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ABSTRACT

Multi-modal Large Language Models (MLLMs) have recently exhibited impres-
sive general-purpose capabilities by leveraging vision foundation models to en-
code the core concepts of images into representations. These are then combined
with instructions and processed by the language model to generate high-quality
responses. Despite significant progress in enhancing the language component,
challenges persist in optimally fusing visual encodings within the language model
for task-specific adaptability. Recent research has focused on improving this fu-
sion through modality adaptation modules but at the cost of significantly increased
model complexity and training data needs. In this paper, we propose EMMA
(Efficient Multi-Modal Adaptation), a lightweight cross-modality module de-
signed to efficiently fuse visual and textual encodings, generating instruction-
aware visual representations for the language model. Our key contributions in-
clude: (1) an efficient early fusion mechanism that integrates vision and language
representations with minimal added parameters (less than 0.2% increase in model
size), (2) an in-depth interpretability analysis that sheds light on the internal mech-
anisms of the proposed method; (3) comprehensive experiments that demonstrate
notable improvements on both specialized and general benchmarks for MLLMs.
Empirical results show that EMMA boosts performance across multiple tasks by
up to 9.3% while significantly improving robustness against hallucinations.

1 INTRODUCTION

Over the past years, Large Language Models (LLMs) have transformed natural language processing
(NLP) by demonstrating exceptional abilities in understanding, generating, and reasoning with text
across a wide range of tasks; from machine translation and summarization to complex problem-
solving and conversational agents (Touvron et al., 2023; Zheng et al., 2023). However, many real-
world applications require the ability to process more than just text, such as understanding visual
content or synthesizing information from different modalities. This has led to the development
of multi-modal LLMs 1, which combine the linguistic strengths of LLMs with vision foundation
models, enabling cross-modal understanding and reasoning. By integrating textual and visual infor-
mation, these models extend the capabilities of traditional LLMs to address tasks like image cap-
tioning, visual question answering, and text-to-image generation(Liu et al., 2024b; Alayrac et al.,
2022; Achiam et al., 2023).

Current state-of-the-art multi-modal models typically rely on fixed visual feature encodings ex-
tracted from vision foundation models, which are projected into the text space and passed to the lan-
guage model along with instructions (Driess et al., 2023b; Liu et al., 2024a;b). However, the static
nature of these encodings, formed without considering the instruction, limits the model’s ability to
adapt dynamically to specific tasks or contexts. This disconnect between visual and textual compo-
nents reduces flexibility, making the model less responsive to task-specific nuances. To address this,
BLIP-2 (Li et al., 2023b) introduced a cross-attention-based module (called Q-former) to integrate
the visual and instruction encodings, a design later adopted by others (Li et al., 2023b; Huang et al.,
2023; Ye et al., 2023b). The current state-of-art model, mPLUG-Owl2 (Ye et al., 2024), introduces
a modality adaptation module that employs attention modules to embed the two modalities into

1In this paper, we refer use multi-modality specifically for combination of image and text modalities.
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a shared semantic space and thus enhances cross-modality collaboration. mPLUG-Owl2’s perfor-
mance improvement comes with several limitations compared to baseline models. First, mPLUG-
Owl2 leverages LLaMA’s text embeddings and CLIP’s vision encoder to generate the instruction
and visual encodings respectively. Therefore the encodings are generated using two distinct models
with no initial multi-modality alignment. Second, mPLUG-Owl2’s modality-adaptive module in-
troduces roughly 1B more parameters, 3× more than its vision encoder. The modularity adaptation
module is then trained from scratch, requiring 348 million image-text pairs for pertaining, 300×
more than the baseline. Third, the vision encoder requires training during both the pretraining and
instruction-tuning stages, which increases the overall training cost and makes the vision encoder
more susceptible to loss of generality. Finally, except for a few benchmarks, the model offers only
marginal improvements, and in some cases, performs worse than the baseline.

