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Abstract

To adapt Large Language Models (LLMs) to001
ranking tasks, existing list-wise methods, rep-002
resented by list-wise Direct Preference Opti-003
mization (DPO), focus on optimizing partial-004
order or full-order list ranking consistency for005
LLMs to enhance their ranking abilities. How-006
ever, we argue that optimizing top-K ranking007
consistency could be more appropriate for real-008
world applications. There are two main rea-009
sons: (1) users are typically concerned with010
only the top-K results, making top-K rank-011
ing more important, and (2) tail items often012
lack precise feedback, making top-K ranking013
more reliable. Based on this, we propose K-014
order Ranking Preference Optimization (KPO)015
by extending the DPO’s Plackett-Luce model016
to accommodate top-K rankings. Addition-017
ally, recognizing that the number of impor-018
tant items can vary across queries, we ex-019
tend KPO to dynamically determine appro-020
priate K for different samples and introduce021
a curriculum learning strategy to boost train-022
ing efficiency. Extensive experiments demon-023
strate the effectiveness of KPO, highlighting its024
high sample efficiency and robustness to noise.025
The code is available at https://anonymous.026
4open.science/r/KPO-BEAF.027

1 Introduction028

Large Language Models (LLMs) have shown great029

potential in addressing a wide range of real-world030

tasks (Hadi et al., 2023; Minaee et al., 2024).031

By leveraging their semantic reasoning abilities032

and extensive world knowledge, LLMs can more033

effectively capture the nuanced relationships be-034

tween queries and candidate items, making them035

also promising for ranking tasks (Sun et al., 2023;036

Pradeep et al., 2023b) — the core of many real-037

world applications such as product search (Spathar-038

ioti et al., 2023; Fang et al., 2024) and recommen-039

dation (Chen et al., 2024b; Yue et al., 2023). How-040

ever, as illustrated in Fig.(1), ranking tasks extend041
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Figure 1: (a) Illustration of the LLM-based ranking task.
(b) Comparison of three ranking strategies.

beyond evaluating the relevance of individual can- 042

didates to a user query; they require ranking a list 043

of candidates. Yet, LLMs are not explicitly trained 044

to optimize list-wise ranking preferences during 045

pretraining. This limitation has sparked greater re- 046

search efforts to enhance LLMs’ list-wise ranking 047

capabilities (Pradeep et al., 2023a). 048

Among existing approaches, the list-wise Direct 049

Preference Optimization (DPO) method (Rafailov 050

et al., 2023; Chen et al., 2024b) has emerged as a 051

promising technique for optimizing LLMs to gen- 052

erate ranked outputs that align with human prefer- 053

ences directly at the list level. According to the 054

ranking consistency optimized for a list, existing 055

methods can be categorized into: 056

• Partial-order Method (e.g., S-DPO (Chen et al., 057

2024b)), which simply optimizes the ranking con- 058

sistency where “the best item is better than all 059

others,” i.e., y1≻ all others. This method focuses 060

on the ranking of the best one, failing to optimize 061

the fine-grained ranking consistency. 062

• Full-order Method (e.g., DPOPL (Rafailov et al., 063

2023)), which optimizes complete and fine- 064

grained ranking consistency, i.e., y1≻y2≻ · · · ≻ 065

. . . Ideally, this method ensures optimal ranking 066

alignment, but the optimization’s inherent diffi- 067

culties could limit its practical performance. 068

Given these, we argue that optimizing top-K 069

ranking consistency would be more appropriate 070

1

https://anonymous.4open.science/r/KPO-BEAF
https://anonymous.4open.science/r/KPO-BEAF
https://anonymous.4open.science/r/KPO-BEAF


