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Abstract001

Traditional emotion recognition in conversation002
(ERC) studies usually are designed to predict a003
fixed set of predetermined emotion categories.004
This limited supervision diminishes the expres-005
sive power of the data, resulting in failing to006
capture the complexity of human emotions in007
conversation. Learning from a well-designed008
fine-grained representation of emotions offers009
a promising alternative that utilizes a wider010
range of supervision. In this paper, the pro-011
posed Fine-grained Multidimensional Emotion012
Representation Learning (FMERL) framework013
integrates multitask learning and contrastive014
learning, and extends the emotion representa-015
tion of valence, arousal and dominance (VAD)016
from psychological field to both continuous017
and discrete forms. Firstly, the emotion fea-018
tures from text, audio and visual modalities are019
extracted. Then, the multimodal features are020
fused by a transformer-based model. The mul-021
titask learning contains three feedforward net-022
works (FFNs), the valence net, arousal net, and023
dominance net, for learning the continuous fine-024
grained emotion representations from the fused025
multimodal features. The contrastive learning026
aligns fused multimodal features with the dis-027
crete fine-grained emotion representations de-028
rived through prompt engineering applied to a029
large language model. The transferable abil-030
ity of contrastive learning enables FMERL to031
map the semantic information of emotion rep-032
resentation and fused multimodal features into033
a shared embedding space, thereby understand-034
ing their semantic relationships and enabling035
zero-shot learning. Experimental results on the036
IEMOCAP and MELD datasets have shown037
that FMERL achieves state-of-the-art perfor-038
mance in emotion recognition and implements039
zero-shot learning in the field of ERC.040

1 Introduction041

In recent years, the field of emotion recognition042

in conversation (ERC) has garnered significant at-043

tention from researchers, driven by the increasing044

demand for more sophisticated human-computer 045

interaction systems(Zhou et al., 2020). The pur- 046

pose of ERC is to analyze and interpret the emo- 047

tion content embedded in conversational exchanges, 048

leveraging the advancements of multimodal data 049

analysis. Traditional ERC studies have focused 050

mainly on predicting a limited set of emotion cate- 051

gories, which limits their capability to capture more 052

complex human emotions and leads to their poor 053

generality and usability. 054

The reason lies in the poor representation capa- 055

bility of hard labels as supervision signals. Emo- 056

tions in conversation are inherently nuanced and 057

vary significantly in intensity and context. By con- 058

straining the model to the predefined limited fixed 059

set of emotion categories, such as happiness, sad- 060

ness, anger, and fear, some important emotional 061

subtleties in a conversation may inevitably be ig- 062

nored, which undoubtedly results in failing to cap- 063

ture the complexity of human emotions. The lack 064

of emotional granularity hinders the model’s abil- 065

ity to provide meaningful insights or responses, 066

ultimately reducing its effectiveness in emotion 067

recognition. 068

To improve the generalization ability of models, 069

recent studies on Emotion Recognition in Conver- 070

sations (ERC) have increasingly focused on repre- 071

sentation learning by contrastive learning. These 072

studies can be mainly categorized into two kinds 073

of approaches: (1) data-side representation learn- 074

ing (needs to be defined), CKCL (Tu et al., 2023) 075

leverages contrastive learning between context and 076

knowledge to refine emotion vector representations, 077

while CLED (Kang and Cho, 2024) enhances emo- 078

tion recognition by performing emotion interpo- 079

lation data augmentation in the hidden space of 080

pre-trained language models, combined with a re- 081

inforced contrastive objective for neutral emotions. 082

(2) label-side representation learning (needs to be 083

defined), SACL (Hu et al., 2023) adopts a super- 084

vised adversarial contrastive learning framework 085
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to learn emotion representations. However, most086

