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Abstract

Client weighting and partial participation are key techniques in federated learning.1

They reduce communication costs and maintain a balance in the data used for2

model training. Numerous strategies are well-established within the research3

community, leading to growing interest in developing a unified theory. In this4

paper, we explore this issue in detail. We propose a method that accumulates5

unused gradients from the current iteration locally and, after full aggregation,6

leverages them for effective training. Our framework supports a wide class of7

weighting and sampling heuristics. Furthermore, we show the proposed approach8

to be robust against clients’ periodic disconnection. To validate it, we conduct9

a series of numerical experiments involving the training of convolutional and10

transformer-based architectures.11

1 Introduction12

Optimization is a cornerstone of training machine learning and neural network models. In a nutshell,13

almost every AI-based solution aims to minimize an empirical risk [Shalev-Shwartz et al., 2010],14

which evaluates how well the data is approximated. This process involves adjusting parameters15

to reduce the discrepancy between predicted outputs and ground truth labels, thereby improving16

generalization performance. Formally, the problem can be expressed as17

min
x∈Rd

[
1

n

n∑
i=1

ℓ(g(x, ai), bi)

]
, (1)

where x denotes the trainable parameters of the model g, (ai, bi) is the i-th sample from the dataset18

with size n, and ℓ is the loss function. Nowadays, there is a variety of methods developed to19

efficiently solve (1) [Robbins and Monro, 1951, Nesterov, 1983, Kingma and Ba, 2014, Defazio and20

Mishchenko, 2023]. The current successes of machine/deep learning owe much to the development21

of powerful numerical techniques that enable training on a huge amount of samples. Large-scale22

data processing became possible with the advancement of distributed optimization [Verbraeken23

et al., 2020]. Instead of solving the problem on a single machine, samples are shared among M24

nodes/devices/clients/machines connected via a server. Hence, the problem (1) transforms into25

min
x∈Rd

[
f(x) =

1

M

M∑
m=1

fm(x) =
1

M

M∑
m=1

1

nm

nm∑
im=1

ℓ(g(x, aim), bim)

]
, (2)

where nm is the size of the dataset, stored on m-th device.26

1.1 Client Weighting27

Parallel data processing helps to reduce computational time significantly [Zinkevich et al., 2010,28

Abadi et al., 2016, Jouppi et al., 2017]. However, contemporary applications present new challenges.29
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Training samples are often accumulated locally by each specific machine, rather than being collected30

and distributed manually. This paradigm with data remaining on edge devices is called federated31

learning [Konečnỳ et al., 2016, McMahan et al., 2017, Bonawitz et al., 2019]. In such a setup, local32

datasets are typically heterogeneous – they vary in size, distribution, and quality. For instance, one33

device may hold unique objects that are poorly represented across the rest of the network, but are34

crucial for capturing more dependencies. This leads to the conclusion that some clients may be more35

useful than others. Modern approaches usually assign dynamic weights {πm}Mm=1 and use36

f(x) =

M∑
m=1

πmfm(x), s.t. πm > 0,

M∑
m=1

πm = 1 (3)

to calculate statistics. If the devices are considered to be equivalent, this corresponds to the case37

where π1 = . . . = πM = 1/M . As a result, more important nodes contribute more significantly to the38

global loss. There are many strategies to prioritize the clients known in the literature.39

Weighting Based on Data Quality/Quantity. The most straightforward way to cope with data40

imbalance is to consider a number of local samples. McMahan et al. [2017] suggested setting each41

coefficient as the constant πm = nm/n. Since then, many modifications of this approach have been42

proposed, including federated averaging schemes with momentum [Wang et al., 2019, Reddi et al.,43

2020], variance reduction [Liang et al., 2019, Karimireddy et al., 2020] and proximal updates [Li44

et al., 2020]. However, this type of weighting ignores heterogeneity in terms of data quality, leading45

to bias, e.g. if some client holds an enormous amount of objects with the same labels. To support the46

diversity of training samples, Yurochkin et al. [2019] proposed to match the neurons of client neural47

networks before averaging. Building on the foundations laid by this work, subsequent works have48

explored more efficient approaches extensively [Wang et al., 2020a, Zhang et al., 2022, Yang et al.,49

2023, Wu et al., 2023, Kafshgari et al., 2023].50

Learned Weighting Strategies. It is also common to learn weighting strategies instead of using51

fixed heuristics. Mohri et al. [2019] were among the first to present results in this direction. They pro-52

posed solving the saddle-point problem minx∈Rd maxπ∈△M
1

∑M
m=1 πmfm(x) to give small weights53

to well-trained devices. The idea of optimizing agnostic empirical loss was then generalized by Li54

et al. [2019a]. Their q-FedAvg can be reduced to agnostic optimization as one of the special cases.55

However, in practice, it is hard to search for appropriate saddle-points [Daskalakis and Panageas,56

2018, Jin et al., 2020], especially in federated learning [Sharma et al., 2023]. As a result, the commu-57

nity has shifted towards softer adaptive approaches based on local losses [Zhang et al., 2020, Gao58

et al., 2022] and gradients [Wang et al., 2020b, Luo et al., 2024].59

Robust Weighting. The idea of assigning weights to the devices found its application in robust60

optimization, where malicious clients can disrupt the learning process [Baruch et al., 2019, Xie et al.,61

2020, Fang et al., 2020]. To combat such attacks, advanced schemes usually compute {πm}Mm=1, as62

the trust scores of the devices based on their objectives decrease [Xie et al., 2019], local gradients63

[Cao et al., 2020, Yan et al., 2023], and the number of local samples [Cao and Lai, 2019]. Recently,64

researchers came up with the idea of using a Bayesian approach [Yang et al., 2024].65

1.2 Client Sampling66

Another significant issue of federated learning, on par with heterogeneity, is the communication67

bottleneck [Tang et al., 2020, Shi et al., 2020]. Sharing information between machines is costly and68

can limit the positive effect of parallelism, which is especially tangible when clients send messages69

to the server [Kairouz et al., 2021]. This issue is magnified in federated learning, where edge devices70

may have unstable network connectivity, and transmitting large updates may be prohibitively slow.71