for real-world ranking tasks (Adomavicius and071

Zhang, 2016; Le and Lauw, 2021). In practical072

scenarios, users typically have limited attention073

and focus only on the most relevant items, making074

top-K optimization sufficient to meet their needs.075

Moreover, this limited attention makes it difficult076

to obtain accurate preference ranks for less relevant077

items, rendering ranking optimization for long-tail078

items inherently unreliable. Therefore, we pro-079

pose top-K order ranking preference alignment080

for LLMs—optimizing the model to align fine-081

grained ranking consistency for the top-K items082

while disregarding it for others, (i.e., optimizing083

y1≻ . . .≻yK≻all others), as shown in Fig.(1).084

Towards the top-K order ranking preference085

alignment, we propose K-order Ranking Preference086

Optimization (KPO). The core idea is to extend087

existing DPO methods’ Plackett-Luce preference088

model (Plackett, 1975), originally designed for full089

rankings, to accommodate top-K rankings. Intu-090

itively, KPO works by increasing the relative log091

probability of each top-K item over all its subse-092

quent items, ensuring both the fine-grained order093

among the top-K items and the order between the094

top-K items and the others. As discussed, KPO095

is expected to outperform full-order methods due096

to its closer alignment with real-world scenarios.097

Additionally, theoretical analysis demonstrates that098

KPO surpasses existing partial-order methods.099

Taking it a step further, in real-world scenar-100

ios, the number of most relevant items can vary101

across queries. To address this, we extend KPO to102

handle varying K values across samples, incorpo-103

rating a strategy to adaptively determine K based104

on LLM confidence in assessing item relevance.105

Furthermore, to accommodate varying K, we in-106

corporate a curriculum learning strategy into KPO107

to simplify the learning process. Specifically, we108

guide KPO to focus on K-order optimization pro-109

gressively, starting from smaller K and gradually110

increasing to larger K. This approach is motivated111

by the fact that higher K introduces greater learn-112

ing challenges, as it requires distinguishing more113

complete and fine-grained rankings.114

The main contributions of this work can be sum-115

marized as follows:116

• We propose optimizing top-K ranking consis-117

tency for LLM ranking preference alignment to118

better match real-world needs and constraints.119

• We propose KPO for top-K order ranking align-120

ment, incorporating an adaptive strategy to de-121

termine suitable K values for different samples122

and a curriculum learning strategy to enhance 123

training effectiveness. 124

• Extensive experimental results validate KPO’s 125

effectiveness while showcasing its high sample 126

efficiency and robustness to noisy logits. 127

2 Related Work 128

In this section, we delve into related studies from 129

two perspectives: LLM-based ranking and prefer- 130

ence alignment in LLMs. 131

2.1 LLM-based Ranking 132

With the rise of LLMs with strong reasoning 133

abilities, researchers have increasingly explored 134

their potential in ranking tasks (Sun et al., 2023; 135

Qin et al., 2024; Ma et al., 2024; Yue et al., 136

2023). Studies in this area generally follow two 137

approaches: zero-shot usage or fine-tuning for 138

enhanced performance. In the zero-shot setting, 139

methods like RankGPT (Sun et al., 2023) leverage 140

ChatGPT (OpenAI, 2022, 2023) to rank candidate 141

passages based on a query. Fine-tuned models, 142

such as RankLLaMA (Ma et al., 2024), use point- 143

wise training to estimate relevance scores, improv- 144

ing reranking precision. LlamaRec (Yue et al., 145

2023) further extends this by introducing a two- 146

stage framework with a verbalizer-based method 147

for generating probability distributions over can- 148

didate items. These advancements highlight the 149

growing role of LLMs in ranking tasks, particu- 150

larly for search and recommendation applications. 151

2.2 Preference Alignment in LLMs 152

Preference alignment helps LLMs differentiate be- 153

tween “good” and “bad” answers using human- 154

labeled data (Ouyang et al., 2022). For example, 155

DPO (Rafailov et al., 2023) fine-tunes LLMs with 156

pair-wise preference data, while KTO (Ethayarajh 157

et al., 2024), inspired by Kahneman-Tversky’s 158

prospect theory (Tversky and Kahneman, 1992), 159

simplifies this process by utilizing point-wise la- 160

bels. However, both approaches face limitations 161

in effectively handling ranking tasks that require 162

aligning LLMs with multi-item ranking informa- 163

tion. Extensions such as DPOPL (Rafailov et al., 164

2023) and S-DPO (Chen et al., 2024b) adapt DPO 165

for list-wise settings: DPOPL targets full-order 166

rankings, while S-DPO handles partial-order rank- 167

ings. Nonetheless, these methods overlook K- 168

order ranking, a critical aspect of ranking tasks. 169
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3 Problem Definition170

Consider a ranking dataset D comprising query-171

candidate pairs, where each k-th instance172

(q(k), C(k)) ∈ D consists of: (1) A query q(k) repre-173

senting an information need (e.g., search query,174

recommendation context). (2) A candidate set175

C(k) = {c(k)1 , c
(k)
2 , . . . , c

(k)
M } containing M items176

to be ranked.177

The LLM takes as input a concatenated sequence178

x(k) = (q(k), C(k)) and aims to generate a permu-179

tation Y(k) = {y(k)1 ≻ y
(k)
2 ≻ · · · ≻ y

(k)
M }, where180

∀y(k)i ∈ C(k), the symbol ≻ represents a pair-wise181

preference relationship. When ambiguity is absent,182

we omit the superscript (k) for notational simplicity183

(e.g., yi instead of y(k)i ).184

We instantiate this framework through two rep-185

resentative ranking applications:186

• Sequential Recommendation: The query q ≜187

[v1, v2, . . . , vm] encodes a user’s interaction his-188

tory, where vj denotes the j-th consumed item.189

• Product Search: The query q represents a tex-190

tual search intent (e.g., “wireless noise-canceling191

headphones”).192

Both tasks share the core challenge of learning193

context-aware preference relations, but differ fun-194

damentally in their query semantics - making them195

ideal testbeds for evaluating the generalization of196

ranking frameworks.197

4 Methodology198

We first review foundational work in preference199

modeling to establish the necessary background.200

Then, we introduce the proposed model in detail.201

4.1 Preliminary202

Preference Modeling. Preference modeling aims203

to learn a function that captures human preferences204

over a set of candidate items, enabling applica-205

tions such as recommender systems, information206

retrieval, and human-AI alignment. One common207

approach is the Bradley-Terry (BT) model (Bradley208

and Terry, 1952), which provides a probabilistic209

framework for pair-wise preference learning, defin-210

ing the likelihood of selecting y1 over y2 given211

context x as:212

p̂(y1 ≻ y2 | x) =
exp(r(x, y1))

exp(r(x, y1)) + exp(r(x, y2))
,

(1)213

where r(x, y) is a task-specific reward function that214

quantifies the relative preference for candidate y215

in context x. To learn a policy model that aligns 216

with preferences, a widely adopted approach is 217

Direct Preference Optimization (DPO) (Rafailov 218

et al., 2023). DPO formulates the reward function 219

in terms of the policy model πθ and a reference 220

model πref: 221

r(x, y) = β log
πθ(y | x)
πref(y | x) + β logZ(x), (2) 222

where β controls the divergence between πθ and 223

πref . The partition function Z(x) is defined as: 224

Z(x) =
∑
y

πref(y | x) exp
(
1

β
r(x, y)

)
. (3) 225

Full-order Preference Modeling. While the pair- 226

wise BT model in Eq. (1) is effective for binary 227

comparisons, it struggles with ranking tasks in- 228

volving multiple candidate items. To address this 229

limitation, prior work (e.g., DPOPL (Rafailov et al., 230

2023)) has generalized BT to the list-wise Plackett- 231

Luce (PL) model (Plackett, 1975), which represents 232

rankings as a full-order sequence y1 ≻ y2 ≻ · · · ≻ 233

yM : 234

p̂(y1 ≻ y2 ≻ · · · ≻ yM | x) =
M−1∏
i=1

exp(r(x, yi))∑M
j=i exp(r(x, yj))

.

(4) 235

However, full-order methods risk overemphasiz- 236

ing irrelevant item relationships, making optimiza- 237

tion more challenging. 238

Partial Preference Modeling. To mitigate this, S- 239

DPO (Chen et al., 2024b) simplifies the PL model 240

by structuring preferences as a single positive can- 241

didate against multiple negatives. This modifica- 242

tion models preference as y1 ≻ {y2, . . . , yM}: 243

p̂(y1 ≻ {y2, . . . , yM} | x) = exp(r(x, y1))∑M
j=1 exp(r(x, yj))

. (5) 244

While S-DPO reduces computational complexity, 245

it oversimplifies the ranking problem by ignoring 246

nuanced distinctions among top candidates. In 247

real-world applications such as top-K recommen- 248

dation (Kweon et al., 2024; Luo et al., 2024) and 249

top-K retrieval (Ciaccia and Martinenghi, 2024; 250

Lee et al., 2023), users are primarily interested in 251

the relative ordering of the most relevant items. 252

This motivates our proposal for a hybrid approach 253

that combines the strengths of full-order and partial- 254

order models, focusing specifically on accurate top- 255

K preference modeling. 256
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(3) training the model with the KPO loss in Eq. (7).

4.2 KPO257

Our goal is to derive a K-order preference: y1 ≻258

· · · ≻ yK ≻ {yK+1, . . . , yM} where yi ∈ C,259

{y1, y2, . . . , yK} correspond to the top-K relevant260

items, and {yK+1, . . . , yM} represent the remain-261

ing irrelevant items.262

Based on the PL model in Eq. (4), we can define263

the K-order preference model as below:264

p̂(y1 ≻ · · · ≻ yK ≻ {yK+1, . . . , yM} | x)

=

K∏
i=1

exp(r(x, yi))∑M
j=i exp(r(x, yj))

.
(6)265

Due to space constraints, the detailed derivation of266

Eq. (6) is provided in Appendix A.1.267

Remark: The proposed K-order preference frame-268

work generalizes existing approaches, with the269

DPO, DPOPL, and S-DPO emerging as special270

cases of Eq. (6). When M = 2 and K = 1, it271

reduces to DPO’s pair-wise preference modeling.272

When K = M , it recovers DPOPL’s full-order273

ranking. When K = 1, it simplifies to S-DPO’s274

partial-order formulation.275

By following the implementation of the reward276

function r(x, y) from Eq. (2) in DPO, we can de-277

rive the loss function LKPO to maximize p̂ on a278

ranking dataset D as follows:279

LKPO(πθ;πref) = −E(x,y1,...,yM )∼D

[
K∑
i=1

log σ

(
−

log

M∑
j=i+1

exp

(
β log

πθ(yj |x)
πref(yj |x)

− β log
πθ(yi|x)
πref(yi|x)

))]
.

