
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SYNSQL: SYNTHETIC DATABASE GENERATION FOR
ROBUST EVALUATION OF TEXT-TO-SQL SYSTEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

A central challenge in test-time scaling for text-to-SQL is generating test
databases that can reliably validate arbitrary queries, yet existing tools remain
narrow in scope and limited in capability. We introduce SynSQL, a framework for
synthesizing test databases conditioned on natural language questions and schema
structure. Unlike prior approaches that generate data from gold queries, SynSQL
leverages large language models to generate tables directly from question–schema
alignment, while remaining compatible with gold queries when available for eval-
uation. The framework consists of a schema selector, a synthesizer, and a critic
with iterative refinement, which jointly align semantic cues from the question with
structural constraints from the schema to guide database synthesis. Experiments
on the Spider and BIRD benchmarks demonstrate that SynSQL produces realis-
tic, constraint-respecting databases that effectively stress-test text-to-SQL models.
SynSQL not only complements the coverage of human-curated benchmarks but
also outperforms prior test database generation methods across diverse schema
complexities. On Spider, SynSQL achieves a 93.04% success rate, surpassing
the original human-authored dataset (92.55%), and on BIRD it attains a 79.23%
agreement rate, substantially higher than prior automated methods, all while op-
erating without access to gold queries during data generation.

1 INTRODUCTION

Verifying program correctness, ensuring that a system behaves as intended, has long been a cen-
tral challenge in computer science, complicated by the undecidability of the halting problem (Tur-
ing, 1936). Foundational work in formal methods sought principled ways to reason about cor-
rectness (Hoare, 1969), but scaling such approaches to modern machine learning systems remains
elusive. In practice, benchmarks have emerged as practical surrogates for correctness: carefully
curated collections of test data that enables systematic evaluation and comparison across systems.
From early datasets such as MNIST (LeCun et al., 2002) to large-scale language understanding
benchmarks like SQuAD (Rajpurkar et al., 2016), GLUE (Wang et al., 2018), and HELM (Liang
et al., 2022), benchmarks have repeatedly provided the common ground on which progress in AI
research is measured.

In text-to-SQL, benchmarks such as Spider (Yu et al., 2018) and BIRD (Li et al., 2023) have
played this role with significant impact. By pairing natural language (NL) questions with SQL
queries over curated relational databases, these benchmarks have enabled rapid iteration and com-
parison of text-to-SQL systems. However, despite their central role, recent analyses have shown
that benchmark-driven evaluation remains fragile, narrow in scope, and often misaligned with real
deployment needs (Mitsopoulou & Koutrika, 2025; Renggli et al., 2025).

A core challenge lies in the quality of databases themselves. Since benchmarks rely on fixed, static
databases, any inconsistencies or artifacts directly undermine evaluation reliability. Issues such as
referential integrity violations, unexpected NULL values, case mismatches between questions and
database content, or noisy entries can lead to misleading outcomes: false positives (incorrect queries
that nevertheless return the expected result) or false negatives (semantically equivalent queries that
yield different outputs). Consequently, the same query may be judged differently depending on the
database (Zhong et al., 2020).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Ratings:
Key Integrity: ?/10
Complexity: ?/10
Variety: ?/10
...
Feedbacks:
Ensure that the "lapTimes" keys are
unique and consistent across "races"
and "drivers" tables to maintain
foreign key integrity.

DATA

ratings
feedback

REDUCED
SCHEMA

INSERT INTO "races" VALUES ("101", "2009", "Malaysian Grand Prix");
INSERT INTO "races" VALUES ("102", "2009", "Australian Grand Prix");

INSERT INTO "drivers" VALUES ("44", "Lewis", "Hamilton");
INSERT INTO "drivers" VALUES ("5", "Sebastian", "Vettel");

INSERT INTO "lapTimes" VALUES ("101", "44", "1", "90000");
INSERT INTO "lapTimes" VALUES ("101", "44", "1", "89500");

Key Values Extraction:
["Lewis", "Hamilton", "2009", "Malaysian Grand Prix"]

Ensemble Column Selection:
["drivers.driverId", "drivers.forename", "drivers.surname", ...]
["drivers.forename", "drivers.surname", "races.year", "races.name", ...]
["drivers.forename", "drivers.surname", "lapTimes.milliseconds", ...]
Column Expansion:
["lapTimes.raceId", "seasons.year", "circuits.name"]

What is the average lap time for Lewis Hamilton
in the 2009 Malaysian Grand Prix?

Schema Selector Synthesizer

REDUCED SCHEMA + [FEEDBACKS] INSERT STATEMENTS

+

FEEDBACKS

(IF APPLICABLE)

Critic
DATABASE

INSERT

FULL SCHEMA REDUCED SCHEMA

Figure 1: Overview of the SynSQL framework. The schema selector identifies relevant schema ele-
ments and reduces the schema space. The synthesizer generates test data based on the NL question
and reduced schema. The critic evaluates the quality of the generated data and provides feedback
for improvement.

Beyond benchmark construction, evaluation often takes place in settings where suitable databases
do not exist. During system development, teams face cold-start scenarios in which schemas exist
but no database content is available, or privacy-sensitive applications where real data cannot be
shared (Ge et al., 2024). In such cases, developers are left with fragile proxy metrics or ad hoc
synthetic data, neither of which provides robust evaluation. Addressing these challenges requires
frameworks capable of synthesizing realistic, constraint-respecting test databases tailored for text-
to-SQL evaluation.

Limitations of Prior Work Existing approaches for test database generation, such as
AGENDA (Deng et al., 2005) and Qex (Veanes et al., 2010), as well as more recent systems like
XData (Chandra et al., 2015; Somwase et al., 2024) and TestSuiteAccuracy (Zhong et al., 2020),
focus on generating input tables to test SQL queries. These methods assume access to a gold SQL
query q, presumed correct, and generate neighboring or mutated queries that are syntactically simi-
lar but semantically incorrect. Test data is then designed to differentiate q from its mutations. While
effective in query-centric testing, this paradigm is bounded by the complexity of queries the frame-
work can handle and does not generalize to settings when evaluation must be driven directly by
natural language questions and schema structure.

Our Approach In contrast to prior work, we explore a more realistic and challenging setting: test
database generation directly from the NL question and schema. This removes the dependency of the
data synthesis process on curated SQL annotations and their mutations, enabling broader applicabil-
ity. Our central research question is: Can a meaningful test database be constructed using only the
NL question and schema, in order to assess the correctness of the generated SQL query?

Our hypothesis is that semantic signals from the question, when combined with schema structure,
can guide the synthesis of input tables that reveal errors, ambiguities, or misinterpretations in SQL
generation. To this end, we introduce SynSQL, a framework for automatic databases synthesis that
leverages large language models (LLMs) for question understanding and systematically aligns ques-
tion semantics with schema constraints. SynSQL adopts a modular, three-agent design (Figure 1):
the Schema Selector prunes irrelevant relations to simplify schemas; the Synthesizer generates test
tables conditioned on the NL question and reduced schema; and the Critic evaluates the table data
and provides feedback for iterative refinement. This interactive pipeline produces realistic, minimal,
and constraint-respecting databases that adapt to both schema and query semantics.

Our contributions can be summarized as follows: (1) We introduce SynSQL, a framework for syn-
thetic database generation in text-to-SQL tasks to extend the existing evaluation methods. (2) Our
framework ensures generation of targeted, minimal, and realistic databases that respect schema con-
straints (e.g. foreign key relationships and uniqueness) and align with question semantics to dif-
ferentiate between correct and incorrect SQL queries. (3) Through comprehensive experiments

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

on the Spider and BIRD benchmarks, we demonstrate that SynSQL complements the coverage
of human-curated benchmarks and also outperforms previous automated test database generation
methods across varying schema complexities. Specifically, on Spider, SynSQL achieves a 93.04%
success rate, surpassing the original human-authored databases (92.55%), and on BIRD, it reaches
a 79.23% agreement rate, outperforming prior automated approaches.

2 RELATED WORK

Test Data Generation for SQL Test data generation for SQL queries has been explored through
various strategies, including random data generation (Bati et al., 2007), constraint-based ap-
proaches (Veanes et al., 2010; Shah et al., 2011), and mutation-based techniques (Tuya et al.,
2007). Qex (Veanes et al., 2010) synthesizes tuples using SMT solving to guarantee non-empty
query results.XData (Shah et al., 2011) builds on this idea by generating datasets that differentiate
a given SQL query from its syntactically similar but semantically incorrect mutations, with recent
follow-up work (Somwase et al., 2024) supporting more complex SQL constructs. TestSuiteAc-
curacy (Zhong et al., 2020), introduced in the context of the Spider benchmark (Yu et al., 2018),
employs fuzzing techniques(Padhye et al., 2019) to create large numbers of random databases, from
which a small subset is selected to maximize code coverage with respect to the gold query. In
contrast, APEL (Zhong et al., 2022) synthesizes small human-interpretable input datasets to enable
non-programmers to reliably label program outputs.

Synthetic Data Generation with LLMs LLMs have been increasingly used for for generating
synthetic data across NLP tasks (Wang et al., 2022; Ramesh et al., 2022; Nadăs, et al., 2025; Yoo
et al., 2021; Dai et al., 2025), including program test synthesis (Wang et al., 2024; Chen et al.,
2022; Yuan et al., 2023; Bhatia et al., 2024; Yang et al., 2024). In the domain of text-to-SQL,
recent work has focused on producing large synthetic NL–SQL corpora for supervised learning,
such as Gretel (Meyer et al., 2024) and Omni-SQL (Li et al., 2025). Complementary work also
explores question generation over structured sources using LLM reasoning strategies (Liang et al.,
2023), though these methods target question synthesis rather than database construction. Beyond
data generation, LLMs have also been used in database-related tasks such as SQL dialect translation
and query adaptation (Ngom & Kraska, 2024; Daviran et al., 2025). These efforts demonstrate the
versatility of LLMs in understanding schema structure and SQL semantics but do not address the
challenge of creating executable, constraint-respecting test databases.