The challenges outlined above led us to explore a more efficient method for modality adaptation. We
hypothesized that the need for a complex module for modality adaptation arises from the fact that
visual and textual encodings are produced by two entirely separate modules, trained independently.
As a result, these complex modules attempt to integrate two distinct spaces, which is inherently
difficult. To address this issue, we introduce EMMA (Efficient Multi-Modal Adaptation), which
performs modality fusion through a lightweight modality adaptation mechanism. EMMA integrates
CLIP’s text encoder with its visual encoder and leverages the pre-trained alignment to adapt vi-
sual representations with the instruction via an efficient modality adaptation module (adding less
than 0.03% parameters to the model). Our modality adaptation module generates instruction-aware
visual representations by attending to more informative, instruction-related tokens, leading to im-
provements in MLLM-specialized and general benchmarks. A comprehensive set of experiments on
benchmarks demonstrates that EMMA significantly enhances cross-modal alignment, improves per-
formance across a range of vision-language tasks, and strengthens the robustness of MLLMs against
hallucination. Our contributions can be summarized as follows:

• Efficient Modality Adaptation: We introduce a lightweight modality adaptation mechanism
that refines visual representations with less than a 0.2% increase in model size, maintaining high
efficiency without compromising performance.

• Comprehensive Analysis of Visual Alignment: We conduct an in-depth investigation of the
Visual Alignment module to provide (1) a detailed understanding of how visual and textual
tokens are integrated and (2) an analysis of how effectively the aligned visual representations
attend to instructions compared to the initial raw visual encodings.

• Extensive Empirical Evaluation: We perform a comprehensive evaluation on both general and
MLLM-specialized benchmarks, demonstrating that EMMA significantly improves cross-modal
alignment, boosts task performance, and enhances the robustness of multi-modal LLMs.

• EMMA Outperforms Larger Models: Compared to mPLUG-Owl2 which has 50× larger
modality adaptation module and is trained on 300× more data, EMMA outperforms on 7 of
8 benchmarks. Additionally, compared with BRAVE which has 24× larger vision encoder and
is trained on 100× more data EMMA outperforms on all benchmarks.

2 RELATED WORK

Multi-modal Large Language Models (MLLMs). In recent years, there has been significant
progress in the development of multi-modal large language models (LLMs) that integrate vision
and language to handle tasks requiring both modalities (Zhang et al., 2024; 2023; Wu et al., 2023;
Sun et al., 2024; Alayrac et al., 2022; Lai et al., 2023; Li et al., 2023a;g;d; Lin et al., 2024; Liu
et al., 2023c;d; Tian et al., 2024; Wang et al., 2024b;c; Chen et al., 2023a). By combining the lan-
guage understanding of LLMs with the perceptual abilities of vision foundation models, multi-modal
LLMs are able to tackle a wide array of tasks that require cross-modal alignment and understand-
ing. We can divide these models into two general categories based on the way that the two visual
and textual modalities are integrated. In the first category, including LLaVA (Liu et al., 2024b;a),
PaLM-E (Driess et al., 2023a), Shikra (Chen et al., 2023b), etc., the vision encodings are projected
to the text space with a few linear layers, and then concatenated with the instruction tokens and
passed to the LLMs. In the second category, a more complex module is used for cross-modality
adaptation, where both visual and textual encodings are processed through the adaptation module.
First introduced with Flamingo (Alayrac et al., 2022) and later adopted by BLIP-2 (Li et al., 2023c),
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Method Vision
Encoder

Modality
Adapter LLM Total

InstructBLIP 1.3B ×3.3 200M×10 7B 7.91B
BLIP-2/InstructBLIP 1.3B×3.3 200M×10 13B 14.2B
Qwen-VL-Chat 1.9B×6.3 80M×4 7.7B 9.6B
BRAVE 7.2B×24 100M×5 2.6B 10B
mPLUG-Owl2 0.3B×1 1000M×50 7B 8.2B
LLaVA 0.3B×1 20M×0.9 7B 7.3B

EMMA 0.3B 22M 7B 7.3B

Table 1: Paremeter sizes of EMMA compared with state-of-art MLLMs across three components:
Vision Encoder, Modality Adapter, and LLM. EMMA uses the same-sized Vision Encoder and LLM
as mPLUG-Owl2 but its Modality Adapter, our main contribution, is 50× smaller.

InstructBLIP (Dai et al., 2024), Qwen-VL (Bai et al., 2023), mPLUG-Owl Ye et al. (2023a), and
MiniGPT-4 (Zhu et al., 2024), the use of a Q-former (a cross-attention based module) has become a
prominent technique.

