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Abstract

Traditional emotion recognition in conversation
(ERC) studies usually are designed to predict a
fixed set of predetermined emotion categories.
This limited supervision diminishes the expres-
sive power of the data, resulting in failing to
capture the complexity of human emotions in
conversation. Learning from a well-designed
fine-grained representation of emotions offers
a promising alternative that utilizes a wider
range of supervision. In this paper, the pro-
posed Fine-grained Multidimensional Emotion
Representation Learning (FMERL) framework
integrates multitask learning and contrastive
learning, and extends the emotion representa-
tion of valence, arousal and dominance (VAD)
from psychological field to both continuous
and discrete forms. Firstly, the emotion fea-
tures from text, audio and visual modalities are
extracted. Then, the multimodal features are
fused by a transformer-based model. The mul-
titask learning contains three feedforward net-
works (FFNs), the valence net, arousal net, and
dominance net, for learning the continuous fine-
grained emotion representations from the fused
multimodal features. The contrastive learning
aligns fused multimodal features with the dis-
crete fine-grained emotion representations de-
rived through prompt engineering applied to a
large language model. The transferable abil-
ity of contrastive learning enables FMERL to
map the semantic information of emotion rep-
resentation and fused multimodal features into
a shared embedding space, thereby understand-
ing their semantic relationships and enabling
zero-shot learning. Experimental results on the
IEMOCAP and MELD datasets have shown
that FMERL achieves state-of-the-art perfor-
mance in emotion recognition and implements
zero-shot learning in the field of ERC.

1 Introduction

In recent years, the field of emotion recognition
in conversation (ERC) has garnered significant at-
tention from researchers, driven by the increasing

demand for more sophisticated human-computer
interaction systems(Zhou et al., 2020). The pur-
pose of ERC is to analyze and interpret the emo-
tion content embedded in conversational exchanges,
leveraging the advancements of multimodal data
analysis. Traditional ERC studies have focused
mainly on predicting a limited set of emotion cate-
gories, which limits their capability to capture more
complex human emotions and leads to their poor
generality and usability.

The reason lies in the poor representation capa-
bility of hard labels as supervision signals. Emo-
tions in conversation are inherently nuanced and
vary significantly in intensity and context. By con-
straining the model to the predefined limited fixed
set of emotion categories, such as happiness, sad-
ness, anger, and fear, some important emotional
subtleties in a conversation may inevitably be ig-
nored, which undoubtedly results in failing to cap-
ture the complexity of human emotions. The lack
of emotional granularity hinders the model’s abil-
ity to provide meaningful insights or responses,
ultimately reducing its effectiveness in emotion
recognition.

To improve the generalization ability of models,
recent studies on Emotion Recognition in Conver-
sations (ERC) have increasingly focused on repre-
sentation learning by contrastive learning. These
studies can be mainly categorized into two kinds
of approaches: (1) data-side representation learn-
ing (needs to be defined), CKCL (Tu et al., 2023)
leverages contrastive learning between context and
knowledge to refine emotion vector representations,
while CLED (Kang and Cho, 2024) enhances emo-
tion recognition by performing emotion interpo-
lation data augmentation in the hidden space of
pre-trained language models, combined with a re-
inforced contrastive objective for neutral emotions.
(2) label-side representation learning (needs to be
defined), SACL (Hu et al., 2023) adopts a super-
vised adversarial contrastive learning framework



to learn emotion representations. However, most
of these works predict emotions in a fixed set of
emotion categories. Our work belongs to label-
side representation learning, but is different from
above mentioned methods, inspired by psycholog-
ical studies, fine-grained multidimensional emo-
tion representation of valence, arousal and dom-
inance(VAD) is learned, where valence refers to
the positivity or negativity of an emotion, arousal
indicates the level of physiological activation or in-
tensity, and dominance reflects the sense of control
or power in a situation.