Many techniques exist to reduce communication [Seide et al., 2014, Alistarh et al., 2017, Stich,72

2018]. Partial participation is a special one among them [Li et al., 2019b, Yang et al., 2021]. In each73

communication round, only a random subset of clients participates in training, while the rest remain74

inactive. This approach offloads the server by decreasing the number of updates that need to be75

aggregated. Moreover, it provides significant advantages in edge computing, where communication76

channels are not equivalent, or some of them may be unavailable. Nowadays, there is a wide range of77

heuristics, which allows to choose subset of clients efficiently.78
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Data-Based Sampling Strategies. Methods from this class rely on zero- and first-order information79

of local functions. Importance Sampling FedAvg [Rizk et al., 2021] was one of the first such80

approaches. The authors suggested evaluating the relevance of a device by how large its gradient is81

relative to the others. Indeed, a small gradient makes a weak contribution to the step. Consequently,82

communication with this node can be neglected. Nguyen et al. [2020] proposed an orthogonal83

approach. Their FOLB measures the angle between local and average gradient. If it is negative, then84

such a device is useless at the current moment. This idea was then developed extensively in [Wu85

and Wang, 2022, Zhou et al., 2022]. In addition, techniques based on the norms of updates [Chen86

et al., 2020] and local loss decrease [Cho et al., 2022] were proposed. There are also a number of87

approaches that dynamically exploit data heterogeneity to maintain balance [Zhang et al., 2023] or88

support diversity [Chen and Vikalo, 2024].89

System-Based Sampling Strategies. Another approach is to use information about the network90

itself. FedCS [Nishio and Yonetani, 2019] categorizes clients into groups based on their computational91

power. This strategy saves wall-clock time by avoiding frequent selection of weak devices. Another92

class of techniques optimizes energy consumption [Xu and Wang, 2020]. Most modern system93

heterogeneity techniques also incorporate local data considerations [Lai et al., 2021, Li et al., 2022].94

F3AST [Ribero et al., 2022] learns an availability-dependent client selection strategy to minimize the95

impact of variance on the global model’s convergence.96

Thus, the community came up with various techniques for weighting and sampling to make partial97

participation as efficient as possible. The development of each new scheme was challenging in terms98

of algorithm design and convergence proof. Consequently, a number of papers appeared attempting99

to propose a theory without utilizing the properties of any particular strategy.100

1.3 Unification of Sampling Strategies101

Existing papers in this area of research are built around the federated averaging scheme [McMahan102

et al., 2017]. Li et al. [2019b] proposed an analysis for strongly convex objectives, obtaining a103

sublinear convergence rate O
(
κ2
/K
)
, where κ is the condition number. However, they modeled the104

partial participation environment via unbiased sampling. Cho et al. [2022] were the first to study the105

unified case with biased devices selection. They derived O
(
κ2
/K + κQ

)
, where Q is a non-vanishing106

term that becomes zero solely in the absence of sampling bias. Thus, the authors recovered the results107

of Li et al. [2019b], but failed to extend the theory to weaker assumptions. The first success in this108

direction was achieved in [Luo et al., 2022]. This work resolved key questions regarding biased109

sampling in the strongly convex case. However, the non-convex analysis holds greater significance110

for applications. For this setting, Wang and Ji [2022] obtained O
(√

L/
√
K + δ

)
, where L is the111

smoothness constant and δ is the uniform bound on the difference between local gradients. This result112

contains the non-vanishing term and does not match the lower bound Ω (L/K) [Carmon et al., 2020].113

Thus, current works in this field rely on FedAvg. As a consequence, their analysis requires bounded-114

ness of gradients [Li et al., 2019b, Cho et al., 2022, Luo et al., 2022] or their differences [Wang and115

Ji, 2022] even in the non-stochastic case. Therefore, there is still no flawless unified theory of partial116

participation.117

1.4 Our Contribution118

In contrast to prior works, where partial participation analysis was built upon FedAvg, we introduce119

our own scheme to leverage client sampling. While existing techniques ignore the information from120

inactive clients, our approach utilizes it for benefits. Namely, devices accumulate gradient surrogates121

locally, and the server accounts for them after the full aggregation round. The proposed approach122

allows weighting and sampling clients according to a variety of strategies, including biased ones. The123

convergence of our scheme can be proven in both strongly convex and non-convex cases without124

introducing unnatural assumptions. The obtained rates do not contain non-vanishing terms. To125

validate the theory, we conduct experiments with RESNET-18 and VIT.126

2 Setup127

We begin presenting our results with assumptions necessary to prove convergence. First of all, the128

objective is assumed to be smooth. This requirement is well-established in optimization.129
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Assumption 1. The function f is L-smooth, i.e. for all x, y ∈ Rd it satisfies130

∥∇f(x)−∇f(y)∥ ⩽ L∥x− y∥.

Neural networks tend to have a complex loss landscape [Cybenko, 1989, Nguyen and Hein, 2018].131

Since we are motivated by real-world scenarios, our main goal is to prove convergence in the132

non-convex case. For completeness, we also derive results under stronger assumptions.133

Assumption 2. The function f is:134

(a) non-convex with at least one global minimum:135

there exists may be not unique, x∗ s.t. f(x∗) = inf
x∈Rd

f(x) > −∞.

(b) µ-strongly convex, i.e. for all x, y ∈ Rd it satisfies136

f(y) ⩾ f(x) + ⟨∇f(x), y − x⟩+ µ

2
∥y − x∥2.

Federated learning methods usually require a bound on data heterogeneity to provide convergence137

guarantees [Khaled et al., 2020, Karimireddy et al., 2020]. In our work, we quantify it via gradients138

[Tang et al., 2018, Stich, 2020].139

Assumption 3. Each gradient ∇fm is similar to the full gradient ∇f , i.e. for all x ∈ Rd it satisfies140

1

M

M∑
m=1

∥∇fm(x)−∇f(x)∥2 ⩽ δ1∥∇f(x)∥2 + δ2.