(7)280

Theoretical Analysis: We analyze the optimal top-281

K ranking accuracy of KPO through the following282

theorem.283

Theorem 1. Let π∗ be the optimal policy that max- 284

imizes the KPO objective. Given a dataset of ag- 285

gregated preferences Dp = {(x, y1 ≻ · · · ≻ yK ≻ 286

{yK+1, . . . , yM}}. Assume Dp contains ground- 287

truth ranking probabilitie following the PL model. 288

Specifically, for any item yi and the subset of re- 289

maining items {yi+1, . . . , yM}, the ranking proba- 290

bility is defined as follows: 291

α(x, yi, y>i) = P(yi ≻ {yi+1, · · · , yM}). (8) 292

The top-K ranking accuracy of π∗ is given by: 293

R∗
KPO(Dp, πref)

= E(x,y1,...,yM )∼Dp

[
K∏
l=1

M∏
k=l+1

I
[
wlπref(yl | x)
wkπref(yk | x) > 1

]]
,

(9) 294

where wl
wk

is defined as 295

wl

wk
=

(
α(x, yl, y>l)

α(x, yk, y>k)

)1/β

·
k−1∏
i=l

(1− α(x, yi, y>i))
−1/β .

(10) 296

The proof is deferred to Appendix A.2. 297

According to Theorem 1, we can derive the opti- 298

mal accuracy of S-DPO as: 299

R∗
S-DPO(Dp, πref)

= E(x,y1,...,yM )∼Dp

[
K∏
l=1

M∏
k=l+1

I
[
w′

lπref(yl | x)
w′

kπref(yk | x) > 1

]]
,

(11) 300

where w′
l

w′
k

is defined as 301

w′
l

w′
k

=

(
α(x, yl, y>l)

α(x, yk, y>k)

)1/β

·
k−1∏
i=l

(1− α(x, yi, y>i))
−1/β

· I[l = 1] + I[l ̸= 1].
(12) 302

Based on Eq. (10) and Eq. (12), we can con- 303

clude that: wl
wk

>
w′

l
w′

k
for all l ∈ {2, . . . ,K} 304

and k ∈ {l + 1, . . . ,M}. Therefore, we have 305

RKPO(Dp, πref) > R∗
S-DPO(Dp, πref), implying 306

that the optimal ranking accuracy of KPO is greater 307

than S-DPO. The detailed derivation is provided in 308

Appendix A.3. 309

4.3 Query-adaptive KPO 310

In real-world ranking scenarios, the number of rele- 311

vant candidates K often varies significantly across 312

queries. For instance, a query like “NVIDIA A40 313

GPU” typically has a single authoritative result, 314

while “budget wireless headphones” may involve 315

multiple comparable options. To address this, we 316

propose a query-adaptive extension of KPO that 317

dynamically adjusts to each query’s characteristics. 318
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4.3.1 Query-adaptive KPO Loss319

The key challenge lies in determining the appro-320

priate K for each input x = (q, C). We formalize321

this through a query-adaptive function K(x) that322

predicts the number of relevant candidates for a323

given query. This allows us to extend the KPO loss324

to its query-adaptive form:325

LK(x)
KPO(πθ;πref) = −E(x,y1,...,yM )∼D

[K(x)∑
i=1

log σ

(
−

log

M∑
j=i+1

exp

(
β log

πθ(yj |x)
πref(yj |x)

− β log
πθ(yi|x)
πref(yi|x)