In this paper, we propose a fine-grained emo-
tion representation learning (FMERL) framework,
The emotion features from text, audio and visual
modalities are extracted at first. Then, the multi-
modal features are fused by a transformer-based
model. FMERL integrates the multitask learning
and the contrastive learning. The multitask learn-
ing contains three feedforward networks (FFNs),
the valence net, arousal net, and dominance net,
for learning the continuous fine-grained emotion
representations from the fused multimodal features.
The contrastive learning aligns fused multimodal
features with the discrete fine-grained emotion rep-
resentations derived through prompt engineering
applied to a large language model. Experimental
results have shown that FMERL achieves state-of-
the-art performance in emotion recognition.

Our contributions are summarized below. (1) We
propose a fine-grained multidimensional emotion
representation by extending the emotion represen-
tation of valence, arousal and dominance (VAD)
from psychological field to both continuous and
discrete forms. (2) We propose a Fine-grained Mul-
tidimensional Emotion Representation Learning
framework (FMERL), and it integrates the multi-
task learning and the contrastive learning. The mul-
titask learning learns continuous fine-grained emo-
tion representations, while the contrastive learn-
ing learns discrete fine-grained emotion representa-
tions. (3) Our method achieves state-of-the-art per-
formance in ERC and implements zero-shot learn-
ing in ERC, which has been evidenced by experi-
ments on the IEMOCAP and MELD datasets.

2 Related Work

2.1 Multidimensional Emotion
Representation Model

In sentiment analysis research, several well-known
sentiment classification models are available. The

Ekman model (Ekman et al., 1969) classifies emo-
tions into six basic emotions: happiness, sadness,
anger, fear, surprise, and disgust. (Plutchik, 2003)
proposes an emotion wheel to classify emotions.

However, the discrete models above categorize
sentiment into a limited number of fixed categories,
which may overlook similar sentiments and subtle
variations. The dimensional emotion model offers
a nuanced description and measurement of emo-
tions, treating them as points in a multidimensional
space and mapping them to a continuous frequency
spectrum. One of the famous dimensional emo-
tion models is the PAD model (Mehrabian, 1974).
Within this model, pleasure denotes the positive or
negative valence of emotion experiences, arousal
reflects the intensity or level of emotion activation,
and dominance indicates the extent to which emo-
tions influence individual behavior. (Russell, 1980)
introduces the widely recognized arousal-valence
model, where valence indicates positive or nega-
tive evaluations of emotion intensity, while arousal
measures an individual’s energy level, with low
arousal signifying less energy or lower emotion in-
tensity. In this paper, due to the semantic similarity
between pleasure and valence, we abandon plea-
sure and adopt valence, arousal, and dominance to
build the multidimensional emotion model.

2.2 Contrastive Learning

SimCLR (Chen et al., 2020) is a milestone in the
field of contrastive learning, which employs di-
verse image augmentation techniques to generate
positive and negative samples from a single im-
age for visual representation. CLIP (Radford et al.,
2021) introduces a contrastive learning approach
that embeds images and text into the same fea-
ture space, enabling cross-modal understanding
and zero-shot learning, demonstrating strong per-
formance across various visual tasks. In the field
of ERC, (Li et al., 2022) uses the supervised con-
trastive learning (SCL) to distance utterances with
different emotions for better emotion identifica-
tion. (Tu et al., 2023) uses contrastive learning
scenarios among context and knowledge to learn
the better representations of emotions. EACL (Yu
et al., 2024) employs label encodings as anchors
to guide the learning of utterance representations.
This paper adopts the CLIP (Radford et al., 2021)
approach of embedding emotion representations
from labels and multimodal features into a unified
feature space for alignment through training.
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Figure 1: The overall architecture of FMERL.

3 Method
3.1 Task-definition

A conversation consists of N sequential ut-
terances {uj,ug,--- ,un} from M speakers
{s1, 82, -+, sm}. Each utterance u; is delivered
by speaker s4(,,), Where ¢ maps each utterance to
its corresponding speaker index. Each u; includes
textual (¢), acoustic (a), and visual (v) modalities,
which are represented as u} € R%, u¢ € R%, and
uy € R,

The sequences of modalities for all utterances
are denoted as U = [ul;ub;--- ;uly] € RV*de,
U = [uful;---ul] € RV¥da and UV =
fuf s - suly] € RNXde,

Our contrastive learning ERC task aims to iden-
tify the emotion representation corresponding to
each utterance.

