
Under review as a conference paper at ICLR 2023

HIDDEN MARKOV MIXTURE OF GAUSSIAN PROCESS
FUNCTIONAL REGRESSION: UTILIZING MULTI-SCALE
STRUCTURE FOR TIME-SERIES FORECASTING

Anonymous authors
Paper under double-blind review

ABSTRACT

The mixture of Gaussian process functional regressions (GPFRs) assumes that there
are a batch of time-series or sample curves which are generated by independent
random processes with different temporal structures. However, in the real situations,
these structures are actually transferred in a random manner from a long time scale.
Therefore, the assumption of independent curves is not true in practice. In order to
get rid of this limitation, we propose the hidden Markov based GPFR mixture model
(HM-GPFR) by describing these curves with both fine and coarse level temporal
structures. Specifically, the temporal structure is described by the Gaussian process
model at the fine level and hidden Markov process at the coarse level. The whole
model can be regarded as a random process with state switching dynamics. To
further enhance the robustness of the model, we also give a priori to the model
parameters and develop Bayesian hidden Markov based GPFR mixture model
(BHM-GPFR). Experimental results demonstrate that the proposed methods have
both high prediction accuracy and good interpretability.

1 INTRODUCTION

The time-series considered in this paper has the multi-scale structure: the coarse level and the fine
level. We have observations (y1, . . . ,yT ) where each yt = (yt,1, . . . , yt,L) itself is a time-series of
length L. The whole time-series is arranged as

y1,1, y1,2, . . . , y1,L , y2,1, y2,2, . . . , y2,L , . . . , yT,1, yT,2, . . . , yT,L. (1)

The subscripts of {yt}Tt=1 are called coarse level indices, while the subscripts of {yt,i}Li=1 are called
fine level indices. Throughout this paper, we take the electricity load dataset as a concrete example.
The electricity load dataset consists of T = 365 consecutive daily records, and in each day there are
L = 96 samples recorded every quarter-hour. In this example, the coarse level indices denote “day”,
while the fine level indices correspond to the time resolution of 15 minutes. The aim is to forecast
both short-term and long-term electricity loads based on historical records. There may be partial
observations yT+1,1, . . . , yT+1,M with M < L, so the entire observed time-series has the form

y1,1, y1,2, . . . , y1,L , y2,1, y2,2, . . . , y2,L , . . . , yT,1, yT,2, . . . , yT,L, yT+1,1, . . . , yT+1,M . (2)

The task is to predict future response yt∗,i∗ where t∗ ≥ T + 1, 1 ≤ i∗ ≤ L are positive integers.

The coarse level and fine level provide different structural information about the data generation
process. In the coarse level, each yt can be regarded as a time-series, and there is certain cluster
structure (Shi & Wang, 2008; Wu & Ma, 2018) underlying these time-series {yt}Tt=1: we can divide
{yt}Tt=1 into groups such that time-series within each group share a similar evolving trend. Back to
the electricity load dataset, such groups correspond to different electricity consumption patterns. We
use zt to denote the cluster label of yt. In the fine level, observations {yt,i}Li=1 can be regarded as a
realization of a stochastic process, and the properties of the stochastic process are determined by the
cluster label zt.

The mixture of Gaussian processes functional regression (mix-GPFR) model (Shi & Wang, 2008;
Shi & Choi, 2011) is powerful for analyzing functional data or batch data, and it is applicable to
the multi-scale time-series forecasting task. Mix-GPFR assumes there are K Gaussian processes
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Figure 1: An illustration of multi-scale time-series.

functional regression (GPFR) (Shi et al., 2007) components, and associated with each yt there is
a latent variable zt indicating yt is generated by which GPFR component. Since GPFR is good
at capturing temporal dependency, this model successfully utilizes the structure information in the
fine level. However, the temporal information in the coarse level is totally ignored since mix-GPFR
assumes {zt}Tt=1 are i.i.d. .

In this work, we propose to model the temporal dependency in the coarse level by the hidden Markov
model, which characterizes the switching dynamics of z1, . . . , zT by the transition probability
matrix. We refer to the proposed model as HM-GPFR. Mix-GPFR is able to effectively predict
yT+1,M+1, . . . , yT+1,L when M > 0. To predict the responses yT+1,i∗ , we must determine the
cluster label zT+1 based on observations yT+1,1, . . . , yT+1,M , otherwise we do not know yT+1

is governed by which evolving pattern. If there is no observation at day T + 1 (i.e., M = 0),
then mix-GPFR fails to identify the stochastic process that generates yT+1. For the same reason,
mix-GPFR is not suitable for long-term forecasting (t∗ > T + 1). On the other hand, HM-GPFR is
able to infer zt∗ for any t∗ based on the transition probabilities of the hidden Markov model even
M = 0. Therefore, HM-GPFR makes use of coarse level temporal information and solves the cold
start problem in mix-GPFR. Besides, when a new day’s records yT+1 have been fully observed, one
needs to re-train a mix-GPFR model to utilize yT+1, while HM-GPFR can adjust the parameters
incrementally without retraining the model.

2 RELATED WORKS

Gaussian process (Rasmussen & Williams, 2006) is a powerful non-parametric Bayesian model. In
(Girard et al., 2002; Brahim-Belhouari & Bermak, 2004; Girard & Murray-Smith, 2005), GP has
been applied for time-series forecasting. Shi et al.proposed the GPFR model to process batch data
(Shi et al., 2007). To effectively model multi-modal data, the mixture structure is further introduced
to GPFR and the mix-GPFR model was proposed (Shi & Wang, 2008; Shi & Choi, 2011). In (Wu &
Ma, 2018; Li et al., 2019; Cao et al., 2021), GP related methods for electricity load prediction have
been evaluated thoroughly. However, in these works daily records are treated as i.i.d. samples, and
the temporal information in the coarse level is ignored.

Multi-scale time-series was proposed in (Ferreira et al., 2006; Ferreira & Lee, 2007b;a), and further
developments in this direction have been achieved in recent years. The time-series considered in
this work is different from the multi-scale time-series since at the coarse level there is no aggregated
observation from the samples at the fine level. In this paper, we mainly emphasize the multi-scale
structure of the time-series.

3 PRELIMINARIES

3.1 HIDDEN MARKOV MODEL

For a sequence of observations {yt}Tt=1, the hidden Markov model (HMM) (Rabiner & Juang, 1986;
Elliott et al., 2008) assumes there is a hidden state variable zt associated with yt. The sequence
of hidden states {zt}Tt=1 forms a homogeneous Markov process. Usually, {zt}Tt=1 are categorical
variables taking values in {1, . . . ,K}, and the transition dynamics is governed by P(zt = l|zt−1 =
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k) = Pkl. There are K groups of parameters {θk}Kk=1, and zt = k indicates that the observation yt

is generated by P(y;θk). The goal of learning is to identify the parameters and infer the posterior
distribution of hidden states {zt}Tt=1. Usually, the Baum-Welch algorithm (Baum & Petrie, 1966;
Baum et al., 1970) is utilized to learn the HMM, which can be regarded as a specifically designed
EM algorithm based on the forward-backward algorithm. Once the model has been trained, we are
able to simulate future behavior of the system.

3.2 GAUSSIAN PROCESS FUNCTIONAL REGRESSIONS

Gaussian process is a stochastic process that any finite-dimensional distribution of samples is a
multivariate Gaussian distribution. The property of a Gaussian process is determined by the mean
function and the covariance function. We write the mean function as µ(·) and the covariance
function as c(·, ·). Suppose that we have a dataset D = {(xi, yi)}Li=1. The relationship between
input and output is connected by a function Y , i.e., Y (xi) = yi. Let x = [x1, x2, . . . , xL]

T,y =
[y1, y2, . . . , yL]

T, then we assume y|x ∼ N (µ,C) where µ = [µ(x1), µ(x2), . . . , µ(xL)]
T and

Cij = c(xi, xj). In machine learning, the mean function and the covariance function are usually
parameterized. Here, we use the squared exponential covariance function (Rasmussen & Williams,
2006; Shi & Choi, 2011; Wu & Ma, 2018) c(xi, xj ;θ) = θ21 exp

(
−θ22

(xi−xj)
2

2

)
+ θ23δij , where

δij is the Kronecker delta function and θ = [θ1, θ2, θ3]. The mean function is modeled as a linear
combination of B-spline basis functions (Shi et al., 2007; Shi & Choi, 2011). Suppose that we have
D B-spline basis functions {ϕd(x)}Dd=1. Let µ(x) =

∑D
d=1 bdϕd(x) and Φ be an L×D matrix with

Φid = ϕd(xi), b = [b1, b2, . . . , bD]T, then y|x ∼ N (Φb,C). From the function perspective, this
model can be denoted as Y (x) ∼ GPFR(x; b,θ).