))]
(13)326

4.3.2 K-aware Curriculum Learning327

To effectively train the query-adaptive loss in328

Eq. (13), we propose a K-aware curriculum strat-329

egy (Bengio et al., 2009). This approach organizes330

training instances based on their complexity, where331

complexity is defined by the number of relevant332

candidates K. We treat queries with smaller K333

values as “simple samples”, as they require the334

model to focus on only a few relevant items. Con-335

versely, queries with larger K values are considered336

“challenging samples”, demanding more complex337

ranking decisions.338

Following this intuition, we sort the training data339

in ascending order of K, allowing the model to first340

learn from simpler queries before progressively341

handling more complex ones. This structured train-342

ing not only facilitates smoother convergence but343

also ensures consistent K values within each batch,344

improving training stability.345

4.3.3 Acquisition of Query-adaptive K346

To determine query-adaptive K values for each in-347

put x = (q, C), we leverage the output information348

of the LLM itself to select K relevant candidates,349

eliminating the need for additional information.350

Specifically, we first use the reference model πref351

to compute the logits logits(q, ci) for each candi-352

date item ci ∈ C based on the given query q. Items353

with logits exceeding a predefined hyperparame-354

ter threshold τ are regarded as relevant candidates.355

The number of such items is then counted to deter-356

mine the query-adaptive K. Formally, this process357

is represented as K(x), defined as:358

K(x) = K(q, C) =
M∑
i=1

I (logits(q, ci) > τ) . (14)359

After obtaining the K values, we generate K-360

order ranking data for KPO training by first sort-361

ing candidate items based on their logits to se- 362

lect the top-K items. These top-K items are 363

then re-ranked using ground truth relevance la- 364

bels to ensure the correct relative order. The re- 365

sulting training data is structured as y1 ≻ · · · ≻ 366

yK(x) ≻ {yK(x)+1, . . . , yM}. Details on obtaining 367

the ground truth labels are provided in Appendix B. 368

The whole pipeline of the proposed method is 369

illustrated in Fig.(2). 370

4.3.4 Analysis of Time Complexity 371

The optimization objective of KPO introduces 372

an additional K-layer loop compared to S-DPO, 373

which may raise concerns about time complexity. 374

To address this potential issue, we conduct an 375

analysis of the time required for the actual opti- 376

mization process. Specifically, the parameter up- 377

date process can be divided into three phases: 378

• Phase 1: Compute M “rewards” (ri = 379

β log πθ(yi|x)
πref(yi|x) ). 380

• Phase 2: Use the rewards to compute the loss. 381

• Phase 3: Update model parameters via loss back- 382

propagation. 383

The K-layer loop introduced by KPO occurs in 384

Phase 2. However, the actual runtime of Phase 2 is 385

significantly shorter compared to Phase 1 and Phase 386

3, and thus does not impact the overall runtime of 387

the method. Detailed experimental results support- 388

ing this conclusion are provided in Appendix D.1. 389

5 Experiments 390

In this section, we aim to answer the following 391

research questions (RQ): 392

• RQ1: How does KPO perform in the recommen- 393

dation and product search tasks? 394

• RQ2: What are the effects of the key components 395

and hyperparameters? 396

• RQ3: How does KPO perform in terms of sample 397

efficiency and robustness to noisy logits? 398

5.1 Experimental Setup 399

We organize experiments on two typical ranking 400

tasks: recommendation and product search. 401

5.1.1 Datasets 402

For the recommendation task, we utilize the 403

MovieLens (Harper and Konstan, 2016) and 404

Goodreads (Wan and McAuley, 2018) datasets. 405

The user interaction sequences in each dataset are 406

chronologically sorted and then split into training, 407

validation, and test sets in an 8:1:1 ratio. 408
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Method MovieLens Goodreads Shopping Queries
HR@1 HR@5 HR@10 N@5 N@10 HR@1 HR@5 HR@10 N@5 N@10 N@5 N@10

KTO 0.5368 0.8421 0.9474 0.6996 0.7342 0.4875 0.8486 0.9534 0.6808 0.7147 0.7327 0.7525

DPO 0.5263 0.8632 0.9579 0.7052 0.7348 0.4908 0.8569 0.9584 0.6858 0.7216 0.7356 0.7531
SimPO 0.5263 0.8842 0.9579 0.7217 0.7448 0.4842 0.8569 0.9551 0.6794 0.7113 0.7392 0.7560
cDPO 0.5158 0.8632 0.9684 0.6960 0.7290 0.4509 0.8536 0.9534 0.6651 0.6979 0.7321 0.7503

S-DPO 0.5368 0.8526 0.9474 0.7062 0.7369 0.4842 0.8353 0.9484 0.6712 0.7083 0.7288 0.7480
DPOPL 0.5474 0.8737 0.9474 0.7229 0.7463 0.4859 0.8619 0.9634 0.6876 0.7205 0.7363 0.7529
KPOCUT 0.5474 0.8632 0.9684 0.7167 0.7493 0.4992 0.8453 0.9468 0.6852 0.7182 0.7347 0.7521

KPO 0.5579 0.8842 0.9684 0.7361 0.7620 0.5042 0.8719 0.9584 0.6994 0.7272 0.7477 0.7631

Table 1: Comparison with preference alignment methods. Bold indicates the best performance.

For the product search task, we used the Shop-409

ping Queries dataset (Reddy et al., 2022), which410

includes queries paired with up to 40 candidate411

products. Each product is assigned a four-level412

score ({0, 1, 2, 3}) representing its relevance to the413

query, which can serve as the ground truth label.414

Queries are grouped and randomly split into train-415

ing, validation, and test sets in an 8:1:1 ratio.416

The detailed description of the datasets and their417

statistical information is provided in Appendix C.1.418

5.1.2 Evaluation Setting419

We evaluate the model’s ability to rank 20 candi-420

date items based on a given query.421

For the recommendation task, the ground truth422

item is the user’s most recently interacted item.423

The candidate list includes this ground truth item424

and 19 randomly sampled items. The model’s425

performance is evaluated based on its ability to426

rank the ground truth item higher, using Hit Ratio427

(HR@1, 5, 10) and Normalized Discounted Cumu-428

lative Gain (N@5, 10).429

For the product search task, multiple ground430

truth items have relevance labels, we evaluate the431

model using N@5 and N@10 to measure its ability432

to prioritize highly relevant items. Additional re-433

sults for the setting with a single ground truth item434

are provided in Appendix D.2.435

5.1.3 Implementation Details436

Our experiments are conducted on eight NVIDIA437

A40 GPUs. We use the Llama-3.2-3B-Instruct438

(Meta, 2024) model as the backbone. In the super-439

vised fine-tuning (SFT) stage, the model is trained440

for 5 epochs with a learning rate of 1e-4. In the441

preference alignment stage, the learning rate is re-442

duced to 1e-5, and training is performed over 3443

epochs. The global batch size is fixed at 128. Refer444

to Appendix C.3 for more implementation details.445

5.2 Overall Performance (RQ1) 446

In this section, we compare KPO with other prefer- 447

ence alignment methods and non-preference align- 448

ment methods to evaluate the effectiveness of KPO. 449

Method Modeling Objective

KTO y λy − vKTO(x, y)

DPO y1≻y2 −log σ (r1 − r2)

SimPO y1≻y2 − logσ
(

β
|y1| logπθ(y1|x)−

β
|y2| log πθ(y2|x)−γ

)
cDPO y1 ≷ y2 −(1− ϵ) log σ (r1 − r2)− ϵ log σ (r2 − r1)

S-DPO y1≻{y2, . . . , yM} log σ
(
−log

∑M
j=2 exp (rj − r1)

)
DPOPL y1≻y2≻ . . .≻yM

∑M−1
i=1 log σ

(
−log

∑M
j=i+1 exp (rj − ri)

)
KPOCUT y1≻y2≻ . . .≻yK(x)

∑K(x)−1
i=1 log σ

(
−log

∑K(x)
j=i+1 exp (rj − ri)

)
KPO

y1≻y2≻ . . .≻yK(x) ∑K(x)
i=1 log σ

(
−log

∑M
j=i+1 exp (rj − ri)

)
≻{yK(x)+1, . . . yM}

Table 2: Modeling approaches and optimization ob-
jectives for preference alignment methods. For con-
venience, we define ri = β log πθ(yi|x)

πref(yi|x) . The detailed
definitions of KTO are provided in the Appendix A.4.

450

5.2.1 Comparison with Preference Alignment 451

Methods 452

To evaluate the effectiveness of KPO loss, we com- 453

pare it with various preference alignment methods 454

on the recommendation and product search tasks. 455

Baselines. We compare KPO to various base- 456

lines, including KTO (Ethayarajh et al., 2024), 457

DPO (Rafailov et al., 2023), SimPO (Meng et al., 458

2024), Conservative DPO (cDPO) (Mitchell, 2023), 459

S-DPO (Chen et al., 2024b), and DPOPL (Rafailov 460

et al., 2023). We also introduce KPOCUT, a 461

KPO variant that cuts off tail-irrelevant items 462

{yK(x)+1, . . . , yM} for comparison. Objective for- 463

mulations are summarized in Table 2, with detailed 464

baseline descriptions in Appendix C.2.1. 465

Results. The experimental results are summa- 466

rized in Table 1. To fairly evaluate the loss func- 467

tion’s effectiveness, KPO’s performance is reported 468
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Method MovieLens Goodreads
HR@1 HR@5 HR@10 N@5 N@10 HR@1 HR@5 HR@10 N@5 N@10