of these works predict emotions in a fixed set of087

emotion categories. Our work belongs to label-088

side representation learning, but is different from089

above mentioned methods, inspired by psycholog-090

ical studies, fine-grained multidimensional emo-091

tion representation of valence, arousal and dom-092

inance(VAD) is learned, where valence refers to093

the positivity or negativity of an emotion, arousal094

indicates the level of physiological activation or in-095

tensity, and dominance reflects the sense of control096

or power in a situation.097

In this paper, we propose a fine-grained emo-098

tion representation learning (FMERL) framework,099

The emotion features from text, audio and visual100

modalities are extracted at first. Then, the multi-101

modal features are fused by a transformer-based102

model. FMERL integrates the multitask learning103

and the contrastive learning. The multitask learn-104

ing contains three feedforward networks (FFNs),105

the valence net, arousal net, and dominance net,106

for learning the continuous fine-grained emotion107

representations from the fused multimodal features.108

The contrastive learning aligns fused multimodal109

features with the discrete fine-grained emotion rep-110

resentations derived through prompt engineering111

applied to a large language model. Experimental112

results have shown that FMERL achieves state-of-113

the-art performance in emotion recognition.114

Our contributions are summarized below. (1) We115

propose a fine-grained multidimensional emotion116

representation by extending the emotion represen-117

tation of valence, arousal and dominance (VAD)118

from psychological field to both continuous and119

discrete forms. (2) We propose a Fine-grained Mul-120

tidimensional Emotion Representation Learning121

framework (FMERL), and it integrates the multi-122

task learning and the contrastive learning. The mul-123

titask learning learns continuous fine-grained emo-124

tion representations, while the contrastive learn-125

ing learns discrete fine-grained emotion representa-126

tions. (3) Our method achieves state-of-the-art per-127

formance in ERC and implements zero-shot learn-128

ing in ERC, which has been evidenced by experi-129

ments on the IEMOCAP and MELD datasets.130

2 Related Work131

2.1 Multidimensional Emotion132

Representation Model133

In sentiment analysis research, several well-known134

sentiment classification models are available. The135

Ekman model (Ekman et al., 1969) classifies emo- 136

tions into six basic emotions: happiness, sadness, 137

anger, fear, surprise, and disgust. (Plutchik, 2003) 138

proposes an emotion wheel to classify emotions. 139

However, the discrete models above categorize 140

sentiment into a limited number of fixed categories, 141

which may overlook similar sentiments and subtle 142

variations. The dimensional emotion model offers 143

a nuanced description and measurement of emo- 144

tions, treating them as points in a multidimensional 145

space and mapping them to a continuous frequency 146

spectrum. One of the famous dimensional emo- 147

tion models is the PAD model (Mehrabian, 1974). 148

Within this model, pleasure denotes the positive or 149

negative valence of emotion experiences, arousal 150

reflects the intensity or level of emotion activation, 151

and dominance indicates the extent to which emo- 152

tions influence individual behavior. (Russell, 1980) 153

introduces the widely recognized arousal-valence 154

model, where valence indicates positive or nega- 155

tive evaluations of emotion intensity, while arousal 156

measures an individual’s energy level, with low 157

arousal signifying less energy or lower emotion in- 158

tensity. In this paper, due to the semantic similarity 159

between pleasure and valence, we abandon plea- 160

sure and adopt valence, arousal, and dominance to 161

build the multidimensional emotion model. 162

2.2 Contrastive Learning 163

SimCLR (Chen et al., 2020) is a milestone in the 164

field of contrastive learning, which employs di- 165

verse image augmentation techniques to generate 166

positive and negative samples from a single im- 167

age for visual representation. CLIP (Radford et al., 168

2021) introduces a contrastive learning approach 169

that embeds images and text into the same fea- 170

ture space, enabling cross-modal understanding 171

and zero-shot learning, demonstrating strong per- 172

formance across various visual tasks. In the field 173

of ERC, (Li et al., 2022) uses the supervised con- 174

trastive learning (SCL) to distance utterances with 175

different emotions for better emotion identifica- 176

tion. (Tu et al., 2023) uses contrastive learning 177

scenarios among context and knowledge to learn 178

the better representations of emotions. EACL (Yu 179

et al., 2024) employs label encodings as anchors 180

to guide the learning of utterance representations. 181

This paper adopts the CLIP (Radford et al., 2021) 182

approach of embedding emotion representations 183

from labels and multimodal features into a unified 184

feature space for alignment through training. 185
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Figure 1: The overall architecture of FMERL.