We can use the Gaussian process to model the multi-scale time-series considered in this paper, and
the key-point is transform the multi-scale time-series to a batch dataset. For each coarse level index t,
we can construct a dataset Dt = {(xt,i, yt,i)}Li=1, where xt,i is the sampling time of i-th sample in
time-series yt. Let Yt be the function underlying dataset D, i.e., Yt(xt,i) = yt,i, then these {Dt}Tt=1

can be regarded as independent realizations of a GPFR, which assumes Yt(x)
i.i.d.∼ GPFR(x; b,θ).

Without loss of generality, we may assume xt,i = i, and thus Φid = ϕd(i),Cij = c(i, j;θ) do not
depend on the coarse level index t. Therefore, it is equivalent to assume {yt}Tt=1 are independently
and identically distributed as N (Φb,C). To learn the parameters b and θ, we apply the Type-II
maximum likelihood estimation technique (Rasmussen & Williams, 2006; Shi & Choi, 2011).

As for prediction, given a new record {(xt∗,i, yt∗,i)}Mi=1 and we want to predict the corresponding
output yt∗,i∗ at xt∗,i∗ where M < i∗ ≤ L, from the definition of Gaussian process we immediately
know that yt∗,i∗ also obeys a Gaussian distribution (Rasmussen & Williams, 2006). Let

x∗ = [xt∗,1, . . . , xt∗,M ]T,y∗ = [yt∗,1, . . . , yt∗,M ]T, (3)

µ∗ = [µ(xt∗,1) , . . . , µ(xt∗,M )]T, [C∗]ij = c(xt∗,i, xt∗,j), (4)

then the mean of yt∗,i∗ is µ(xt∗,i∗) + c(xt∗,i∗ ,x∗)C
−1
∗ (y∗ − µ∗), and the variance of yt∗,i∗ is

c(xt∗,i∗ , xt∗,i∗)− c(xt∗,i∗ ,x∗)C
−1
∗ c(x∗, xt∗,i∗). Note that if M = 0, the prediction is simply given

by N (µ(xt∗,i∗), c(xt∗,i∗ , xt∗,i∗)), which equals to the prior distribution of yt∗,i∗ and fails to utilize
the temporal dependency with recent observations. In the electricity load prediction example, this
means we can only effectively predict a new day’s electricity loads when we already have the first few
observations of this day. In practice, however, it is very common to predict a new day’s electricity
loads from scratch.

3.3 THE MIXTURE OF GAUSSIAN PROCESS FUNCTIONAL REGRESSIONS

GPFR implicitly assumes that all {yt}Tt=1 are generated by the same stochastic process, which is
not the case in practice. In real applications, they may be generated from different signal sources,
thus a single GPFR is not flexible enough to model all the time series, especially when there are a
variety of evolving trends. Take the electricity load dataset for example, the records corresponding
to winter and summer are very likely to have significantly different trends and shapes. To solve
this problem, Shi et al.() suggested to introduce the mixture structure to GPFR, and proposed the
mixture of Gaussian process functional regressions (mix-GPFR). In mix-GPFR, there are K GPFR
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components with different parameters {bk,θk}Kk=1, and the mixing proportion of the k-th GPFR
component is πk. Intuitively, there are K different signal sources or evolving patterns in mix-GPFR
to describe temporal data with different temporal properties. For each yt, there is an associated
latent indicator variable zt ∈ {1, 2, . . . ,K}, and zt = k indicates yt is generated by the k-th GPFR
component. The generation process of mix-GPFR is

zt
i.i.d.∼ Categorical(π1, π2, . . . , πK) ,

Yt(x)|zt = k ∼ GPFR(x; bk,θk) .
(5)

Let Ck ∈ L× L be the covariance matrix calculated by θk, i.e., [Ck]ij = c(i, j;θk), then the above
equation is equivalent to yt ∼ N (Φbk,Ck).

Due to the existence of latent variables, the parameter learning of mix-GPFR involves the EM
algorithm (Dempster et al., 1977; Shi & Wang, 2008). As for prediction, K GPFR components of
mix-GPFR first make predictions individually, then we weight these predictions based on the posterior
probability P(zt∗ = k|yt∗ ; bk,θk). Note that if M = 0, then P(zt∗ = k|yt∗ ; bk,θk) = πk, which
equals to the mixing proportions and also fails to utilize recent observations. Therefore, mix-GPFR
also suffers from the cold start problem.

4 PROPOSED METHODS

4.1 HIDDEN MARKOV BASED GAUSSIAN PROCESS FUNCTIONAL REGRESSION MIXTURE
MODEL

Similar to mix-GPFR, the hidden Markov based Gaussian process functional regression mixture
model also assumes the time-series is generated by K signal sources. The key difference is that the
signal source may switch between consecutive observations in the time resolution of the coarse level.
The temporal structure in the coarse level is characterized by the transition dynamics of {zt}Tt=1, and
the temporal dependency in the fine level is captured by Gaussian processes. Precisely,

z1 ∼ Categorical(π1, π2, . . . , πK),

P(zt = l|zt−1 = k) = Pkl , t = 2, 3, . . . , T

Yt(x)|zt = k ∼ GPFR(x; bk,θk) , t = 1, 2, . . . , T.

(6)

Here, π = [π1, π2, . . . , πK ] is the initial state distribution, and P = [Pkl]K×K is the transition
probability matrix. We refer to this model as HM-GPFR. In GPFR and mix-GPFR, the observations
{yt}Tt=1 are modeled as independent and exchangeable realizations of stochastic processes, thus the
temporal structure in the coarse level is destroyed. However, in HM-GPFR, consecutive yt−1,yt are
connected by the transition dynamics of their corresponding latent variables zt−1, zt, which is more
suitable for time-series data. For example, if today’s electricity loads are very high, then it is unlikely
that tomorrow’s electricity loads are extremely low.

The learning algorithm for HM-GPFR is based on the EM algorithm, and we derive the algo-
rithm in the appendix. After the parameters have been learned, we assign the latent variable
ẑt = argmaxk=1,...,K γt(k) and regard {ẑt}Tt=1 as deterministic. For prediction, we consider
two cases: t∗ = T + 1 and t∗ > T + 1. When t∗ = T + 1, the latent variable zT+1 is determined by
both the conditional transition probability zT+1|ẑT and partial observations yT+1. More precisely,
suppose ẑT = l, then

ωk = P(zT+1 = k|T ,yT+1, ẑT = l; Θ̂) ∝ P̂lkN (yT+1;Φ[1 :M, :]b̂k,C[1 :M, 1 :M ]) , (7)

where the square brackets denote slicing operation. If M = 0, then ωk = P̂lk is determined by
the last hidden state and transition dynamics, which is more accurate than mix-GPFR. Suppose the
prediction of the k-th component is y(k)∗ , then the final prediction is given by

∑K
k=1 ωky

(k)
∗ .

We next consider the case t∗ > T + 1, the main difference is the posterior distribution of zt∗ . In this
case, we need to use the transition probability matrix recursively. First, we calculate the distribution
of zT+1 according to Equation (7). Then by the Markov property, we know

ωk = P(zt∗ = k|T ,yT+1, zT = l; Θ̂) ∝
K∑

m=1

P(zT+1 = m|T ,yT+1, ẑT = l;Θ)[P̂t∗−T−1]mk . (8)

The final prediction is also given by
∑K

k=1 ωky
(k)
∗ =

∑K
k=1 ωkΦ[i∗, :]bk.
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Figure 2: Probabilistic graphical models of HM-GPFR and BHM-GPFR.