SASRec 0.4043 0.8298 0.9043 0.6356 0.6588 0.3661 0.7654 0.9118 0.5763 0.6238
GRU4Rec 0.4526 0.8316 0.9053 0.6498 0.6738 0.3478 0.7504 0.9251 0.5606 0.6185
Caser 0.3404 0.7979 0.9255 0.5845 0.6259 0.4133 0.8083 0.9283 0.6251 0.6640

MoRec 0.2737 0.6842 0.8211 0.4783 0.5244 0.3111 0.7121 0.8918 0.5240 0.5824
LLaRA 0.4565 0.8370 0.9130 0.6376 0.6630 0.4742 0.8053 0.9235 0.6341 0.6713

SFT 0.5053 0.8526 0.9368 0.6983 0.7255 0.4809 0.8369 0.9468 0.6675 0.7034
KPOCL 0.5684 0.8947 0.9684 0.7381 0.7637 0.5158 0.8735 0.9667 0.7024 0.7353

Table 3: Comparison with other traditional and LLM-based models. Bold indicates the best performance.

without curriculum learning. The key findings are469

as follows: (1) KPO consistently outperforms other470

methods across most metrics, demonstrating its ef-471

fectiveness. (2) KPO surpasses KPOCUT, highlight-472

ing the importance of irrelevant items in helping473

the model distinguish between relevant and irrel-474

evant ones. (3) Although KPO slightly underper-475

forms DPOPL in HR@10 on the Goodreads dataset,476

the HR@10 values across all methods are already477

high. Notably, KPO achieves a higher N@10 than478

DPOPL, reflecting better overall ranking quality.479

5.2.2 Comparison with Non-Preference480

Alignment Methods481

To verify whether KPO outperforms other non-482

preference alignment methods, this section focuses483

on the recommendation task and compares KPO484

with various recommendation models.485

Baselines. We thoroughly compare KPO with486

two categories of models: traditional models (SAS-487

Rec (Kang and McAuley, 2018), GRU4Rec (Hidasi488

et al., 2016), Caser (Tang and Wang, 2018)) and489

LLM-based models (MoRec (Yuan et al., 2023),490

LLaRA (Liao et al., 2024)). The detail description491

of the models can be found in Appendix C.2.2.492

Results. We evaluate the full KPO method with493

K-aware curriculum learning (KPOCL) against494

baseline models, including the SFT model for com-495

parison. As shown in Table 3, KPOCL significantly496

outperforms baseline models, demonstrating its ef-497

fectiveness. This improvement likely stems from498

the fact that baseline models are trained based on499

single ground truth items, neglecting the ranking500

relationships among multiple items, a core focus of501

the KPO method.502

5.3 Effectiveness of Key Components (RQ2)503

We investigate the effects of the following key com-504

ponents of our method: (1) K-aware curriculum505

learning, (2) query-adaptive K, (3) β in Eq. (13),506

and (4) threshold τ in Eq. (14).507

0 100 200 300 400 500
Training Steps

0.68
0.70
0.72

N@
5

MovieLens

0 2004006008001000
Training Steps

0.65
0.66
0.67
0.68
0.69
0.70

N@
5

Goodreads
Random Descending Ascending

Figure 3: N@5 on MovieLens and Goodreads validation
set under different training orders.

5.3.1 K-aware Curriculum Learning 508

To verify the effectiveness of K-aware curriculum 509

learning, we design three training orders for the 510

datasets: (1) “Random”: The dataset is randomly 511

shuffled. (2) “Descending”: The dataset is sorted 512

by K in descending order. (3) “Ascending”: The 513

dataset is sorted by K in ascending order. 514

We evaluate the impact of training orders by 515

plotting N@5 curves on the validation set (Fig.(3)). 516

The results show that the “Ascending” order outper- 517

forms “Random” and “Descending” orders in both 518

overall performance and stability, underscoring the 519

effectiveness of K-aware curriculum learning. Test 520

set results are provided in Appendix D.3. 521

K MovieLens
HR@1 HR@5 HR@10 N@5 N@10

1 0.5368 0.8526 0.9474 0.7062 0.7369
3 0.5579 0.8737 0.9684 0.7279 0.7574
5 0.5474 0.8737 0.9684 0.7251 0.7526
7 0.5474 0.8632 0.9579 0.7258 0.7469

10 0.5474 0.8737 0.9474 0.7229 0.7463

query-adaptive 0.5579 0.8842 0.9684 0.7361 0.7620

Table 4: Comparison of query-adaptive and fixed K.

5.3.2 Query-adaptive K 522

To evaluate the effectiveness of query-adaptive 523

K, we compare the performance of query- 524

adaptive KPO against KPO with fixed K val- 525

ues ([1, 3, 5, 7, 10]). As shown in Table 4, query- 526

adaptive K consistently outperforms fixed K, high- 527
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lighting its effectiveness.528

5.3.3 β in the Loss Function Eq. (13)529

Fixing τ at 24, the β is varied across [0.1, 0.5, 1.0,530

3.0, 5.0]. Typically, smaller β values indicate531

stronger influence of preference signals on the532

LLM, while larger values suggest weaker influ-533

ence. As shown in Fig. (4), the best performance534

occurs at β = 1.0, with higher β values leading535

to a notable drop in HR@1. This underscores the536

importance of effectively leveraging preference sig-537

nals in ranking tasks.538

5.3.4 Threshold τ in Eq. (14)539

Fixing β at 1.0, the τ is varied across [18, 20, 22,540

24, 26]. Based on the experimental results in541

Fig.(4), we can find that τ = 24 is the optimal542

value. Additionally, the performance of the model543

is not significantly affected by variations in τ , fur-544

ther indicating that KPO demonstrates a certain545

level of robustness and stability.546

0 1 2 3 4 5
0.4
0.6
0.8
1.0

18 20 22 24 26
0.5
0.6
0.7
0.8
0.9
1.0

HR@1
HR@5

HR@10
N@5

N@10

Figure 4: Study of β, τ on MovieLens validation set.

5.4 In-depth Analysis of KPO (RQ3)547

In this section, we conduct an in-depth analysis548

of KPO from two key perspectives: (1) sample549

efficiency, and (2) robustness to noisy logits.550

5.4.1 Sample Efficiency551

As shown in Section §4.3.4, KPO and S-DPO ex-552

hibit similar runtimes. This section highlights how553

the K-layer loop in KPO improves sample effi-554

ciency. Fig.(5a) compares the reward curves of the555

top-1 item during training for both methods.556

Fig.(5a) shows that KPO consistently outper-557

forms S-DPO in reward with the same number of558

training steps. Moreover, KPO achieves the same559

reward level as S-DPO in fewer steps, underscoring560

its superior sample efficiency.561

5.4.2 Robustness to Noisy Logits562

Since using LLM logits to determine K candidates563

may introduce inaccuracies, we investigate how564

such errors impact KPO’s training performance. To 565

simulate these inaccuracies, we introduce a noise- 566

adding mechanism that randomly swaps the logits 567

of two items within M candidates, resulting in false 568

top-K selections. We then assess performance as 569

the number of swaps increases. Fig.(5b) presents 570

the experimental results on the MovieLens vali- 571

dation dataset. The experiments demonstrate that 572

KPO maintains relatively stable performance de- 573

spite increasing noise levels, highlighting its robust- 574

ness to imperfect logit estimates from the LLM. 575
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Figure 5: (a) Comparison of the reward of the top-1 item
between KPO and S-DPO on MovieLens. (b) Study of
noise on the MovieLens validation set.