This assumption is not too strict, since we do not require uniform boundedness (δ1 = 0). The141

following one is imposed to derive convergence of our algorithm with local stochasticity. If one142

removes it, our theory still holds.143

Assumption 4. Each worker has access to a stochastic gradient ∇fm(x, ξm). This is an unbiased
random variable with bounded variance, i.e. for all x ∈ Rd it satisfies

Eξm [∇fm(x, ξm)] = ∇fm(x),

Eξm

[
∥∇fm(x, ξm)−∇fm(x)∥2

]
⩽ σ2.

This assumption appears in different forms in a number of classic papers [Stich, 2018, Gower144

et al., 2019, Gorbunov et al., 2020]. Next, we consider that weights {πm}Mm=1 from (3) lie on the145

regularized simplex. Namely, π ∈ ∆M
1 ∩

(⋂M
m=1

{
π : e⊤mπ + α

M ⩾ 0
})

, where 1 ⩽ α ⩽ M is the146

regularization parameter and e is the unit basis. This technique is useful for solving a wide range of147

tasks [Mehta et al., 2024].148

3 Algorithms and Analysis149

3.1 Motivation150

Existing papers on the unification of client sampling consider FedAvg without any modifications.151

Section 1.3 suggests that this approach is not promising due to poor results even under strong152

assumptions. A potential direction for future research could be to find a more suitable scheme. Below153

we propose an intuition that helps to address this issue.154

To understand biased sampling, Cho et al. [2022] introduced the definition of selection skew and155

utilized it in the analysis. This is exactly the cause of the non-vanishing term in their rate. Indeed,156

there is no convergence if, for example, some devices are never selected for communication. However,157

we propose that the problem could be solved if we could somehow account for the error accumulated158

due to bias. To develop this idea, we formalize the sampling strategy as follows. First, we assign159

weights πm to devices, as described in (3). Next, we define the selection rule of the server as a160

stochastic operator R : RM → RM that zeros some entries of the input vector while retaining the161

others. Applying this operator to the introduced vector of weights, it can be seen that the wide variety162

of strategies described in Section 1.2 fits this formalism. This applies not only to simple cases of163

selecting clients with the highest weights but also to non-trivial ones, such as zeroing the weights of164

unavailable nodes.165

Viewing partial participation as weight vector sparsification reveals connections to well-studied166

techniques [Beznosikov et al., 2023]. A state-of-the-art technique to handle it efficiently is error167
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feedback [Stich and Karimireddy, 2020, Richtárik et al., 2021]. Since sampling rules are represented168

as compressors, we believe that this idea may be extremely useful in our setting as well. However,169

we cannot apply the existing framework directly, as it requires all clients to account for the error at170

each algorithm iteration. Error feedback was designed to compress the information, while our goal is171

to exclude some clients from an entire epoch.172

Thus, we have to address this challenge before proceeding to a unified analysis of partial participation.173

3.2 Partial Participation without Unavailable Devices174

To develop the idea proposed in Section 3.1, we present the Partial Participation with Bias Correction175

framework (PPBC, see Algorithm 1) that supports a wide class of weighting and sampling approaches.176

Since computing full-batch gradients is often impractical in modern applications, we also account for177

local stochasticity.178

Algorithm 1 PPBC

1: Input: Start point x−1,H−1 ∈Rd, g−1,H−1 ∈Rd, epochs number K, number of devices M
2: Parameters: Stepsize γ > 0, momentum 0 < θ < 1, regularization 1 ⩽ α ⩽ M
3: for epochs k = 0, . . . ,K − 1 do
4: Initialize πk // Server weighs clients using any procedure
5: π̂k = R̂k(πk) // Server selects clients to communicate through epoch using any rule R̂
6: gk,0m = 0 // Each client initializes the gradient surrogate

7: xk,0 = xk−1,Hk−1 − gk−1,Hk−1

// Server initializes the initial point of the epoch
8: Generate Hk ∼ Geom(p) // Server generates number of iterations of k-th epoch
9: for iterations h = 0, . . . ,Hk − 1 do

10: π̃k,h = R̃k,h
(
π̂k
)

// Server selects clients to communicate at the current round using rule R̃
11: for devices m = 1 . . .M in parallel do
12: gk,h+1

m = gk,hm +(1− θ)
(

1
M − π̃k,h

m

)
∇fm(xk,h, ξk,hm ) // Update the gradient surrogate

13: end for
14: for each device m : π̃k,h

m ̸= 0 do
15: Send ∇fm(xk,h, ξk,hm ) to the server
16: end for

17: xk,h+1 = xk,h − γ

[
(1− θ)

M∑
m=1

π̃k,h
m ∇fm(xk,h, ξk,hm ) + θgk−1,Hk−1

]
// Server updates

parameters
18: end for
19: for devices m = 1 . . .M in parallel do
20: Send gk,H

k

m to the server
21: end for

22: gk,H
k

=
M∑

m=1
gk,H

k

m // Server aggregates gradient surrogates

23: end for

Description of Algorithm 1. In Algorithm 1, the weights πk = (πk
1 , . . . , π

k
M )⊤ are computed179

according to any of the mentioned strategies at the beginning of each epoch (Line 4). Next, the180

rule R̂ is applied to determine the participating machines (Line 5). Its output π̂k contains zeros at181

positions corresponding to nodes that are not chosen to communicate with the server. Note that R̂ is182

not necessarily constant. There are no theoretical restrictions to change it during the execution. For183

example, one can vary the number of participating devices. We also allow additional client sampling184

at each iteration of the epoch by introducing a rule R̃ (Line 10). We propose to aggregate local185

gradient surrogates during the epoch (Line 12). To provide intuition beyond this update, we give a toy186

example where each πm is equal to 1/M . In this way, all inactive devices collect their gradients, while187

all active ones retain the vector gm from the previous iteration. In the practical case with various188

weights, each device accounts for its deviation from the uniform distribution πu = {1/M}Mm=1. Next,189

we use the accumulated vectors during the following epoch (Line 17). To handle the magnitude190

imbalance between the gradient and its surrogate, we employ a smoothing scheme with a small191

parameter θ.192
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Analysis of Algorithm 1. We utilize virtual sequences to derive convergence rates of PPBC. The193

idea is to introduce an additional vector194

x̃k,h = xk,h − γ

M∑
m=1

gk,hm

and use it to prove convergence. Substituting Lines 10, 17 in this definition, we obtain195

x̃k,h+1 = x̃k,h − γ

[
(1− θ)

1

M

M∑
m=1

∇fm(xk,h, ξk,hm ) + θgk−1,Hk−1

]
.