Relation to Our Work Unlike prior work that focuses on generating NL–SQL pairs or mutating
SQL queries, our framework targets the synthesis of complete test databases directly from ques-
tion–schema alignment. SynSQL’s three-stage design—schema selection, LLM-guided data syn-
thesis, and iterative criticism—enforces schema integrity and semantic alignment, enabling realistic
and compact databases tailored for evaluating text-to-SQL systems.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

Given a natural language question Q, a database schema S, and optional auxiliary knowledge K,
the task of synthetic data generation using a language model π can be formulated as:

Dsyn = f(Q,S,K;π) (1)

where Dsyn denotes the generated synthetic database and f is a generation function parameterized
or guided by the language model π. When Dsyn is used to evaluate the correctness of a predicted
SQL query qpred against a reference query qgold, it must be populated with realistic rows that reflect
the semantic cues of Q; for example, if Q asks for What was Brent Thomason’s major?, the database
should contain name of majors for student named Brent Thomason. In addition, Dsyn should en-
able clear differentiation between correct and incorrect queries by producing different results for

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

semantically distinct queries, while also respecting all schema constraints such as foreign keys and
domain-specific rules.

3.2 OVERVIEW OF FRAMEWORK

We introduce SynSQL, a three-staged framework for generating high-quality synthetic databases tai-
lored for evaluating text-to-SQL systems. The pipeline consists of a Schema Selector, a Synthesizer,
and a Critic. As shown in Figure 1, SynSQL incorporates a feedback loop between the synthesizer
and the critic. After an initial round of data generation, the critic evaluates the output and provides
structured feedback. If the data achieves a score above a predefined threshold (e.g., 8 out of 10), the
process terminates. Otherwise, the synthesizer incorporates the feedback into a new round of data
generation. This loop typically continues for a fixed number of rounds or until the generated data
satisfies all quality criteria.

3.3 SCHEMA SELECTION

Real-world database schemas often contain many tables and columns (sometimes in the range of
hundreds), while most NL questions reference only a small subset. Providing the full schema to
the model can lead to the generation of unnecessary or inconsistent data (e.g., mismatched column
counts or malformed tables). The challenge is to accurately identify the relevant schema elements
while preserving enough context for realistic and coherent data synthesis.

Our schema selection strategy differs from that of state-of-the-art text-to-SQL systems (Talaei et al.,
2024; Pourreza et al., 2024; Gao et al., 2024), which typically map question keywords to schema
elements (e.g., table and column names) and database values in order to prune the schema down
to only those components strictly necessary for query generation. In our setting, however, no real
database content is available, and the data itself must be generated synthetically. Consequently,
SynSQL prioritizes recall over minimality: rather than restricting to the smallest matching subset,
we retain all schema elements that could plausibly support realistic data synthesis, including those
not explicitly mentioned in the question, such as foreign keys or related attributes.

Algorithm 1 Schema Selector for SynSQL
Require: Natural language question Q, full schema S, auxiliary knowledge K, model π

1: Ensure: Reduced schema Sreduced relevant to Q
2: Initialize Score ← ∅
3: for temperature t in {0, 0.3, 0.7} do
4: Query π with (Q,S,K) at temperature t to extract core elements
5: Score ← Score∪ elements returned by π
6: end for
7: Query π for semantically related columns to Score

8: Saux ← related columns returned by π
9: Sreduced ← Score ∪ Saux

10: return Sreduced

To identify this relevant subset, we employ an ensemble expansion strategy. As outlined in Algo-
rithm 1, the LLM is queried multiple times at different temperature settings to capture a diverse set
of core columns. The union of the results is taken to maximize recall. Next, we expand the set by
querying the LLM for semantically similar or functionally related columns. This helps in discover-
ing auxiliary schema elements that support better data realism. At the end of this process, we have a
reduced schema that includes only the relevant elements needed to cover the question. This reduced
schema is then used by the data synthesizer to generate test data.

The benefit of this approach is that we can generate smaller, more focused databases that are easier
to inspect and validate, while still capturing the necessary complexity to effectively evaluate SQL
queries. These compact synthetic databases especially enable human-in-the-loop evaluation in cold-
start development or privacy-sensitive environments, where real data is unavailable or restricted.
Though not the focus of this work, SQL query correctness can then be determined by comparing

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

the results against expected outputs, observed by the human evaluator, even in the absence of gold
queries or large-scale benchmarks.

3.4 DATA SYNTHESIS

Existing approaches in database synthesis focus on techniques that generate data to differentiate be-
tween reference SQL query and its neighbors/mutations. This process is bounded by the complexity
of queries their framework can handle. If the system cannot yet process a certain query structure,
then it also cannot generate databases that can kill mutations for that structure. For example, in
XData (Somwase et al., 2024), a feature like ORDER BY falls outside its scope. Or in TestSuiteAc-
curacy (Zhong et al., 2020), the authors note that too many WHERE operations can lead to ineffective
distinguishing of neighboring queries.

In contrast, our synthesizer does not rely on reference queries and focuses on generating realistic
databases that align with the semantics of the NL question. We leverage LLMs to generate SQL
INSERT statements that can populate the reduced schema with synthetic yet realistic data. The gen-
eration process is guided by the intent of the NL question and aims to produce data that both aligns
with the semantics and provides meaningful contrast between correct and incorrect SQL queries.

Data Validation Database schemas typically encode structural constraints, including primary and
foreign keys, uniqueness, and value ranges. Generating synthetic data that satisfies these constraints,
while preserving realistic value distributions, is challenging. Failure to respect these constraints can
result in data that causes SQL queries to fail or produce misleading results. Once the initial data is
generated, we apply rule-based postprocessing to ensure correctness and schema compliance. This
involves removing tables or columns present in data but not in the schema, only retaining data that
respects schema constraints, enforcing case sensitivity based on named entities and literals extracted
from the question, and ensuring that the number of values matches the number of columns in each
table. When discrepancies are found, we either pad with NULLs or truncate values as needed. This
step is critical for maintaining the syntactic and semantic integrity of the SQL statements.

3.5 DATA CRITIC

The synthetic data produced by the synthesizer may not always meet the desired quality standards.
There could be issues such as misalignment with the NL question, violations of schema constraints,
or lack of edge cases in the data distribution. Inspired by the idea of self-correction for LLMs (Pan
et al., 2023), we introduce a Critic module that evaluates the generated data and provides feedback
for improvement which determines whether the data should be accepted or refined. It scores the
data on a scale of 1 to 10 across several dimensions, including alignment with question hints, key
and referential integrity, schema coverage, complexity of the data, variety in records, and overall
relevance to the question. Instead of using simple pass/fail rules, the critic provides a detailed
evaluation that allows the synthesizer to improve in targeted ways. If the average score meets the
quality threshold, the data is accepted. Otherwise, the critic’s feedback is incorporated into a new
iteration of data generation. This loop ensures that the final dataset not only conforms to the schema
and executes without errors but also meaningfully tests the correctness of SQL predictions in the
context of the original question.

4 EXPERIMENTS

Our experimental evaluation is designed to assess two core aspects: (1) the quality of the syn-
thetic data generated by SynSQL compared to human-curated datasets and competitive automated
approaches, and (2) the contribution of different components of SynSQL via an ablation study.

4.1 EXPERIMENTAL SETUP

Datasets We evaluate SynSQL on two widely used text-to-SQL benchmarks: Spider (Yu et al.,
2018) and BIRD (Li et al., 2023). Spider features natural language questions paired with SQL
queries over relatively simple schemas, while BIRD includes more complex queries involving mul-
tiple joins, nested subqueries, and advanced aggregations. This contrast enables a comprehensive

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

assessment of SynSQL across varying schema complexity and linguistic difficulty. Our auxiliary
knowledge K (as defined in Section 3.1) is set to the evidence or hints associated with each question
for BIRD, and to an empty string for Spider, which does not provide such hints.

Baselines We compare SynSQL to three baselines: (1) BIRD Original and (2) Spider Origi-
nal, which refer to the original human-authored databases included in the dev splits of the respec-
tive benchmarks and serve as the gold standard for test data; and (3) TestSuiteAccuracy (TSA)
by Zhong et al. (2020) that generates test databases by finding neighboring queries to each gold
query and applying fuzzing-based techniques to produce random databases, benefiting from access
to the gold query during data generation. Among existing automated test data generation methods,
TSA is the only approach that has an available codebase and can be applied to any standalone dataset
such as Spider or BIRD, making it the only directly comparable baseline for our setting.

Text-to-SQL Systems To evaluate the ability of SynSQL generated databases to separate correct
queries from incorrect ones, we use two competitive text-to-SQL models to generate candidate SQL
queries: DIN-SQL (Pourreza & Rafiei, 2023) and DAIL-SQL (Gao et al., 2023). The predictions
produced by these models are evaluated against the gold queries using both human-curated and
synthetic databases.

4.2 EVALUATION METRICS

We employ three complementary metrics to assess the quality and utility of the generated databases:

Success Rate (SR) Using this metric we measure the fraction of questions for which the gold SQL
query produces a non-empty result on the test database. This indicates whether the generated data
captures the semantic intent of the natural language question (from the perspective of the human
who wrote the gold query). Random data often fails here, so aligning with question intent is crucial.

Execution Accuracy (EX) We can evaluate the fraction of questions for which the model-
generated SQL query produces the same result as the gold SQL query when executed on the test
database (Zhong et al., 2017). The comparison of this metric with human-curated databases, mea-
sures the database’s ability to distinguish between correct and incorrect SQL queries.

Agreement Rate (AR) Inspired by Cohen’s Kappa (Cohen, 1960) score, this metric assesses
the level of agreement between the discriminative power of model-generated and human-curated
databases on a query-by-query basis. Using this metric we can show that if the evaluation of each
query on the synthetic database agrees with the evaluation on the original database, then the synthetic
database is in agreement with the original one. Formally, AR is defined as:

AR =
Po − Pe

1− Pe
(2)

where Po is the observed agreement (i.e., the proportion of queries where both databases yield
the same evaluation result) and Pe is the expected agreement by chance, calculated based on the
marginal probabilities of each database’s evaluations. For more on this metric please refer to Ap-
pendix section A.2.