Enhancing Visual Alignment in MLLMs. Since the emergence of multi-modal LLMs, aligning
visual and textual modalities has remained a significant challenge in achieving robust and seamless
integration. Previous works (Alayrac et al., 2022; Li et al., 2023c; Ye et al., 2023a;c; Kar et al.,
2024) have predominantly focused on utilizing Q-formers and similar cross-attention modules as
modality adaptation components to integrate visual and textual embeddings. Recent advancements
in modality adaptation include mPLUG-Owl2 (Ye et al., 2023c) and BRAVE (Kar et al., 2024).
mPLUG-Owl2 (Ye et al., 2023c) introduces 1B modality adaptation module that employs distinct
parameters to project multiple modalities into a unified semantic space for enhanced modality adap-
tation. On the other hand, BRAVE (Kar et al., 2024) leverages a concatenation of various visual
encodings, summing up to 7B, directly feeding into the Q-former. These modality adaptation mod-
ules rely on intricate architectures, introducing millions to billions of additional parameters to the
model, which significantly increases the computational costs. Recently, proposed a Question-Aware
Vision Transformer approach that integrates question-awareness directly into the vision encoder.
While this design enhances task-specific performance, it compromises the generality of the visual
representations. This added complexity not only demands vast amounts of training data but also
imposes considerable overhead during inference. Furthermore, the complication of these systems
makes it difficult to discern the primary drivers behind performance improvements — whether they
stem from the model complexity, the early fusion of vision and text encodings, or the sheer volume
of additional training data. This leads us to the central focus of our work: (1) addressing the inef-
ficiencies in current multi-modal models by proposing a more streamlined approach. Our goal is to
achieve an efficient early fusion of visual and textual encodings without significantly increasing the
number of parameters or computational costs. (2) Conducting a thorough analysis to determine the
key drivers behind performance improvements and the dynamics of the modality adaptation module
to generate the multi-modal encodings. This investigation will help isolate the most effective factors
and guide future advancements in multi-modal LLMs.

Multi-modal LLM’s Benchmarks. The evaluation of multi-modal LLMs relies on a mix of tradi-
tional academic benchmarks and newer ones tailored to instruction-following MLLMs. Established
benchmarks like VQA-v2 (Goyal et al., 2017) and GQA Hudson & Manning (2019) gauge a model’s
ability to interpret visuals through open-ended, short-answer questions. ScienceQA (Lu et al., 2022)
tests zero-shot generalization in scientific question answering, while VizWiz (Gurari et al., 2018) of-
fers real-world images captured by visually impaired users, challenging models with poor framing,
blur, and other quality issues typical of non-professional photos. Additionally, newer benchmarks
target instruction-following MLLMs. MathVista (Lu et al., 2023) introduces diverse challenges from
mathematical and visual tasks. MMMU (Yue et al., 2024) evaluates multi-modal models on a broad
range of college-level tasks requiring deep subject knowledge and reasoning. To assess multi-image
reasoning, MUIRBENCH (Wang et al., 2024a) provides a comprehensive benchmark with 12 di-
verse tasks to evaluate the multi-image understanding abilities of MLLMs.
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Figure 1: This figure presents the EMMA’s Architecture where Modality Adaptation is introduced
to the standard MLLM architecture. The Modality Adaptation module consists of the Text En-
coder, Instruction Projection, and Visual alignment modules. EMMA enhances the multi-modality
alignment by incorporating the instruction encodings generated by the Text Encoder which are then
projected to the joint space by the Instruction Projection module. The concatenating visual and
textual encodings are then passed through the Visual Alignment module, resulting in multi-modal,
instruction-aware representations.

For general robustness, MMBench (Liu et al., 2023a) offers a multiple-choice visual question an-
swering benchmark in both English and Chinese, suggesting shuffling the choices to test the model’s
robustness to the order of options. MMVP (Tong et al., 2024) evaluates robustness by identifying
similar images with minute differences and manually pinpointing the visual details the CLIP vision
encoder overlooks, which leads to incorrect responses from MLLMs. For hallucination, POPE (Li
et al., 2023f) examines the extent of hallucinations across three COCO subsets, and AMBER (Wang
et al., 2023), a multi-dimensional benchmark, evaluates generative and discriminative tasks. Addi-
tionally, three benchmarks were utilized to assess the proposed method’s robustness against halluci-
nation: FOIL (Shekhar et al., 2017), MMRel (Nie et al., 2024), and R-Bench (Wu et al., 2024).

3 EFFICIENT VISUAL ALIGNMENT IN MULTI-MODAL LLMS

In this section, we explain our proposed method which addresses the inefficiencies in current multi-
modal models by an efficient early fusion of visual and textual encodings without significantly in-
creasing the number of parameters or computational costs. Moreover, a detailed interpretability
analysis is offered to provide insights into the internal mechanisms of the proposed method.