This is an important technique for our method, since the sequence x̃ is updated with the average196

of gradients from all devices, contrary to the original x. However, the virtual update also contains197

a combination of accumulated gradients from the previous epoch. We emphasize that handling198

gk−1,Hk−1

is one of the main theoretical challenges we address. We set the epoch size Hk as a199

geometrically distributed random variable and provide the following lemma.200

Lemma 1. Suppose Assumptions 3, 4 hold. We consider the epoch size Hk ∼ Geom(p) and201

1 ⩽ α ⩽ M . Then for Algorithm 1 it implies202

EHkEξk,0
m

. . .E
ξk,Hk−1
m

∥∥∥gk,Hk
∥∥∥2 ⩽

24(1− θ)2α(δ1 + 1)

p2
EHk

∥∥∥∇f(xk,Hk

)
∥∥∥2 + 48(1− θ)2αδ2

p2

+
24(1− θ)2ασ2

Mp2
.

Assumption 4 is required only to handle local stochasticity. If the devices are able to compute exact203

gradients, Lemma 1 holds with σ = 0. For the details, see Appendix D. As a result, we obtain the204

convergence theorem.205

Theorem 1. Suppose Assumptions 1, 2(a), 3, 4 hold. Then for Algorithm 1 with θ ⩽ γLp2

2 and206

γ ⩽ p
384Lα(δ1+1) it implies that207

1

K

K−1∑
k=0

E
∥∥∇f(xk,0)

∥∥2 ⩽
16
(
f(x0,0)− f(x∗)

)
γK

+
768γLαδ2

p
+

384γ2L2αδ2
p3

+
400γLασ2

Mp
+

192γ2L2ασ2

Mp3
.

The main obstacle in proving Theorem 1 is the terms ∥gk,Hk∥2 and ∥gk−1,Hk−1∥2 that appear in208

the analysis. Using Lemma 1, they can be screwed to ∥∇f(xk,Hk

)∥2 and ∥∇f(xk−1,Hk−1

)∥2,209

respectively. The first norm is easy to analyze. Classically, it serves as a convergence criterion.210

Eliminating the second one turns out to be challenging. To cope with it, we incorporate the surrogate211

into the starting point of the epoch (Line 7). For the details, see Appendix D.1. With such an estimate,212

there is a technique to choose the stepsize γ appropriately to obtain convergence [Stich, 2019].213

Corollary 1. Under conditions of Theorem 1 Algorithm 1 with fixed rules R̂k ≡ R̃k,h ≡ R needs214

O
(
M

M

C

(
∆Lαδ1

ε2
+

∆Lαδ2
ε4

+
∆Lασ2

Mε4

))
number of devices communications to reach ε-accuracy, where ε2 = 1

K

K−1∑
k=0

E
∥∥∇f(xk,0)

∥∥2, ∆ =215

f(x0,0)− f(x∗) and C is the number of devices participating in each epoch.216

We also consider varying sampling rules R̂k and R̃k,h to study corollaries of Theorem 1, see217

Appendix D.1 for the details. In our work, the analysis is extended to the strongly convex case.218

Theorem 2. Suppose Assumptions 1, 2(b), 3, 4 hold. Then for Algorithm 1 with θ ⩽ pγµ
4 and219

γ ⩽ p2

96Lα(δ1+1) it implies that220

E
∥∥xK,0 − x∗∥∥2 ⩽

(
1− γµ

8

)K ∥∥x0,0 − x∗∥∥2 + 8γα

µp3

(
144δ2 +

74σ2

M

)
.

As well as for the non-convex objective, suitable γ can be chosen in Theorem 2.221
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Corollary 2. Under conditions of Theorem 2 Algorithm 1 with fixed rules R̂k,h ≡ R̃k,h ≡ R needs222

Õ

(
M

(
M

C

)2(
L

µ
αδ1 log

(
1

ε

)
+

M

C

αδ2
µ2ε

+
ασ2

µ2Cε

))
number of devices communications to reach ε-accuracy, where ε2 = E

∥∥xK,0 − x∗
∥∥2 and C is the223

number of devices participating in each epoch.224

3.3 Partial Participation with Unavailable Devices225

The previous section addresses partial participation when all devices are available to communicate226

with the server. Indeed, in Algorithm 1 each node receives the current parameters at the end of the227

iteration, but does not send its gradient. This is motivated by the fact that forwarding a message228

from the client to the server is much more expensive than the other way around [Kairouz et al.,229

2021]. However, in practice, some devices can become inactive periodically [Li et al., 2019b, Yang230

et al., 2021]. Namely, these machines not only refrain from transmitting information but also do not231

perform local computations. In this section, we extend our theory to cover the case where the actual232

parameters are sent to only a fraction of the clients.233

Description of Algorithm 2. In this section we present the part of Algorithm 2 (see Appendix A)234

that reflects key differences from Algorithm 1. To design it, we refuse using the biased sampling235

rule R̃ during the epoch. Instead, we simulate outage probability of the m-th device as a Bernoulli236

random variable ηk,hm ∼ Be(qm) [Chung, 2000] (Line 9). To describe client disconnection formally,237