5 RESULTS

5.1 MAIN RESULTS

We present the performance of the proposed SynSQL framework using a mix of proprietary and
open-source language models: GPT-4.1-mini, Gemini-2.5-Flash, and Qwen-3-8B. The critic module
uses a maximum of three refinement iterations, terminating early if the data achieves a quality score
of 8.0 or higher on a 10-point scale. For our vanilla baseline, we prompt the LLM to generate
synthetic data in a single pass without schema reduction or critic feedback. The vanilla baseline
is equivalent to SynSQL with only the synthesizer component, using the same prompting strategy
but operating on the full schema without iterative refinement. For more details on implementation,
please refer to section 6.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison of SynSQL and baseline methods on BIRD and Spider dev sets.
SR: success rate (%), AR: agreement rate (%), EX: execution accuracy (%), and performance gap
(∆) is defined as |EXorig − EXmethod|.

Dataset Method SR DAIL-SQL DIN-SQL
AR↑ EX ∆ ↓ AR↑ EX ∆ ↓

BIRD

BIRD (Original) 99.87 100.00 52.93 - 100.00 41.39 -
Vanilla GPT-4.1-Mini 69.43 58.57 68.12 15.19 61.88 55.61 14.22
Vanilla Gemini-2.5-Flash 67.14 61.56 66.95 14.02 65.64 54.95 13.56
SynSQL(Qwen-3-8B) 73.60 70.64 58.21 5.28 72.94 47.78 6.39
SynSQL(Gemini-2.5-Flash) 80.57 75.46 55.61 2.68 79.23 44.00 2.61
SynSQL(GPT-4.1-Mini) 82.07 73.51 55.02 2.09 78.90 43.09 1.70

Spider

Spider (Original) 92.55 100.00 80.66 - 100.00 80.46 -
Vanilla GPT-4.1-Mini 91.88 78.20 83.07 2.41 76.44 82.85 2.39
Vanilla Gemini-2.5-Flash 82.59 74.33 84.24 3.58 72.46 83.08 2.62
SynSQL(Qwen-3-8B) 77.18 66.99 84.24 3.58 66.89 81.72 1.26
SynSQL(Gemini-2.5-Flash) 92.84 80.69 81.72 1.06 76.53 81.33 0.87
SynSQL(GPT-4.1-Mini) 93.04 78.05 81.24 0.58 76.01 79.79 0.67

Table 2: Performance comparison of SynSQL and TestSuiteAccuracy (TSA) alongside the original
benchmarks. BIRD results are computed on a subset of 922 examples where TSA evaluation was
feasible.

Dataset Method SR DAIL-SQL DIN-SQL
AR↑ EX ∆ ↓ AR↑ EX ∆ ↓

BIRD∗

BIRD (Original) 99.57 100.00 51.74 - 100.00 38.72 -
TSA Zhong et al. (2020) 77.76 60.97 57.27 5.53 64.71 46.31 7.59
SynSQL(Gemini-2.5-Flash) 81.67 74.76 54.56 2.82 76.14 41.97 3.25
SynSQL(GPT-4.1-Mini) 82.86 70.85 53.90 2.16 76.45 40.67 1.95

Spider

Spider (Original) 92.55 100.00 80.66 - 100.00 80.46 -
TSA Zhong et al. (2020) 99.03 83.15 76.31 4.35 79.99 75.73 4.73
SynSQL(Gemini-2.5-Flash) 92.84 80.69 81.72 1.06 76.53 81.33 0.87
SynSQL(GPT-4.1-Mini) 93.04 78.05 81.24 0.58 76.01 79.79 0.67

Success Rate. As shown in Table 1, SynSQL with GPT-4.1-Mini as the base model, achieves a
success rate of 82.07% on BIRD, outperforming both the vanilla GPT-4.1-Mini baseline (69.43%)
and other LLM configurations. On Spider, SynSQL again leads with 93.04%, even surpassing the
original human-authored database (92.55%). This is partly due to inconsistencies in the Spider
original databases, such as missing data or formatting issues (e.g., trailing spaces), which SynSQL
avoids by design. Appendix figures 18 and 19 provide examples of such issues.

Agreement Rate. SynSQL achieves high agreement rates with the original databases, indicating
that it effectively preserves and complements the evaluation characteristics of human-curated data.
On BIRD, SynSQL(Gemini-2.5-Flash) attains AR scores of 75.46% for DAIL-SQL and 79.23%
for DIN-SQL, significantly outperforming the vanilla GPT-4.1-Mini baseline (61.56% and 65.64%,
respectively). On Spider, SynSQL again achieves substantial agreement scores, closely matching
the original database’s performance.

Execution Accuracy and Gap. On BIRD, the EX gap between SynSQL (GPT-4.1-Mini) and the
original data is just 2.09 for DAIL-SQL and 1.70 for DIN-SQL, an order of magnitude smaller
than the gaps observed for vanilla GPT-4.1-Mini (15.19 and 14.22, respectively). On Spider, all
methods perform more closely due to its simpler schema and queries. SynSQL again performs
competitively with EX gaps under 1.0. Consequently, SynSQL closely preserves the ranking of
text-to-SQL models observed with the original databases. For instance, DAIL-SQL consistently
outperforms DIN-SQL across all SynSQL configurations, closely mirroring the execution gaps seen
with the original data. This consistency in model ranking further validates the effectiveness of
SynSQL-generated databases for complementary robust evaluation.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Comparison with TestSuiteAccuracy (TSA). As shown in Table 2, while TSA performs well
on Spider, achieving the highest success rate at 99.03%, its effectiveness drops on BIRD, with a
success rate of 77.76%, significantly lower AR of 60.97% for DAIL-SQL, and larger EX gaps (e.g.,
5.53 for DAIL-SQL). In contrast, SynSQL achieves higher success (82.86%), higher agreement rate
(74.76%), and lower EX gaps (2.16), indicating better semantic alignment and discriminative power
on complex schemas.

TSA’s reliance on gold SQL queries offers an advantage on simpler benchmarks but becomes a
liability on datasets like BIRD. For example, it fails to resolve foreign key references in databases
like european football 2, and generates impractically large test databases (e.g., multiple GBs
per question) in card games and codebase community. Consequently, we excluded such
problematic cases and report results on a filtered subset of 922 BIRD questions. For fairness, the
same subset was used to evaluate SynSQL and the BIRD original databases in Table 2. Overall,
SynSQL not only outperforms TSA on BIRD but also delivers stable performance across datasets,
generating minimal and realistic test databases. For more on realism and minimalistic nature of these
databases, see A.9. These results demonstrate SynSQL’s practicality and robustness for realistic
text-to-SQL evaluation scenarios.

Performance Varying Schema Complexity We also analyze SynSQL’s performance rates across
question-schema complexity levels on the BIRD dev set, defined by the total number of columns
across all tables referenced in each gold query: Low (1–15), Medium (16–60), and High (61+).
As shown in Appendix Figure 3, SynSQL consistently outperforms vanilla GPT-4.1-mini, with the
largest margin at high complexity, 76.99% vs. 36.15% for success rate and 71.07% vs. 33.19% for
agreement rate. This demonstrates SynSQL’s robustness as schema complexity increases.

5.2 FINE-GRAINED ANALYSIS OF EXECUTION ACCURACY

To better understand the impact of synthetically generated data on execution accuracy, we conducted
an error analysis comparing the outputs of DAIL-SQL queries executed on the original BIRD dev
set versus the SynSQL-generated data. We randomly sampled 250 questions from the BIRD dev
set and executed the corresponding DAIL-SQL queries on both the original BIRD and the SynSQL-
generated databases. Comparing the outputs to the ground truth, we found 35 instances of disagree-
ments where the evaluation results differed across the two datasets. Of these, SynSQL produced
correct (positive) results in 21 cases where BIRD did not, resulting in a higher execution accuracy.
Conversely, 14 cases were evaluated as positive on the original BIRD dataset but negative on Syn-
SQL.

Table 3: Analysis of evaluation
disagreements between SynSQL and
BIRD from a sample of 250 questions
with 35 discrepancies.

BIRD → SynSQL Change

Negative → Positive 21

From False Negative to True Positive 10
From True Negative to False Positive 11

Positive → Negative 14

From False Positive to True Negative 5
From True Positive to False Negative 9

A closer examination revealed that 15 out of the 35 dis-
agreements are attributed to data quality issues in the orig-
inal BIRD dev set. For instance, in the toxicology
database, the molecule id column in the bond table
is a foreign key referencing the molecule table. How-
ever, 101 rows in the bond table contain molecule id
values not present in the molecule table, causing other-
wise correct queries to fail (e.g., question 286). Similarly,
in the thrombosis prediction database, the ID col-
umn in the Examination table is a foreign key referenc-
ing the Patient table, yet 694 rows in Examination
have ID values absent from Patient, leading to possible
false negatives (e.g., question 1273). These are examples of
one of the key advantages of SynSQL: by generating data
that respects all schema constraints, it can avoid false negatives caused by such data quality issues
in human-curated datasets.

Another example is question 357: What type of promotion is of card ’Duress’? The gold query
includes a NOT NULL condition for promoTypes, while the predicted query does not. On the
original BIRD database, this leads to false negative due to the presence of many NULL artifacts.
However, since the question and evidence do not specify the presence of NULL values, the predicted
query is arguably correct. SynSQL-generated database has a question-oriented design which gener-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

ates data that aligns with the semantic signals of the question, resulting in a more accurate evaluation
of such cases.

Table 3 summarizes the transitions in execution results on a sample of 250 questions. Notably,
SynSQL corrects 10 false negatives and 5 false positives. These findings suggest that SynSQL’s
constraint enforcement and question-driven synthesis approach helps mitigate common data quality
issues found in human-curated datasets, such as referential integrity violations and unexpected NULL
values, resulting in more accurate and reliable evaluation of text-to-SQL systems on cases affected
by such inconsistencies.