3 Method186

3.1 Task-definition187

A conversation consists of N sequential ut-188

terances {u1, u2, · · · , uN} from M speakers189

{s1, s2, · · · , sM}. Each utterance ui is delivered190

by speaker sϕ(ui), where ϕ maps each utterance to191

its corresponding speaker index. Each ui includes192

textual (t), acoustic (a), and visual (v) modalities,193

which are represented as uti ∈ Rdt , uai ∈ Rda , and194

uvi ∈ Rdv .195

The sequences of modalities for all utterances196

are denoted as U t = [ut1;u
t
2; · · · ;utN ] ∈ RN×dt ,197

Ua = [ua1;u
a
2; · · · ;uaN ] ∈ RN×da , and Uv =198

[uv1;u
v
2; · · · ;uvN ] ∈ RN×dv .199

Our contrastive learning ERC task aims to iden-200

tify the emotion representation corresponding to201

each utterance.202

3.2 The Model Architecture and Prompt203

Engineering Framework204

Figure 1 gives an overview of our proposed205

FMERL framework. In the part of multimodal fea-206

tures fusion module, the given input is an utterance207

U including three modal features: Ua, U t, and Uv.208

After extracting utterance-level unimodal features209

to Ua′, U t′, and Uv′, we use the Intra- and Inter-210

modal Transformers from SDT (Ma et al., 2023)211

as the backbone to fuse multimodal features H . In212

the fine-grained emotion continuous representation 213

module, emotion scores are predicted across the 214

fine-grained multidimensional scales of valence Sv, 215

arousal Sa, and dominance Sd. In the fine-grained 216

emotion discrete representation module, the tradi- 217

tional emotion category is extened to a fine-grained 218

discrete representation by prompting LLM. Then, 219

the discrete representation is embedded into a high- 220

dimensional vector R. Furthermore, we introduce 221

a contrastive learning module to align the multi- 222

modal features H with high-dimensional vector R 223

by maximizing the similarity score Ss. 224

Figure 2 shows the prompt engineering frame- 225

work. We extend the fine-grained multidimensional 226

emotion representation into continuous and dis- 227

crete forms by prompting LLMs. Then, we utilize 228

continuous representation for multitask regression 229

and discrete representation for contrastive learning. 230

Combining these strategies, we finally implement 231

the emotion recognition task. 232

3.3 Multi-task Regression Learning Based on 233

Continuous Emotion Representaion 234

To enhance the representational ability of emotions, 235

we propose using a continuous fine-grained fea- 236

tures to describe emotions. Rather than the hard 237

labels, we use the labels from three dimensions: va- 238

lence, arousal, and dominance scores. The scores 239

of these dimensions serve to provide a more fine- 240
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Figure 2: An overview of the prompt engineering frame-
work. The blue part is the continuous representation for
multitask regression, and the black part is the discrete
representation for contrastive learning.