6 Conclusion 576

In this study, we propose a novel method called 577

KPO, designed to address the limitations of exist- 578

ing approaches that rely on full-order or partial- 579

order ranking but often neglect the significance of 580

top-K ranking. In detail, we introduce the K-order 581

ranking, which prioritizes fine-grained ranking con- 582

sistency for the top-K items while disregarding less 583

relevant ones. Building on this foundation, we ex- 584

tend the PL model to accommodate top-K ranking 585

and develop the corresponding KPO loss. Addi- 586

tionally, we derive a theoretical formula for the 587

optimal accuracy achievable by KPO, thereby the- 588

oretically demonstrating that KPO outperforms S- 589

DPO. Considering the varying number of relevant 590

items across queries, we make KPO query-adaptive, 591

enabling it to dynamically adjust K for each query. 592

To further improve training efficiency and stability, 593

we introduce K-aware curriculum learning, which 594

allows LLMs to progressively learn from simpler 595

to more complex data. Extensive experiments show 596

that KPO significantly outperforms existing prefer- 597

ence alignment methods, highlighting not only the 598

effectiveness of top-K ranking but also the critical 599

role of query-adaptive K. 600
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Limitations601

In this paper, we propose a query-adaptive KPO602

framework that dynamically determines the K-603

order for candidate items based on each query.604

While our approach has demonstrated effective-605

ness in experiments, the method for obtaining the606

query-adaptive K remains heuristic and does not607

guarantee that the resulting K is optimal.608

On one hand, we rely on the logits generated by609

the LLM to represent the relevance between can-610

didate items and the query. However, these logits611

may not always provide an accurate measure of612

relevance. It will be our future work to investigate613

more precise methods for assessing relevance.614

On the other hand, our approach determines K615

by counting the number of items whose logits ex-616

ceed a predefined threshold τ . This highlights that617

K is highly sensitive to the choice of this hyperpa-618

rameter. In future work, we will explore strategies619

to derive a more accurate and optimal K.620
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A Mathematical Derivation836

A.1 Preference Modeling Derivation837

In this section, we prove that the preference y1 ≻838

· · · ≻ yK ≻ {yK+1, . . . , yM} can be expressed as:839

p̂(y1 ≻ · · · ≻ yK ≻ {yK+1, . . . , yM} | x)

=

K∏
i=1

exp(r(x, yi))∑M
j=i exp(r(x, yj))

.
(15)840

Specifically, based on Eq. (4), we can derive step841

by step as follows:842

p̂(y1 ≻ · · · ≻ yK ≻ yK+1, yK+2, . . . , yM | x)

=
∑

Per(yK+1,...,yM )

M−1∏
i=1

exp(r(x, yi))∑M
j=i exp(r(x, yj))

=

K∏
i=1

exp(r(x, yi))∑M
j=i exp(r(x, yj))

×

∑
Per(yK+1,...,yM )

M−1∏
i=K+1

exp(r(x, yi))∑M
j=i exp(r(x, yj))

=

K∏
i=1

exp(r(x, yi))∑M
j=i exp(r(x, yj))

×∑
Per(yK+1,...,yM )

p(yK+1 ≻ · · · ≻ yM | x)

=

K∏
i=1

exp(r(x, yi))∑M
j=i exp(r(x, yj))

,

(16)843

where Per(yK+1, . . . , yM ) denotes the set of all844

permutations of yK+1, . . . , yM .845

A.2 Proof of the Ranking Accuracy Theorem846

In this section, we provide the proof of the theorem847

presented in Section §4.2, building on the method848

outlined in (Chen et al., 2024a).849

Theorem 1. Let π∗ be the optimal policy that max- 850

imizes the KPO objective. Given a dataset of ag- 851

gregated preferences Dp = {(x, y1 ≻ · · · ≻ yK ≻ 852

{yK+1, . . . , yM}}. Assume Dp contains ground- 853

truth ranking probabilitie following the PL model. 854

Specifically, for any item yi and the subset of re- 855

maining items {yi+1, . . . , yM}, the ranking proba- 856

bility is defined as follows: 857

α(x, yi, y>i) = P(yi ≻ {yi+1, · · · , yM}) (17) 858

The top-K ranking accuracy of π∗ is given by: 859

R∗
KPO(Dp, πref)

= E(x,y1,...,yM )∼Dp

[
K∏
l=1

M∏
k=l+1

I
[
wlπref(yl | x)
wkπref(yk | x) > 1

]]
,

(18) 860

where wl
wk

is defined as: 861

wl

wk
=

(
α(x, yl, y>l)

α(x, yk, y>k)

)1/β

·
k−1∏
i=l

(1− α(x, yi, y>i))
−1/β .

(19) 862

Proof. Firstly, under the PL model, we have: 863

P∗(yi ≻ {yi+1 · · · yM}) = exp(r∗(x, yi))∑M
n=i exp(r

∗(x, yn))
. (20) 864

Following DPO (Rafailov et al., 2023), we can 865

express the ground-truth reward through its corre- 866

sponding optimal policy: 867

r∗(x, y) = β log
π∗(y|x)
πref(y|x)

+ β logZ(x). (21) 868

We argue that, after thorough optimization, the op- 869

timal ranking probability P ∗(yi ≻ {yi+1 · · · yM}) 870

derived from the optimal strategy equals the 871

ground-truth ranking probability α(x, yi, y>i) de- 872

fined in the dataset. Then we can derive that: 873

α(x, yi, y>i) =
exp

(
β log π∗(yi|x)

πref(yi|x)

)
∑M

n=i exp
(
β log π∗(yn|x)

πref(yn|x)

) . (22) 874

Rearranging, we have: 875

α(x, yl, y>l)

α(x, yk, y>k)

=
exp

(
β log π∗(yl|x)

πref(yl|x)

)
exp

(
β log π∗(yk|x)

πref(yk|x)

) ·

∑M
n=k exp

(
β log π∗(yn|x)

πref(yn|x)

)
∑M

n=l exp
(
β log π∗(yn|x)

πref(yn|x)

)
=

exp
(
β log π∗(yl|x)

πref(yl|x)

)
exp

(
β log π∗(yk|x)

πref(yk|x)

) ·
k−1∏
n=l

(1− α(x, yn, y>n)).