5.3 ABLATION STUDIES

Table 4 shows the effect of schema selection on performance. The SynSQL method with ensemble-
expansion outperforms all ablated versions, confirming that both phases contribute meaningfully to
success rate, especially on BIRD, where complex schemas increase the difficulty of accurate column
selection. Using the oracle schema yields highest success rate, indicating further improvements
in schema selection could enhance performance. We also observe that the average column count
selected by the schema selector is significantly lower than the full schema, demonstrating SynSQL’s
ability to generate compact databases while maintaining high success rates. However, aggressive
reduction risks omitting columns required by gold queries, causing otherwise correct queries to fail.
This highlights the inherent tension between minimizing schema complexity and preserving query
executability. Despite this limitation, SynSQL’s ensemble-expansion strategy achieves a balance
that maintains high success rates while generating significantly more compact databases than the
full schema.

As illustrated in Appendix figures 16 and 17, these compact synthetic databases are easier to inspect
and validate, facilitating future directions such as human-in-the-loop evaluation and generating ex-
pected outputs via table reasoning.

Table 4: Ablation study on schema selection strategies in SynSQL. We report success rate (SR) and
average column count (CC) selected by the schema selector on the BIRD and Spider dev sets. All
variants use GPT-4.1-Mini as both the base model and the critic.

BIRD Spider
Method SR (%) CC SR (%) CC

SynSQL w Oracle Schema 91.46 4.71 94.58 2.85

SynSQL 82.07 8.37 93.04 6.71
SynSQL w/o Expansion 79.53 5.42 92.75 3.92
SynSQL w/o Ensemble-Expansion 77.38 4.99 91.88 3.56
SynSQL w/o Schema Selection (Full-Schema) 71.25 75.56 92.94 24.55

GPT-4.1-Mini

GPT-4.1-Mini (w/o Critic
)

Gemini-2.5-Flash

Gemini-2.5-Flash (w/o Critic
)

Qwen-3-8B

Qwen-3-8B (w/o Critic
)

65

70

75

80

85
82.07 82

80.57

78.03

73.6

67.86

Su
cc

es
s

R
at

e
(%

)

Figure 2: Impact of the critic component on success
rate (%) of SynSQL with three different LLMs on the
BIRD dev set.

As illustrated in Figure 2, the impact
of the critic component on the success
rate of SynSQL across three LLMs on
the BIRD dev set is significant. Incor-
porating the critic consistently improves
performance: Qwen-3-8B improves from
67.86% to 73.60%. The effect is less
pronounced for GPT-4.1-Mini, which al-
ready performs strongly, but the critic still
ensures more stable and reliable results.
These results demonstrate that the critic
plays a key role in improving the qual-
ity of synthetic data. By enforcing align-
ment with the question intent, schema con-
straints, and data diversity, the critic en-
ables the synthesizer to produce more ac-
curate and executable SQL queries. This

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

iterative feedback loop is particularly valu-
able for smaller or weaker models, which are more prone to generating invalid or incomplete outputs.

6 CONCLUSION

In this work, we presented SynSQL, a novel framework for synthetic database generation in text-to-
SQL evaluation, producing databases that respect schema constraints and align with the natural lan-
guage question intent. Extensive experiments on Spider and BIRD benchmarks show that SynSQL
not only complements human-curated datasets but also outperforms existing automated methods,
particularly as schema complexity increases. These results highlight SynSQL’s ability to enhance
the effectiveness and reliability of text-to-SQL evaluation. The realistic and minimal nature of the
synthetic data generated by SynSQL, combined with its ability to address key challenges in current
evaluation practices, such as referential integrity violations or unexpected and noisy artifacts, paves
the way for more robust and scalable evaluation of text-to-SQL systems encountered at real-world
Text-to-SQL challenges.

REPRODUCIBILITY STATEMENT

The link to the anonymous codebase for SynSQL is available in the README.md file in supplemen-
tary materials. SynSQL is implemented in Python using the LangChain framework (Chase, 2022).
For data generation, we employ a mix of proprietary and open-source language models: GPT-4.1-
mini (OpenAI, 2023), Gemini-2.5-Flash, and Qwen-3-8B. Each experiment uses a single model as
the base for the schema selector, synthesizer, and critic. Qwen-3-8B experiments were run on a
server with NVIDIA A100 GPUs (40GB RAM), while GPT-4.1-mini and Gemini-2.5-Flash were
accessed via their respective APIs. For the TestSuiteAccuracy (TSA) baseline, we use the official
implementation provided by Zhong et al. (2020) and a server equipped with an AMD EPYC 7601
32-Core Processor and 1TB RAM.

ETHICS STATEMENT

Both datasets used in our experiments, Spider and BIRD, are publicly available and widely used
benchmarks in the text-to-SQL research community. We have ensured that our use of these datasets
complies with their respective licenses and terms of use. The synthetic data generated by SynSQL
is created solely for research purposes and does not contain any personally identifiable information
or sensitive content. The language models employed in our framework, including GPT-4.1-mini,
Gemini-2.5-Flash, and Qwen-3-8B, are accessed through their respective APIs or open-source im-
plementations. We adhere to the usage policies and guidelines set forth by the providers of these
models to ensure ethical use. We also acknowledge the potential bias inherent in large language
models, which may inadvertently influence the synthetic data generation process. This falls within
the broader challenges of bias in AI and LLMs. Additionally, in accordance with the ICLR 2026
Code of Ethics, we acknowledge the use of large language models to assist with the polishing of the
writing in this paper.

REFERENCES

Hardik Bati, Leo Giakoumakis, Steve Herbert, and Aleksandras Surna. A genetic approach for
random testing of database systems. In Proceedings of the 33rd international conference on Very
large data bases, pp. 1243–1251, 2007.

Shreya Bhatia, Tarushi Gandhi, Dhruv Kumar, and Pankaj Jalote. Unit test generation using gener-
ative ai: A comparative performance analysis of autogeneration tools. In Proceedings of the 1st
International Workshop on Large Language Models for Code, pp. 54–61, 2024.

Bikash Chandra, Bhupesh Chawda, Biplab Kar, KV Maheshwara Reddy, Shetal Shah, and S Sudar-
shan. Data generation for testing and grading sql queries. The VLDB Journal, 24(6):731–755,
2015.

Harrison Chase. Langchain: Building applications with llms through composability. https:
//github.com/hwchase17/langchain, 2022.

10

https://github.com/hwchase17/langchain
https://github.com/hwchase17/langchain

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu
Chen. Codet: Code generation with generated tests. arXiv preprint arXiv:2207.10397, 2022.

Jacob Cohen. A coefficient of agreement for nominal scales. Educational and psychological mea-
surement, 20(1):37–46, 1960.

Haixing Dai, Zhengliang Liu, Wenxiong Liao, Xiaoke Huang, Yihan Cao, Zihao Wu, Lin Zhao,
Shaochen Xu, Fang Zeng, Wei Liu, et al. Auggpt: Leveraging chatgpt for text data augmentation.
IEEE Transactions on Big Data, 2025.

Mohammadreza Daviran, Brian Lin, and Davood Rafiei. Sql-exchange: Transforming sql queries
across domains. arXiv preprint arXiv:2508.07087, 2025.

Yuetang Deng, Phyllis Frankl, and David Chays. Testing database transactions with agenda. In
Proceedings of the 27th international conference on Software engineering, pp. 78–87, 2005.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, and Jingren Zhou.
Text-to-sql empowered by large language models: A benchmark evaluation. arXiv preprint
arXiv:2308.15363, 2023.

Yingqi Gao, Yifu Liu, Xiaoxia Li, Xiaorong Shi, Yin Zhu, Yiming Wang, Shiqi Li, Wei Li, Yuntao
Hong, Zhiling Luo, et al. Xiyan-sql: A multi-generator ensemble framework for text-to-sql. arXiv
preprint arXiv:2411.08599, 2024.

Yunqing Ge, Jianbin Qin, Shuyuan Zheng, Yongrui Zhong, Bo Tang, Yu-Xuan Qiu, Rui Mao,
Ye Yuan, Makoto Onizuka, and Chuan Xiao. Privacy-enhanced database synthesis for bench-
mark publishing (technical report). arXiv preprint arXiv:2405.01312, 2024.

Charles Antony Richard Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12(10):576–580, 1969.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 2002.

Fangyu Lei, Jixuan Chen, Yuxiao Ye, Ruisheng Cao, Dongchan Shin, Hongjin Su, Zhaoqing Suo,
Hongcheng Gao, Wenjing Hu, Pengcheng Yin, et al. Spider 2.0: Evaluating language models on
real-world enterprise text-to-sql workflows. arXiv preprint arXiv:2411.07763, 2024.

Haoyang Li, Shang Wu, Xiaokang Zhang, Xinmei Huang, Jing Zhang, Fuxin Jiang, Shuai Wang,
Tieying Zhang, Jianjun Chen, Rui Shi, et al. Omnisql: Synthesizing high-quality text-to-sql data
at scale. arXiv preprint arXiv:2503.02240, 2025.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen Qin,
Ruiying Geng, Nan Huo, et al. Can llm already serve as a database interface? a big bench for
large-scale database grounded text-to-sqls. Advances in Neural Information Processing Systems,
36:42330–42357, 2023.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, et al. Holistic evaluation of language
models. arXiv preprint arXiv:2211.09110, 2022.

Yuanyuan Liang, Jianing Wang, Hanlun Zhu, Lei Wang, Weining Qian, and Yunshi Lan. Prompting
large language models with chain-of-thought for few-shot knowledge base question generation.
arXiv preprint arXiv:2310.08395, 2023.