3.1 EMMA: EFFICIENT MULTI-MODAL ADAPTATION

Recent progress in multi-modal models has been largely driven by the robust reasoning capabilities
of large language models. Therefore, a persistent challenge is to effectively align these two modali-
ties to ensure seamless fusion and task-specific adaptability. Current approaches often rely on com-
plex cross-modality modules, which introduce a significant number of parameters and thus require
large amounts of training data. We hypothesize that the need for a complex modality adaptation
module arises from the fact that visual and textual encodings are produced by two independently
trained components that are themselves unaligned. This is precisely the case for mPLUG-Owl2,
which uses CLIP as its vision encoder and LLaMA’s text embeddings for its text encoder. As a
result, the multi-modality module must, in addition to incorporating text information into the visual
embedding, also align the two embeddings.

To address this issue, we propose a simple but surprisingly effective idea—we use both CLIP’s vision
encoder and its text encoder in our multi-modality alignment module. By directly incorporating
CLIP’s text encoder into its visual encodings, Since CLIP’s vision and text encoders were originally
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jointly trained, multi-modal adaptation is inherently embedded in their encodings, making its text
encoder an ideal choice for encoding instructions. The strong, inherent alignment between the two
modalities allows for seamless integration, minimizing the need for complex cross-modal modules
or extensive training to achieve alignment. Furthermore, CLIP has demonstrated strong performance
across diverse tasks, making it a reliable foundation for multi-modal applications.

We refer to our proposed architecture as EMMA— Efficient Multi-Modal Adaptation. Figure 1
illustrates EMMA’s architecture. The left side highlights the high-level structure, where the standard
modules of a multi-modal LLM are shaded in gray, while EMMA’s newly introduced Modality
Adaptation module is shown in green. On the right, the details of the Modality Adaptation module
are depicted. More specifically, let v(·) and t(·) represent the vision encoder and text encoder of
CLIP respectively. The visual encodings are defined as v = v(x) ∈ Rn×d, where x is the input
image, and the text encodings as t = t(i) ∈ Rm×d′

, where i is the instruction. Later, the instruction
encodings are then processed through the Instruction Projection module p : Rd′ → Rd which maps
the instruction tokens to the same dimensional space as the visual tokens. Once the visual and
textual representations are generated, we introduce early fusion via a lightweight module called the
Visual Alignment module. This component, consisting of a simple linear layer, combines visual and
textual tokens to create the model’s multi-modal encoding. The Visual Alignment module, which
consists of a linear layer, forms the core of our proposed method. Let f : R(n+m)×d → Rn×d

represent the Visual Alignment module, where n and m denote the number of visual and textual
tokens, respectively. The Visual Alignment module takes the concatenation of the visual and textual
tokens as input to generate n refined visual tokens ṽ. The complete pipeline can be expressed as
follows:

ṽ = f(v(x), p(t(i))

Note that the dimensions of this alignment layer are designed to maintain the same number of visual
tokens as the baseline model, ensuring consistency in the number of visual tokens passed to the
language model. The Visual Alignment module plays a critical role in ensuring effective alignment
between visual and instructions encodings, highlighting the most relevant tokens from the visual
encodings in response to the instruction, and thereby delivering more precise visual information to
the language model. Its lightweight design facilitates (1) easier interpretability and analysis and
more importantly, (2) its simplicity mitigates overfitting when training on small datasets and (3)
reduces the training and inference time while outperforming the state-of-the-art models with 10×
fewer parameters. Moreover, by leveraging the inherent alignment of CLIP’s vision and text en-
coders, both encoders remain frozen during training. This prevents overfitting to the training data
and preserves the generalization capabilities of the original encoders, enabling EMMA to deliver
robust performance across diverse tasks.

3.2 ANALYSIS ON MODALITY ADAPTATION BY EMMA

In this section, we analyze the impact of the modality adaptation module introduced by EMMA.