3.2 The Model Architecture and Prompt
Engineering Framework

Figure 1 gives an overview of our proposed
FMERL framework. In the part of multimodal fea-
tures fusion module, the given input is an utterance
U including three modal features: U¢, U*, and U".
After extracting utterance-level unimodal features
to UY, UY, and UY, we use the Intra- and Inter-
modal Transformers from SDT (Ma et al., 2023)
as the backbone to fuse multimodal features H. In

the fine-grained emotion continuous representation
module, emotion scores are predicted across the
fine-grained multidimensional scales of valence SY,
arousal S%, and dominance S?. In the fine-grained
emotion discrete representation module, the tradi-
tional emotion category is extened to a fine-grained
discrete representation by prompting LLM. Then,
the discrete representation is embedded into a high-
dimensional vector . Furthermore, we introduce
a contrastive learning module to align the multi-
modal features H with high-dimensional vector R
by maximizing the similarity score S*.

Figure 2 shows the prompt engineering frame-
work. We extend the fine-grained multidimensional
emotion representation into continuous and dis-
crete forms by prompting LLMs. Then, we utilize
continuous representation for multitask regression
and discrete representation for contrastive learning.
Combining these strategies, we finally implement
the emotion recognition task.

3.3 Multi-task Regression Learning Based on
Continuous Emotion Representaion

To enhance the representational ability of emotions,
we propose using a continuous fine-grained fea-
tures to describe emotions. Rather than the hard
labels, we use the labels from three dimensions: va-
lence, arousal, and dominance scores. The scores
of these dimensions serve to provide a more fine-
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Figure 2: An overview of the prompt engineering frame-
work. The blue part is the continuous representation for
multitask regression, and the black part is the discrete
representation for contrastive learning.

grained and comprehensive understanding of emo-
tions. In this section, we present a continuous emo-
tion representaion as supervision signal based on
prompting with GPT (Brown et al., 2020) to score
these three dimensions above. Then, we introduce
how the fine-grained emotion representaion facili-
tate multitask regression learning.

Continuous Emotion Representaion. The mul-
tidimensional emotion representation model we
used includes valence, arousal, and dominance
scores, which is also adopted by IEMOCAP dataset.
However, not all datasets include the scores of these
three dimensions. The traditional method of manu-
ally labeling datasets requires a high cost. Prompt-
ing GPT to score these dimensions of text in the
dataset can significantly reduce the workload of
labeling the dataset. Specifically, given a text of an
utterance, we prompt GPT with Query, Metric,
Utterance

S; = GPT(Query) (D

where Query is "In the field of emotion recog-
nition, score this utterance in the dimension of
Metric; from 0 to 5. The utterance is : Utterance.
Hence, the score is:", Metric = {valence, arousal,
dorminance}, and Utterance is the current utter-
ance.

Multitask Regression. As shown in Figure 1,
the emotion recognition task and regression tasks
share the same architecture and weights in the part
of multimodal features fusion. For the multitask
learning part, we use three feedforward neural net-
works: valence net, arousal net, and dominance

net to predict the valence score, arousal score, and
dominance score, respectively. These nets have the
same input H € RV*?, The output of the regres-
sion network n is its predicted emotion scores:

Sp=0(W, H+b,) e RY )

where n € {valence, arousal, dominance},
W,, € RVXd and b,, € RY are trainable parame-
ters, and o is the sigmoid function. For these three
regression tasks, we use the same optimization pol-
icy, which minimizes the mean squared error loss

Emse-

n

Emse = l Z(S’z - 51)2 (3)

i=1

where S is the predicted emotion score, S is the
ground-truth score. During training, in addition to
the parameters of three regression networks, the
parameters of the modality fusion backbone are
also updated.

Although these regression tasks do not con-
tribute directly to the output of the predictions, they
enable the model to learn additional representa-
tions, thereby enhancing its generalization ability.

3.4 Discrete Fine-grained Emotion
Representation

To improve the distinction of various emotions that
can be difficult to differentiate by category names
alone, we propose utilizing multidimensional emo-
tion information in psychology to improve emotion
representations. In this subsection, we describe
how to generate discrete emotion representations
for humans in conversations based on prompting
GPT. We also explain how these representations are
integrated into our model to improve recognition.