4.2 BAYESIAN HIDDEN MARKOV BASED GAUSSIAN PROCESS FUNCTIONAL REGRESSION
MIXTURE MODEL

One drawback of HM-GPFR is that there are too many parameters and thus has the risk of overfitting.
In this section, we further develop a fully Bayesian treatment of HM-GPFR. We place a Gaussian
prior N (mb,Σb) on the coefficients of B-spline functions {bk}Kk=1. For the transition probabilities,
let pk = [Pk1, Pk2, . . . , PkK ]T be the probabilities from state k to other states, then we assume pk

obeys a Dirichlet prior Dir(a0, . . . , a0). The generation process of Bayesian HM-GPFR is

bk ∼ N (mb,Σb) , k = 1, 2, . . . ,K

pk ∼ Dir(a0, . . . , a0) , k = 1, 2, . . . ,K

z1 ∼ Categorical(π1, π2, . . . , πK),

P(zt = l|zt−1 = k) = Pkl , t = 2, 3, . . . , T

Yt(x)|zt = k ∼ GPFR(x; bk,θk) , t = 1, 2, . . . , T.

(9)

The detailed learning algorithm is presented in the appendix. After learning, we set the latent variables
to their maximum a posteriori (MAP) estimates Ω̂. Specifically, b̂k = mk, P̂kl =

akl∑K
m=1 akm

, ẑt =

argmaxk=1,2,...,K γt(k). The rest of prediction is the same as HM-GPFR.

5 EXPERIMENTAL RESULTS

5.1 EXPERIMENT SETTINGS

In this section, we use the electricity load dataset issued by the State Grid of China for a
city in northwest China. The dataset records electricity loads every 15 minutes, thus there
are 96 records per day. Using the electricity load records of 2010 for training, we pre-
dict the subsequent S-step electricity loads in a time-series prediction fashion, where S =
1, 2, 3, 4, 5, 10, 20, 30, 50, 80, 100, 200, 500, 1000. This setting allows both short-term and long-term
predictions to be evaluated. For a more comprehensive and accurate assessment of the performance,
we roll the time series by 100 rounds. Based on the electricity loads of 2010, the r-th round also puts
the first (r− 1) records of 2011 into the training set. In each round, we predict the subsequent S-step
electricity loads. In r-th round, suppose the ground-truths are y1, y2, . . . , yS and the predictions are
ŷ1, ŷ2, . . . , ŷS , we use the Mean Absolute Percentage Errors (MAPEs) to evaluate the prediction
results. Specifically, MAPEr = 1

S

∑S
s=1

|ys−ŷs|
|ys| . For overall evaluation, we report the average

of 100 MAPEs to obtain MAPE = 1
100

∑100
r=1 MAPEr. Since the algorithms are influenced by

randomness, we repeat the algorithms for 10 runs and report the average results.

We compare HM-GPFR and BHM-GPFR with other time-series forecasting methods. Specifically,
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Table 1: MAPE of various methods on the electricity loads dataset under different step lengths and
parameter settings.

Method Parameter Step length S

1 2 3 4 5 10 20 30 50 80 100 200 300 500 1000

AR
L = 4 1.02% 1.36% 1.75% 2.13% 2.53% 4.37% 6.95% 8.88% 11.79% 13.92% 15.0% 18.06% 17.82% 16.94% 16.46%
L = 8 1.01% 1.36% 1.75% 2.14% 2.55% 4.47% 7.0% 8.7% 11.28% 13.36% 14.5% 17.8% 17.64% 16.83% 16.4%
L = 12 1.01% 1.35% 1.74% 2.13% 2.54% 4.46% 6.96% 8.63% 11.17% 13.23% 14.38% 17.74% 17.6% 16.81% 16.39%

MA
L = 4 3.39% 5.74% 8.03% 9.94% 11.35% 14.08% 15.13% 15.2% 15.66% 16.39% 16.97% 19.05% 18.48% 17.33% 16.65%
L = 8 2.23% 3.5% 4.74% 5.81% 6.83% 11.11% 13.65% 14.21% 15.07% 16.01% 16.67% 18.9% 18.38% 17.27% 16.62%
L = 12 1.83% 2.76% 3.66% 4.46% 5.21% 8.61% 12.32% 13.33% 14.54% 15.68% 16.41% 18.77% 18.29% 17.22% 16.59%

ARMA
L = 4 1.01% 1.34% 1.73% 2.12% 2.52% 4.42% 6.93% 8.6% 11.22% 13.18% 14.31% 17.64% 17.54% 16.77% 16.38%
L = 8 1.01% 1.34% 1.72% 2.09% 2.48% 4.34% 6.87% 8.52% 11.12% 13.05% 14.13% 17.5% 17.44% 16.71% 16.34%
L = 12 1.02% 1.36% 1.76% 2.14% 2.55% 4.39% 6.8% 8.4% 10.99% 12.89% 13.93% 17.31% 17.3% 16.62% 16.3%

ARIMA
L = 4 0.98% 1.34% 1.74% 2.14% 2.57% 4.58% 7.27% 9.08% 11.99% 14.43% 15.34% 18.65% 18.67% 17.95% 17.65%
L = 8 1.01% 1.36% 1.75% 2.14% 2.57% 4.56% 7.24% 9.2% 12.48% 14.53% 15.09% 18.67% 18.79% 18.2% 18.37%
L = 12 1.01% 1.4% 1.82% 2.24% 2.68% 4.93% 8.64% 11.92% 18.41% 22.65% 21.83% 24.05% 24.24% 24.2% 29.52%

SARMA
L = 4 0.83% 1.08% 1.33% 1.55% 1.76% 2.66% 4.06% 5.15% 6.38% 7.57% 8.67% 10.69% 9.96% 7.62% 7.62%
L = 8 0.83% 1.08% 1.32% 1.55% 1.76% 2.67% 4.04% 5.12% 6.35% 7.54% 8.64% 10.67% 9.93% 7.58% 7.58%
L = 12 0.82% 1.07% 1.3% 1.52% 1.72% 2.62% 4.06% 5.16% 6.31% 7.17% 8.11% 10.55% 10.09% 7.86% 7.83%

LSTM

L = 4 12.89% 12.9% 12.91% 12.97% 13.04% 13.55% 14.56% 15.16% 16.24% 16.99% 17.25% 19.48% 19.01% 17.88% 17.28%
L = 12 12.39% 12.32% 12.32% 12.35% 12.39% 12.78% 13.9% 14.83% 16.38% 17.38% 17.42% 19.77% 19.39% 18.27% 17.73%
L = 24 11.48% 11.43% 11.43% 11.46% 11.5% 11.81% 12.69% 13.49% 14.73% 15.72% 16.28% 18.97% 18.8% 17.83% 17.44%
L = 48 10.1% 10.11% 10.11% 10.15% 10.2% 10.49% 11.22% 11.96% 12.94% 13.09% 13.56% 16.53% 17.52% 17.98% 18.57%

FNN

L = 4 0.96% 1.29% 1.64% 1.94% 2.27% 3.99% 6.21% 8.13% 11.56% 14.4% 15.49% 18.71% 18.71% 17.87% 17.61%
L = 12 0.85% 1.1% 1.37% 1.62% 1.88% 3.13% 5.38% 7.25% 9.94% 13.24% 14.87% 20.44% 20.72% 19.91% 19.81%
L = 24 0.85% 1.07% 1.27% 1.43% 1.6% 2.39% 3.94% 5.38% 7.43% 10.1% 11.54% 14.57% 15.27% 15.62% 17.87%
L = 48 0.85% 1.0% 1.15% 1.28% 1.39% 1.99% 3.21% 4.12% 5.49% 7.62% 8.93% 10.26% 9.42% 7.72% 8.34%

SVR

L = 4 0.98% 1.33% 1.71% 2.05% 2.43% 4.16% 5.85% 7.81% 10.82% 14.1% 15.07% 18.94% 19.84% 19.41% 19.5%
L = 12 1.05% 1.33% 1.62% 1.91% 2.17% 3.6% 6.59% 9.09% 13.5% 17.89% 19.2% 24.47% 27.77% 28.52% 29.88%
L = 24 1.06% 1.29% 1.5% 1.68% 1.85% 2.73% 4.82% 6.85% 9.56% 12.47% 13.85% 17.34% 17.83% 17.56% 18.33%
L = 48 1.25% 1.46% 1.64% 1.8% 1.95% 2.66% 4.1% 5.27% 7.9% 11.33% 13.05% 12.39% 9.87% 8.45% 8.07%