grained and comprehensive understanding of emo-241

tions. In this section, we present a continuous emo-242

tion representaion as supervision signal based on243

prompting with GPT (Brown et al., 2020) to score244

these three dimensions above. Then, we introduce245

how the fine-grained emotion representaion facili-246

tate multitask regression learning.247

Continuous Emotion Representaion. The mul-248

tidimensional emotion representation model we249

used includes valence, arousal, and dominance250

scores, which is also adopted by IEMOCAP dataset.251

However, not all datasets include the scores of these252

three dimensions. The traditional method of manu-253

ally labeling datasets requires a high cost. Prompt-254

ing GPT to score these dimensions of text in the255

dataset can significantly reduce the workload of256

labeling the dataset. Specifically, given a text of an257

utterance, we prompt GPT with Query, Metric,258

Utterance259

Si = GPT (Query) (1)260

where Query is "In the field of emotion recog-261

nition, score this utterance in the dimension of262

Metrici from 0 to 5. The utterance is : Utterance.263

Hence, the score is:", Metric = {valence, arousal,264

dorminance}, and Utterance is the current utter-265

ance.266

Multitask Regression. As shown in Figure 1,267

the emotion recognition task and regression tasks268

share the same architecture and weights in the part269

of multimodal features fusion. For the multitask270

learning part, we use three feedforward neural net-271

works: valence net, arousal net, and dominance272

net to predict the valence score, arousal score, and 273

dominance score, respectively. These nets have the 274

same input H ∈ RN×d. The output of the regres- 275

sion network n is its predicted emotion scores: 276

Ŝn = σ(Wn ·H + bn) ∈ RN (2) 277

where n ∈ {valence, arousal, dominance}, 278

Wn ∈ RN×d, and bn ∈ RN are trainable parame- 279

ters, and σ is the sigmoid function. For these three 280

regression tasks, we use the same optimization pol- 281

icy, which minimizes the mean squared error loss 282

Lmse. 283

Lmse =
1

n

n∑
i=1

(Ŝi − Si)
2 (3) 284

where Ŝ is the predicted emotion score, S is the 285

ground-truth score. During training, in addition to 286

the parameters of three regression networks, the 287

parameters of the modality fusion backbone are 288

also updated. 289

Although these regression tasks do not con- 290

tribute directly to the output of the predictions, they 291

enable the model to learn additional representa- 292

tions, thereby enhancing its generalization ability. 293

3.4 Discrete Fine-grained Emotion 294

Representation 295

To improve the distinction of various emotions that 296

can be difficult to differentiate by category names 297

alone, we propose utilizing multidimensional emo- 298

tion information in psychology to improve emotion 299

representations. In this subsection, we describe 300

how to generate discrete emotion representations 301

for humans in conversations based on prompting 302

GPT. We also explain how these representations are 303

integrated into our model to improve recognition. 304

Prompt with GPT. To harness deeper mean- 305

ings tied to emotion expression, we employ GPT 306

(Brown et al., 2020) to produce descriptions of 307

different emotions. Nevertheless, directly query- 308

ing GPT for emotion descriptions may yield ver- 309

bose descriptions. Hence, we implement a prompt 310

engineering based mechanism to query GPT for 311

emotion descriptions. Following Section 3.3, we 312

selected and integrated valence, arousal, and domi- 313

nance as the emotional dimensions ED. Then, we 314

query GPT with the emotion dimensions ED to 315

get the descriptions Di: 316

Di = GPT (EDi, Query′i) (4) 317
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Figure 3: The contrastive learning method to match the
feature embeddings (green part) and emotion embed-
dings (orange part)