Prompt with GPT. To harness deeper mean-
ings tied to emotion expression, we employ GPT
(Brown et al., 2020) to produce descriptions of
different emotions. Nevertheless, directly query-
ing GPT for emotion descriptions may yield ver-
bose descriptions. Hence, we implement a prompt
engineering based mechanism to query GPT for
emotion descriptions. Following Section 3.3, we
selected and integrated valence, arousal, and domi-
nance as the emotional dimensions £ D. Then, we
query GPT with the emotion dimensions £ D to
get the descriptions D;:

D; = GPT(ED;, Query}) ()
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where Query’ is "Use a brief phrase to describe
the level of an emotion of e; in the dimension of
ED." to acquire the level of each emotion dimen-
sion ED. For example, if the e; is joy, the returned
D; is "Arousal: Moderately high arousal, Valence:
Positive valence, Dominance: High dominance"

Finally, discrete multi-dimensional emotion
model is proposed to describe emotions, encom-
passing the levels of arousal, valence, and dom-
inance. The descriptions of emotions provide a
more fine-grained and comprehensive understand-
ing of emotions concepts.

Enhance Emotion Representation. Our ERC
research aims to transform textual descriptions
of emotions into feature space representations
and align multi-modal feature representations with
them. We use the ROBERTa Large model to obtain
representations of textual descriptions, matching
the multi-modal feature representations to ensure
both are in a common embedding space.

3.5 Contrastive Learning Method

The CLIP framework, introduced by (Radford
et al., 2021), encodes image and text features
into a shared space, maximizing cosine similar-
ity for matching pairs (positives) and minimizing it
for non-matching pairs (negatives) through cross-
entropy loss. We use this framework to align multi-
modal features with emotion representations as
shown in Fig 3.

Specifically, we employ two distinct encoders to
fuse multimodal features and represent emotions.
For a feature-emotion pair = {2, 2¢}, we derive
the embeddings using the feature encoder F;y and
emotion representation encoder E,: f = E;(x/)

and e = E.(z¢), where f,e € RP. The fused
features f and emotion representations e for each
feature-emotion pair in the mini-batch /V are used
to create an N x [N matrix of cosine similarities.
The diagonal elements of the matrix represent the
N positive pairings, while the other elements de-
note N2 — N negative pairings. During the training
process, the emotion representations encoder F is
frozen. We propose a triple-loss to maximize the
similarity among the diagonal positives and mini-
mize the similarity of the negatives. The first part
of our triple-loss is a contrastive learning loss:

o exp(Sii)
Ly =— ;log S exp(S) (5)
fi-ej
Sij =~ 6
7= e ©

L is designed to maximize intra-class similarity
while minimizing inter-class similarity. .S;; denotes
the similarity score for positive pairs, and S;; spans
all potential pairs for a given sample :. This for-
mulation uses a log-softmax approach to convert
similarity scores into probabilities, emphasizing
the correct class alignment. The similarity metric
S;j based on cosine similarity measures the angular
separation between vectors, focusing on orientation
rather than magnitude. To further differentiate sim-
ilar emotions, we introduce the cosine similarity
loss for negative samples as the second component
of our triple loss:

L= YD (eosty) )
i

_ i

1 fillllas]l

The supplementary cosine loss £y penalizes the
alignment of feature vectors f; with negative sam-
ples n;;, thereby promoting the differentiation of
similar emotions. To keep the L5 positive, we add
1 to the cosine similarity. We also take the positive
value of L9 to maximize the differences between
features and negative samples. The cosine sim-
ilarity cos(f;;) quantifies the angular difference
between the feature vector f; and the negative sam-
ples n;;. We derive our triple-loss function by com-
bining £1 and L4 as follows:

cos(0;5) )

£tri = ﬁl + )\neg£2 (9)

where \,.c4 is a hyperparameter that regulates
the weight of the cosine similarity loss for negative



samples. Equation 9 contributes to a comprehen-
sive loss that enhances the granularity of emotion
differentiation within our model.

