sets. Figure 5 (A) shows increasing the number of training sets
has little or no effect on the prediction capabilities of the PDD models for nonUniform-Bunsen32
case. The hybrid model with 12 training sets achieves a MAPE of 12.49 ± 4.17%, an improvement
of 38% over the PDD model with 32 training sets. The purely data-driven models cannot achieve
the same level of accuracy even in the presence of large amounts of data.

Generalization to incorrect PDE parameters The proposed hybrid NN-PDE model is capable of
completing the PDE description even if the underlying incomplete PDE solver has incorrect parame-
ters. We refer to the incomplete solver with incorrect parameters as ‘incomplete, incorrect PDE’. We
experiment with a modified hybrid NN-PDE approach wherein we combine an incomplete, incorrect
PDE solver with a neural network model. We assume that the known values of the incomplete PDE
parameters in equation 2, strain rate tensor (τ ), the diffusion coefficient of species k (Dk) and mix-
ture thermal conductivity (λ), are incorrect. Figure 9 (A) shows the difference between temperature
field evolution of the incomplete PDE solver with correct parameters ([τ,Dk, λ] = [0.1, 0.1, 0.1])
and incorrect parameters ([τ,Dk, λ] = [0.05, 0.05, 0.05]) at different time-steps. The hybrid NN-
PDE combines this incomplete, incorrect PDE solver with the neural network model to obtain the
solutions of the complete PDE solver with correct parameters. Figure 9 (B) compares the flame
dynamics predicted by this hybrid NN-PDE model with that of the complete, correct PDE solver. A
good match is observed over various test cases. The hybrid model with incomplete, incorrect solver
achieves an overall MAPE of 2.48 ± 1.20 %, compared to the MAPE of 2.04 ± 1.39 % for hybrid
model with incomplete, correct PDE.
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Figure 11: Bar plot of MAPE of temperature field predictions by FNO, PDD and hybrid NN-PDE
model at time-step ∆tc, for different testcases.

Effect of longer look-ahead steps We evaluate the effect of varying look-ahead steps on the perfor-
mance of the hybrid model. We show the comparison of models trained with m = {2, 4, 8, 16, 32}
for different cases in figure 10. Models with smaller m (2) do not learn to accurately correct the fields
over long time and quickly diverge from the target simulation. Using larger m improves the quality
of prediction drastically as the model learns the correction via the gradients over longer simulation
steps. For Planar-v0 and uniform-Bunsen cases, iterating the NN and PDE solver for 32 time-
steps improves the accuracy by 81.7% and 94% respectively compared to the m = 2 model. For
nonUniform-Bunsen32 and nonUniform-Bunsen100, the model performance improves by 84.2%
and 70.9% respectively, by using m = 32 instead of m = 2 model.

Effect of temporal coarsening Figure 11 and table 1 compare the MAPE of temperature field pre-
dictions at time-step ∆tc, for all three scenarios. As seen from the figure 11, the hybrid NN-PDE
approach consistently performs better than both the baselines for all three scenarios considered.
Higher standard deviations in Table 1 indicate the large differences in the prediction of flame tem-
peratures for baseline approaches. The multi-physics systems we study provide a substantially more
difficult environment than regular fluids: the chemical reactions are numerically very stiff, and the
resulting dynamic interactions are difficult to capture by numerical solvers. To further illustrate
the temporal behavior of the simulations, we perform additional experiments with the baseline ap-
proaches using twice the time-step size of the complete solver (2∆tc). As shown in figure 12, for the
Planar-v0 and uniform-Bunsen case, PDD catches up with the hybrid approach whereas the PDD
approach completely fails to predict the dynamics of the nonUniform-Bunsen32 case. We further
investigate the nonUniform-Bunsen32 case with larger time-steps (2 times, 4 times and 8 times) as
shown in figure 5 (B). It shows MAPE of the predictions over all the testsets and simulation steps by
the PDD model. The PDD approach does not predict the dynamics accurately for any of the larger
time-steps considered. Figure 13 visualize these results over different time-steps for one of the test
cases. The predictions made by FNO, PDD and hybrid NN-PDE model for nonUniform-Bunsen32
case at twice the time-step of 2∆tc, are compared with the ground truth solutions coming from the
complete PDE solver at time-step of ∆tc. FNO and PDD (upper two rows) fail to recover the cor-
rect flame shapes over 250 simulation steps. The hybrid NN-PDE model (second row from below)
predicts the flame shape accurately, thus relaxing the temporal stiffness of the complete PDE solver.