where Query′ is "Use a brief phrase to describe318

the level of an emotion of ei in the dimension of319

ED." to acquire the level of each emotion dimen-320

sion ED. For example, if the ei is joy, the returned321

Di is "Arousal: Moderately high arousal, Valence:322

Positive valence, Dominance: High dominance"323

Finally, discrete multi-dimensional emotion324

model is proposed to describe emotions, encom-325

passing the levels of arousal, valence, and dom-326

inance. The descriptions of emotions provide a327

more fine-grained and comprehensive understand-328

ing of emotions concepts.329

Enhance Emotion Representation. Our ERC330

research aims to transform textual descriptions331

of emotions into feature space representations332

and align multi-modal feature representations with333

them. We use the RoBERTa Large model to obtain334

representations of textual descriptions, matching335

the multi-modal feature representations to ensure336

both are in a common embedding space.337

3.5 Contrastive Learning Method338

The CLIP framework, introduced by (Radford339

et al., 2021), encodes image and text features340

into a shared space, maximizing cosine similar-341

ity for matching pairs (positives) and minimizing it342

for non-matching pairs (negatives) through cross-343

entropy loss. We use this framework to align multi-344

modal features with emotion representations as345

shown in Fig 3.346

Specifically, we employ two distinct encoders to347

fuse multimodal features and represent emotions.348

For a feature-emotion pair x = {xf , xe}, we derive349

the embeddings using the feature encoder Ef and350

emotion representation encoder Ee: f = Ef (x
f )351

and e = Ee(x
e), where f, e ∈ RD. The fused 352

features f and emotion representations e for each 353

feature-emotion pair in the mini-batch N are used 354

to create an N × N matrix of cosine similarities. 355

The diagonal elements of the matrix represent the 356

N positive pairings, while the other elements de- 357

note N2−N negative pairings. During the training 358

process, the emotion representations encoder Ee is 359

frozen. We propose a triple-loss to maximize the 360

similarity among the diagonal positives and mini- 361

mize the similarity of the negatives. The first part 362

of our triple-loss is a contrastive learning loss: 363

L1 = −
∑
i

log

(
exp(Sii)∑
j exp(Sij)

)
(5) 364

Sij =
fi · ej

∥fi∥∥ej∥
(6) 365

L1 is designed to maximize intra-class similarity 366

while minimizing inter-class similarity. Sii denotes 367

the similarity score for positive pairs, and Sij spans 368

all potential pairs for a given sample i. This for- 369

mulation uses a log-softmax approach to convert 370

similarity scores into probabilities, emphasizing 371

the correct class alignment. The similarity metric 372

Sij based on cosine similarity measures the angular 373

separation between vectors, focusing on orientation 374

rather than magnitude. To further differentiate sim- 375

ilar emotions, we introduce the cosine similarity 376

loss for negative samples as the second component 377

of our triple loss: 378

L2 =
1

N

∑
i

∑
j

(1 + cos(θij)) (7) 379

cos(θij) =
fi · nij

∥fi∥∥nij∥
(8) 380

The supplementary cosine loss L2 penalizes the 381

alignment of feature vectors fi with negative sam- 382

ples nij , thereby promoting the differentiation of 383

similar emotions. To keep the L2 positive, we add 384

1 to the cosine similarity. We also take the positive 385

value of L2 to maximize the differences between 386

features and negative samples. The cosine sim- 387

ilarity cos(θij) quantifies the angular difference 388

between the feature vector fi and the negative sam- 389

ples nij . We derive our triple-loss function by com- 390

bining L1 and L2 as follows: 391

Ltri = L1 + λnegL2 (9) 392

where λneg is a hyperparameter that regulates 393

the weight of the cosine similarity loss for negative 394
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samples. Equation 9 contributes to a comprehen-395