Yev Meyer, Marjan Emadi, Dhruv Nathawani, Lipika Ramaswamy, Kendrick Boyd, Maarten
Van Segbroeck, Matthew Grossman, Piotr Mlocek, and Drew Newberry. Synthetic-Text-To-
SQL: A synthetic dataset for training language models to generate sql queries from natural lan-
guage prompts, April 2024. URL https://huggingface.co/datasets/gretelai/
synthetic-text-to-sql.

Anna Mitsopoulou and Georgia Koutrika. Analysis of text-to-sql benchmarks: limitations, chal-
lenges and opportunities. In Proceedings 28th International Conference on Extending Database
Technology, EDBT 2025, pp. 199–212. OpenProceedings. org, 2025.

11

https://huggingface.co/datasets/gretelai/synthetic-text-to-sql
https://huggingface.co/datasets/gretelai/synthetic-text-to-sql

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Mihai Nadăs, , Laura Dios, an, and Andreea Tomescu. Synthetic data generation using large language
models: Advances in text and code. IEEE Access, 2025.

Amadou Latyr Ngom and Tim Kraska. Mallet: Sql dialect translation with llm rule generation.
In Proceedings of the Seventh International Workshop on Exploiting Artificial Intelligence Tech-
niques for Data Management, pp. 1–5, 2024.

OpenAI. Gpt-4 technical report. https://arxiv.org/abs/2303.08774, 2023.

Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike Papadakis, and Yves Le Traon. Seman-
tic fuzzing with zest. In Proceedings of the 28th ACM SIGSOFT International Symposium on
Software Testing and Analysis, pp. 329–340, 2019.

Liangming Pan, Michael Saxon, Wenda Xu, Deepak Nathani, Xinyi Wang, and William Yang
Wang. Automatically correcting large language models: Surveying the landscape of diverse self-
correction strategies. arXiv preprint arXiv:2308.03188, 2023.

Mohammadreza Pourreza and Tom Kubik. How to get gemini to deeply under-
stand your database. https://cloud.google.com/blog/products/databases/
how-to-get-gemini-to-deeply-understand-your-database, Nov. 14 2025.
Accessed: 2025-11-27.

Mohammadreza Pourreza and Davood Rafiei. Din-sql: Decomposed in-context learning of text-to-
sql with self-correction. Advances in Neural Information Processing Systems, 36:36339–36348,
2023.

Mohammadreza Pourreza, Hailong Li, Ruoxi Sun, Yeounoh Chung, Shayan Talaei, Gaurav Tarlok
Kakkar, Yu Gan, Amin Saberi, Fatma Ozcan, and Sercan O Arik. Chase-sql: Multi-path reasoning
and preference optimized candidate selection in text-to-sql. arXiv preprint arXiv:2410.01943,
2024.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 1(2):3, 2022.

Cedric Renggli, Ihab F Ilyas, and Theodoros Rekatsinas. Fundamental challenges in evaluating
text2sql solutions and detecting their limitations. arXiv preprint arXiv:2501.18197, 2025.

Shetal Shah, S Sudarshan, Suhas Kajbaje, Sandeep Patidar, Bhanu Pratap Gupta, and Devang Vira.
Generating test data for killing sql mutants: A constraint-based approach. In 2011 IEEE 27th
International Conference on Data Engineering, pp. 1175–1186. IEEE, 2011.

Lei Sheng and Shuai-Shuai Xu. Csc-sql: Corrective self-consistency in text-to-sql via reinforcement
learning. arXiv preprint arXiv:2505.13271, 2025.

Sunanda Somwase, Parismita Das, and S Sudarshan. Data generation for testing complex queries.
arXiv preprint arXiv:2409.18821, 2024.

Shayan Talaei, Mohammadreza Pourreza, Yu-Chen Chang, Azalia Mirhoseini, and Amin Saberi.
Chess: Contextual harnessing for efficient sql synthesis. arXiv preprint arXiv:2405.16755, 2024.

Alan M. Turing. On computable numbers, with an application to the entscheidungsproblem. Pro-
ceedings of the London Mathematical Society, 42(1):230–265, 1936.

Javier Tuya, Ma José Suárez-Cabal, and Claudio De La Riva. Mutating database queries. Informa-
tion and Software Technology, 49(4):398–417, 2007.

Margus Veanes, Nikolai Tillmann, and Jonathan De Halleux. Qex: Symbolic sql query explorer.
In International Conference on Logic for Programming Artificial Intelligence and Reasoning, pp.
425–446. Springer, 2010.

12

https://arxiv.org/abs/2303.08774
https://cloud.google.com/blog/products/databases/how-to-get-gemini-to-deeply-understand-your-database
https://cloud.google.com/blog/products/databases/how-to-get-gemini-to-deeply-understand-your-database

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

Junjie Wang, Yuchao Huang, Chunyang Chen, Zhe Liu, Song Wang, and Qing Wang. Software test-
ing with large language models: Survey, landscape, and vision. IEEE Transactions on Software
Engineering, 50(4):911–936, 2024.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions.
arXiv preprint arXiv:2212.10560, 2022.

Lin Yang, Chen Yang, Shutao Gao, Weijing Wang, Bo Wang, Qihao Zhu, Xiao Chu, Jianyi Zhou,
Guangtai Liang, Qianxiang Wang, et al. An empirical study of unit test generation with large
language models. arXiv e-prints, pp. arXiv–2406, 2024.

Kang Min Yoo, Dongju Park, Jaewook Kang, Sang-Woo Lee, and Woomyoung Park. Gpt3mix:
Leveraging large-scale language models for text augmentation. In Findings of the Association for
Computational Linguistics: EMNLP 2021, pp. 2225–2239, 2021.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, et al. Spider: A large-scale human-labeled dataset for complex
and cross-domain semantic parsing and text-to-sql task. arXiv preprint arXiv:1809.08887, 2018.

Zhiqiang Yuan, Yiling Lou, Mingwei Liu, Shiji Ding, Kaixin Wang, Yixuan Chen, and Xin Peng.
No more manual tests? evaluating and improving chatgpt for unit test generation. arXiv preprint
arXiv:2305.04207, 2023.

Ruiqi Zhong, Tao Yu, and Dan Klein. Semantic evaluation for text-to-sql with distilled test suites.
In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 396–411, 2020.

Ruiqi Zhong, Charlie Snell, Dan Klein, and Jason Eisner. Non-programmers can label programs
indirectly via active examples: A case study with text-to-sql. arXiv preprint arXiv:2205.12422,
2022.

Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating structured queries from
natural language using reinforcement learning. arXiv preprint arXiv:1709.00103, 2017.

A APPENDIX

A.1 SUCCESS AND AGREEMENT RATES BY SCHEMA COMPLEXITY

We define schema complexity levels based on the number of columns involved in the gold SQL
query. Specifically, we count the total number of columns across all tables referenced in each gold
query; higher column counts generally correlate with more complex joins, filters, and reasoning
steps. Based on the distribution of complexity levels in the BIRD dataset, we define three buckets:
Low Complexity: Questions with a total column count of 1-15. Medium Complexity: Questions
with a total column count of 16-60. High Complexity: Questions with a total column count of 61
or more.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Low Medium High
0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

87.16

64.75

36.15

88.34

78.46 76.99

GPT-4.1-mini Vanilla
SynSQL(GPT-4.1-mini)

Low Medium High
0

20

40

60

80

100

A
gr

ee
m

en
t R

at
e

(%
) 71.43

56.78

33.19

74.23 73.11 71.07

GPT-4.1-mini Vanilla
SynSQL(GPT-4.1-mini)

Figure 3: Success and agreement rates of SynSQL vs. GPT-4.1-Mini on BIRD dev set, broken down
by schema complexity (Low: 1-15 columns, Medium: 16-60 columns, High: 61+ columns).

A.2 AGREEMENT RATE METRIC DETAILS

The Agreement Rate (AR) metric is inspired by Cohen’s Kappa score Cohen (1960), which mea-
sures inter-rater reliability. In our context, we treat the original human-curated database and each
synthetic database as two ”raters” that evaluate the correctness of SQL queries generated by text-
to-SQL models. To compute AR, we first execute each model-generated SQL query on both the
original and synthetic databases. Each execution yields a binary outcome: correct (the query pro-
duces the expected result) or incorrect (it does not). We then construct a confusion matrix based
on these outcomes, counting the number of queries that fall into each of the four possible cate-
gories: True Positive (TP): Both databases evaluate the query as correct. True Negative (TN): Both
databases evaluate the query as incorrect. False Positive (FP): The original database evaluates the
query as incorrect, but the synthetic database evaluates it as correct. False Negative (FN): The origi-
nal database evaluates the query as correct, but the synthetic database evaluates it as incorrect. Using
these counts, we calculate the observed agreement Po as:

Po =
TP + TN

TP + TN + FP + FN
(3)

Next, we compute the expected agreement Pe by considering the marginal probabilities of each
database’s evaluations:

Pe =

(
(TP + FP)(TP + FN)

(TP + TN + FP + FN)2

)
+

(
(TN + FN)(TN + FP)

(TP + TN + FP + FN)2

)
(4)

Finally, the Agreement Rate (AR) is calculated as:

AR =
Po − Pe

1− Pe
(5)

An AR score of 1 indicates perfect agreement between the two databases, while a score of 0 indicates
no better agreement than random chance. Negative values suggest systematic disagreement. By
using AR, we can quantify how well the synthetic database preserves the evaluation characteristics
of the original human-curated data on a query-by-query basis. There are ranges for interpreting AR
scores:

• 0.81 - 1.00: Almost perfect agreement

• 0.61 - 0.80: Substantial agreement

• 0.41 - 0.60: Moderate agreement

• 0.21 - 0.40: Fair agreement

• 0.00 - 0.20: Slight agreement

• < 0.00: Poor agreement

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Combining AR with success rate and execution accuracy offers a more complete assessment of
synthetic database quality for text-to-SQL evaluation. While execution accuracy reflects overall
model performance and preserves model ranking, it does not measure per-query consistency be-
tween databases. AR addresses this by quantifying agreement on individual queries, providing
finer-grained insight and mitigating potential inflation of aggregate metrics.