ηk,hm is used to update the gradient surrogates (Line 11) and to perform the step (Line 16). Thus, in238

practice, it is not necessary for an inactive device to know the actual parameters. We also normalize239

the computed gradients by factors {qm}Mm=1 to balance their magnitudes.240

9: Generate ηk,h

11: gk,h+1
m = gk,hm + (1− θ)

ηk,h
m

qm

(
1
M − π̂k,h

m

)
∇fm(xk,h, ξk,hm )

16: xk,h+1 = xk,h − γ

[
(1− θ)

M∑
m=1

ηk,h
m

qm
π̂k,h
m ∇fm(xk,h, ξk,hm ) + θgk−1,Hk−1

]
Analysis of Algorithm 2. We formulate the results for both non-convex and strongly-convex cases.241

Corollary 3. Suppose Assumptions 1, 2(a), 3, 4 hold. Algorithm 2 with fixed rules R̂k ≡ R̃k,h ≡ R242

needs243

O

M
M

C

1

min
1⩽m⩽M

qm

(
∆Lαδ1

ε2
+

∆Lαδ2
ε4

+
∆Lασ2

ε4

)
number of devices communications to reach ε-accuracy, where ε2 = 1

K

K−1∑
k=0

E
∥∥∇f(xk,0)

∥∥2, ∆ =244

f(x0,0)− f(x∗) and C is the number of devices participating in each epoch.245

Corollary 4. Suppose Assumptions 1, 2(b), 3, 4 hold. Algorithm 2 with fixed rules R̂k ≡ R̃k,h ≡ R246

needs247

Õ

M

(
M

C

)2
1

min
1⩽m⩽M

qm

(
L

µ
αδ1 log

(
1

ε

)
+

M

C

αδ2
µ2ε

+
M

C

ασ2

µ2ε

)
number of devices communications to reach ε-accuracy, where ε2 = E

∥∥xK,0 − x∗
∥∥2 and C is the248

number of devices participating in each epoch.249

For more details, see Appendix E. Note that min1≤m≤M qm is a constant lying in the interval (0, 1].250

Thus, the rates of Algorithm 2 do not differ significantly from those for Algorithm 1. The only251

deterioration occurs in the variance term associated with local stochasticity. Thus, if each device has252

an access to its exact gradient, there is no asymptotical difference compared to Corollaries 1 and 2.253

3.4 Discussion254

We analyzed a wide class of sampling and weighting techniques and proposed algorithms for different255

network scenarios. Their rates asymptotically coincide with the optimal ones for SGD-like approaches256
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[Stich, 2019]. Due to considering biased strategies, we obtained an additional factor M/C. Again257

analogizing to compression, this multiplier signifies compression power. It is a well-known fact that258

there is no theoretical improvement for methods built upon error-feedback [Richtárik et al., 2021,259

Beznosikov et al., 2023]. However, we recover the convergence of SGD in the case of full participation.260

Comparing our non-convex rate regarding the main term O (1/ε2) with prior works, we note that it261

surpasses that in [Wang and Ji, 2022] (O (1/ε4 + δ2)) both asymptotically and by the absence of the262

non-vanishing term. Next, comparing strongly-convex rates (O (κ log 1/ε)), we are superior to [Cho263

et al., 2022]
(
O
(
κ2
/ε + κδ2

))
and [Luo et al., 2022] (O (κ/ε)). Moreover, both of these works lack264

non-convex analysis. We highlight that we soften assumptions from all aforementioned works.265

4 Experiments266

To validate our theoretical findings, we conduct a systematic empirical study comparing three267

optimization approaches — FedAvg [Reddi et al., 2020], SCAFFOLD [Karimireddy et al., 2020], and268

PPBC (Algorithm 1) — each integrated with the same client sampling technique. Crucially, we269

maintain a fixed strategy across all methods, deliberately decoupling the sampling mechanism from270

algorithmic innovations to focus specifically on its interaction with different optimization approaches.271

Our experiments assess their relative performance under identical conditions, including model272

architectures, benchmark datasets, and hardware configurations. Firstly, we detail the experimental273

setup, including the neural network architectures, benchmark datasets, and computational hardware274

configurations employed in our analysis.275

Experimental Setup. We evaluate each sampling strategy under three distinct data distribution276

scenarios: (distr-1) homogeneous (i.i.d.), (distr-2) heterogeneous with different classes on each277

client, and (distr-3) strongly heterogeneous configurations with varying client-specific data quantities278

and class distributions. Our benchmark experiments employ image classification on CIFAR-10279

[Krizhevsky et al., 2009] using a RESNET-18 architecture [Meng et al., 2019], establishing a con-280

trolled testbed for comparative analysis of Algorithm 1 across the sampling strategies. Comprehensive281

details regarding data partitioning, model architecture, and dataset specifications are provided in282

Appendix B.283

Client Selection Rule. Notably, not all strategies included in our comparative analysis inherently284

incorporate a client selection mechanism. To ensure a fair and consistent evaluation, we uniformly285

applied the following selection rule across all methods:286

R̂k = TopC

(
πk
)
,

where TopC denotes taking C > 0 clients with the highest weights πk. Consequently, the remainder287

of our experiments will focus exclusively on the formulation and analysis of weight update rules,288

while treating the client selection process itself as a fixed component of the experimental framework.289

Loss-aware client sampling. Building upon previous work, Cho et al. [2022] introduced the290

POWER-OF-CHOICE (PoC) strategy, which employs a weighted client sampling mechanism based on291

local loss values. Formally, the weight update rule can be expressed as:292
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Figure 1: Performance comparison for PoC strat-
egy with different data distributions.

1. The server assigns to all clients the probabil-293

ities proportional to the data size fractions294

pm =
nm(

M∑
m′=1

nm′

) .

2. The global model is sent by the server to the295

selected C clients, which compute and return296

their local loss values based on their datasets.297

Subsequently, the weights are updated:298

πk =

([
1

nm

nm∑
im=1

ℓ(g(x, aim), bim)

])M

m=1

.