D ADDITIONAL RESULTS

In this section, we present additional visualizations of all reactive flow scenarios considered in sec-
tion 4 for different test cases. Additionally, we discuss the results of the mass fraction fields we
obtained. Table 5 summarizes MSE values of fuel (Yf ) and oxidizer (Yo) mass fraction fields for
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Figure 12: Bar plot of MAPE of temperature field predictions by FNO, PDD and hybrid NN-PDE
model at time-step 2∆tc, for different testcases.
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Figure 13: Comparison between different approaches at time-step 2∆tc - from top to bottom - FNO,
PDD, hybrid NN-PDE for nonUniform-Bunsen32 test case. Hybrid approach predictions accurately
match with the ground truth data over long roll-outs.

different baselines and the hybrid NN-PDE approach. We observe similar performance to the tem-
perature field predictions. The hybrid NN-PDE model consistently outperforms the FNO and PDD
approaches for all the scenarios considered. The hybrid NN-PDE model is able to simultaneously
correct temperature and mass fraction fields, thus successfully modeling the effects of unknown
chemical reactions on all the fields of the flow state.

D.1 PLANAR-V0

Figure 14(A) shows the 2D visualization of the temperature field predictions for Planar-v0 case.
As seen from the ground truth images, methane-air mixture (black color) converts into the burned
products (yellow color) due the chemical reaction at the flat flame surface (red color). The dotted,
horizontal red line helps to compare the transition of the flame interface, i.e. the displacement of
the flame front. Due to the chemical reaction, fuel-air mixture is consumed and turns into burned
product as the simulation progresses. The FNO approach completely fails to predict the propagation
of the flame for the given test case. Its output does not show any evolution from the initial temper-
ature profile for the given operating condition. The purely data-driven approach fails to capture the
flame front displacement correctly, thus leading to an inaccurate prediction with large errors. The
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Figure 14: Temperature field predictions for (A): Planar-v0 flame case with E = 0.95; (B) uniform-
Bunsen case with constant inlet velocity U = 0.375 and E = 0.95 for different approaches. Hybrid
NN-PDE model predicts physically accurate evolution of the flame cases under study.
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Table 5: Mean and standard deviation of squared errors of fuel (Yf ) and oxidizer (Yo) mass frac-
tion fields over all time steps of all testsets. The Hybrid NN-PDE approach outperforms all other
baselines considered.

Baseline Baseline Hybrid Hybrid
FNO NN NN-PDE NN-PDE-dt

Yf

Planar-v0 1.3e-4 ± 7.4e-5 2.9e-5 ± 3.8e-5 8.9e-7 ± 1.0e-6 1.6e-7 ± 1.5e-7
uniform-Bunsen 6.4e-4 ± 2.4e-4 5.1e-5 ± 4.1e-5 5.6e-7 ± 7.4e-7 9.8e-7 ± 1.3e-6

nonUniform-Bunsen32 2.2e-4 ± 1.9e-4 9.6e-5 ± 1.0e-4 8.0e-6 ± 1.1e-5 1.4e-5 ± 1.9e-5
nonUniform-Bunsen100 - - 1.8e-5 ± 2.8e-5 1.8e-5 ± 2.9e-5

Yo

Planar-v0 1.0e-2 ± 6.8e-3 1.3e-3 ± 1.2e-3 3.7e-5 ± 2.9e-5 4.1e-5 ± 4.4e-5
uniform-Bunsen 4.7e-1 ± 9.6e-2 2.1e-2 ± 2.7e-2 3.6e-5 ± 3.0e-5 1.4e-4 ± 1.2e-4

nonUniform-Bunsen32 1.4e0 ± 1.8e0 6.1e-3 ± 7.9e-3 1.6e-4 ± 1.6e-4 2.8e-4 ± 3.0e-4
nonUniform-Bunsen100 - - 3.3e-4 ± 4.2e-4 5.0e-4 ± 5.8e-4

hybrid NN-PDE model accurately captures this evolution of planar methane-air flame in a quiescent
mixture. Figure 15 shows the instantaneous MAPE w.r.t. ground truth data for predictions shown in
figure 14. The absolute error shown in figure 15(A) exceeds 1100 K for the FNO and purely data-
driven approaches as these do not predict the flame temperature correctly. We use the upper limit
of 1100 K for colorbar to highlight the errors in the hybrid NN-PDE approach more clearly. Large
errors in FNO and PDD results stem from their inability to reliably predict the flame temperature
and flame front displacement.