A.3 ERROR ANALYSIS OF SUCCESS RATE

To better understand the performance of SynSQL in aligning with question intent, we performed
error analysis on a random sample of 500 questions from the BIRD dataset. Of these, 84 questions
returned an empty set as the result of the gold query, corresponding to an 83.2% success rate.

Schema Selection Omission
(Missing Tables/Columns)

47.6%
(40 cases)

Misinterpretation of Question Intent
 Due to BIRD Ambiguities

20.2%
(17 cases)

Misinterpretation of Question Intent
 Due to SynSQL Misalignment

32.1%
(27 cases)

Figure 4: Breakdown of error cases in SynSQL success rate analysis (84 failures out of 500 BIRD dev ques-
tions).

Figure 4 summarizes the breakdown of failure cases and their causes. Of the 84 failed questions, 40
were due to schema selector failures. In these cases, schema reduction led to the omission of one or
more tables or columns used in the gold query. This does not necessarily mean the generated data
is meaningless; rather, the human annotator who wrote the gold query may have targeted different
schema elements than the LLM. For example, in question 387 from the card games database
(Figure 5):

Question: What are the cards for set OGW? State the colour for these cards.

Evidence: set OGW refers to setCode = 'OGW'

Gold Query: SELECT id, colors FROM cards WHERE id IN (SELECT id FROM
set_translations WHERE setCode = 'OGW')

Figure 5: An example of schema selection failure. The synthetic data omits the setCode column from
set translations, leading to a failed query.

SynSQL has generated data for the setCode column in cards, but omitted the setCode col-
umn from set translations during schema selection. The gold query joins both tables on
setCode, leading to failure. However, the synthetic data still contains valid setCode values, just
not in the joined table. This highlights the challenge of schema selection in open-ended text-to-SQL
tasks, where multiple valid interpretations exist.

The remaining 44 failures were due to misinterpretation of question intent. For example, in question
156 from the financial database (Figure 6):

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Question: Who is the owner of the account with the largest loan amount?

Evidence: N/A

Gold Query: SELECT T1.client_id FROM disp AS T1 INNER JOIN account AS T3 ON
T1.account_id = T3.account_id INNER JOIN loan AS T2 ON T3.account_id = T2.account_id
WHERE T1.type = 'OWNER' ORDER BY T2.amount DESC LIMIT 1

Figure 6: Example of misinterpretation: the synthetic data contains values such as owner (lowercase) in the
type column, while the gold query expects OWNER (uppercase). This case sensitivity mismatch leads to a
failed query.

Here, the synthetic database reflects the casing found in the question or evidence, but the gold query
expects a different case. Such mismatches between generated data and gold query expectations,
especially regarding case sensitivity or value formatting, can result in lower success rates.

Another example is question 90 from the financial database (Figure 7):

Question: How many accounts who have region in Prague are eligible for loans?

Evidence: A3 contains the data of region

Gold Query: SELECT COUNT(T1.account_id) FROM account AS T1 INNER JOIN loan AS
T2 ON T1.account_id = T2.account_id INNER JOIN district AS T3 ON T1.district_id =
T3.district_id WHERE T3.A3 = 'Prague'

Figure 7: An example of misinterpretation due to synthetic data not matching gold query conditions. The
synthetic data contains values that do not satisfy the gold query’s WHERE clause, leading to failure.

The gold query expects district.A3 = ’Prague’, but the synthetic data contains values such
as Prague 1, Prague 2, and Prague 3. Here, the LLM generated region names with ap-
pended numbers, resulting in a mismatch with the gold query’s expected value.

Some misinterpretations are due to misalignment between the question and the gold query in the
BIRD dev set, rather than errors by SynSQL. For example, in question 803 from the Superhero
database (Figure 8):

Question: What is the power ID of cryokinesis?

Evidence: power ID refers to superpower.id; cryokinesis refers to power_name = 'cryokinesis'

Gold Query: SELECT id FROM superpower WHERE power_name = 'Cryokinesis'

Figure 8: An example of misinterpretation due to inconsistencies between question/evidence and gold query
in the BIRD dev set. The synthetic data aligns with the question, but not the gold query, leading to failure.

In this case, the question and evidence refer to cryokinesis (lowercase), while the gold
query expects ’Cryokinesis’ (capitalized). The synthetic database contains power name =
’cryokinesis’, resulting in a mismatch with the gold query and subsequently lower success
rate. Similarly, in question 758, the question and evidence specify race = ’human’, but the
gold query expects race = ’Human’. In question 415, the question and evidence use Status

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

= ’legal’, while the gold query expects Status = ’Legal’. The synthetic data generated
by SynSQL reflects the casing found in the question, leading to mismatches with the gold query.

In summary, among the 44 misinterpretation cases, 17 stem from insufficient or ambiguous infor-
mation in the BIRD dev set, while 27 are attributable to SynSQL’s generation errors. The following
BIRD dev set questions could not be correctly handled by SynSQL due to a lack of necessary
information in the dataset for generating appropriate synthetic data. Such cases are likely to be chal-
lenging for any text-to-SQL system: 22, 73, 180, 309, 415, 758, 769, 803, 815, 818, 871, 1194,
1336, 1472, 1491, 1499, and 1528.

A.4 LIMITATIONS

SynSQL demonstrates strong performance in generating synthetic databases for text-to-SQL eval-
uation, but it has limitations. The schema selection process may omit relevant tables or columns,
leading to gold queries returning empty results. This remains an active area of research in text-
to-SQL evaluation. The challenge is amplified in our data synthesis setting, where the absence of
actual database contents and value-based retrieval mechanisms makes high-recall schema selection
inherently difficult. However, several practical extensions could improve robustness while main-
taining the minimalist design principle. First, implementing multi-hop schema traversal guided by
LLMs could recover essential join paths and connector tables in complex schemas, adding minimal
columns while significantly boosting recall. Second, employing ensemble methods across multi-
ple LLMs could reduce interpretation variance and yield more stable column predictions. These
approaches offer promising directions for addressing the remaining failure cases while preserving
SynSQL’s core advantages.

Additionally, SynSQL relies on the assumptions made by the large language models used. If the
LLMs misinterpret the question intent or generate inconsistent data, this can lead to lower success
rates. Incorporating additional constraints or validation steps during data generation could help
mitigate this.

A.5 ANALYSIS ON EFFECT OF CRITIC COMPONENT

As shown in Figure 2, the critic component consistently improves SynSQL’s success rate across dif-
ferent LLMs on the BIRD dev set. To provide deeper insight into this improvement, Figure 9 breaks
down the critic’s impact across its five evaluation criteria: hint alignment, key integrity, schema cov-
erage, data complexity, data variety, and relevance. The critic consistently enhances performance
across all dimensions, indicating its effectiveness in generating more semantically coherent and di-
verse synthetic databases.

Critic’s Role in Avoiding Oversimplified Data Patterns One potential limitation of LLM-based
synthesis is the tendency to generate overly simplistic or repetitive data patterns, which could arti-
ficially inflate success rates without providing meaningful evaluation coverage. The critic compo-
nent addresses this by explicitly evaluating data complexity and variety as core quality dimensions.
This improvement is reflected in the agreement rate (AR), which quantifies how well the synthetic
database’s query evaluations align with those of the original human-curated database on a per-query
basis. As shown in Figure 10, the critic significantly improves AR across all three LLMs tested on
the BIRD dev set. This indicates that the critic component enhances not just semantic alignment
with question intent, but also the fundamental ability to differentiate between correct and incorrect
SQL queries, the core objective of robust evaluation databases.

Feedbacks Through detailed analysis of critic feedback across our experimental runs, we observed
consistent patterns in how the critic identifies and addresses data quality issues. The critic provides
targeted feedback such as: figure 11 shows an example where the critic highlights deficiencies in
data complexity and variety, prompting the synthesizer to regenerate synthetic data that better aligns
with the question intent and enhances evaluation robustness.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

0

1

2

3

4

5

6

7

8

9

10

Hint Alignment

Key Integrity

Schema Coverage

Complexity

Variety

Relevance

+0.65

+0.72

+0.83

+0.70

+0.91

Spider

0

1

2

3

4

5

6

7

8

9

10

Hint Alignment

Key Integrity

Schema Coverage

Complexity

Variety

Relevance

+1.20

+0.61

+0.87

+0.99

+0.94

+1.24

BIRD
Initial After Critic

Figure 9: Impact of the critic component on each of the five data quality criteria in SynSQL, using Gemini-
2.5-Flash on Spider and BIRD dev sets. Spider results exclude the Hint Alignment criterion as evidence/hint
entries are not present in Spider.

GPT-4.1-Mini

GPT-4.1-Mini (w/o Critic
)

Gemini-2.5-Flash

Gemini-2.5-Flash (w/o Critic
)

Qwen-3-8B

Qwen-3-8B (w/o Critic
)

65

70

75

80

73.51 73.36

75.46

74.13

70.64

67.81

A
gr

ee
m

en
tR

at
e

(%
)

Figure 10: Impact of the critic component on agreement rate (%) of SynSQL with three different
LLMs on the BIRD dev set. Showing that the critic improves the database’s ability to distinguish
between correct and incorrect SQL queries.

Question: In the race a driver set the lap record for the Austrian Grand Prix Circuit, how long
did he spent at the pit stop at that same race?

Evidence: lap record means the fastest time recorded which refers to time, how long spent at
pitstop refers to duration

Feedback:
Add explicit marking or clearer linkage of the lap record in lapTimes, possibly by including
multiple laps per driver and highlighting the fastest lap. Introduce edge cases such as multiple pit
stops per driver and multiple drivers with close lap times to increase complexity. Increase variety by
adding more races, circuits, and drivers to better simulate real-world data.

Figure 11: Example of critic feedback highlighting deficiencies in data complexity and variety, prompting
regeneration of synthetic data to better align with question intent and evaluation robustness.18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

The critic also frequently identifies key integrity violations, such as non-unique primary keys or
referential integrity breaches. Figure 12 illustrates an example where the critic detects foreign key
violations, leading to regeneration that enforces these constraints and ensures schema integrity.