(23) 876

Then we have: 877

π∗(yl|x)
π∗(yk|x)

=
wl

wk

πref(yl|x)
πref(yk|x)

, (24) 878
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where879

wl

wk
=

(
α(x, yl, y>l)

α(x, yk, y>k)

)1/β

·
k−1∏
i=l

(1− α(x, yi, y>i))
−1/β .

(25)880

If we define for each k = 1, . . . ,M ,881

Ek =
{
π∗(yk | x) > π∗(yj | x) for all j = k+1, . . . ,K

}
,

(26)882

then the top-K ranking accuracy of π∗ is given by:883

R∗
KPO = P

( K⋂
k=1

Ek

)
. (27)884

Finally, we can calculate the ranking accuracy885

as follows:886

R∗
KPO(Dp, πref)

= E(x,y1,...,yM )∼Dp

[
K∏
l=1

M∏
k=l+1

I
[
π∗(yl | x)
π∗(yk | x) > 1

]]

= E(x,y1,...,yM )∼Dp

[
K∏
l=1

M∏
k=l+1

I
[
wlπref(yl | x)
wkπref(yk | x) > 1

]]
.

(28)887

This complete the proof.888

A.3 Proof that KPO Outperforms S-DPO889

Based on Theorem 1, we demonstrate in this sec-890

tion that KPO achieves a higher optimal ranking891

accuracy compared to S-DPO.892

In detail, S-DPO models each data point as:893

y1 ≻ {y2, . . . , yM}, which is a special case of894

KPO when K = 1. Thus, similar to the proof of895

Theorem 1 in Appendix A.2, we express π∗(yl|x)
π∗(yk|x)896

as:897
π∗(yl|x)
π∗(yk|x)

=
w′

l

w′
k

πref(yl|x)
πref(yk|x)

, (29)898

where899

w′
l

w′
k

=

(
α(x, yl, y≥l)

α(x, yk, y>k)

)1/β

·
k−1∏
i=l

(1− α(x, yi, y>i))
−1/β

· I[l = 1] + I[l ̸= 1].
(30)900

As a result, the optimal ranking accuracy of S-901

DPO is:902

R∗
S-DPO(Dp, πref)

= E(x,y1,...,yM )∼Dp

[
K∏
l=1

M∏
k=l+1

I
[
w′

lπref(yl | x)
w′

kπref(yk | x) > 1

]]
.

(31)903

Next, we aim to prove that wl
wk

>
w′

l
w′

k
for all904

l ∈ {2, . . . ,K} and k ∈ {l + 1, . . . ,M}.905

Since the ranking probabilities α(x, yi, y>i) are906

provided by the dataset Dp, this implies that907

r∗(x, yl) > r∗(x, yk),∀l < k. (32)908

Hence, we can derive that: 909(
α(x, yl, y>l)

α(x, yk, y>k)

)1/β

·
k−1∏
i=l

(1− α(x, yi, y>i))
−1/β > 1.

(33) 910

Therefore, we conclude that wl
wk

>
w′

l
w′

k
for all 911

l ∈ {2, . . . ,K} and k ∈ {l + 1, . . . ,M}. 912

Subsequently, for l ̸= 1, we have: 913

I
[
wlπref(yl | x)
wkπref(yk | x) > 1

]
> I

[
w′

lπref(yl | x)
w′

kπref(yk | x) > 1

]
. (34) 914

Therefore, we conclude that R∗
KPO(Dp, πref) > 915

R∗
S-DPO(Dp, πref). 916

A.4 Optimization Objective of KTO 917

In this section, we provide a detailed introduction 918

to the optimization objectives of KTO (Ethayarajh 919

et al., 2024). 920

Given that λD and λU are hyperparameters for 921

desirable and undesirable outputs respectively, the 922

KTO loss is defined as: 923

LKTO(πθ;πref) = Ex,y∼D[λy − vKTO(x, y)], (35) 924

where 925

rθ(x, y) = log
πθ(y|x)
πref(y|x)

z0 = KL(πθ(y
′|x)∥πref(y

′|x))

vKTO(x, y) =

{
λDσ(β(rθ(x, y)− z0)) if y ∼ ydesirable|x
λUσ(β(z0 − rθ(x, y))) if y ∼ yundesirable|x

926

B Ground Truth Label 927

As mentioned in Section §4.3.3, we need to use 928

the ground truth labels in the dataset to re-rank the 929

top-K items. In practice, ground truth relevance 930

labels are derived as follows: 931

• Product Search Tasks: Each candidate item is as- 932

signed a relevance score with respect to the query, 933

typically from a discrete set such as {0, 1, 2, 3}. 934

• Recommendation Tasks: Only the item most re- 935

cently interacted with by the user is typically con- 936

sidered relevant, while all other items are treated 937

as irrelevant. This scenario can be seen as a spe- 938

cial case where one item’s relevance score is “1”, 939

and all others are assigned a score of “0”. 940

C Experimental Settings 941

C.1 Datasets 942

In this section, we provide a detailed description 943

of three datasets, as outlined below. The statistical 944

information is presented in Table 5. 945
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• MovieLens: This is a widely used dataset for946

movie recommendation tasks, containing user947

ratings for various movies and offering subsets948

of different sizes. Given the substantial compu-949

tational demands of LLMs, we chose the Movie-950

Lens100K dataset for our experiments.951

• Goodreads: This dataset comprises user ratings952

and reviews of books. To manage the dataset953

size, we filtered out users with fewer than 20954

interactions on Goodreads.955

• Shopping Queries: This dataset features a col-956

lection of challenging Amazon search queries957

and corresponding results. To limit its size, we958

excluded products associated with fewer than 5959

queries.960

Dataset #Query #Item #Interaction
MovieLens 943 1,682 100,000
Goodreads 6,031 4,500 220,100
Shopping Queries 21,852 12,882 96,788

Table 5: Statistics of datasets.