3.6 Training and Inference

In this subsection, we detail the training and infer-
ence processes of our model.

Training. During the training stage, two parts
of parameters of the model are updated: multitask
regression learning and contrastive learning. The
multitask regression learning cost is Lyge, Which
is formulated in Section 3.3. Then considering the
triple loss Ly of contrastive learning introduced in
Section 3.6, the final loss can be defined as:

L= Emse + )\triﬁtri (10)

where \;; is the hyper-parameter weight for the
additional constraint.

Inference. For each emotion prediction, we
compute the the similarity S;; between the fea-
ture embedding f; and emotion embedding e; by
Equation 6. Then, we do the matching task to find
the emotion e; that is most similar to f;:

Y

ol _ ..
j —argmjaxS”

where j* is the index of the emotion most similar

to f;.
4 Experimental Settings

4.1 Datasets

The experiments were carried out on two datasets:
IEMOCAP and MELD.

IEMOCAP.(Busso et al., 2008) IEMOCAP has
already used the scores of valence, arousal and
dominance as continuous representations to de-
scribe emotions. It includes around 12 hours of
dyadic conversation videos, segmented into 7,433
utterances and 151 dialogues. Each utterance is
categorized into one of six emotions: happy, sad,
neutral, angry, excited, or frustrated. There are five
sessions in this dataset. We choose the former four
sessions to be used for training, while the last one
is for testing.

MELD.(Poria et al., 2019) MELD has no scores
of valence, arousal and dominance. The prompt
engineering of LLM is to extend its labels to these
three dimensions. Specifically, we prompt the LLM
with each utterance within the MELD and the query
of the scores of these three dimensions to get the
continuous representation. This multi-party dataset

contains 13,708 utterances and 1,433 dialogues
from the TV series Friends, with each utterance
classified into one of seven emotions: anger, dis-
gust, fear, joy, neutral, sadness, and surprise.

For the discrete form, we prompt the LLM with
each emotion category within these two datasets
and query the levels of these three dimensions to
get the text description of each emotion category.
Then, we use a pre-trained text encoder to embed
these discrete representations to a vector space.

4.2 Unimodal Feature Extraction

Following (Ma et al., 2023), we use openSMILE
(Eyben et al., 2013), DenseNet (Huang et al., 2017),
RoBERTa (Liu, 2019) to extract utterance-level
features of acoustic, visual, and textual modality
respectively.

4.3 Baseline Methods

We compare our proposed model with the follow-
ing ERC methods.

Supervised learning baseline: CoMPM (Lee
and Lee, 2021) combines the speaker’s pre-trained
memory with the context model to improve per-
formance. SDT (Ma et al., 2023) is a transformer-
based model with a self-distillation mechanism.
MultiEMO (Shi and Huang, 2023) is an attention-
based correlation-aware framework to fuse mul-
timodal features. MPLP (Zhang et al., 2023)
mimics the thinking process when modeling com-
plex factors of emotion. SACL-LSTM (Hu et al.,
2023) uses supervised adversarial contrastive learn-
ing to learn class-spread structured representations.
CKCL (Tu et al., 2023) is a contrastive learning
framework with context and knowledge that can
distinguish the utterances for better vector repre-
sentations. Beyond Linguistic Cues (Xu et al.,
2024) incorporates both belief and desire to rec-
ognize emotion. CLED (Kang and Cho, 2024)
is a supervised contrastive learning method with
data augmentation method emulating the emotion
dynamics.

Unsupervised learning baseline: Qwen-7B(Bai
et al., 2023), Llama2-7B(Touvron et al., 2023),
and Llama3.2-3B.