Question: What is the total amount of Community College District closure in 1989 in the city
of San Francisco?

Evidence: N/A

Feedback:
Ensure all CDSCode values in "schools" exist in "frpm" and "satscores" to maintain foreign key
integrity.
Increase complexity by including more diverse DOCType values and closure scenarios.
Add more variety in StatusType or closure reasons to enrich the dataset.

Figure 12: Example of critic feedback highlighting issues in foreign key integrity, leading to regeneration that
enforces schema integrity.

More examples of critic feedback are shown in Figures 13 and 14, demonstrating the critic’s consis-
tent role in identifying and rectifying data quality problems.

Question: How many patients with a normal level of complement 3 have a P pattern observed
in the sheet of ANA examination?

Evidence: normal level of complement 3 refers to C3 > 35; have a P pattern observed in the
sheet of ANA examination refers to ANA Pattern = 'P'; Should compute the number of distinct
ones

Feedback:
Adjust the 'C3' values in the 'Laboratory' table to better reflect the "normal level of complement 3
refers to C3 > 35" hint. Ensure a good mix of values both above and below 35, with a clear
distinction for "normal" cases. For example, include more values significantly above 35 for
"normal" cases, and values significantly below 35 for "abnormal" cases.

Figure 13: An example of critic feedback

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Question: Which country is the oldest driver from?

Evidence: date of birth refers to drivers.dob; The larger the birthday value, the younger the
person is, and vice versa

Feedback:
Increase the variety and range of birth dates to better highlight the oldest driver and include edge
cases such as multiple drivers born on the same day or very close dates. Add explicit foreign key
relationships or at least ensure driverId is consistently referenced across tables to improve schema
integrity. Expand the drivers table with more entries and nationalities to increase variety and
complexity. Although lapTimes and results are less relevant, adding meaningful data or
relationships could improve overall schema coverage and complexity.

Figure 14: An example of critic feedback

This systematic feedback mechanism ensures that subsequent iterations produce more robust test
databases that can effectively distinguish between semantically correct and incorrect SQL queries.
Overall, the critic’s feedback focuses on: (1) key integrity and schema coverage to ensure structural
validity, (2) presence of edge cases and boundary values, (3) diversity in categorical attributes, (4)
realistic distributions that reflect real-world data patterns while aligning with question intent, and
(5) inclusion of potential query failure scenarios. This multi-dimensional assessment prevents the
framework from converging on overly simplistic data that might mask SQL generation errors, en-
suring that high success rates reflect genuine semantic alignment and increases the robustness of
evaluation, rather than artificially accommodating weak queries.

A.6 EVALUATION WITH STRONGER LANGUAGE MODELS

In our main experiments, we focused on evaluating SynSQL with three small size LLMs: GPT-4.1-
Mini, Gemini-2.5-Flash, and Qwen-3-8B. To further assess SynSQL’s performance, we conducted
additional experiments using a more powerful model, GPT-4.1. The results, presented in Table 5,
demonstrate that SynSQL continues to outperform the vanilla GPT-4.1 model across all metrics on
the BIRD dev set.

Table 5: Performance comparison of SynSQL using GPT-4.1-Mini against GPT-4.1 on BIRD dev
set.

Method Success Rate (SR) Agreement Rate (AR)
DAIL-SQL DIN-SQL

BIRD (Original) 99.87 100.00 100.00
Vanilla GPT-4.1-Mini 69.43 58.57 61.88
SynSQL(GPT-4.1-Mini) 82.07 73.51 78.90
Vanilla GPT-4.1 76.09 66.52 70.58
SynSQL(GPT-4.1) 86.51 74.69 79.51

A.7 EVALUATION ON SPIDER 2.0

We also evaluated SynSQL on the Spider 2.0 dataset (Lei et al., 2024), which comprises 632 real-
world text-to-SQL workflow problems derived from enterprise-level database use cases. Since most
of these problems are based on Snowflake and BigQuery databases, we focused on the 135 ques-
tions that can be executed on SQLite to ensure compatibility with our synthetic database generation
framework. We then evaluated all questions that have gold SQL queries provided.

As shown in Table 6, SynSQL outperforms the vanilla LLM baseline on success rate demonstrat-
ing its effectiveness in generating synthetic databases that align with question intent even in more
complex, real-world scenarios.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 6: Performance comparison of SynSQL on Spider 2.0 dataset.
Method Success Rate (SR)

Vanilla GPT-4.1-Mini 54.17
SynSQL(GPT-4.1-Mini) 58.33

A.8 EVALUATION ON ADVANCED TEXT-TO-SQL SYSTEMS

To further validate SynSQL’s effectiveness, we evaluated its performance using three advanced text-
to-SQL systems: Gemini-SQL (Multitask SFT + Gemini-2.5-Pro) (Pourreza & Kubik, 2025), which
ranks at the top of the BIRD leaderboard in the single-model track at the time of writing, OmniSQL-
32B (Li et al., 2025), and CSC-SQL-32B (Sheng & Xu, 2025). These models represent the state-
of-the-art in text-to-SQL generation and provide a robust benchmark for assessing the quality of
synthetic databases generated by SynSQL.

As shown in Table 7, SynSQL consistently outperforms vanilla LLM baselines across all three ad-
vanced text-to-SQL systems on the BIRD dev set and achieves substantial agreement rates based
on Cohen’s Kappa score range. Notably, SynSQL maintains the ranking of text-to-SQL models ob-
served with the original human-curated databases, demonstrating its ability to preserve evaluation
fidelity.

These results underscore SynSQL’s versatility and effectiveness in generating high-quality synthetic
databases that facilitate robust evaluation of text-to-SQL systems, even when leveraging cutting-
edge models.

Table 7: Performance comparison of SynSQL and baseline methods on BIRD dev set using ad-
vanced text-to-SQL systems: Gemini-SQL, OmniSQL, and CSC-SQL. AR: Agreement Rate (%),
EX: Execution Accuracy (%), ∆: Difference in Execution Accuracy between original and synthetic
databases.

Method Gemini-SQL OmniSQL CSC-SQL
AR↑ EX ∆ ↓ AR↑ EX ∆ ↓ AR↑ EX ∆ ↓

BIRD (Original) 100.00 72.10 - 100.00 66.75 - 100.00 71.12 -
Vanilla GPT-4.1-Mini 48.67 84.68 12.58 47.72 80.51 13.76 47.70 82.20 11.08
Vanilla Gemini-2.5-Flash 56.82 82.86 10.76 55.71 78.42 11.67 55.11 80.70 9.58
SynSQL(Qwen-3-8B) 65.49 74.64 2.54 61.62 68.45 1.70 62.05 73.19 2.07
SynSQL(Gemini-2.5-Flash) 68.67 73.21 1.11 68.73 66.69 0.06 65.14 70.08 1.04
SynSQL(GPT-4.1-Mini) 65.58 73.14 1.04 65.61 65.71 1.04 63.98 68.12 3.00

A.9 REALISM AND MINIMALISM OF SYNTHETIC DATABASES

SynSQL-generated databases are not only realistic but also minimal and lightweight. This property
is particularly valuable in scenarios where gold queries are unavailable, not only during synthesis but
also for evaluation. For example, in production or cold-start settings, it is crucial to inspect and val-
idate the generated database, either through human-in-the-loop processes or by generating expected
outputs via table reasoning. The compactness of SynSQL databases facilitates such inspection and
validation, making them practical for robust evaluation even when large-scale or gold-standard an-
notations are not accessible.

We saw in Figure 4 that in SynSQL we have an average of 8.37 columns for BIRD and 6.71 columns
for Spider to answer a query, significantly fewer than the full schemas of 75.56 and 24.55 columns
respectively. We see an example of this in question 1000 from the formula 1 database (see Fig-
ure 15), SynSQL generates a minimal database with only 2 tables and 9 columns, compared to the
original database’s 13 tables and 94 columns. The synthetic database sufficiently covers the question
and relevant edge cases while being just 20KB in size, whereas the original is 21,836KB, making
SynSQL’s output much easier to inspect and validate. In contrast, synthetic databases generated
by prior work such as TestSuiteAccuracy (TSA) often contain random values from fuzzing and are

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

typically as large as the original databases. As illustrated in Figures 16 and 17, which show the
entirety of data generated for this question by SynSQL, the synthetic data includes realistic values
that closely match the question intent.

Question: Which racetrack hosted the most recent race? Indicate the full location

Evidence: full location refers to location+country; most recent race = MAX(date)

Gold Query: SELECT T1.location FROM circuits AS T1 INNER JOIN races AS T2 ON
T1.circuitId = T2.circuitId ORDER BY T2.date DESC LIMIT 1

Figure 15: An example from the formula 1 database (question 1000).

Moreover, SynSQL ensures that values within each row are meaningfully related and contextually
accurate. For example, if a row in the races table has the year set to 2024, all corresponding data
in that row (such as race name or date) is consistent with that year. Similarly, in the circuits
table, if the location is Monza, the country is set to Italy, reflecting the real-world fact that there is
a Formula 1 Grand Prix held in Monza, Italy. This level of realism and consistency, both within rows
and across related tables, is achieved by leveraging LLMs to generate data that maintains semantic
coherence and factual alignment.

raceID year circuitID name date

101 2022 1 British Grand Prix 2022-07-03

102 2022 2 Monaco Grand Prix 2022-05-29

103 2022 3 Japanese Grand Prix 2022-10-09

104 2022 4 United States Grand Prix 2022-10-23

105 2022 5 Italian Grand Prix 2022-09-11

106 2023 1 British Grand Prix 2023-07-09

107 2023 2 Monaco Grand Prix 2023-05-28

108 2023 3 Japanese Grand Prix 2023-10-08

109 2023 4 United States Grand Prix 2023-10-22

110 2023 5 Italian Grand Prix 2023-09-10

111 2024 1 British Grand Prix 2024-07-07

112 2024 2 Monaco Grand Prix 2024-05-26

113 2024 3 Japanese Grand Prix 2024-10-13

114 2024 4 United States Grand Prix 2024-10-27

115 2024 5 Italian Grand Prix 2024-09-08

Figure 16: Generated synthetic table races for question 1000 from the formula 1 database. The synthetic
data contains realistic values that align with the question intent.

circuitID name location country

1 Silverstone Circuit Silverstone United Kingdom

2 Circuit de Monaco Monte Carlo Monaco

3 Suzuka Circuit Suzuka Japan

4 Circuit of the Americas Austin USA

5 Autodromo Nazionale Monza Monza Italy

Figure 17: Generated synthetic table circuits for question 1000 from the formula 1 database. The
synthetic data contains realistic values that align with the question intent.