The Mechanics of the Visual Alignment Module. The Visual Alignment module takes the con-
catenation of the visual and textual tokens (n +m tokens) as input to generate the n refined visual
tokens. We begin our examination by scrutinizing the matrix W ∈ R(n+m)×n associated with it.
By analyzing the norms of the weights corresponding to each token, we can identify which tokens,
visual or textual, are most impactful. The histogram of ℓ2 and ℓ1 norms of visual and textual to-
kens are demonstrated in Figure 2. As the weights of textual tokens are below 1 and the weights
of visual tokens are above 1, the ℓ1 norm of the weights serves as a more indicative measure of to-
ken importance. As expected, the visual tokens exhibit higher weights within the Visual Alignment
module, signifying their greater influence on the generated multi-modal representation. Another key
observation is that certain textual tokens exert more influence than others. To highlight the relative
importance of each textual token, Figure 2b presents a bar chart illustrating their respective weights.
CLIP’s text encoder generates 77 textual tokens, shown along the x-axis. As depicted in the figure,
the earlier tokens tend to have a more significant impact. This finding indicates that the alignment
module effectively identifies the most informative textual tokens, as instructions typically consist
of brief prompts, with the crucial information concentrated in the early tokens and the remaining
tokens often masked.
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Figure 2: To evaluate the contribution of visual and textual tokens to the Aligned Represen-
tations, we analyze the weight matrix of the Visual Alignment module, which consists of a linear
layer. Left: Fig. 2a presents the ℓ2 norms of the weights for each token, revealing that (1) visual
tokens have a stronger influence on the aligned representations and (2) the impact of textual tokens
varies, prompting further investigation in Fig. 2b to identify which specific textual tokens contribute
more significantly to the final representations. Right: The bar plot reveals that the early tokens are
assigned higher weights in the Visual Alignment module, placing greater emphasis on them.

Enhancement in Modality Alignment. The primary objective of EMMA’s modality adaptation
is to align visual representations with the instructions, ensuring they emphasize the aspects of the
image directed by the instructions. Our method achieves this by incorporating instruction encodings
into the refinement process of the visual representations. In this section, we explore the align-
ment capabilities of EMMA by examining the visual representations before and after alignment. To
perform this analysis, we utilize the MMVP Tong et al. (2024) benchmark, which is designed to
expose the visual shortcomings of MLLMs. We focus on images with visually similar encodings
but subtle differences, as shown in Figure 3a. EMMA demonstrates a 9.3% improvement on this
benchmark, underscoring its ability to generate more distinguishable visual representations for such
images. To empirically validate this, we compute the ℓ2 norm of visual representations between
randomly selected pairs of MMVP images, comparing the results for pre-aligned and post-aligned
representations. The histogram of the norms, shown in Figure 3b, reveals a clear shift, indicating
that the aligned representations are better at distinguishing between these images by focusing on
instruction-relevant tokens.

Is the butterfly's abdomen
visible in the image?

Is the minion in the image
smiling with its tongue out?

(a) Yes (b) No

LLaVA-1.5

EMMA-1.0

(a) (a)

(a) (b)

(a) (a)

(b) No (a) Yes

(b) (a)

(a) Instances of MMVP Benchmark

L2 norm between MMVP Image pairs 

Fr
eq

ue
nc

y

(b) ℓ2 distance between the MMVP image pairs.

Figure 3: Is EMMA capable of discerning images by focusing on the aspect specified in the
instruction? To address this, we utilize the MMVP benchmark, which contains closely resembling
images, as shown in this figure. By leveraging EMMA’s visual representations of the image pairs
and calculating the ℓ2 norm, we observe an increase in the distance between them, as illustrated in
Figure 3b, indicating EMMA’s ability to differentiate between similar images.
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Mutual Information between Aligned Visual Tokens and Response Tokens. Another primary
objective of the Modality Adaptation module is to adapt the visual representations with the language
modality, ensuring they are well-aligned with the language model and encapsulate the necessary
information to accurately respond to the given prompt.

Mutual Information between the Visual Tokens
and Response Tokens

Fr
eq

ue
nc

y
Figure 4: We evaluate the effectiveness of the
Visual Alignment module by analyzing how
well it refines visual representations to capture
instruction-specific details. This is measured by
calculating the mutual information between the vi-
sual representations and the response encodings
produced by the text encoder. As illustrated in
the figure, EMMA’s mutual information is 1.5
times higher than LLaVA’s, demonstrating its
superior alignment with the instruction.