EGPM

L = 4,K = 3 0.97% 1.29% 1.65% 1.98% 2.33% 4.05% 6.42% 7.54% 10.22% 13.49% 15.06% 18.17% 17.97% 17.15% 16.81%
L = 4,K = 5 0.97% 1.28% 1.64% 1.97% 2.32% 4.03% 6.38% 7.53% 10.18% 13.45% 15.04% 18.18% 17.97% 17.16% 16.83%
L = 4,K = 10 0.97% 1.29% 1.65% 1.98% 2.33% 4.04% 6.42% 7.57% 10.23% 13.5% 15.07% 18.19% 17.98% 17.16% 16.82%
L = 12,K = 3 0.93% 1.19% 1.49% 1.77% 2.08% 3.65% 5.92% 8.16% 11.44% 14.12% 15.35% 18.99% 19.32% 18.78% 18.44%
L = 12,K = 5 0.92% 1.18% 1.47% 1.76% 2.06% 3.63% 5.89% 8.17% 11.45% 14.13% 15.35% 19.02% 19.32% 18.79% 18.47%
L = 12,K = 10 0.95% 1.21% 1.51% 1.79% 2.1% 3.67% 5.92% 8.13% 11.4% 14.15% 15.39% 19.05% 19.32% 18.77% 18.42%
L = 24,K = 3 0.94% 1.19% 1.41% 1.6% 1.81% 2.95% 5.09% 7.09% 9.79% 13.34% 15.26% 19.03% 19.66% 20.47% 21.91%
L = 24,K = 5 0.97% 1.22% 1.43% 1.62% 1.83% 2.97% 5.01% 6.96% 9.51% 12.62% 14.39% 17.57% 17.85% 18.66% 20.4%
L = 24,K = 10 0.95% 1.2% 1.42% 1.62% 1.82% 2.91% 4.89% 6.84% 9.19% 12.32% 14.18% 17.67% 18.28% 19.14% 20.78%
L = 48,K = 3 1.02% 1.29% 1.52% 1.74% 1.93% 2.83% 5.42% 7.03% 9.0% 11.88% 13.93% 23.48% 32.01% 38.54% 45.35%
L = 48,K = 5 1.02% 1.28% 1.52% 1.74% 1.93% 2.92% 5.68% 7.44% 9.46% 12.35% 14.42% 24.12% 32.28% 38.92% 45.36%
L = 48,K = 10 1.02% 1.29% 1.53% 1.76% 1.95% 2.94% 5.7% 7.43% 9.38% 12.29% 14.38% 23.61% 32.3% 38.86% 45.69%

mix-GPFR P = 30,K = 5 0.82% 0.97% 1.12% 1.25% 1.39% 2.09% 3.37% 4.24% 5.75% 7.94% 9.19% 10.67% 9.65% 7.19% 7.24%
mixGPNM K = 5 0.78% 0.94% 1.11% 1.26% 1.4% 2.16% 3.47% 4.34% 5.85% 8.02% 9.27% 10.71% 9.67% 7.2% 7.25%

DPM-GPFR P = 30 0.83% 0.91% 0.97% 1.03% 1.09% 1.4% 2.09% 2.61% 3.38% 4.14% 4.8% 10.15% 12.35% 12.26% 12.81%

HM-GPFR P = 30,K = 5 0.93% 1.12% 1.3% 1.48% 1.66% 2.51% 4.07% 5.18% 6.79% 8.8% 9.83% 10.76% 9.49% 6.82% 6.77%
BHM-GPFR P = 30,K = 5 0.77% 0.92% 1.07% 1.18% 1.3% 1.89% 2.88% 3.59% 4.89% 6.88% 8.04% 9.85% 9.21% 6.94% 7.15%

• Classical times-series forecasting methods: auto-regressive (AR), moving average (MA),
auto-regressive moving average (ARMA), auto-regressive integrated moving average
(ARIMA), seasonal auto-regressive moving average (SARMA).

• Machine learning methods: long short-term memory (LSTM), feedforward neural net-
work (FNN), support vector regression (SVR), enhanced Gaussian process mixture model
(EGPM).

• GPFR related methods: the mixture of Gaussian process functional regressions (mix-
GPFR), the mixture of Gaussian processes with nonparametric mean functions (mix-GPNM),
Dirichlet process based mixture of Gaussian process functional regressions (DPM-GPFR).

Detailed parameter settings of comparison methods are shown in the appendix. The main parameters
in HM-GPFR and BHM-GPFR are the number of components K and the number of B-spline basis
functions D, and we set K = 5, D = 30.

5.2 PERFORMANCE EVALUATION AND MODEL EXPLANATION

The prediction results of various methods on the electricity load dataset are shown in table 1. From
the table, we can see that the prediction accuracy of classical time-series forecast methods decreases
significantly as we increase the prediction step. Among them, SARMA outperforms AR, MA,
ARMA, and ARIMA, because SARMA takes the periodicity of data into consideration and can fit
data more effectively. The results of machine learning methods LSTM, NN, SVR, and EGPM also
have similar phenomena, that is, when S is small, the prediction accuracy is high, and when S is
large, the prediction accuracy is low. This observation indicates that these methods are not suitable
for long-term prediction. In addition, machine learning methods are also sensitive to the settings
of parameters. For example, the results of FNN and SVR are better when L = 4, which is close
to SARMA, while the long-term prediction accuracy of EGPM decreases significantly when L is
relatively large. It is challenging to appropriately set hyper-parameters in practice. When making
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Figure 3: Evolving law of electricity loads and transition dynamics learned by HM-GPFR and
BHM-GPFR.

a long-term prediction, classical time-series prediction methods and machine learning methods
need to recursively predict the subsequent values based on estimated values, which will cause the
accumulation and amplification of errors. On the other hand, GPFR-related methods first make
predictions according to the mean function, then finely correct these predictions based on observed
data. The mean function part can better describe the evolution law of data, which enables us to
historical information and structural information in data more effectively. Mix-GPFR, mix-GPNM,
and DPM-GPFR obtain similar results in long-term prediction compared with SARMA, and can even
achieve the best results in short-term prediction. This observation demonstrates the effectiveness of
GPFR-related methods. However, these methods cannot deal with long-term prediction tasks well due
to the "cold start" problem. Overall, the performances of the proposed HM-GPFR and BHM-GPFR
are more comprehensive. For medium-term and short-term prediction, the results of HM-GPFR and
BHM-GPFR are slightly worse than those of mix-GPFR, mix-GPNM, and DPM-GPFR, but they
still enjoy significant advantages compared with other comparison methods. In terms of long-term
forecasting, HM-GPFR and BHM-GPFR outperform mix-GPFR, mix-GPNM, and DPM-GPFR,
which shows that considering the multi-scale temporal structure between daily electricity load time-
series can effectively improve the accuracy of long-term forecasting. In addition, BHM-GPFR is
generally better than HM-GPFR, which shows that giving prior distributions to the parameters and
learning in a fully Bayesian way can further increase the robustness of the model and improve the
prediction accuracy.

HM-GPFR and BHM-GPFR have strong interpretability. Specifically, the estimated values of hidden
variables obtained after training {ẑi}ni=1 divide the daily electricity load records into K categories
according to the evolution law. Each evolution pattern can be represented by the mean function of
GPFR component, and these evolution patterns transfer to each other with certain probabilities. The
transfer law is characterized by the transfer probability matrix in the model. In fig. 3, we visualize the
evolution patterns and transfer laws learned by HM-GPFR and BHM-GPFR. We call the evolution
law corresponding to the mean function represented by the orange curve (at the top of the figure)
mode 1, and call the five evolution modes as mode 1 to mode 5 respectively in clockwise order.
Combined with the practical application background, some meaningful laws can be found according
to the results of learned models. Examples are as follows:

• The electricity load of mode 1 is the lowest. Besides, mode 1 is relatively stable: when
the system is in this evolution pattern, then it will stay in this state in the next step with a
probability of about 0.5. In case of state transition, the probability of transferring to the
mode with second lowest load (mode 2 in Figure 3a and mode 3 in Figure 3b) is high, while
the probability of transferring to the mode with highest load (mode 5 in Figure 3a and mode
2, mode 5 in Figure 3b) is relatively low;

• The evolution laws of mode 2 and mode 5 in fig. 3b are very similar, but the probabilities
of transferring to other modes are different. From the perspective of electricity load alone,
both of them can be regarded as the mode with the highest load. When the system is in the
mode with the highest load (mode 5 in Figure 3a and mode 2, mode 5 in Figure 3b), the
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Figure 4: One-step-ahead rolling prediction results of HM-GPFR and BHM-GPFR.

probability of remaining in this state in the next step is the same as that of transferring to the
mode with the lowest (mode 1);

• When the system is in the mode with the second-highest load (mode 3 in fig. 3a and mode
4 in fig. 3b), the probability of remaining in this state in the next step is low, while the
probabilities of transferring to the modes with the lowest load and the highest load are high.