4.4 Implementation Details

We use Adam optimizer(Kingma and Ba, 2014)
with an initial learning rate of 1.0 x 10~ for IEMO-
CAP and 1.0 x 10> for MELD. The batch size is
16 for IEMOCAP and 256 for MELD. Following
(Ma et al., 2023), the 1D convolutional layers have



Models IEMOCAP MELD Models IEMOCAP MELD
ACC w-F1 ACC w-Fl1 ACC w-F1 ACC w-F1
CoMPM - 66.33 - 66.52 FMERL 74.92 75.14 67.66 66.78
SDT 7395 74.08 67.55 66.60 w/o Triple-loss 74.68 7491 67.20 65.96
MultiEMO - 72.84 - 66.74 w/o Fine-grained Enhancement 74.18 74.37 66.74 65.11
MPLP - 66.65 - 66.51 w/o Dominance 74.86 7496 67.24 66.16
SACL-LSTM 69.08 69.22 6751 66.45 w/o Arousal 73.44 73.68 67.51 66.37
CKCL - 67.16 - 66.21 w/o Valence 7431 74.38 67.43 66.41
Beyond Linguistic Cues - 68.22 - 64.27 w/o Multitask Regression 72.46 7275 67.09 65.87
CLED - 62.77 - 66.24
FMERL 7492 7514 67.66 66.78  Table 3: Ablation results on IEMOCAP and MELD.

Table 1: Performance metrics for different models on
IEMOCAP and MELD datasets, including total ACC
and weighted F1 scores.

IEMOCAP
Models Unseen Full Params Cont
ACC F1 ACC F1 (Million)
Qwen-7B 13.14 23.22 33.42 30.67 7720
Llama2-7B 11.71 20.97 32.00 29.60 6740
Llama3.2-3B  6.04 11.40 3298 28.43 3210
FMERL 36.81 27.32 58.38 57.30 83
MELD
Models Unseen Full Params Cont
ACC F1 ACC F1 (Million)
Qwen-7B 360 696 3238 28.46 7720
Llama2-7B 328 635 3398 35.19 6740
Llama3.2-3B  1.56 3.08 42.11 45.55 3210
FMERL 11.86 21.21 61.38 60.30 83

Table 2: Performance metrics (ACC and F1) for differ-
ent models across various datasets.

input channels of 1024, 1582, and 342 for textual,
acoustic, and visual modalities on IEMOCAP, and
1024, 300, and 342 on MELD. All modalities fea-
ture an output channel and kernel size of 1024 and
1, respectively, for both datasets. The transformer
encoder has a hidden size, number of attention
heads, feed-forward size, and number of layers set
to 1024, 8, 1024, and 1. The three multitask learn-
ing nets have 2 hidden layers and the dimensions
are 1024. The hyper-parameter weights \,., and
A are set to 0.5 and 1. For zero-shot learning,
we set the long-tail classes in [IEMOCAP (happy)
and MELD (fear) as the unseen classes. For the
baseline LLMs, we use the few-shot predict for the
seen classes and zero-shot for the unseen classes.
The results are averages of 5 runs.

5 Results and Analysis

5.1 Main Results

We compare the performance of our proposed
model and the state-of-the-art approaches. Table
1 presents the results of supervised learning on
IEMOCAP and MELD, whereas the results of zero-
shot learning are detailed in Table 2. On the [IEMO-

CAP dataset, FMERL surpasses all baselines, ex-
ceeding SDT by 0.97% in overall accuracy and
1.06% in weighted F1-score. On the MELD dataset,
FMERL outperforms all baselines, achieving the
highest overall accuracy and weighted F1-score,
exceeding SDT by 0.11% and 0.18%, respectively.
For the zero-shot learning results, FMERL also
achieves state-of-the-art performance. FMERL
outperforms all LLMs on IEMOCAP, surpass-
ing Qwen-7B by 29% in overall accuracy and
31.84% in weighted F1-score for all classes, and by
8.62% and 14.25% respectively for unseen classes.
Similarly, on MELD, FMERL exceeds Qwen-7B
by 24.96% in overall accuracy and 26.63% in
weighted F1-score for all classes, and by 23.67%
and 4.1% respectively for unseen classes. Addi-
tionally, the model parameter count of FMERL is
significantly small compared to LLMs. In compar-
ison to the smallest LLM we use as the baseline,
Llama3.2-3B, which has 3210 million parameters,
our model reduces the parameter count by 97.4%,
demonstrating a more compact architecture.