To evaluate the contribution of visual tokens to
the language model’s output, we use the Mu-
tual Information which quantifies the amount
of information obtained about one random vari-
able through the other. In this analysis, the
LLaVA-In-Wild Liu et al. (2024b) benchmark
is employed, which has a set of 24 images
with 60 challenging questions in novel do-
mains. For each of the 60 samples, visual repre-
sentations are generated using the visual mod-
ules of both LLaVA and EMMA. It is important
to note that EMMA’s visual module processes
the image and prompt to produce instruction-
aware representations, whereas LLaVA gener-
ates instruction-agnostic encodings. Addition-
ally, for each sample, the corresponding answer
is encoded using the Text Encoder. The Mutual
Information between the visual and response
encodings is then calculated, with the results
shown in Figure 4. As illustrated, the mean mu-
tual information for EMMA is 1.5 times higher
than that of LLaVA, underscoring the effective-
ness of EMMA’s Visual Alignment in steering
the model toward accurate language responses.

4 EXPERIMENTAL EVALUATION

In this section, we begin by comparing EMMA
with state-of-the-art multi-modal LLMs, using the benchmarks introduced earlier. Following this,
we conduct a robustness analysis with a focus on hallucination. We conduct an ablation study to
identify the optimal layer output from the text encoder for use as textual representations.

Implementation Details. For training, we follow the same two-stage instruction fine-tuning pro-
cess as LLaVA. In the pretraining stage, only the Visual Alignment and Projection modules are
trained, while the language model remains frozen. During the fine-tuning stage, the LLM is un-
frozen and fine-tuned along with the two aforementioned modules.

We employ CLIP-ViT-L-14, trained on 3362 pixel images, as the base image encoder and text en-
coder. The Visual Alignment module is initialized with the identity matrix for the visual tokens and
all zeros for the instruction tokens to transfer all the visual tokens at the beginning of training. More-
over, the Visual Alignment module is designed to maintain the same number of visual tokens as the
baseline model. The latest Vicuna v1.5 Zheng et al. (2023) is used as the base LLM. EMMA uses
the same set of hyperparameters as the LLaVA-1.5. For all the analysis performed in the Section 3,
we use the same dataset as the baseline model, which is 558K and 665K samples for the pretraining
and fine-tuning stages respectively. In the Evaluation setting, we have preserved the same pertaining
data but scaled the fine-tuning data to 1.2M samples, which is the most efficient data compared to
all of the state-of-the-art methods (except for LLaVA) as shown in Table 4.

Benchmarks. We evaluate EMMA across 10 benchmarks that span a diverse set of tasks, including
scientific question answering, visual question answering with poor image quality, integrated percep-
tion and reasoning tasks, visual dialogue, and general reasoning. The results of recent benchmarks
designed specifically for instruction-following large multi-modal models (LMMs) are presented in
Table 4, while Table 2 outlines the performance on academic task-oriented benchmarks. EMMA
emerges as the state-of-the-art model for 4 out of 5 academic task-oriented benchmarks, outper-
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Method LLM VE #Params PT + IT VQAv2 VisWiz SQAI GQA OkVQA

BLIP-2 Vicuna-13B ViT-g/14 13B 129M 65.0 19.6 61 41 45.9
InstructBLIP Vicuna-7B ViT-g/14 7.91B 130.2M - 34.5 60.5 49.2 -
InstructBLIP Vicuna-13B ViT-g/14 14.2B 130.2M - 33.4 63.1 49.5 -
Shikra Vicuna-13B ViT-L/14 13b 6.1M 77.4 - - - 47.2
IDEFICS LLaMA-7B ViT-H/14 9B 354M 50.9 35.5 - 38.4 -
IDEFICS LLaMA-65B ViT-H/14 80B 354M 60.0 36.0 - 45.2 -
Qwen-VL-Chat Qwen-7B ViT-G/14 9.6B 1.4B 78.2 38.9 68.2 57 56.6
LLaVA-1.5 Vicuna-7B ViT-L/14 7B 1.2M 78.5 50.0 66.8 62.0 -
QA-ViT Vicuna-7B ViT-L/14 7B 1.2M 80.5 36.5 - - -
mPLUG-Owl2 LLaMA-7B ViT-L/14 8.2B 348M 79.4 54.5 68.7 56.1 57.7
BRAVE FlanT5-XL ♣ 10B 100M 82.5 54.2 - 52.7 66.0

EMMA Vicuna-7B ViT-L/14 7B 1.8M 89.42 56.03 73.14 56.01 68.57

Table 2: Comparison between EMMA and previous methods on academic task-oriented datasets.
EMMA achieves state-of-the-art performance on 4/5 of the benchmarks while using the fewest
number of parameters and training data compared to the previous approaches, utilizing modality
adaptation(PT and IT stand for Pretraining and Instruction fine-tuning respectively). The ♣ symbol
denotes the collection of vision encoders utilized by BRAVE, including EVA-CLIP-g Fang et al.
(2023), ViT-L/14 Radford et al. (2021), SILC-G/16 Naeem et al. (2025), ViT-e Chen et al. (2022),
and DINOv2-L/14 Oquab et al. (2023).