These laws are helpful for us to understand the algorithm, have a certain guiding significance for
production practice, and can also be further analyzed in combination with expert knowledge.

The case of S = 1in table 1 is the most common in practical application, that is, one-step-ahead
rolling forecast. As discussed in section 4.1, when making a rolling prediction, HM-GPFR and BHM-
GPFR can dynamically adjust the model incrementally after collecting new data without retraining
the model. The results of the one-step-ahead rolling prediction of HM-GPFR and BHM-GPFR on
the electricity load dataset are shown in fig. 4. It can be seen that the predicted values of HM-GPFR
and BHM-GPFR are very close to the ground-truths, indicating that they are effective for rolling
prediction. In the figure, the color of each point is the weighted average of the colors corresponding to
each mode in fig. 3 according to the weight ωK . Note that there are color changes in some electricity
load curves in fig. 4a and fig. 4b. Taking the time-series in fig. 4a in the range of about 1100-1200 as
an example, when there are few observation data on that day, HM-GPFR believes that the electricity
load evolution pattern of that day is more likely to belong to mode 3. With the gradual increase
of observation data, the model tends to think that the electricity load evolution pattern of that day
belongs to mode 5, and then tends to mode 3 again. This shows that HM-GPFR and BHM-GPFR can
timely adjust the value of zi∗ according to the latest information during rolling prediction.

5.3 ABLATION STUDY

In this section, we mainly compare HM-GPFR, BHM-GPFR with mix-GPFR, mix-GPNM, and
DPM-GPFR to explore the impact of introducing coarse-grained temporal structure on the prediction
performance. The MAPEs reported in Table 2 are averaged with respect to r = 1, . . . , 100, while
in this section we pay special attention to the case of r = 1. In this case, the observed data is
the electricity load records in 2010, and there is no partial observations on January 1, 2011 (i.e.,
M = 0 in eq. (2)). Therefore, mix-GPFR, mix-GPNM, and DPM-GPFR will encounter the cold-start
problem. Table 2 reports the MAPE of these methods at different prediction steps when r = 1. It can
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Table 2: MAPE of GP related methods under the cold-start setting (r = 1).

Method Step length S

1 2 3 4 5 10 20 30 50 80 100 200 300 500 1000

mix-GPFR 6.72% 6.76% 6.98% 7.02% 7.21% 7.12% 7.18% 7.07% 8.98% 8.69% 8.49% 11.66% 10.85% 7.93% 7.4%
mix-GPNM 6.72% 6.76% 6.98% 7.03% 7.2% 7.11% 7.18% 7.07% 8.98% 8.69% 8.48% 11.66% 10.85% 7.93% 7.4%
DPM-GPFR 11.79% 11.81% 12.05% 12.14% 12.35% 12.41% 12.66% 12.53% 13.75% 12.97% 12.68% 15.35% 11.93% 8.4% 6.41%

HM-GPFR 6.47% 6.43% 6.61% 6.62% 6.78% 6.6% 6.71% 6.58% 8.41% 8.14% 7.92% 11.52% 10.48% 7.44% 6.77%
BHM-GPFR 4.58% 4.61% 4.84% 4.88% 5.07% 4.98% 5.15% 5.32% 7.3% 7.04% 6.76% 10.67% 10.23% 7.58% 7.24%
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Figure 5: Multi-step prediction results of mix-GPFR, mix-GPNM, DPM-GPFR, HM-GPFR and
BHM-GPFR.

be seen from the table that the prediction accuracy of HM-GPFR and BHM-GPFR is higher than that
of mix-GPFR, mix-GPNM, and DPM-GPFR at almost every step, which shows that coarse-grained
temporal information is helpful to improve the prediction performance, and the use of Markov chain to
model the transfer law of electricity load evolution patterns can make effective use of coarse-grained
temporal information.

Figure 5 further shows the results of multi-step prediction of these methods on the electricity load
dataset. Here is also the case of "cold start" (r = 1), and we predict the electricity loads in the next
10 days (960 time points in total). It can be seen from the figure that these methods can effectively
utilize the periodic structure in the time-series, and the prediction results show periodicity, but the
prediction results of HM-GPFR and BHM-GPFR are slightly different from other methods. Due to
the problem of "cold start", the predictions of mix-GPFR, mix-GPNM, and DPM-GPFR for each
day are the same, i.e., ŷN+1 = ŷN+2 = · · · = ŷN+10, while HM-GPFR and BHM-GPFR will use
coarse-grained temporal information when making predictions, and then adjust the predicted values
of each day. Based on the predicted values of other methods, it can be seen from the figure that the
predicted values of HM-GPFR and BHM-GPFR on the first day are higher, and with the increase in
step size, the predicted values will tend to the weighted average value of the mean function of each
GPFR component.

6 CONCLUSION

In this paper, we have proposed the concept of multi-scale time series. Multi-scale time series have
two granularity temporal structures. We established the HM-GPFR model for multi-scale time series
forecasting and designed an effective learning algorithm. In addition, we also gave a priori to the
parameters in the model, and obtain a more robust BHM-GPFR model. Compared with conventional
GPFR-related methods (mix-GPFR, mix-GPNM, DPM-GPFR), the proposed method can effectively
use the temporal information of both fine level and coarse level, alleviate the "cold start" problem, and
has good performance in short-term prediction and long-term prediction. HM-GPFR and BHM-GPFR
not only achieve high prediction accuracy but also have good interpretability. Combined with the
actual problem background and domain knowledge, we can explain the state transition law learned
by the model.
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A LEARNING ALGORITHMS OF THE PROPOSED METHODS

A.1 HM-GPFR

Due to the existence of latent variables {zt}Tt=1 , we apply the EM algorithm to learn the HM-GPFR
model. We write T = {Dt}Tt=1 to denote observations, Θ = {Pkl}Kk,l=1∪{πk, bk,θk}Kk=1 to denote
all parameters, and Ω = {zt}Tt=1 to denote all latent variables. First, the complete data log-likelihood
is

L(Θ; T ,Ω) =

K∑
k=1

I(z1 = k) logπk +

T−1∑
t=1

K∑
k=1

K∑
l=1

I(zt+1 = l, zt = k) logPkl

+

T∑
t=1

K∑
k=1

I(zt = k) logP(yt; bk,θk).

(10)

In the E-step of the EM algorithm, we need to calculate the expectation of Equation (10) with respect
to the posterior distribution of latent variables Ω to obtain the Q-function. However, it is not necessary
to explicitly calculate P(Ω|T ;Θ), which is a categorical distribution with KN possible values, and it
suffices to obtain P(zt+1 = l, zt = k|T ;Θ) and P(zt = k|T ;Θ). We first introduce some notations
as follows:

αt(k) = P(y1,y2, . . . ,yt, zt = k;Θ),

βt(k) = P(yt+1,yt+2, . . . ,yT |zt = k;Θ),

γt(k) = P(zt = k|T ;Θ),

ξt(k, l) = P(zt = k, zt+1 = l|T ;Θ) .

(11)

The key-point is to calculate γt(k) and ξt(k, l). Note that
γt(k) = P(zt = k|T ;Θ) ∝ P(zt = k, T ;Θ) = αt(k)βt(k),

ξt(k, l) = αt(k)PklN (yt+1;Φbl,Cl)βt+1(l).
(12)

Therefore, the problem boils down to calculate αt(k) and βt(k). We can derive them recursively
based on the forward-backward algorithm . According to the definition of αt(k), we have

α1(k) = πkN (y1;Φbk,Ck) , αt(k) =

(
K∑
l=1

αt−1(l)Plk

)
N (yt;Φbk,Ck). (13)

Similarly, according to the definition of βt(k), we have

βT (k) = 1 , βt(k) =

K∑
l=1

PklN (yt+1;Φbl,Cl)βt+1(l). (14)

To summary, in the E-step we first use Equations (13) and (14) to calculate αt(k), βt(k) recursively
based on current parameters, then calculate γt(k), ξt(k, l) according to Equation (12). The Q-function
is given by

Q(Θ) =

K∑
k=1

γ1(k) logπk+

T−1∑
t=1

K∑
k=1

K∑
l=1

ξt(k, l) logPkl+

T∑
t=1

K∑
k=1

γt(k) logN (yt;Φbk,Ck). (15)

In the M-step, we need to maximize Q with respect to parameters. The parameters {πk}Kk=1 and
{Pkl}Kk,l=1 can be optimized in closed form,

πk =
γ1(k)∑K
l=1 γ1(l)

, Pkl =

∑T−1
t=1 ξt(k, l)∑T−1

t=1

∑K
m=1 ξt(k,m)

. (16)

The parameters {bk,θk}Kk=1 cannot be solved in closed form, and we apply the gradient ascent
algorithm to optimize Q(Θ) with gradients

∂Q(Θ)

∂θk
=

1

2

T∑
t=1

γt(k)tr

((
C−1

k (yt −Φbk)(yt −Φbk)
TC−1

k −C−1
k

) ∂Ck

∂θk

)
,

∂Q(Θ)

∂bk
=

T∑
t=1

γt(k)Φ
TC−1

k (yt −Φbk) .