Trust-Score Sampling. The study by Xie et al.299

[2019] introduces the BANT, which implements300
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a trust-based sampling mechanism. This approach assigns dynamic trust scores to clients based on301

historical performance metrics. Thus, weight update rule can be described as:302
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(b) Metrics comparison.

Figure 2: Performance comparison for BANT strat-
egy with different data distributions.

1. The server assigns trust scores TSk
m to each303

client m based on the alignment of their model304

updates with the performance on server-held305

ground truth data V:306

TSk
m = exp

− 1

|V|
∑
ξ∈V

fm(xk, ξ)

 .

2. The weights are updated with a probability307

proportional to the trust scores assigned to each308

client:309

πk =

 TSk
m

M∑
m′=1

TSk
m′


M

m=1

.

Importance Sampling. Nguyen et al. [2020] introduced FOLB, a theoretically grounded client selec-310

tion framework for federated learning that optimizes convergence by sampling clients proportionally311

to the expected utility of their local updates. The core selection mechanism operates as follows:312
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Figure 3: Performance comparison for FOLB strat-
egy with different data distributions.

1. Each client is assigned an importance score313

ISk
m proportional to the inner product between314

its gradient ∇fm(xk, ξkm) and the direction of315

the server model improvement (previous gradi-316

ent dk):317

ISk
m =

∣∣〈∇fm(xk, ξkm), dk
〉∣∣ .

2. The weights are updated with a probability318

proportional to the trust scores for each client:319

πk =

 ISk
m

M∑
m′=1

ISk
m′


M

m=1

.
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Figure 4: PPBC performace across all client-
sampling strategies on the distr-3.

Discussion. Our experimental evaluation on320

the CIFAR-10 dataset using the RESNET18321

architecture demonstrates a substantial perfor-322

mance gap between conventional approaches323

(FedAvg, SCAFFOLD) and Algorithm 1 (see Fig-324

ures 1 2, and 3), providing strong empirical vali-325

dation of our theoretical analysis. Notably, PPBC326

maintains consistent convergence rates and ac-327

curacy across all experimental configurations,328

with the observed performance variance remain-329

ing within 2% of theoretical predictions (see330

Figure 4). This robust empirical behavior con-331

firms our key theoretical insight: PPBC’s per-332

formance is strategy-agnostic, achieving stable333

convergence regardless of the underlying client334

selection mechanism.335

We present additional experiments in Appendix336

B. We consider advanced client selection techniques that utilize the rule R̃k,h, provide the results for337

PPBC+ (Algorithm 2), and demonstrate the outcomes for VIT training.338
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NeurIPS Paper Checklist557

1. Claims558

Question: Do the main claims made in the abstract and introduction accurately reflect the559

paper’s contributions and scope?560

Answer: [Yes]561

Justification: see Sections 1.4, 3.562

Guidelines:563

• The answer NA means that the abstract and introduction do not include the claims564

made in the paper.565

• The abstract and/or introduction should clearly state the claims made, including the566

contributions made in the paper and important assumptions and limitations. A No or567

NA answer to this question will not be perceived well by the reviewers.568

• The claims made should match theoretical and experimental results, and reflect how569

much the results can be expected to generalize to other settings.570

• It is fine to include aspirational goals as motivation as long as it is clear that these goals571

are not attained by the paper.572

2. Limitations573

Question: Does the paper discuss the limitations of the work performed by the authors?574

Answer: [Yes]575

Justification: all the assumptions are introduced in Section 2, further limitations are discussed576

in Section 3.4.577

Guidelines:578

• The answer NA means that the paper has no limitation while the answer No means that579

the paper has limitations, but those are not discussed in the paper.580

• The authors are encouraged to create a separate "Limitations" section in their paper.581

• The paper should point out any strong assumptions and how robust the results are to582

violations of these assumptions (e.g., independence assumptions, noiseless settings,583

model well-specification, asymptotic approximations only holding locally). The authors584

should reflect on how these assumptions might be violated in practice and what the585

implications would be.586

• The authors should reflect on the scope of the claims made, e.g., if the approach was587

only tested on a few datasets or with a few runs. In general, empirical results often588

depend on implicit assumptions, which should be articulated.589

• The authors should reflect on the factors that influence the performance of the approach.590

For example, a facial recognition algorithm may perform poorly when image resolution591

is low or images are taken in low lighting. Or a speech-to-text system might not be592

used reliably to provide closed captions for online lectures because it fails to handle593

technical jargon.594

• The authors should discuss the computational efficiency of the proposed algorithms595

and how they scale with dataset size.596

• If applicable, the authors should discuss possible limitations of their approach to597

address problems of privacy and fairness.598

• While the authors might fear that complete honesty about limitations might be used by599

reviewers as grounds for rejection, a worse outcome might be that reviewers discover600

limitations that aren’t acknowledged in the paper. The authors should use their best601

judgment and recognize that individual actions in favor of transparency play an impor-602

tant role in developing norms that preserve the integrity of the community. Reviewers603

will be specifically instructed to not penalize honesty concerning limitations.604

3. Theory assumptions and proofs605

Question: For each theoretical result, does the paper provide the full set of assumptions and606

a complete (and correct) proof?607

Answer: [Yes]608
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Justification: see Sections 2, 3, D, E.609

Guidelines:610

• The answer NA means that the paper does not include theoretical results.611

• All the theorems, formulas, and proofs in the paper should be numbered and cross-612

referenced.613

• All assumptions should be clearly stated or referenced in the statement of any theorems.614

• The proofs can either appear in the main paper or the supplemental material, but if615

they appear in the supplemental material, the authors are encouraged to provide a short616

proof sketch to provide intuition.617

• Inversely, any informal proof provided in the core of the paper should be complemented618

by formal proofs provided in appendix or supplemental material.619

• Theorems and Lemmas that the proof relies upon should be properly referenced.620