forming mPLUG-Owl2 which has 50× larger modality adaptation module and is trained on 300×
more data, and BRAVE which has 24× larger vision encoder and is trained on 100× more data.
On MLLM specialized benchmarks, EMMA delivers the best performance on 3 out of 5 bench-
marks and second best on the two others with less than 0.5% difference. In conclusion, EMMA
achieves the best performance in 7 out of 10 benchmarks, despite utilizing the simplest architecture,
outperforming other MLLMs that rely on complex modality adaptation modules.

Model AMBER R-Bench MMRel FOIL
Attr Rel Exis IMG-LVL INS-LVL DallE VG

LLaVA-1.5 20.23 37.1 91.43 79.89 67.53 59.75 59.45 50.08

EMMA-1.0 26.15 37.34 94.50 80.78 68.12 67.7 69.27 66.13

Table 3: Robustness to Hallucination. This table compares EMMA’s robustness against hallucina-
tions with LLaVA, demonstrating consistent improvements over the baseline in avoiding hallucina-
tions.

Robustness & Hallucination. Robustness and the ability to avoid hallucination are essential for
multi-modal large language models (MLLMs), which are increasingly applied in areas like medical
diagnostics to interpret complex text and image data. Hallucination, a significant security threat
to MLLMs, occurs when the model generates information that does not accurately represent the
provided images or text. As a result, evaluating and mitigating hallucinations is a critical step in
ensuring the reliability of MLLMs before real-world deployment, making it a key focus in model
performance assessments. The hallucination evaluations in this section are performed utilizing two
benchmarks, AMBER and FOIL, which do not rely on additional LLMs, thereby providing a di-
rect and controlled means of assessing the model’s ability to avoid hallucinations. These bench-
marks (Wang et al., 2023; Shekhar et al., 2017; Nie et al., 2024; Wu et al., 2024) focus on specific
challenges in multi-modal reasoning, testing the model’s accuracy in aligning textual and visual con-
tent without introducing erroneous information. AMBER consists of 7628, 4924, and 1663 samples
for the Attribute, Relation, and Existence categories, respectively. FOIL contains a total of 99,480
test samples, of which 92,705 are straightforward, allowing both LLaVA and our method to success-
fully avoid hallucinations. However, 6,775 samples present more challenging cases. We compare
LLaVA-1.5, the baseline for our approach, with EMMA. The results, shown in Table 3, indicate that
EMMA outperforms the baseline, with significant performance gaps in two of the four benchmarks.

Evaluation on OCR Benchmarks. In this section, we evaluate EMMA’s performance on a range
of Optical Character Recognition (OCR) benchmarks, including OCRbench (Liu et al., 2023b),
TextVQA (Singh et al., 2019), InfoVQA (Mathew et al., 2022), ChartQA (Masry et al., 2022),
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Method LLM VE #Params PT + IT MMBEN MMBCN MMMU MathVista Muirbench

BLIP-2 Vicuna-13B ViT-g/14 14.2B 129M - - - - -
InstructBLIP Vicuna-7B ViT-g/14 7.91B 130.2M 36 23.7 - - -
InstructBLIP Vicuna-13B ViT-g/14 14.2B 130.2M - - - 25.3 -
Shikra Vicuna-13B ViT-L/14 13B 6.1M 58.8 - - - -
IDEFICS LLaMA-7B ViT-H/14 9B 354M 48.2 25.2 - 19.8 -
IDEFICS LLaMA-65B ViT-H/14 80B 354M 54.5 38.1 - - -
Qwen-VL-Chat Qwen-7B ViT-G/14 9.6B 1.4B 60.6 56.7 35.9 - -
LLaVA-1.5 Vicuna-7B ViT-L/14 7B 1.2M 64.3 58.3 35.11 21.1 23.46
mPLUG-Owl2 LLaMA-7B ViT-L/14 8.2B 348M 64.5 - 32.7 22.2 -
BRAVE FlanT5-XL ♣ 10B 100M - - - -