(17)
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The complete algorithm is summarized in Algorithm 1. When the partial observations
yT+1,1, . . . , yT+1,M become complete as we collect more data, we can adjust the parameters incre-
mentally without retraining the model. This is achieved by continuing EM iterations with current
parameters until the iteration converges again.

Algorithm 1: The EM algorithm for learning HM-GPFR.
Initialize parameters Θ;
while not converged do

// E-step
1 α1(k) = πkN (y1;Φbk,Ck);
2 for t = 2, . . . , T do
3 for k = 1, 2, . . . ,K do
4 αt(k) =

(∑K
l=1 αt−1(l)Plk

)
N (yt;Φbk,Ck);

5 end
6 end
7 βT = 1;
8 for t = T − 1, . . . , 1 do
9 for k = 1, 2, . . . ,K do

10 βt(k) =
∑K

l=1 PklN (yt+1;Φbl,Cl)βt+1(l);
11 end
12 end
13 for t = 1, . . . , T do
14 for k = 1, 2, . . . ,K do
15 γt(k) ∝ αt(k)βt(k);
16 for l = 1, 2, . . . ,K do
17 ξt(k, l) ∝ αt(k)PklN (yt+1;Φbl,Cl)βt+1(l);
18 end
19 Normalize {ξt(k, l)}Kl=1;
20 end
21 Normalize {γt(k)}Kk=1;
22 end

// M-step
23 for k = 1, 2, . . . ,K do
24 πk = γ1(k)∑K

l=1 γ1(l)
;

25 for l = 1, 2, . . . ,K do
26 Pkl =

∑T−1
t=1 ξt(k,l)∑T−1

t=1

∑K
m=1 ξt(k,m)

;

27 end
28 Using gradient ascent algorithm to optimize Q(Θ) with respect to θk and bk according

to Equation (17);
29 Update Ck with new parameters θk;
30 end

end
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A.2 BHM-GPFR

We still use the EM algorithm to learn the parameters of the BHM-GPFR model. However, this case
is more complicated since there are more latent variables. The complete data log-likelihood is

L(Θ; T ,Ω) =

K∑
k=1

logN (bk;mb,Σb) +

K∑
k=1

K∑
l=1

(a0 − 1) logPkl

+

K∑
k=1

I(z1 = k) logπk +

T−1∑
t=1

K∑
k=1

K∑
l=1

I(zt+1 = l, zt = k) logPkl

+

T∑
t=1

K∑
k=1

I(zt = k) logN (yt;Φbk,Ck) .

(18)

Compared with Equation (10), the first two terms are extra due to the prior distributions. In the
E-step of EM algorithm, we need to take expectation of Equation (18) with respect to the posterior
distribution of latent variables. However, the posterior of Ω is intractable since {bk}Kk=1, {pk}Kk=1

and {zt}Tt=1 are correlated. We use the variational inference method and try to find an optimal
approximation of P(Ω|T ;Θ) with simple form. We adopt the mean-field family approximation,
which factorizes the joint distribution of Ω to a product of several independent distributions,

Q(Ω) =

K∏
k=1

Q(bk)

K∏
k=1

Q(pk)Q(z). (19)

Similar to the HM-GPFR case, Q(z) is a categorical distribution with KT possible values, but
we do not need to calculate Q(z) explicitly and only need to calculate γt(k) = Q(zt = k) and
ξt(k, l) = Q(zt+1 = l, zt = k). According to the variational inference theory, we iterate Q(bk),
Q(pk) and Q(z) alternately until convergence.

For Q(bk),

Q(bk) ∝ expE∏K
k=1 Q(pk)Q(z)[L(Θ; T ,Ω)]

= expEQ(z)

[
logN (bk;mb,Σb) +

T∑
t=1

I(zt = k) logN (yt;Φbk,Ck)

]

∝ exp

(
−1

2
log |Σb| −

1

2
(bk −mb)

TΣ−1
b (bk −mb)

+

T∑
t=1

γt(k)

(
−1

2
log |Ck| −

1

2
(yt −Φbk)

TC−1
k (yt −Φbk)

))
(20)

By completing the square, we obtain the approximate posterior of bk is N (mk,Σk) with

Σk =

(
Σb +

T∑
t=1

γt(k)Φ
TC−1

k Φ

)−1

, mk = Σk

(
Σ−1

b mb +

T∑
t=1

γt(k)Φ
TC−1

k yt

)
.

(21)

For Q(pk),

Q(pk) ∝ expE∏K
k=1 Q(bk)Q(z)[L(Θ; T ,Ω)]

= expEQ(z)

[
K∑
l=1

(a0 − 1) logPkl +

T−1∑
t=1

K∑
l=1

I(zt+1 = l, zt = k) logPkl

]

= exp

(
K∑
l=1

(a0 − 1) logPkl +

T−1∑
t=1

K∑
l=1

ξt(k, l) logPkl

)

=

K∏
l=1

P
a0+

∑T−1
t=1 ξt(k,l)−1

kl

(22)
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Therefore, the approximate posterior of pk is Dir(ak1, . . . , akK) with akl = a0 +
∑T−1

t=1 ξt(k, l).

For Q(z),

Q(z) ∝ expE∏K
k=1 Q(bk)

∏K
k=1 Q(pk)

[L(Θ; T ,Ω)]

= expE∏K
k=1 Q(bk)

∏K
k=1 Q(pk)

[
K∑

k=1

I(z1 = k) logπk +

T−1∑
t=1

K∑
k=1

K∑
l=1

I(zt+1 = l, zt = k) logPkl

+

T∑
t=1

K∑
k=1

I(zt = k) logN (yt;Φbk,Ck)

]

=exp

(
K∑

k=1

I(z1 = k) logπk +

T−1∑
t=1

K∑
k=1

K∑
l=1

I(zt+1 = l, zt = k)EQ(pk)[logPkl]

+

T∑
t=1

K∑
k=1

I(zt = k)EQ(bk)[logN (yt;Φbk,Ck)]

)
.

(23)
Note that this equation has exactly the same form as Equation (10), thus we can use the forward-
backward algorithm to obtain γt(k) and ξt(k, l). To see this, let

P̃kl = expEQ(pk)[logPkl] = exp

(
ψ(akl)− ψ(

K∑
l=1

akl)

)
,

P̃(yt;mk,Σk,θk) = expEQ(bk)[logN (yt;Φbk,Ck)] = N (yt;Φmk,Ck) exp

(
−1

2
tr(ΣkΦC−1

k ΦT)

)
,

(24)
then Equation (23) can be rewritten as

logQ(z) =

K∑
k=1

I(z1 = k) logπk +

T−1∑
t=1

K∑
k=1

K∑
l=1

I(zt+1 = l, zt = k) log P̃kl

+

T∑
t=1

K∑
k=1

I(zt = k) log P̃(yt;mk,Σk,θk) .

(25)

To obtain γt(k) and ξt(k, l), we run the Baum-Welch algorithm with sufficient statistics
πk, P̃kl, P̃(yt;mk,Σk,θ).

Taking expectation of Equation (18) with respect to the approximate posterior Q(Ω), the Q function
is

Q(Θ) =

K∑
k=1

EQ(bk)[logN (bk;mb,Σb)] +

K∑
k=1

γ1(k) logπk +

T∑
t=1

K∑
k=1

γt(k)EQ(bk)[logN (yt;Φbk,Ck)]

=

K∑
k=1

(logN (mk;mb,Σb)−
1

2
tr(ΣkΣ

−1
b )) +

K∑
k=1

γ1(k) logπk

+

T∑
t=1

K∑
k=1

γt(k)(logN (yt;Φmk,Ck)−
1

2
tr(ΣkΦC−1

i ΦT))] .