4. Experimental result reproducibility621

Question: Does the paper fully disclose all the information needed to reproduce the main ex-622

perimental results of the paper to the extent that it affects the main claims and/or conclusions623

of the paper (regardless of whether the code and data are provided or not)?624

Answer: [Yes]625

Justification: all necessary descriptions to understand the results of the experiments are626

provided. See Sections 4, B.627

Guidelines:628

• The answer NA means that the paper does not include experiments.629

• If the paper includes experiments, a No answer to this question will not be perceived630

well by the reviewers: Making the paper reproducible is important, regardless of631

whether the code and data are provided or not.632

• If the contribution is a dataset and/or model, the authors should describe the steps taken633

to make their results reproducible or verifiable.634

• Depending on the contribution, reproducibility can be accomplished in various ways.635

For example, if the contribution is a novel architecture, describing the architecture fully636

might suffice, or if the contribution is a specific model and empirical evaluation, it may637

be necessary to either make it possible for others to replicate the model with the same638

dataset, or provide access to the model. In general. releasing code and data is often639

one good way to accomplish this, but reproducibility can also be provided via detailed640

instructions for how to replicate the results, access to a hosted model (e.g., in the case641

of a large language model), releasing of a model checkpoint, or other means that are642

appropriate to the research performed.643

• While NeurIPS does not require releasing code, the conference does require all submis-644

sions to provide some reasonable avenue for reproducibility, which may depend on the645

nature of the contribution. For example646

(a) If the contribution is primarily a new algorithm, the paper should make it clear how647

to reproduce that algorithm.648

(b) If the contribution is primarily a new model architecture, the paper should describe649

the architecture clearly and fully.650

(c) If the contribution is a new model (e.g., a large language model), then there should651

either be a way to access this model for reproducing the results or a way to reproduce652

the model (e.g., with an open-source dataset or instructions for how to construct653

the dataset).654

(d) We recognize that reproducibility may be tricky in some cases, in which case655

authors are welcome to describe the particular way they provide for reproducibility.656

In the case of closed-source models, it may be that access to the model is limited in657

some way (e.g., to registered users), but it should be possible for other researchers658

to have some path to reproducing or verifying the results.659

5. Open access to data and code660

Question: Does the paper provide open access to the data and code, with sufficient instruc-661

tions to faithfully reproduce the main experimental results, as described in supplemental662

material?663
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Answer: [Yes]664

Justification: see Section B.665

Guidelines:666

• The answer NA means that paper does not include experiments requiring code.667

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/668

public/guides/CodeSubmissionPolicy) for more details.669

• While we encourage the release of code and data, we understand that this might not be670

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not671

including code, unless this is central to the contribution (e.g., for a new open-source672

benchmark).673

• The instructions should contain the exact command and environment needed to run to674

reproduce the results. See the NeurIPS code and data submission guidelines (https:675

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.676

• The authors should provide instructions on data access and preparation, including how677

to access the raw data, preprocessed data, intermediate data, and generated data, etc.678

• The authors should provide scripts to reproduce all experimental results for the new679

proposed method and baselines. If only a subset of experiments are reproducible, they680

should state which ones are omitted from the script and why.681

• At submission time, to preserve anonymity, the authors should release anonymized682

versions (if applicable).683

• Providing as much information as possible in supplemental material (appended to the684

paper) is recommended, but including URLs to data and code is permitted.685

6. Experimental setting/details686

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-687

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the688

results?689

Answer: [Yes]690

Justification: see Sections 4, B.691

Guidelines:692

• The answer NA means that the paper does not include experiments.693

• The experimental setting should be presented in the core of the paper to a level of detail694

that is necessary to appreciate the results and make sense of them.695

• The full details can be provided either with the code, in appendix, or as supplemental696

material.697

7. Experiment statistical significance698

Question: Does the paper report error bars suitably and correctly defined or other appropriate699

information about the statistical significance of the experiments?700

Answer: [No]701

Justification: since the experiments are more of a theoretical verification, we have no702

statistical effects associated with running the experiments.703

Guidelines:704

• The answer NA means that the paper does not include experiments.705

• The authors should answer "Yes" if the results are accompanied by error bars, confi-706

dence intervals, or statistical significance tests, at least for the experiments that support707

the main claims of the paper.708

• The factors of variability that the error bars are capturing should be clearly stated (for709

example, train/test split, initialization, random drawing of some parameter, or overall710

run with given experimental conditions).711

• The method for calculating the error bars should be explained (closed form formula,712

call to a library function, bootstrap, etc.)713

• The assumptions made should be given (e.g., Normally distributed errors).714
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• It should be clear whether the error bar is the standard deviation or the standard error715

of the mean.716

• It is OK to report 1-sigma error bars, but one should state it. The authors should717

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis718

of Normality of errors is not verified.719

• For asymmetric distributions, the authors should be careful not to show in tables or720

figures symmetric error bars that would yield results that are out of range (e.g. negative721

error rates).722

• If error bars are reported in tables or plots, The authors should explain in the text how723

they were calculated and reference the corresponding figures or tables in the text.724

8. Experiments compute resources725

Question: For each experiment, does the paper provide sufficient information on the com-726

puter resources (type of compute workers, memory, time of execution) needed to reproduce727

the experiments?728

Answer: [Yes]729

Justification: see Section B.730

Guidelines:731

• The answer NA means that the paper does not include experiments.732

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,733

or cloud provider, including relevant memory and storage.734

• The paper should provide the amount of compute required for each of the individual735

experimental runs as well as estimate the total compute.736

• The paper should disclose whether the full research project required more compute737

than the experiments reported in the paper (e.g., preliminary or failed experiments that738

didn’t make it into the paper).739

9. Code of ethics740

Question: Does the research conducted in the paper conform, in every respect, with the741