EMMA Vicuna-7B 7B ViT-L/14 1.8M 66.44 60.15 35.44 25.1 32.0

Table 4: This table compares EMMA with previous methods on specialized MLLM benchmarks.
EMMA delivers the best performance on 3/5 benchmarks and secures second place on the remain-
ing two with less than 0.5% difference. The ♣ symbol denotes the collection of vision encoders
utilized by BRAVE, including EVA-CLIP-g Fang et al. (2023), ViT-L/14 Radford et al. (2021),
SILC-G/16 Naeem et al. (2025), ViT-e Chen et al. (2022), and DINOv2-L/14 Oquab et al. (2023).

and DocVQA Mathew et al. (2021). These benchmarks are specifically designed to assess var-
ious aspects of text understanding within visual contexts. OCRbench (Liu et al., 2023b) and
TextVQA (Singh et al., 2019) evaluate the ability to extract and interpret text from complex vi-
sual inputs, while InfoVQA (Mathew et al., 2022) focuses on understanding textual information in
document-like visual contexts. ChartQA (Masry et al., 2022), on the other hand, tests a model’s
capability to interpret textual and numerical data from charts and graphs. Lastly, DocVQA assesses
a model’s proficiency in answering questions about scanned documents. The comparison between
LLaVA-1.5 and EMMA is presented in Table 5. Notably, EMMA’s visual token refinement process
does not yield improvements on OCR-specific benchmarks. This finding suggests that the proposed
method is most effective when the raw visual encodings contain rich information about the im-
ages, allowing the refinement process to remove redundant and unnecessary details while providing
instruction-aware representations.

Method OCRbench TextVQA InfoVQA ChartQA DocQA
LLaVA-1.5 34.00 58.20 14.80 10.21 18.93
EMMA 34.67 57.00 15.00 9.90 18.27

Table 5: Performance comparison of LLaVA-1.5 and EMMA on OCR-related benchmarks.

5 ABLATION STUDY.

Training Data. To ensure that any performance improvements are not simply due to the addi-
tion of more data, we use the same dataset as the baseline model. Figure 5a demonstrates the
improvements achieved by our proposed method, EMMA, across several benchmarks compared
to the baseline model, LLaVA-1.5. EMMA consistently outperforms LLaVA-1.5 on tasks such as
MMVP (Tong et al., 2024) (+9.3%), MuirBench (Wang et al., 2024a)(+5.62%), SQA (Lu et al.,
2022) (+4.2%), MMBench (Liu et al., 2023a) (+1.9%), and POPE (Li et al., 2023e) (+1.17%) show-
ing consistent gains in cross-modal tasks requiring visual and textual understanding.

Ablations on Text Encoder. We ablate the text feature’s abstraction level in this section. The
textual features can be optionally derived from either the final layer or the penultimate layer of
the CLIP Text Encoder. A comparison between the two methods of extracting textual features is
presented in Figure 5b, demonstrating the clear superiority of features derived from the penultimate
layer. We hypothesize that the final layer of CLIP captures more global and abstract semantics of
the instruction, whereas the penultimate layer focuses on finer details. Additionally, since visual
features are extracted from the corresponding layer in the visual encoder, using the same layer in
the text encoder ensures both modalities operate at a similar level of abstraction, promoting better
alignment between them.
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Figure 5: Left: Comparing EMMA with the state-of-the-art model LLaVA-1.5 demonstrates that
EMMA surpasses the baseline across a range of benchmarks up to 9.3%. Right: This radar chart
compares EMMA’s performance when leveraging textual features generated by either the penulti-
mate or last layer of the text encoder, highlighting the advantage of features associated with the
penultimate layer.

6 CONCLUSION

In this work, we addressed the inefficiencies in the modality adaptation modules employed by cur-
rent multi-modal large language models. We hypothesized that the initial alignment between visual
and textual encodings plays a critical role in determining the complexity level of the modality adap-
tation module and the necessary amount of training data. Our lightweight approach, EMMA (En-
hanced Multi-Modal Adaptation), leverages CLIP’s text encoder to generate instruction encodings
and, by exploiting this initial alignment, demonstrates that the modality adaptation module can be
simple while still enhancing the alignment between visual and textual modalities. Through extensive
analysis, we demonstrated that EMMA effectively produces instruction-aware visual representations
aligned with the language model. Our experiments, evaluated across multiple benchmarks, show that
EMMA significantly outperforms state-of-the-art models that use modality adaptation modules 50×
larger. Finally, our robustness analysis, particularly in hallucination avoidance, confirmed EMMA’s
superior ability to accurately process multi-modal data, even in the challenging scenarios.
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