D.2 UNIFORM-BUNSEN

Figures 14(B) and 15(B) show an example of uniform-Bunsen case; a test case with uy = 0.375 and
E = 0.95. The constant inlet velocity results in a symmetric, Λ-shaped flame. Vertical, dotted, red
line in figure 14(B) helps to assess the symmetric nature of the flame. The purely data-driven model
predicts a thicker flame (t = 50) or a flame with a spurious tip (t = 172) or an asymmetric flame
(t = 225). Snapshots of the hybrid NN-PDE model predictions in figure 14(B) show that it adapts
to this scenario very well and succeeds in obtaining the correct results for long term forecasts of the
temperature field. Furthermore, the flame shape and height are also better predicted, as shown in
figure 14(B). Very low error levels in figure 15(B), such as ϵ = 1.26 at t = 300, indicate that the
hybrid model recovers the temperature field satisfactorily. Figure 16 compares the performance of
the hybrid NN-PDE model for the Yf and Yo fields for two different test cases. We again observe
that the hybrid NN-PDE model predicts all the fields accurately with very low MSE.

D.3 NONUNIFORM-BUNSEN

Figure 4 compares the temporal predictions made by FNO, PDD and the hybrid NN-PDE model with
ground truth data. Compared to Planar-v0 and uniform-Bunsen case, FNO predicts qualitatively
better results for this case. Although highly still accurate, it predicts shapes that come closer to
the target flame shapes for the later part of the simulation (for t > 300). This improvement might
be due to the larger training dataset used for this scenario compared to the previous two scenarios.
However, it fails to predict accurate temporal predictions over the entire simulation. The hybrid
NN-PDE approach satisfactorily predicts the accurate flame evolution. Additionally, we showcase
the performance of the hybrid NN-PDE approach on two different test cases with complex flame
shapes in figure 18. The neural network model along with incomplete PDE solver reconstructs these
complex flame shapes in an accurate manner.

Finally we showcase the performance of the hybrid NN-PDE approach on different test cases for
highly resolved flame case of nonUniform-Bunsen100. Figure 19 compares the predictions made
by hybrid NN-PDE over {0, 100, 200, 250, 300, 325, 350, 400, 450, 500} simulation steps with the
ground truth data. It also shows the absolute difference between them. As the simulation progresses,
higher errors are observed around the flame front. However, the hybrid NN-PDE approach captures
the flame shape very accurately for longer roll-outs of 500 simulation steps. Currently this approach
uses training dataset similar to nonUniform-Bunsen32. Further improvements in accuracy can be
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Figure 16: Comparison between ground truth (or Target) data and the hybrid NN-PDE approach
for the Uniform-Bunsen case for fuel (top) and oxidizer (bottom) mass fraction fields for different
operating conditions. Error field shows the absolute difference between target state and hybrid
prediction over {0, 50, 100, 150, 200, 225, 250, 300} steps. ϵ indicates the instantaneous MSE.
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Figure 17: Comparison between different approaches - from top to bottom - FNO, PDD, hybrid
NN-PDE for nonUniform-Bunsen32 test case. Hybrid approach predictions accurately match with
the ground truth data over long-rollouts of 500 time steps.
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Figure 18: Additional visualization of reactive flow trajectories predicted by the hybrid approach for
different test cases of nonUniform-Bunsen32 scenario.

achieved by increasing the training dataset size or training the hybrid model with longer look-ahead
steps.
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Figure 19: Comparison between ground truth data (Pc(Tt)) and hybrid NN-PDE approach predic-
tions (T̃t) for various test cases of complex, high resolution scenario of nonUniform-Bunsen100
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Figure 20: Predictions made by hybrid NN-PDE model (T̃t) with an incomplete PDE solver at twice
the time-step of 2∆tc, are compared with the ground truth solutions coming from the complete PDE
solver at time-step of ∆tc. We showcase the effectiveness of hybrid approach in relaxing temporal
stiffness of the complete PDE solver on reactive flow cases of - from top to bottom - Planar-v0,
uniform-Bunsen, nonUniform-Bunsen32 and nonUniform-Bunsen100 for different test cases.
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