sive loss that enhances the granularity of emotion396

differentiation within our model.397

3.6 Training and Inference398

In this subsection, we detail the training and infer-399

ence processes of our model.400

Training. During the training stage, two parts401

of parameters of the model are updated: multitask402

regression learning and contrastive learning. The403

multitask regression learning cost is Lmse, which404

is formulated in Section 3.3. Then considering the405

triple loss Ltri of contrastive learning introduced in406

Section 3.6, the final loss can be defined as:407

L = Lmse + λtriLtri (10)408

where λtri is the hyper-parameter weight for the409

additional constraint.410

Inference. For each emotion prediction, we411

compute the the similarity Sij between the fea-412

ture embedding fi and emotion embedding ej by413

Equation 6. Then, we do the matching task to find414

the emotion ej that is most similar to fi:415

j∗ = argmax
j

Sij (11)416

where j∗ is the index of the emotion most similar417

to fi.418

4 Experimental Settings419

4.1 Datasets420

The experiments were carried out on two datasets:421

IEMOCAP and MELD.422

IEMOCAP.(Busso et al., 2008) IEMOCAP has423

already used the scores of valence, arousal and424

dominance as continuous representations to de-425

scribe emotions. It includes around 12 hours of426

dyadic conversation videos, segmented into 7,433427

utterances and 151 dialogues. Each utterance is428

categorized into one of six emotions: happy, sad,429

neutral, angry, excited, or frustrated. There are five430

sessions in this dataset. We choose the former four431

sessions to be used for training, while the last one432

is for testing.433

MELD.(Poria et al., 2019) MELD has no scores434

of valence, arousal and dominance. The prompt435

engineering of LLM is to extend its labels to these436

three dimensions. Specifically, we prompt the LLM437

with each utterance within the MELD and the query438

of the scores of these three dimensions to get the439

continuous representation. This multi-party dataset440

contains 13,708 utterances and 1,433 dialogues 441

from the TV series Friends, with each utterance 442

classified into one of seven emotions: anger, dis- 443

gust, fear, joy, neutral, sadness, and surprise. 444

For the discrete form, we prompt the LLM with 445

each emotion category within these two datasets 446

and query the levels of these three dimensions to 447

get the text description of each emotion category. 448

Then, we use a pre-trained text encoder to embed 449

these discrete representations to a vector space. 450

4.2 Unimodal Feature Extraction 451

Following (Ma et al., 2023), we use openSMILE 452

(Eyben et al., 2013), DenseNet (Huang et al., 2017), 453

RoBERTa (Liu, 2019) to extract utterance-level 454

features of acoustic, visual, and textual modality 455

respectively. 456

4.3 Baseline Methods 457

We compare our proposed model with the follow- 458

ing ERC methods. 459

Supervised learning baseline: CoMPM (Lee 460

and Lee, 2021) combines the speaker’s pre-trained 461

memory with the context model to improve per- 462

formance. SDT (Ma et al., 2023) is a transformer- 463

based model with a self-distillation mechanism. 464

MultiEMO (Shi and Huang, 2023) is an attention- 465

based correlation-aware framework to fuse mul- 466

timodal features. MPLP (Zhang et al., 2023) 467

mimics the thinking process when modeling com- 468

plex factors of emotion. SACL-LSTM (Hu et al., 469

2023) uses supervised adversarial contrastive learn- 470

ing to learn class-spread structured representations. 471

CKCL (Tu et al., 2023) is a contrastive learning 472

framework with context and knowledge that can 473

distinguish the utterances for better vector repre- 474

sentations. Beyond Linguistic Cues (Xu et al., 475

2024) incorporates both belief and desire to rec- 476

ognize emotion. CLED (Kang and Cho, 2024) 477

is a supervised contrastive learning method with 478

data augmentation method emulating the emotion 479

dynamics. 480

Unsupervised learning baseline: Qwen-7B(Bai 481

et al., 2023), Llama2-7B(Touvron et al., 2023), 482

and Llama3.2-3B. 483

4.4 Implementation Details 484

We use Adam optimizer(Kingma and Ba, 2014) 485

with an initial learning rate of 1.0×10−4 for IEMO- 486

CAP and 1.0× 10−5 for MELD. The batch size is 487

16 for IEMOCAP and 256 for MELD. Following 488

(Ma et al., 2023), the 1D convolutional layers have 489
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Models IEMOCAP MELD
ACC w-F1 ACC w-F1

CoMPM - 66.33 - 66.52
SDT 73.95 74.08 67.55 66.60
MultiEMO - 72.84 - 66.74
MPLP - 66.65 - 66.51
SACL-LSTM 69.08 69.22 67.51 66.45
CKCL - 67.16 - 66.21
Beyond Linguistic Cues - 68.22 - 64.27
CLED - 62.77 - 66.24
FMERL 74.92 75.14 67.66 66.78

Table 1: Performance metrics for different models on
IEMOCAP and MELD datasets, including total ACC
and weighted F1 scores.