(26)
Maximizing Q(Θ) with respect to πk, mb and Σb, we obtain

πk =
γ1(k)∑K
l=1 γ1(l)

, Σb =
1

K

K∑
k=1

(
Σk + (mk −mb)(mk −mb)

T
)

, mb =
1

K

K∑
k=1

mk .

(27)

14
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The parameters {θk}Kk=1 cannot be solved in closed form, and we apply the gradient ascent algorithm
to optimize Q(Θ). The gradient of Q(Θ) with respect to θk is

∂Q(Θ)

∂θk
=

T∑
t=1

1

2
γt(k)tr

(
C−1

k St,kC
−1
k

∂Ck

∂θk

)
,St,k = (yt−Φmk)(yt−Φmk)

T+ΦTΣkΦ−Ck .

(28)
The complete algorithm is summarized in Algorithm 2.

B MORED EXPERIMENTAL RESULTS

B.1 DETAILED EXPERIMENT SETTINGS

For AR, MA, ARMA, ARIMA, and SARMA, we set the model order L in {4, 8, 12}. For SARMA,
the seasonal length is set to be 96 since there are 96 records per day, which implicitly assumes that
the overall time-series exhibits periodicity in days. LSTM, NN, SVR, and EGPM transform the
time-series prediction problem into a regression problem, i.e., use the latest L observations to predict
the output at the next point and then use the regression method to train and predict. In the experiment,
we set L in {4, 12, 24, 48}. The neural network in the FNN has two hidden layers with 10 and 5
neurons, respectively. The kernel function in SVR is the Gaussian kernel whose scale parameters are
adaptively selected by cross-validation. The number of components for EGPM is set in {3, 5, 10}. In
addition, we use the recursive method ? for multi-step prediction. For mix-GPFR, mix-GPNM, and
DPM-GPFR, we first convert the time-series data into curve datasets and then use these methods to
make predictions. The number of components K in mix-GPFR and mix-GPNM is set to 5 and the
number of B-spline basis functions D in mix-GPFR and DPM-GPFR is set to 30.

B.2 CLUSTERING STRUCTURE

Estimated values of latent variable ẑi also indicate the evolution mode corresponding to the data
of the i-th day. Figure 6 visualizes some training data with different colors indicating different
evolution modes, so we can intuitively see the multi-scale structure in the electricity load time-
series. According to the learned transition probability, we can obtain the stationary distribution of
Markov chain (z1, z2, . . . , zN ), which is [0.4825, 0.2026, 0.0513, 0.1124, 0.1513]T in HM-GPFR,
and [0.4501, 0.0427, 0.2992, 0.1381, 0.0700]T in BHM-GPFR. The proportion of each mode in fig. 6
is roughly consistent with the stationary distribution.

B.3 MULTI-STEP PREDICTION UNDER COLD-START SETTING

In order to more clearly see the role of Markov chain structure of hidden variables in the cold
start setting, in Figure 7 and Figure 8, we show the predicted values of HM-GPFR and BHM-
GFPR for electricity load in the next five days ŷN+1, . . . , ŷN+5 and distributions of latent variables
zN+1, . . . , zN+5 conditioned on ẑN = k. It can be seen from the figure that HM-GPFR and BHM-
GPFR have different predictions for each day’s electricity load, which will be adjusted according
to the transition probability of evolution law. For example, in Figure 7, when ẑN = 1, the power
load on that day is low, and the predicted value of HM-GPFR on the (N + 1)-th day is also low.
When hatzN = 5, the electricity load on that day is higher, and the predicted value of HM-GPFR
on the (N + 1)-th day is also higher. Figure 8 has a similar phenomenon. In addition, it can be
seen that with the increase of i∗, P(zi∗) quickly converges to the stable distribution of the Markov
chain, and the predicted value ŷi∗ also tends to be the weighted average of the mean function in each
GPFR component. In conclusion, these phenomena demonstrate that HM-GPFR and BHM-GPFR
can effectively use the coarse-grained temporal structure to adjust the prediction of each day.

B.4 SENSITIVITY OF HYPER-PARAMETERS

There are two main hyper-parameters in HM-GPFR and BHM-GPFR: the number of B-spline basis
functions D and the number of GPFR components K. Here we mainly focus on the selection of K.
We vary K in {3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30, 50}, train HM-GPFR and BHM-GPFR respectively,
and report the results in table 3. For HM-GPFR, its prediction performance tends to deteriorate with
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Algorithm 2: The Variational EM algorithm for learning BHM-GPFR.
Initialize parameters Θ;
while not converged do

// Variational E-step
1 Initialize variational parameters {mk,Σk, ak1, ak2, . . . , akK}Kk=1. while not converged do

// Calculate surrogate parameters.
2 for k = 1, 2, . . . ,K do
3 P̃(yt;mk,Σk,θk) = N (yt;Φmk,Ck) exp

(
− 1

2 tr(ΣkΦC−1
k ΦT)

)
;

4 for l = 1, 2, . . . ,K do
5 P̃kl = exp

(
ψ(akl)− ψ(

∑K
l=1 akl)

)
;

6 end
7 end

// Forward-backward algorithm

8 α1(k) = πkP̃(y1; bk,θk);
9 for t = 2, . . . , T do

10 for k = 1, 2, . . . ,K do
11 αt(k) =

(∑K
l=1 αt−1(l)P̃lk

)
P̃(yt;mk,Σk,θk);

12 end
13 end
14 βT = 1;
15 for t = T − 1, . . . , 1 do
16 for k = 1, 2, . . . ,K do
17 βt(k) =

∑K
l=1 P̃klP̃(yt+1;ml,Σl,θl)βt+1(l);

18 end
19 end
20 for t = 1, . . . , T do
21 for k = 1, 2, . . . ,K do
22 γt(k) ∝ αt(k)βt(k);
23 for l = 1, 2, . . . ,K do
24 ξt(k, l) ∝ αt(k)P̃klP̃(yt+1;ml,Σl,θl)βt+1(l);
25 end
26 Normalize {ξt(k, l)}Kl=1;
27 end
28 Normalize {γt(k)}Kk=1;
29 end

// Update posterior Q(bk) and Q(pk).
30 for k = 1, 2, . . . ,K do

31 Σk =
(
Σb +

∑T
t=1 γt(k)Φ

TC−1
k Φ

)−1

;

32 mk = Σk

(
Σ−1

b mb +
∑T

t=1 γt(k)Φ
TC−1

k yt

)
;

33 for l = 1, 2, . . . ,K do
34 akl = a0 +

∑T−1
t=1 ξt(k, l);

35 end
36 end
37 end

// M-step

38 Σb =
1
K

∑K
k=1

(
Σk + (mk −mb)(mk −mb)

T
)

, mb =
1
K

∑K
k=1 mk;

39 for k = 1, 2, . . . ,K do
40 πk = γ1(k)∑K

l=1 γ1(l)
;

41 Using gradient ascent algorithm to optimize Q(Θ) with respect to θk according to
Equation (28);

42 Update Ck with new parameters θk;
43 end

end
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(b) BHM-GPFR

Figure 6: Training time-series are divided into different evolving laws based on the learning results
of HM-GPFR and BHM-GPFR.

Table 3: Sensitivity of HM-GPFR and BHM-GPFR with respect to the number of components K.