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?742

Answer: [Yes]743

Justification: the paper follows the NeurIPS Code of Ethics.744

Guidelines:745

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.746

• If the authors answer No, they should explain the special circumstances that require a747

deviation from the Code of Ethics.748

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-749

eration due to laws or regulations in their jurisdiction).750

10. Broader impacts751

Question: Does the paper discuss both potential positive societal impacts and negative752

societal impacts of the work performed?753

Answer: [NA]754

Justification: there is no societal impact of the work performed.755

Guidelines:756

• The answer NA means that there is no societal impact of the work performed.757

• If the authors answer NA or No, they should explain why their work has no societal758

impact or why the paper does not address societal impact.759

• Examples of negative societal impacts include potential malicious or unintended uses760

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations761

(e.g., deployment of technologies that could make decisions that unfairly impact specific762

groups), privacy considerations, and security considerations.763
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• The conference expects that many papers will be foundational research and not tied764

to particular applications, let alone deployments. However, if there is a direct path to765

any negative applications, the authors should point it out. For example, it is legitimate766

to point out that an improvement in the quality of generative models could be used to767

generate deepfakes for disinformation. On the other hand, it is not needed to point out768

that a generic algorithm for optimizing neural networks could enable people to train769

models that generate Deepfakes faster.770

• The authors should consider possible harms that could arise when the technology is771

being used as intended and functioning correctly, harms that could arise when the772

technology is being used as intended but gives incorrect results, and harms following773

from (intentional or unintentional) misuse of the technology.774

• If there are negative societal impacts, the authors could also discuss possible mitigation775

strategies (e.g., gated release of models, providing defenses in addition to attacks,776

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from777

feedback over time, improving the efficiency and accessibility of ML).778

11. Safeguards779

Question: Does the paper describe safeguards that have been put in place for responsible780

release of data or models that have a high risk for misuse (e.g., pretrained language models,781

image generators, or scraped datasets)?782

Answer: [NA]783

Justification: the paper poses no such risks.784

Guidelines:785

• The answer NA means that the paper poses no such risks.786

• Released models that have a high risk for misuse or dual-use should be released with787

necessary safeguards to allow for controlled use of the model, for example by requiring788

that users adhere to usage guidelines or restrictions to access the model or implementing789

safety filters.790

• Datasets that have been scraped from the Internet could pose safety risks. The authors791

should describe how they avoided releasing unsafe images.792

• We recognize that providing effective safeguards is challenging, and many papers do793

not require this, but we encourage authors to take this into account and make a best794

faith effort.795

12. Licenses for existing assets796

Question: Are the creators or original owners of assets (e.g., code, data, models), used in797

the paper, properly credited and are the license and terms of use explicitly mentioned and798

properly respected?799

Answer: [Yes]800

Justification: see Sections 4, B.801

Guidelines:802

• The answer NA means that the paper does not use existing assets.803

• The authors should cite the original paper that produced the code package or dataset.804

• The authors should state which version of the asset is used and, if possible, include a805

URL.806

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.807

• For scraped data from a particular source (e.g., website), the copyright and terms of808

service of that source should be provided.809

• If assets are released, the license, copyright information, and terms of use in the810

package should be provided. For popular datasets, paperswithcode.com/datasets811

has curated licenses for some datasets. Their licensing guide can help determine the812

license of a dataset.813

• For existing datasets that are re-packaged, both the original license and the license of814

the derived asset (if it has changed) should be provided.815
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• If this information is not available online, the authors are encouraged to reach out to816

the asset’s creators.817

13. New assets818

Question: Are new assets introduced in the paper well documented and is the documentation819

provided alongside the assets?820

Answer: [NA]821

Justification: Justification: the paper does not release new assets.822

Guidelines:823

• The answer NA means that the paper does not release new assets.824

• Researchers should communicate the details of the dataset/code/model as part of their825

submissions via structured templates. This includes details about training, license,826

limitations, etc.827

• The paper should discuss whether and how consent was obtained from people whose828

asset is used.829

• At submission time, remember to anonymize your assets (if applicable). You can either830

create an anonymized URL or include an anonymized zip file.831

14. Crowdsourcing and research with human subjects832

Question: For crowdsourcing experiments and research with human subjects, does the paper833

include the full text of instructions given to participants and screenshots, if applicable, as834

well as details about compensation (if any)?835

Answer: [NA]836

Justification: the paper does not involve crowdsourcing nor research with human subjects.837

Guidelines:838

• The answer NA means that the paper does not involve crowdsourcing nor research with839

human subjects.840

• Including this information in the supplemental material is fine, but if the main contribu-841

tion of the paper involves human subjects, then as much detail as possible should be842

included in the main paper.843

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,844

or other labor should be paid at least the minimum wage in the country of the data845

collector.846

15. Institutional review board (IRB) approvals or equivalent for research with human847

subjects848

Question: Does the paper describe potential risks incurred by study participants, whether849

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)850

approvals (or an equivalent approval/review based on the requirements of your country or851

institution) were obtained?852

Answer: [NA]853

Justification: the paper does not involve crowdsourcing nor research with human subjects.854

Guidelines:855

• The answer NA means that the paper does not involve crowdsourcing nor research with856

human subjects.857

• Depending on the country in which research is conducted, IRB approval (or equivalent)858

may be required for any human subjects research. If you obtained IRB approval, you859

should clearly state this in the paper.860

• We recognize that the procedures for this may vary significantly between institutions861

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the862

guidelines for their institution.863

• For initial submissions, do not include any information that would break anonymity (if864

applicable), such as the institution conducting the review.865

16. Declaration of LLM usage866
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Question: Does the paper describe the usage of LLMs if it is an important, original, or867

non-standard component of the core methods in this research? Note that if the LLM is used868

only for writing, editing, or formatting purposes and does not impact the core methodology,869

scientific rigorousness, or originality of the research, declaration is not required.870

Answer: [NA]871

Justification: the core method development in this paper does not involve LLMs.872

Guidelines:873

• The answer NA means that the core method development in this research does not874

involve LLMs as any important, original, or non-standard components.875

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)876

for what should or should not be described.877
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