IEMOCAP
Models Unseen Full Params Cont

ACC F1 ACC F1 (Million)
Qwen-7B 13.14 23.22 33.42 30.67 7720
Llama2-7B 11.71 20.97 32.00 29.60 6740
Llama3.2-3B 6.04 11.40 32.98 28.43 3210
FMERL 36.81 27.32 58.38 57.30 83

MELD
Models Unseen Full Params Cont

ACC F1 ACC F1 (Million)
Qwen-7B 3.60 6.96 32.38 28.46 7720
Llama2-7B 3.28 6.35 33.98 35.19 6740
Llama3.2-3B 1.56 3.08 42.11 45.55 3210
FMERL 11.86 21.21 61.38 60.30 83

Table 2: Performance metrics (ACC and F1) for differ-
ent models across various datasets.

input channels of 1024, 1582, and 342 for textual,490

acoustic, and visual modalities on IEMOCAP, and491

1024, 300, and 342 on MELD. All modalities fea-492

ture an output channel and kernel size of 1024 and493

1, respectively, for both datasets. The transformer494

encoder has a hidden size, number of attention495

heads, feed-forward size, and number of layers set496

to 1024, 8, 1024, and 1. The three multitask learn-497

ing nets have 2 hidden layers and the dimensions498

are 1024. The hyper-parameter weights λneg and499

λtri are set to 0.5 and 1. For zero-shot learning,500

we set the long-tail classes in IEMOCAP (happy)501

and MELD (fear) as the unseen classes. For the502

baseline LLMs, we use the few-shot predict for the503

seen classes and zero-shot for the unseen classes.504

The results are averages of 5 runs.505

5 Results and Analysis506

5.1 Main Results507

We compare the performance of our proposed508

model and the state-of-the-art approaches. Table509

1 presents the results of supervised learning on510

IEMOCAP and MELD, whereas the results of zero-511

shot learning are detailed in Table 2. On the IEMO-512

Models IEMOCAP MELD
ACC w-F1 ACC w-F1

FMERL 74.92 75.14 67.66 66.78
w/o Triple-loss 74.68 74.91 67.20 65.96
w/o Fine-grained Enhancement 74.18 74.37 66.74 65.11
w/o Dominance 74.86 74.96 67.24 66.16
w/o Arousal 73.44 73.68 67.51 66.37
w/o Valence 74.31 74.38 67.43 66.41
w/o Multitask Regression 72.46 72.75 67.09 65.87

Table 3: Ablation results on IEMOCAP and MELD.