5.2 Ablation Study

We conduct a series of experiments to confirm the
effectiveness of components in our method. The re-
sults are shown in Table 3. Removing any element
of FMERL makes the overall performance worse.
To validate the effects of components in con-
trastive learning, we remove the triple loss, which
encourages the samples to stay away from negative
samples. We can find that the lack of triple loss
results in a decline in the accuracy of 0.35% and in
the weighted F1-score of 0.53% on average of two
datasets. Also, without the fine-grained enhance-
ment, it causes a decline in the accuracy of 0.83%
and in the weighted F1-score of 1.22% on average.
In multitask regression, ablating dimensions re-
veals their importance. For IEMOCAP, arousal
is most critical; removing it decreases accuracy
by 1.48% and weighted F1-score by 1.46%. For
MELD, dominance is key; its removal reduces ac-



curacy by 0.46% and weighted F1-score by 0.62%.
Removing multitask regression entirely signifi-
cantly degrades performance, with IEMOCAP ex-
periencing a 2.46% accuracy drop and a 2.39%
weighted Fl-score decline, while MELD sees a
0.57% accuracy drop and a 0.91% weighted F1-
score decline.

5.3 Fine-grained Multidimensional Emotion
Representation Learning Analysis

In this section, we conducted a comparison of the
multidimensional scores of emotions between the
model non-converged and converged stages in the
process of training to prove that multidimensional
representation learning is critical to the general-
ization of the model. We randomly select one
epoch from each of the two stages, the model’s non-
converged stage and converged stage, and freeze
the model parameters at that point. We assume
that the samples within each emotion class fol-
low a multivariate Gaussian distribution. Based
on this assumption, we evaluate both models sep-
arately on the test set to predict multidimensional
scores in Figure 4 and get the confusion matrices
of emotion classes in Figure 5. Figure 4 and Fig-
ure 5 show that during the non-converged stage,
classes are closely packed and hard to distinguish.
Once the model converges, the classes spread out,
making them easily distinguishable. Our analysis
of the above result is as follows: (1) The shared
model parameters and representations across mul-
tiple tasks enhance generalization by leveraging
common features and task correlations. The regres-
sion tasks and contrastive learning task share parts
of the model, enabling the model to learn more
features from different tasks. There are correla-
tions between multitasks, the model can capture
these correlations through shared representations,
thereby improving the performance. (2) The reg-
ularization effect reduces overfitting. Multitask
learning, by sharing parameters, acts as a form of
regularization. Single emotion recognization task
learning may overfit to the training data of this
specific task, while multitask regression and con-
trastive learning forces the model to learn more
general features from emotion by optimizing mul-
tiple objectives simultaneously, thereby reducing
overfitting.
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Figure 4: Comparison of multidimensional scores: va-
lence, arousal, and dominance. Left side is the non-
converged stage. Right side is the converged stage
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Figure 5: Comparison of confusion matrices. The left
side is the non-converged stage. The right side is the
converged stage.

6 Conclusion and Future Work

This paper presents a novel framework for emotion
recognition in conversation, named Fine-grained
Multidimensional Emotion representation learning
(FMERL). FMERL utilizes multidimensional emo-
tion representations—valence, arousal, and dom-
inance—as supplementary supervision signals to
improve the learning of recognize utterance rep-
resentations. In addition, we propose a labeling
method based on prompt engineering of LLM to
provide the supervision signal to the model. Our
extensive experiments on two benchmark datasets
demonstrate that our approach achieves the state-
of-the-art performance in both supervised and un-
supervised learning. Ablation studies and evalua-
tions demonstrate that the FMERL framework has
excellent data representation capabilities and out-
standing emotion recognition abilities.

The zero-shot learning of FMERL is based on
the representation learning of the seen classes and
inference of the unseen classes, which is follow-
ing the idea of CLIP. In the future work, we will
research the zero-shot learning for emotion recog-
nition without relying on seen classes.



Limitations

Our proposed FMERL shows less performance im-
provement on the MELD dataset compared to the
IEMOCAP dataset. This is because the IEMO-
CAP dataset has the multidimensional emotion
scores meticulously labeled by humans, while these
scores of the MELD dataset are labeled by our pro-
posed prompt engineering labeling method. Recent
LLMs are still unable to achieve a level of fine-
grained emotion recognition comparable to that of
humans.
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