A.10 INCONSISTENCY EXAMPLES FROM SPIDER DEV SET

There are questions in the spider dev set that the gold query does not align with the content of original
test databases. Below are some examples of such inconsistencies, which lead to the observed low
success rates for the original Spider databases. SynSQL generates synthetic data that aligns with the

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

question intent and recovers such inconsistencies. For example, in (Figure 18) the questions asks for
the location and name for all stadiums with a capacity between 5000 and 10000. However, there are
no such stadiums in the original database, leading to the gold query returning empty results. SynSQL
generates synthetic data that includes stadiums within this capacity range. Another example is shown
in (Figure 19), where the question asks for the city and country of the Alton airport. However, the
original database flight 2 has the airport name listed as Alton , with a trailing space, leading
to a mismatch with the gold query. SynSQL generates synthetic data that correctly matches the
airport name as specified in the question.

Question: Show location and name for all stadiums with a capacity between 5000 and 10000

Evidence: N/A

Gold Query: SELECT LOCATION , name FROM stadium WHERE capacity BETWEEN 5000
AND 10000

Figure 18: An example of inconsistencies between gold query and database contents in the Spider dev set.
SynSQL aligns with the question, leading to recovery of such inconsistencies.

Question: Which city and country is the Alton airport at?

Evidence: N/A

Gold Query: SELECT City, Country FROM AIRPORTS WHERE AirportName = "Alton"

Figure 19: An example of inconsistencies between gold query and database contents in the Spider dev set.
SynSQL aligns with the question, leading to recovery of such inconsistencies.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

A.11 COLUMN SELECTION PROMPT

You are an expert data analyst. Your task is to carefully review the database
schema, understand the question, and use the hint to determine which columns
from which tables must be populated with synthetic data to fully support
answering the question.

This task is for synthetic data generation, NOT for Text2SQL. In this context,
RECALL IS MORE IMPORTANT THAN PRECISION. It is better to include more columns
than to miss important ones.

Database Schema:
{DATABASE_SCHEMA}

This schema defines the database structure, including tables, columns, primary
keys, foreign keys, and relevant relationships or constraints.
You can also rely on the following descriptions for the columns to better
understand the nature of data that would be generated for them.

Column Descriptions:
{COLUMNS_DESCRIPTIONS}

Question:
{QUESTION}

Hint:
{HINT}

The hint is intended to guide your attention to the specific elements of the
database schema that are essential for addressing the question accurately

Task:
Based on the database schema, question, and hint provided, your task is to
determine the columns from tables that need to be populated with data to support
the question.
You should also provide the foreign keys that are needed to potentially join the
tables, in the context of the question.
For each of the selected columns, explain why exactly it is necessary to
generate data for, in order to cover the question. Your explanation should be
logical and concise, demonstrating a clear understanding of the database schema,
the question, and the hint.

Please respond with a JSON object structured as follows:

```json
{{
  "chain_of_thought_reasoning": "Your reasoning for selecting the columns, be
concise and clear.",
  "table_name1": ["column1", "column2", ...],
  "table_name2": ["column1", "column2", ...],
  ...
  "foreign_keys": ["table_name1.column1 = table_name2.column2, ...]
}}
```

Make sure your response includes the table names as keys, each associated with a
list of column names that are necessary for generating synthetic data that would
be enough to support the question.
For foreign keys, make sure you include foreign keys within tables that are
needed to cover the possibility of join, IN CONTEXT OF THE QUESTION AND THE
HINT.
For each aspect of the question, provide a clear and concise explanation of your
reasoning behind selecting the columns. Only output a json as your response.

Figure 20: The prompt template used for column selection in the schema selector component of SynSQL.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

A.12 COLUMN EXPANSION PROMPT

You are an expert data analyst. Your task is to analyze the provided database
schema and a list of already selected columns, and identify the most
semantically similar columns to the selected ones.

Database Schema:
{DATABASE_SCHEMA}

This schema defines the database structure, including tables, columns, primary
keys, foreign keys, and relevant relationships or constraints.
You can also rely on the following descriptions for the columns to better
understand the nature of the data that would be generated for them.

Column Descriptions:
{COLUMNS_DESCRIPTIONS}

Already Selected Columns:
{SELECTED_COLUMNS}

Task:
Based on the database schema, column descriptions, and the already selected
columns, your task is to identify, AT MOST 3 of the most semantically similar
columns, that are:
1. Semantically similar to the selected columns but in a different table (e.g.
if Country.id is selected, then Match.country_id would be a similar column)
OR
2. Likely to contain data that would complement the selected columns

Please respond with a JSON object structured as follows:

```json
{{
  "chain_of_thought_reasoning": "Your reasoning for selecting additional
columns, be concise and clear.",
  "table_name1": ["additional_column1", "additional_column2"],
  "table_name2": ["additional_column1"],
}}
```

Make sure your response includes ONLY NEW columns that weren't in the original
selection. Do not repeat columns that were already selected.
Your response should only include 3 columns in total (for all tables), NO MORE.
So pick the most important ones.
For each additional column, briefly explain why you think it's similar or
related to the already selected columns.

Only output a json as your response.

Figure 21: The prompt template used for column expansion in the schema selector component of SynSQL.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

A.13 DATA SYNTHESIZER PROMPT

You are an expert data generator for SQL databases. Your task is to create
realistic and challenging test data that will properly test a system's ability
to answer complex questions.

For the given question, use the schema and hint to generate SQLite test data for
the database. The schema identifies the specific tables and columns that are
relevant to the question, and the hint provides guidance on how to structure the
data to make the question answerable.

Use the following instructions for generating the test data:
1- Pay attention to the primary key and foreign key constraints to ensure data
integrity.
2- Make sure the data includes edge cases and is challenging to answer the
question.
3- Include a variety of data that covers different scenarios related to the
question.
4- Generate enough data to make the question answerable but also challenging.
5- The data should be realistic and diverse.
6- Your response should follow the EXACT format of the example, where every line
starts with INSERT. DO NOT group the insert statements and DO NOT put values on
a different line than the INSERT statement.
7- IMPORTANT: For each INSERT statement, ensure the number of values EXACTLY
matches the number of columns in the table. Count the columns carefully in the
CREATE TABLE statement and provide exactly that many values in each INSERT
statement.

{FEEDBACK_INSTRUCTION}

{ONE_EXAMPLE}

Schema of the database with question and hint:

Database: {DB_NAME}

Schema: {DATABASE_SCHEMA}

Question: {QUESTION}

Hint: {HINT}

Figure 22: The prompt template used for data synthesis component of SynSQL.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

A.14 DATA CRITIC PROMPT

You are a data critic agent designed to evaluate synthetic data for answering
natural language questions. Your task is to analyze the generated data and
determine if it is correct, sufficient, complex, and diverse enough to answer
the question.

You should evaluate the data based on the following criteria:
1. Hint Alignment: Does the data follow the intent and details of the question
hint?
2. Key Integrity: Does the data respect uniqueness and foreign key relationships
in the schema?
3. Schema Coverage: Does the data include the relevant columns and relationships
from the schema?
4. Complexity: Does the data include sufficient complexity and edge cases?
5. Variety: Is there enough variety in the data?
6. Relevance: Is the data directly related to answering the question?

{ONE_EXAMPLE}

Question: {QUESTION}

Database Schema: {DATABASE_SCHEMA}

Hint: {HINT}

Generated Data: {GENERATED_DATA}

Provide a detailed evaluation of the data based on the criteria of Hint
Alignment, Key Integrity, Schema Coverage, Complexity, Variety, and Relevance.
For each criterion, provide a score from 1-10 and specific feedback on what
aspects need improvement.
If there are issues such as incorrect data, violations of key integrity (e.g.,
non-unique or missing foreign keys), or other schema-related errors, provide
clear and actionable feedback to help address and resolve these problems.
When providing feedback, consider that having more data is usually more
beneficial, provided it does not distract from or obscure the key information
required to answer the question. Try not to recommend reducing the data.
Finally, determine if the data meets the minimum quality criteria to answer the
question effectively.

Figure 23: The prompt template used for data critic component of SynSQL.

A.15 THE USE OF LARGE LANGUAGE MODELS (LLMS)

In accordance with the ICLR 2026 Code of Ethics, we acknowledge that large language models were
used to assist with the polishing of the writing in this paper.

27

	Introduction
	Related Work
	Methodology
	Problem Formulation
	Overview of framework
	Schema Selection
	Data Synthesis
	Data Critic

	Experiments
	Experimental Setup
	Evaluation Metrics

	Results
	Main Results
	Fine-grained Analysis of Execution Accuracy
	Ablation Studies

	Conclusion
	Appendix
	Success and Agreement Rates by Schema Complexity
	Agreement Rate Metric Details
	Error Analysis of Success Rate
	Limitations
	Analysis on Effect of Critic Component
	Evaluation with Stronger Language Models
	Evaluation on Spider 2.0
	Evaluation on Advanced Text-to-SQL Systems
	Realism and Minimalism of Synthetic Databases
	Inconsistency Examples from Spider Dev Set
	Column Selection Prompt
	Column Expansion Prompt
	Data Synthesizer Prompt
	Data Critic Prompt
	The Use of Large Language Models (LLMs)