C.2 Baselines961

C.2.1 Preference Alignment Methods962

We compare KPO with various preference963

alignment methods, including KTO (Ethayarajh964

et al., 2024), DPO (Rafailov et al., 2023),965

SimPO (Meng et al., 2024), Conservative DPO966

(cDPO) (Mitchell, 2023), S-DPO (Chen et al.,967

2024b), and DPOPL (Rafailov et al., 2023). De-968

tailed descriptions of these methods are provided969

below:970

• KTO: Inspired by Kahneman and Tversky’s971

prospect theory (Kai-Ineman and Tversky, 1979;972

Tversky and Kahneman, 1992), this method re-973

lies solely on binary labels, classifying samples974

as either "good" or "bad," which can be consid-975

ered a point-wise approach.976

• DPO: Provides a closed-form solution for the977

reward model in RLHF (Ouyang et al., 2022)978

and enables offline optimization of the pair-wise979

preference model.980

• SimPO: Proposes a simplified optimization algo-981

rithm compared to DPO, eliminating the need for982

a reference model.983

• Conservative DPO (cDPO): Introduces a hyper-984

parameter ϵ to account for the flip rate of noisy985

labels.986

• S-DPO: Incorporates multiple negative samples987

in user preference data and develops an alter-988

native DPO loss formulation tailored for LM-989

based recommenders, linked to softmax sampling 990

strategies. 991

• DPOPL: Extends DPO’s Bradley-Terry modeling 992

to the list-wise Plackett-Luce modeling. 993

C.2.2 Recommendation Models 994

We compare KPO with various recommendation 995

models, which can be broadly classified into two 996

categories: traditional models and LLM-based 997

models. 998

The traditional recommendation models include: 999

• SASRec: An attention-based sequential recom- 1000

mendation model designed to effectively capture 1001

long-range semantic dependencies in user behav- 1002

ior sequences. 1003

• GRU4Rec: A recurrent neural network (RNN)- 1004

based model known for its simplicity and effi- 1005

ciency in recommendation tasks. 1006

• Caser: A convolutional neural network (CNN)- 1007

based model that interprets a user’s historical 1008

behavior sequence as an “image” and leverages 1009

CNN operations to extract meaningful patterns. 1010

The LLM-based recommendation models in- 1011

clude: 1012

• MoRec: A model that enhances traditional rec- 1013

ommendation models by integrating modality- 1014

specific features of items. 1015

• LLaRA: A hybrid model that combines LLM with 1016

the traditional models’ embeddings through hy- 1017

brid item representations. 1018

C.3 Implementation Details 1019

Our experiments are conducted on eight NVIDIA 1020

A40 GPUs. For the KPO method, we use the 1021

LLama-3.2-3B-Instruct (Meta, 2024) model as the 1022

backbone and apply LoRA (Hu et al., 2022) for 1023

fine-tuning. Specifically, the LoRA rank is set to 1024

32, and the LoRA alpha is configured to 64. During 1025

the supervised fine-tuning (SFT) stage, the model 1026

is trained for 5 epochs with a learning rate of 1e- 1027

4. In the preference alignment stage, the learning 1028

rate is reduced to 1e-5, and training is performed 1029

over 3 epochs. The global batch size is fixed at 1030

128. To ensure optimal performance, we select the 1031

model checkpoint that achieves the best results on 1032

the validation set. Additionally, a warm-up strat- 1033

egy is employed, where the learning rate is initial- 1034

ized to 1
100 of its maximum value and gradually 1035

increased using a cosine scheduler. For traditional 1036

models, we adopt the settings outlined in (Yang 1037

et al., 2023), using a learning rate of 0.001, an 1038

embedding dimension of 64, and a batch size of 1039
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Method MovieLens Goodreads
HR@1 HR@5 HR@10 N@5 N@10 HR@1 HR@5 HR@10 N@5 N@10

SFT 0.5053 0.8526 0.9368 0.6983 0.7255 0.4809 0.8369 0.9468 0.6675 0.7034
Random 0.5579 0.8842 0.9684 0.7361 0.7620 0.5042 0.8719 0.9584 0.6994 0.7272
Descending 0.5474 0.8737 0.9684 0.7233 0.7532 0.4942 0.8686 0.9584 0.6949 0.7239
Ascending 0.5684 0.8947 0.9684 0.7381 0.7637 0.5158 0.8735 0.9667 0.7024 0.7353

Table 6: Comparison of different training data orders. Bold indicates the best performance.

256. To determine the optimal L2 regularization1040

coefficient, we conduct a grid search over the val-1041

ues [1e − 3, 1e − 4, 1e − 5, 1e − 6, 1e − 7]. For1042

other LLM-based models, we follow the training1043

protocol described in LLaRA (Liao et al., 2024),1044

training the models for up to 5 epochs with a batch1045

size of 128.1046

D Additional Experiments1047

D.1 Analysis of Time Complexity1048

As mentioned in Section §4.3.4, the additional K-1049

layer loop introduced by KPO, compared to S-DPO,1050

does not significantly increase the actual runtime.1051

To support this claim, we conducted experiments1052

to compare the runtime performance of KPO and1053

S-DPO in practice.1054

We measured the average runtime of each phase1055

during optimization on the MovieLens dataset us-1056

ing an NVIDIA A40 GPU with a batch size of 4.1057

As shown in Table 7, KPO’s total runtime is only1058

2% longer than S-DPO. This slight increase arises1059

from Phases 1 and 3 dominating the computation,1060

while the added complexity in Phase 2 has min-1061

imal impact. Therefore, KPO achieves runtime1062

efficiency comparable to S-DPO despite its higher1063

theoretical complexity.

Method Complexity Runtime
Phase 1 Phase 2 Phase 1 Phase 2 Phase 3 Total

S-DPO Θ(M) Θ(M) 2.82 0.03 8.04 10.89
KPO Θ(M) Θ(K ·M) 2.82 0.24 8.04 11.10

Table 7: Results of time complexity and actual run-
time. “Complexity” refers to the number of iterations
per phase, with execution time measured in seconds.

1064

D.2 Shopping Queries Dataset with One1065

Ground Truth Item1066

We also align the experimental setup of the Shop-1067

ping Queries dataset with that of the recommenda-1068

tion dataset: a candidate item list is composed of1069

one ground truth item and 19 randomly sampled1070

items. The experimental results are presented in 1071

Table 8. 1072

Based on the experimental results, we can con- 1073

clude that KPO outperforms other preference align- 1074

ment methods, which demonstrates the effective- 1075

ness of KPO.

Method
Shopping Queries

HR@1 HR@5 HR@10 N@5 N@10

KTO 0.5120 0.8430 0.9510 0.6891 0.7243
DPO 0.5210 0.8560 0.9550 0.6968 0.7288
SimPO 0.5210 0.8580 0.9630 0.6991 0.7331
cDPO 0.5240 0.8520 0.9540 0.6972 0.7304
S-DPO 0.5270 0.8420 0.9510 0.6936 0.7293
DPOPL 0.5230 0.8560 0.9530 0.6997 0.7315
KPOCUT 0.5220 0.8410 0.9480 0.6929 0.7279

KPO 0.5330 0.8670 0.9670 0.7087 0.7414

Table 8: Comparison for optimization objectives on
the Shopping Queries dataset. Bold indicates the best
performance.

1076

D.3 K-aware Curriculum Learning 1077

To demonstrate the effectiveness of K-aware cur- 1078

riculum learning, we present the performance of 1079

three training data orders—random, descending, 1080

and ascending—on the MovieLens and Goodreads 1081

test set. For better comparison, we also present the 1082

performance of the SFT model. The experimental 1083

results are summarized in Table 6. 1084

From these results, we have drawn the following 1085

findings and conclusions: The model trained on 1086

“Ascending” data consistently outperforms those 1087

trained on “Random” and “Descending” data. This 1088

indicates that starting with simpler data and gradu- 1089

ally progressing to more complex data is beneficial 1090

for improving model performance. 1091
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