CAP dataset, FMERL surpasses all baselines, ex- 513

ceeding SDT by 0.97% in overall accuracy and 514

1.06% in weighted F1-score. On the MELD dataset, 515

FMERL outperforms all baselines, achieving the 516

highest overall accuracy and weighted F1-score, 517

exceeding SDT by 0.11% and 0.18%, respectively. 518

For the zero-shot learning results, FMERL also 519

achieves state-of-the-art performance. FMERL 520

outperforms all LLMs on IEMOCAP, surpass- 521

ing Qwen-7B by 29% in overall accuracy and 522

31.84% in weighted F1-score for all classes, and by 523

8.62% and 14.25% respectively for unseen classes. 524

Similarly, on MELD, FMERL exceeds Qwen-7B 525

by 24.96% in overall accuracy and 26.63% in 526

weighted F1-score for all classes, and by 23.67% 527

and 4.1% respectively for unseen classes. Addi- 528

tionally, the model parameter count of FMERL is 529

significantly small compared to LLMs. In compar- 530

ison to the smallest LLM we use as the baseline, 531

Llama3.2-3B, which has 3210 million parameters, 532

our model reduces the parameter count by 97.4%, 533

demonstrating a more compact architecture. 534

5.2 Ablation Study 535

We conduct a series of experiments to confirm the 536

effectiveness of components in our method. The re- 537

sults are shown in Table 3. Removing any element 538

of FMERL makes the overall performance worse. 539

To validate the effects of components in con- 540

trastive learning, we remove the triple loss, which 541

encourages the samples to stay away from negative 542

samples. We can find that the lack of triple loss 543

results in a decline in the accuracy of 0.35% and in 544

the weighted F1-score of 0.53% on average of two 545

datasets. Also, without the fine-grained enhance- 546

ment, it causes a decline in the accuracy of 0.83% 547

and in the weighted F1-score of 1.22% on average. 548

In multitask regression, ablating dimensions re- 549

veals their importance. For IEMOCAP, arousal 550

is most critical; removing it decreases accuracy 551

by 1.48% and weighted F1-score by 1.46%. For 552

MELD, dominance is key; its removal reduces ac- 553

7



curacy by 0.46% and weighted F1-score by 0.62%.554

Removing multitask regression entirely signifi-555

cantly degrades performance, with IEMOCAP ex-556

periencing a 2.46% accuracy drop and a 2.39%557

weighted F1-score decline, while MELD sees a558

0.57% accuracy drop and a 0.91% weighted F1-559

score decline.560

5.3 Fine-grained Multidimensional Emotion561

Representation Learning Analysis562

In this section, we conducted a comparison of the563

multidimensional scores of emotions between the564

model non-converged and converged stages in the565

process of training to prove that multidimensional566

representation learning is critical to the general-567

ization of the model. We randomly select one568

epoch from each of the two stages, the model’s non-569

converged stage and converged stage, and freeze570

the model parameters at that point. We assume571

that the samples within each emotion class fol-572

low a multivariate Gaussian distribution. Based573

on this assumption, we evaluate both models sep-574

arately on the test set to predict multidimensional575

scores in Figure 4 and get the confusion matrices576

of emotion classes in Figure 5. Figure 4 and Fig-577

ure 5 show that during the non-converged stage,578

classes are closely packed and hard to distinguish.579

Once the model converges, the classes spread out,580

making them easily distinguishable. Our analysis581

of the above result is as follows: (1) The shared582

model parameters and representations across mul-583

tiple tasks enhance generalization by leveraging584

common features and task correlations. The regres-585

sion tasks and contrastive learning task share parts586

of the model, enabling the model to learn more587

features from different tasks. There are correla-588

tions between multitasks, the model can capture589

these correlations through shared representations,590

thereby improving the performance. (2) The reg-591

ularization effect reduces overfitting. Multitask592

learning, by sharing parameters, acts as a form of593

regularization. Single emotion recognization task594

learning may overfit to the training data of this595

specific task, while multitask regression and con-596

trastive learning forces the model to learn more597

general features from emotion by optimizing mul-598

tiple objectives simultaneously, thereby reducing599

overfitting.600

Figure 4: Comparison of multidimensional scores: va-
lence, arousal, and dominance. Left side is the non-
converged stage. Right side is the converged stage

Figure 5: Comparison of confusion matrices. The left
side is the non-converged stage. The right side is the
converged stage.

6 Conclusion and Future Work 601

This paper presents a novel framework for emotion 602

recognition in conversation, named Fine-grained 603

Multidimensional Emotion representation learning 604

(FMERL). FMERL utilizes multidimensional emo- 605

tion representations—valence, arousal, and dom- 606

inance—as supplementary supervision signals to 607

improve the learning of recognize utterance rep- 608

resentations. In addition, we propose a labeling 609

method based on prompt engineering of LLM to 610

provide the supervision signal to the model. Our 611

extensive experiments on two benchmark datasets 612

demonstrate that our approach achieves the state- 613

of-the-art performance in both supervised and un- 614

supervised learning. Ablation studies and evalua- 615

tions demonstrate that the FMERL framework has 616

excellent data representation capabilities and out- 617

standing emotion recognition abilities. 618

The zero-shot learning of FMERL is based on 619

the representation learning of the seen classes and 620

inference of the unseen classes, which is follow- 621

ing the idea of CLIP. In the future work, we will 622

research the zero-shot learning for emotion recog- 623

nition without relying on seen classes. 624
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Limitations625

Our proposed FMERL shows less performance im-626

provement on the MELD dataset compared to the627

IEMOCAP dataset. This is because the IEMO-628

CAP dataset has the multidimensional emotion629

scores meticulously labeled by humans, while these630

scores of the MELD dataset are labeled by our pro-631

posed prompt engineering labeling method. Recent632

LLMs are still unable to achieve a level of fine-633

grained emotion recognition comparable to that of634

humans.635
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