Method K
Step length S

1 2 3 4 5 10 20 30 50 80 100 200 300 500 1000

HM-GPFR

3 0.84% 1.01% 1.19% 1.35% 1.52% 2.35% 3.85% 4.82% 6.36% 8.48% 9.63% 10.71% 9.43% 6.78% 6.75%
4 0.9% 1.09% 1.27% 1.44% 1.61% 2.46% 4.02% 5.09% 6.6% 8.57% 9.68% 10.71% 9.43% 6.78% 6.75%
5 0.93% 1.12% 1.3% 1.48% 1.66% 2.51% 4.07% 5.18% 6.79% 8.8% 9.83% 10.76% 9.49% 6.82% 6.77%
6 1.09% 1.32% 1.57% 1.81% 2.04% 3.13% 4.77% 5.83% 7.3% 9.04% 10.03% 10.9% 9.59% 6.88% 6.8%
7 1.06% 1.27% 1.49% 1.7% 1.91% 2.87% 4.5% 5.66% 7.28% 9.17% 10.13% 10.88% 9.58% 6.87% 6.79%
8 0.97% 1.16% 1.36% 1.54% 1.73% 2.57% 4.14% 5.32% 6.99% 8.95% 9.92% 10.81% 9.57% 6.88% 6.79%
9 1.1% 1.33% 1.56% 1.79% 2.01% 3.06% 4.77% 5.93% 7.49% 9.3% 10.29% 10.99% 9.6% 6.88% 6.8%
10 1.18% 1.41% 1.65% 1.88% 2.11% 3.22% 4.97% 6.05% 7.53% 9.39% 10.45% 11.17% 9.71% 6.95% 6.83%
15 1.25% 1.48% 1.72% 1.94% 2.17% 3.29% 5.03% 6.12% 7.63% 9.42% 10.5% 11.22% 9.71% 6.94% 6.82%
20 1.31% 1.54% 1.77% 2.0% 2.22% 3.33% 5.07% 6.14% 7.65% 9.57% 10.78% 11.52% 9.85% 7.01% 6.86%
30 1.37% 1.62% 1.87% 2.12% 2.38% 3.62% 5.45% 6.5% 7.98% 9.76% 10.92% 11.57% 9.86% 7.01% 6.86%
50 1.47% 1.72% 1.99% 2.25% 2.5% 3.7% 5.5% 6.62% 8.29% 10.35% 11.66% 12.01% 10.06% 7.12% 6.91%

BHM-GPFR

3 0.85% 1.02% 1.19% 1.36% 1.52% 2.35% 3.87% 4.85% 6.37% 8.46% 9.6% 10.7% 9.47% 6.84% 6.82%
4 0.78% 0.93% 1.07% 1.18% 1.29% 1.86% 2.82% 3.49% 4.8% 6.96% 8.23% 9.91% 9.04% 6.68% 6.85%
5 0.77% 0.92% 1.07% 1.18% 1.3% 1.89% 2.88% 3.59% 4.89% 6.88% 8.04% 9.85% 9.21% 6.94% 7.15%
6 0.8% 0.96% 1.1% 1.23% 1.36% 2.02% 3.17% 3.97% 5.32% 7.22% 8.32% 9.91% 9.3% 7.01% 7.18%
7 0.79% 0.95% 1.1% 1.22% 1.33% 1.94% 3.01% 3.79% 5.12% 6.89% 7.99% 9.76% 9.34% 7.18% 7.39%
8 0.78% 0.94% 1.08% 1.19% 1.31% 1.89% 2.94% 3.71% 5.03% 6.74% 7.79% 9.7% 9.49% 7.46% 7.7%
9 0.78% 0.93% 1.07% 1.18% 1.29% 1.86% 2.86% 3.61% 4.92% 6.69% 7.77% 9.73% 9.52% 7.53% 7.8%

10 0.82% 0.98% 1.13% 1.26% 1.4% 2.11% 3.29% 4.09% 5.37% 7.01% 8.04% 9.94% 9.8% 7.86% 8.12%
15 0.79% 0.94% 1.07% 1.18% 1.29% 1.84% 2.86% 3.64% 4.95% 6.66% 7.7% 9.89% 9.96% 8.25% 8.6%
20 0.79% 0.94% 1.07% 1.17% 1.28% 1.83% 2.83% 3.6% 4.88% 6.51% 7.5% 9.95% 10.32% 8.88% 9.31%
30 0.8% 0.95% 1.07% 1.18% 1.29% 1.83% 2.82% 3.58% 4.86% 6.52% 7.53% 10.04% 10.46% 9.07% 9.52%
50 0.83% 0.98% 1.11% 1.22% 1.33% 1.88% 2.9% 3.68% 4.96% 6.5% 7.46% 10.14% 10.71% 9.45% 9.9%

the increase of K. In short-term prediction, MAPE increases significantly, while MAPE changes
less in long-term prediction. With the increase of K, the number of parameters in the model also
increases, and the model tends to suffer from over-fitting. For BHM-GPFR, with the increase of K,
its long-term prediction performance decreases significantly, while the medium-term and short-term
prediction results do not change much. This shows that BHM-GPFR can prevent overfitting to a
certain extent after introducing prior distributions to parameters. In addition, we also note that when
K ≤ 10, the difference between the results corresponding to different K is not significant, which is a
more reasonable choice. From the perspective of application, we set K = 5 in the experiment, which
can take both expression ability and interpretability of the model into consideration.

17



Under review as a conference paper at ICLR 2023

ẑN Mean function of N -th day Predicted values of i∗ = N + 1, . . . , N + 5P(zN ), P(zN+1), P(zN+2), P(zN+3), P(zN+4), P(zN+5)

1


1.00 0.54 0.49 0.48 0.48 0.48
0.00 0.17 0.20 0.20 0.20 0.20
0.00 0.04 0.05 0.05 0.05 0.05
0.00 0.13 0.11 0.11 0.11 0.11
0.00 0.12 0.15 0.15 0.15 0.15



2


0.00 0.55 0.49 0.48 0.48 0.48
1.00 0.10 0.20 0.20 0.20 0.20
0.00 0.15 0.04 0.05 0.05 0.05
0.00 0.05 0.11 0.11 0.11 0.11
0.00 0.15 0.15 0.15 0.15 0.15



3


0.00 0.59 0.48 0.48 0.48 0.48
0.00 0.20 0.19 0.20 0.20 0.20
1.00 0.00 0.06 0.05 0.05 0.05
0.00 0.02 0.13 0.11 0.11 0.11
0.00 0.20 0.15 0.15 0.15 0.15



4


0.00 0.42 0.48 0.48 0.48 0.48
0.00 0.33 0.19 0.20 0.20 0.20
0.00 0.00 0.07 0.05 0.05 0.05
1.00 0.08 0.11 0.11 0.11 0.11
0.00 0.17 0.15 0.15 0.15 0.15



5


0.00 0.22 0.45 0.48 0.48 0.48
0.00 0.36 0.22 0.20 0.20 0.20
0.00 0.00 0.06 0.05 0.05 0.05
0.00 0.21 0.11 0.11 0.11 0.11
1.00 0.22 0.16 0.15 0.15 0.15



Figure 7: Estimated values ŷN+1, . . . , ŷN+5 and distributions of zN , . . . , zN+5 of HM-GPFR under
ẑ = k where k = 1, 2, 3, 4, 5.
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ẑN Mean function of N -th day Predicted values of i∗ = N + 1, . . . , N + 5P(zN ), P(zN+1), P(zN+2), P(zN+3), P(zN+4), P(zN+5)

1


1.00 0.52 0.47 0.45 0.45 0.45
0.00 0.05 0.04 0.04 0.04 0.04
0.00 0.29 0.29 0.30 0.30 0.30
0.00 0.11 0.14 0.14 0.14 0.14
0.00 0.03 0.06 0.07 0.07 0.07



2


0.00 0.12 0.39 0.44 0.45 0.45
1.00 0.12 0.04 0.04 0.04 0.04
0.00 0.53 0.32 0.30 0.30 0.30
0.00 0.12 0.17 0.14 0.14 0.14
0.00 0.12 0.08 0.08 0.07 0.07



3


0.00 0.48 0.47 0.45 0.45 0.45
0.00 0.02 0.04 0.04 0.04 0.04
1.00 0.25 0.28 0.30 0.30 0.30
0.00 0.22 0.12 0.14 0.14 0.14
0.00 0.04 0.08 0.07 0.07 0.07



4


0.00 0.44 0.39 0.45 0.45 0.45
0.00 0.04 0.05 0.04 0.04 0.04
0.00 0.24 0.36 0.29 0.30 0.30
1.00 0.04 0.15 0.14 0.14 0.14
0.00 0.24 0.06 0.07 0.07 0.07



5


0.00 0.07 0.42 0.44 0.45 0.45
0.00 0.07 0.03 0.04 0.04 0.04
0.00 0.58 0.29 0.30 0.30 0.30
0.00 0.20 0.17 0.14 0.14 0.14
1.00 0.07 0.09 0.08 0.07 0.07



Figure 8: Estimated values ŷN+1, . . . , ŷN+5 and distributions of zN , . . . , zN+5 of BHM-GPFR
under ẑ = k where k = 1, 2, 3, 4, 5.
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